Numerical solutions for a class of SPDEs
with application to filtering

Thomas G. Kurtz' and Jie Xiong®

Abstract

A simulation scheme for a class of nonlinear stochastic partial
differential equations is proposed and error bounds for the scheme
are derived. The scheme is based on the fact that the solutions of
the SPDEs can be represented by the weighted empirical measure
of an infinite system of interacting particles. There are two sources
of error in the scheme, one due to finite sampling of the infinite
collection of particles and the other due to the Euler scheme used
in the simulation of the individual particle motions. The error
bounds take into account both sources of error. The results can be
applied to nonlinear filtering problems.
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1. Introduction

Let M(R?) be the collection of all finite signed measures on R?, and let
U be a Polish space, B(U) the Borel subsets of U, and p a o-finite Borel
measure on U. Let A(U) = {A € B(U) : p(A) < oo}. For 1 <4, j < d,
let a;j, b, d be functions on R? x M(R¢) and let «;, 3 be functions on
R? x M(R?) x U. We are interested in numerical approximation for the
measure-valued process V' governed by the following nonlinear stochastic
partial differential equation (SPDE) written in the weak form: for each
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(¢, V(1)) (1.1)
=(3,V(0)) + [ (d(-,V(s))p+ L(V(s)), V(s))ds

0

+ / (B(-,V(s),u)¢ + o’ (-, V(s),u) Ve, V(s)) W(duds),

where for any v € M(R?), L(v) is a second-order differential operator
T d
L(0)p(x) = 5 Y ai(2,v)05,0,6(x) + D bi(z,v) s, 6(2),
ij=1 i=1
and W is Gaussian white noise with

E[W (A, )W (B,t)] = u(ANB)t, VA, B e A{).

Under appropriate conditions, we proved in [18] that V is the weighted
empirical measure process of the following interacting system of diffusions:

Xit) = X0+ [ o(X(s). V(B (1.2
—l—/o c(X;(s),V(s))ds

+ /UX[M a(X;(s),V(s), u)W(duds)

+ / A(8)B(Xi(5), V(s), w)W (duds)
Ux[0,t]

and
R

where the B; are independent standard R?-valued Brownian motions and
Oijs Ciy Vis 1 <1, j < d, are functions on R? x M(R*) such that

a(z,v) = o(z,v)o’ (z,v) + /Ua(x,v,u)aT(x,v,u)/L(du)
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and
b(z,v) = c(z,v) + o(z,v)y(z,v) + /Uﬁ(x,v, w)a(z, v, u)u(du).

It will be useful to note that Z; = log A; satisfies

Zi(t) = Zi(O)—i-/O WT(Xi(s),V(s))dBi(s)-l—/O d(X;(s),V(s))ds

+ / B(Xi(s), V(s), u)W (duds) (1.5)
Ux[0,t]

1

L (s VN e + [ 80X, Vi), u ) ) ds.
J,( . )

As in the classical Monte Carlo approximation considered, for example,
in Milstein [25], Kloeden and Platen [15], and Kurtz and Protter [17],
there are two sources of error in the numerical solution of the SPDE: The
sampling error due to the fact that only finitely many particles are used
in the approximation and the bias introduced by the approximation of the
motion of each particle. For simplicity of notation, we consider the two
sources of error separately. First, we study the following finite particle
system:

XN)=&®+AdW@W%WM$ (1.6)
+ /0 c(X](s),V"™(s))ds

+ /U>< o a(X](s), V*(s), u)W (duds)
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In Theorem 2.3 and Corollary 2.4, we give a bound on the error in esti-
mating V (¢t) by V"(t).

Next, we consider the approximation of the finite particle system (1.6-
1.8). For §>0,let {UJ: 1< j<k(0)} be a partition of U and for each
7, let u e Uj. g We apply an Euler scheme to the finite particle system
(1.6-1. 8) The Euler step for X is given by

XM ((k+1)6) (1.9)
= X[ (k0) + o (X[ (k6), V™ (k6))(Bi((k + 1)d) — Bi(ks))
+c(X™ (k8), V™ (kb))6
+> (X[ (k6), V™ (k6), ub)W (UZ x (kS, (k + 1)3]).

J

If we used a similar Euler approximation for A7, we would run the risk
of the sign changing. Consequently, we approximate Z" = log A? instead
giving

ZM((k +1)6) (1.10)
= 27" (k8) + 7" (X7 (k6), V™ (k8)) (Bi((k + 1)) — Bi(ko))
+ 3 BX(k6), V™ (k6), ul)W (UL x (K3, (k + 1)3])
+d(X™ (k5), V™ (k6))6
5 (DX 08), V™ o))

£ D7 BT (kS), V7 (k3), uf)*(U) ).

Of course

V™ (ks) Zez’”

X” S (k6)"

Note that the random inputs are all independent Gaussian so that the
scheme is implementable.
Define & : U — U by

&(u) = uj-, u € U]‘-s, 1 <7 <k(9), (1.11)
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and set 75(s) = [s/6]5. Then the solution of
XM = JYAO)+lA¢OCY?WnASD,V“WHASD)dBAS) (112
[ e o), V(o)
- o ), V(5,50 W ()

AM() = A0) + / AP (5)y (X (s (5)), V™ (ms(5)))dB(s) (1.13)
+ / AP (5)d(X 9 (15(5)), V™ (ms(s)) s

0

+ /Ux[o . A ($)B(X™ (05(3)), V™ (n5(s)), & (u) )W (duds)

fori=1,2,---,n, and

V™I(t) ZA“ 8xni gy (1.14)

agrees with the Euler recursion at times that are multiples of . In The-
orem 3.3 and Corollary 3.4, we give a bound on the error in estimating
V™(t) by V™(t). Finally, in Theorem 4.1, we combine both estimates
to obtain an error estimate for the approximation of V'(¢) by V™9(t). If
d = O(n™1), then the error is O(1//n).

1.1. Application to filtering equations

One of the applications of the present work is to the numerical solution
of the nonlinear filtering problem. To motivate our approach and for the
convenience of the reader, we briefly introduce nonlinear filtering theory.
We refer the reader to Kallianpur [14] and Liptser and Shiryayev [22] for
a detailed treatment.

On a stochastic basis (2, F, F;, P), let X be the d-dimensional signal
process governed by the following stochastic differential equation (SDE):

X(t):X(O)+/O c(X(s))ds+/O o(X(s))dB(s) (1.15)

+ /U><[O . a(X (s),u)W (duds),
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where b: R — RY, 0 : R? — R¥™? and o : R? x U — R?, are measurable,
W is the Gaussian white noise given in the model (1.1), and B is a d-
dimensional Wiener process, independent of W. Let h: R x U — R be
a measurable map such that

sup/ \h(z,u)Pp(du) < oo, (1.16)
U x[0,T]

TERY

and let Y be the random measure on U x [0, 7] given by

Y (A x[0,t]) = /A o h(X(s),u)u(du)ds + W (A x [0,1]), (1.17)

VA € AU), t €[0,T].

We want to estimate the conditional distribution of X given observations
of Y, that is, we want to compute the random probability measure m;
determined by

mf = ELf (X ()17, (1.18)

where FY = o{Y (A x [0,s]) : A € B(U), 0 < s <t} is the information
available up to time .

Remark 1.1 IfU C R?, then Y models spatial observations. If U is a
space containing only m points, then Y and W can be regarded as m-
dimensional processes and (1.17) becomes the classical observation model.

Under (1.16), we can assume that there exists a reference measure on
(Q, F, F;) such that for each ¢ > 0, P |5 << @ |x, the Radon Nikodym
derivative 40 on F; is given by

A(t) = e(fo[o,T]h(X(s),u)Y(duds)—%fUX[O!T] \h(X(S),U)\zu(du)ds),

and under @), Y is Gaussian white noise with covariance measure p and
is independent of B.
By the Kallianpur-Striebel formula, we have

mf = M
il

where

mf =E[f(X(0)AM)F] -
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The random measure p; solves the following Zakai equation which is a
special case of (1.1):

wf = 7r0f+/0 ws(Lf)ds (1.19)
{/%Nﬁabw+wwﬁﬁww% Vf e C2(rY),
0

where
d

Z ()00, 00, f () + ) ci(2)0u, f ()

=1

l\.’JI»—t

with

ai;j(z Za,k x)oj(x /Uoz,-(x,u)ozj(x, u)p(du).

In the case of U finite, the uniqueness of the solution to (1.19) has been
discussed by various authors (for example, Szpirglas [28], Fujisaki, Kallian-
pur, and Kunita [12], Kurtz and Ocone [16], Rozovskii [27] and Bhatt,
Kallianpur and Karandikar [1]. Under the boundedness and Lipschitz
conditions we assume here, uniqueness for the general case follows by the
results of [18].

Note that

A(t) =1+ /U AR 3) Y (duds).

To approximate p;, we consider the following particle system

&m=&®+AM&@m+Aommw&@
a(X;(s),u)Y (duds
+Lmﬂ<<>>< )

and
At =1+ /U o OO 5), Y (), (1.20)

j=1,2,--+,n, where b(z) = c(z) — [ oz, u)h(z,u)u(du), and By, - - , B,
are independent Brownian motions, independent of Y under (). Define

ZA (t)dx;(0)- (1.21)
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We will show that u — p; and study the convergence rate as a special
case of the approximation problem for the empirical measure process V
discussed above.

Numerical solution of the filtering problem has been studied exten-
sively in the classical setting (U finite), although much of the work has
been done under the assumption that the observation noise is independent
of the signal. Kushner [19, 20, 21] develops approximation methods based
on replacing the signal process by a finite state Markov chain that approxi-
mates the signal. In the simplest cases, this method is equivalent to a finite
difference approximation in the filtering equation. Picard [26] considers a
time discretization of the Zakai equation involving the replacement of the
signal by a discrete-time process and discrete-time approximations of the
Radon-Nikodym derivative in the Kallinapur-Striebel formula. The error
in the approximation is O(d), where § is the time step. The approxima-
tions still involve integrals against process distributions, and Picard sug-
gests a Monte Carlo scheme to implement the approximation. Di Masi,
Pratelli, and Runggaldier [8] consider a similar time discretization, but
they also introduce a signal approximation that reduces the problem to a
finite dimensional computation somewhat similar to the approach taken
by Kushner. Lototsky and Rozovskii [23] and Lototsky, Mikulevicius and
Rozovskii [24] derive algorithms based on a Wiener chaos decomposition.
This point of view is also explored by Budhiraja and Kallianpur [2]. Hu,
Kallianpur and Xiong [13] considered a Wong-Zakai type approximation.
An error bound of the order of v/§ was obtained, where § is the size of the
discretization time step.

Florchinger and Le Gland ([9], [10]) consider a time-discretization of
the Zakai equation for diffusion processes observed in correlated noise
based on a split-up approximation and a Trotter-like product formula. The
error estimate is also of the order of v/4. In [11], a particle approximation
is formulated similar to the one considered here. Del Moral [7] considers
a particle approximation for a model with independent observation noise
that discounts past information. His results give convergence uniform in
time but without a rate.

Crisan and Lyons [6] and Crisan, Gaines and Lyons [5] derive an ap-
proximation for the independent noise problem based on an interacting,
branching particle system. For a closely related method, Crisan, Del
Moral, and Lyons [3] give an error bound of order n=1/4, where n is essen-
tially the number of particles. Recently, Crisan, Del Moral and Lyons [3]
considered the numerical solution for the filtering problem with discrete
time parameter. The error bound they derive is of the order of Ln These
branching models attempt to reduce the variance of the approximation by
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avoiding the weights A; in the empirical measure process. Roughly, the
schemes kill particles that would have small A; and replicate particles that
would have large A;.

Simulation results by various investigators support the argument that
some kind of branching or resampling improves the accuracy of par-
ticle approximations. The results of the present paper demonstrate
that the error of simple (non-branching) Monte Carlo integration of the
Kallianpur-Striebel formula is of the same (or better) order as the branch-
ing /resampling methods. Branching/resampling can only improve the er-
ror by reducing the conditional variance of the empirical measure, and
since at the time of a branching or killing event, the conditional variance
will typically increase, considerable care needs to be taken to ensure that
branching/resampling does not make the error worse.

1.2. Organization of paper

In section 2, we estimate the error resulting from replacing the infi-
nite particle system by a finite particle system, that is, the error due to
sampling. In section 3, we consider the Euler scheme for the finite sys-
tem and estimate the error due to the time discretization and to the space
discretization needed to approximate the Gaussian white noise (W (duds))
integrals. Finally, in Section 4, we combine sampling and the Euler scheme
to obtain an approximation of V' and its error bound.

2. Sampling error

In this section, we bound the error caused by replacing V' by a finite
empirical measure V™.
Recall that for vy, v € M (R?), the Wasserstein metric is given by

p(vi,va) = sup{|(#,v1) — (B, 10) | : ¢ € B},

where

B = {¢:|6(z) — d(y)| < |z —y|,|¢(z)| < 1,Vz,y € R} .

We will be dealing with measures of the form v¥ = 3™ | a¥6,¢, and it is
useful to note that in this case

1 n
p, 1) < Y al v ad(lal = a?| + |logal —loga)).  (21)
=1

For simplicity of notation, we restrict our attention to M, (R?)-valued
processes. To this end, we make the following assumption:
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(I) {(A4;(0), X;(0))} is an 4id sequence which is independent of {B;} and
W. A;(0) >0 a.s. and

EA; (0)? + E| X (0)]* < .

The following assumptions were made in [18] for the existence and
uniqueness of the solution of the SPDE (1.1).

(S1) There exists a constant K such that for each z € R¢, v € M (R?),
o (@, V)* + [e(z, v)|* + /U (@, v, u)[*p(du)
+la )+ e )P + [ planautdn) < K

(S2) For each z1, 75 € R, vy, 15 € M (R?)

o(x1,v1) — (T2, v2)|° + |c(T1, 1) — (T2, 1) [?
+v(z1, 1) — (21, V1)|2 +/ (21, v1,u) — oD, 14, u)\2,u(du)
U
+|d(l'1, Vl) - d(x27y2)|2 +/ |ﬁ($1: l/lau) - /B(‘/I;Za Z/Q,U)|2/,L(dU/)
U
< K*(Jay — 2| + p(v1, 1)?).

With reference to (1.13), let
t
M) = [ ), VB
0
—|—/ B(X](s), V™(s), u)W (duds).
U x[0,t]

Then M} (t) is a martingale and

t

M), = [ e, V) Ps
0
[ AV u)a(du)ds
U x[0,t]
< KZ’t.

An application of 1t6’s formula shows that the solution of (1.13) is given

by

A7) = A0 exp (M) = 5 )+ [ 26,V 6 ) (22)
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Proposition 2.1 Suppose that Assumptions (I) and (S1) hold. Then for
each n

E sup |A?(s)? < 4E|A;(0) 2K 2K) (2.3)
0<s<T

and the same bound holds with A} replace by A;.

Proof. By (2.2),

< A,(0) exp (M{L()_%<Mn>) Kt

and A;(0) exp (M (t) — 4 (M[),) is a square integrable martingale with
EA;(0)* exp (2M]'(t) — (M]'),) < EA; (0)%e .
Consequently, (2.3) follows by Doob’s inequality. O
We make the following additional assumption:

(S3) There exists a constant K such that for any #id sequence (&;,7;), ¢ =
1,2,--- and z € R?, we have

n 2
o (x . Z@%) - o(z,p)
=1

where u(-) = E[§11y,¢e.], and the same inequality holds for the other
coefficients.

KZES}

< ;
n

Remark 2 2 i) If oz, ) does not depend on v, then (S3) holds.
i) If o(z,v) = [La01(z,y)v(dy) and |oy(z,y)| < K, for allz,y € RY, then
(S3) holds.

i) If o(z,v) = h(z, (Y1, V), ..., (Um, V), Y1, ..., U € C(RY), and there
exists K such that

|h(3’),21,...,2m) _h(xayla"-aym” < KZ|ZZ _yl|a

i=1

then (S3) holds.
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Theorem 2.3 Assume (I) and (S1)-(S3). For T > 0,

’ ( sup | X7 (1) = Xi(t))+ sup |Z7(t) - Zi(t>|2) <20 oy
t<T AN, t<TAng,
where ¢ (T, m) is a constant,
k
= inf { Z A?(t)? > m? or l Z } ,
=1
e 8eK*+IOTRA, (0)2
pi, <7} < S EAON (2.5
Proof. By Doob’s inequality and Hoélder’s inequality, for ¢ < 7',
E sup |X"(r)—X;(r)|’ (2.6)

r<tAngp,

< 128 / 0 (X2(5), V™(5)) = 0(Xi(5), V($) [P Loy ds

#3780 (6), V7(5) = e(Xi(5),V(3) Py s

+12]E/0t/U|a(XZ”(s),V”(S),u)

~a(Xi(s), V(s), w)Pp(du) Loy ds.

Let
ZA Vxw and V)= ! 1 _ﬂi# A;(8)5x, 0.
Then -
Elo(X{'(s), V"(s)) — 0(Xi(s), V() Lo<ap, (2.7)
< 3E|o (X7 (s), V"(s)) — o(Xi(s), V" (s))["Ls<nn

+3E|O'(XZ S), ~n(8 - XZ 8)7‘7;'”(8))?153"%
< 3K%E (|X1(s) = Xi(s
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By (2.1),
p(V"(s),V"(5)) (2.8)

< % Z A7 (s) v A;(s)(|1 X7 (s) = X;(s)| + 177 (s) = Z;(s)])

1 n n

J DY)V A (DD X (s) = X))’

=1 =1

IN

A simple calculation gives

Let

fu®) =E sup |X7(r) = X;(r)", gn(t)=E sup |Z](r) = Zi(r)]".

r<tAnp, r<tAnp,
By (2.8) and the definition of 7,

E sup p(V"(1), V"(t))” < 4m®(f () + g (1))-

r<tAng,
Then for the right side of (2.7),
1st term < 3K” ((1 4 4m?®) f1(s) + 4m*g) (1))

and

1 1
2 2 2
2nd term < 6K <n2E|Ai(s)| + = 1)2m ) :

Since, conditioned on (W, X;), (4, X;), j # i, are iid, by (S3), we have

2 3K2

EA 2,
n—1 1(8)

3rd term < 3E ( E (A1 (s)*|W, Xi)) =

n —

Hence, the first term on the right side of (2.6) is dominated by

12/0 3K? ((1+4m®) fi(s) + 4mgp(s)) ds

1 1 3K?
+12 [6K? | — supEA,; (s)* + ——m?* | + supEA; (s)*| T.
’17,2537’ n—1 n—lsST
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Similar estimates hold for the other terms on the right side of (2.6). There-
fore, there exist constants co(7, m) and c3(T, m) such that

C3 (Ta m)
" .

f1(t) < (T, m) / (F2(5) + g7 (s))ds + (2.9)

Similar arguments give

es(T,m) .

gn(1) < (T, m) / (F2(5) + g (s))ds + (2.10)

Therefore

C3 +C5

PO+ 650 < e+ | (F2(5) + g (s))ds + BT,

n

and by Gronwall’s inequality, we have

() + gn () < BTG lerrent
m(t) + gm(t) < :
n

giving (2.4).
(2.5) follows from (2.3). O

For a bounded Lipschitz function f, define

1lle = sup [ (@)] + sup LD =S

T€R4 z,ycR4 ‘:E - y|

Corollary 2.4 Assume (I) and (S1)-(53). For each bounded Lipschitz
function f and each t > 0,

(t.m) 15

BV () f — V() Ly, < 2 7 (2.11)

Proof. Noting that (a V b)? < a? + b%, (2.1), Holder’s inequality, and
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Theorem 2.3 give

E sup [V'(t)f —V"(t)f| (2.12)
t<TAn%,
<|IfllzE sup p(V"(t), V"(t))
t<TAnY,
1 — i
<|Ifllz(E Sup EZ(Aj(t)VA,- ()
Min, j=1
1 n
E sup — X)) — X (8)[P)Y?
E s 522150 = X0F)
1 n
+ E sup — A () Vv AT (1))/?
I, s 23 2(4,0) v 450"
(E su Z0(t - 1/2
t<T/\Iv)7" nz| | )
< ol m)IIfIIL_

=T

In addition,
BV~ V| < ETHf - V)P
~ \/ LB (A (X(0) ~ B(A () F (1) W)

< M, (2.13)
Vn
and (2.11) follows from (2.12) and (2.13). O

The rate of convergence given by (2.11) can be viewed as convergence
in a metric for M, (R?) under which convergence is equivalent to weak
convergence. The metric we define is similar to that used in [6] and [13].
Let {fx} be a dense subset of Cy(R?) such that ||fi||z < oo, for each k.
Define ©

| Vlafk: V27fk>|
p(v1, v9) :
v Z} 25 fill
Note that p(vi,ve) < p(vi,vs), for all vy, € M, (R?). The estimate in
(2.11) implies the following:

Corollary 2.5 For eacht >0,

B3 (V™(£), V(#) Licyp, <

7"'(\%1). (2.14)
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Proof. (2.14) is a direct consequence of (2.11) and the definition of p. O

2.1. Application to filtering equations

To verify (I), (S1) and (S2) for the filtering problem, we make the
following assumptions:

(I') {X;(0)} is an 7id sequence which is independent of {B;} and Y, and

E| X (0)]? < oc.

(F1) There exists a constant K such that for each z € R? and v €
MF(RY),

b@)P + o(@) + / (e ) () + / oz, v,u) *u(du) < K.

(F2) For each 71,79 € R, vy, 15 € MT(R?),

[b(21) = b(x2) > + |o(21) — o (22)[”
-|-/ (21, v1,u) — w2, vo, u)|* u(du)

+ [ 1ho 0 = hlaa, w)Pu(du)

S K2|.’L'1 — .’L'Q‘Z.

Corollary 2.6 Assume (T'), (F1) and (F2). Under both the model mea-
sure P and the reference measure @, for each bounded, Lipschitz function

f and each t > 0,
t
Blup f — mf| < (\)/”_f”L, (2.15)

n

and hence,

EBp (i ) < Jn (2.16)

Proof. Since the coefficients do not depend on y; and p}', we do not need
to introduce the stopping time 7/ in the analysis of (2.7), and hence, in
the statement of the final estimate. Under (I'), (F1) and (F2), it is clear
that (I), (S1) and (S2) hold for the filtering problem. Since X(t) = X;(t),
uy = py, for the reference measure () under which Y is Gaussian white
noise, (2.15) follows from (2.13).
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Let dP = A(t)dQ, so that under P, Y is the observation process
satisfying (1.17) with W being Gaussian white noise. Let fii be defined
as V"(t) is in the proof of Theorem 2.3. Then as in (2.12),

E” sup |up' f — iy f] (2.17)
t<T
< N FILE” sup p(uf, fif')
t<T

= ||f||LEQA(t) sup p(uf, i)

< || Fllo (=9 sup ~ ZA S(1) VAR (1))
su X" . 1/2
Kgnijw S®OP)
+| £l (B9 sup - ZA £) v AL (1))
Q su Z" ) 1/2
b 4 Zl ®)
< a@mlfle
< NG .
Note that
1 n
E¥sup— »  A(1)*(A;(8) V A7 (1)) 2.18
DAV 45() .19
< \/]EQ sup A(t)*EQ sup Aj(t)4 + \/]EQ sup A(t)4EQ sup An( )4
=T t<T t<T t<T

and the fourth moments exist by the same argument employed in the proof
of Proposition 2.1. Finally, as in (2.13),

B |y f — mif| = BCAW@)| g f — pef | < V/EQA()ZER | f — puif?
G Al

vnooo
and combining (2.17) and (2.18), we have an estimate of the form (2.15).

In both cases, (2.16) is a direct consequence of (2.15) and the definition
of p. 0

<

3. Euler scheme
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In this section, we consider an error bound for the Euler scheme (1.12-
1.14) for the finite particle system (1.6-1.8). Combined with the results
of the previous section, we obtain an error bound for a numerical method
for the SPDE (1.1). Throughout this section we assume that 0 < § < 1.

Recalling the definition of &5 in (1.11), we need the following assump-
tions:

(S4) There exists a constant K such that for each z € R?, v € M (R?),

/U|oz(x, v,u) — a(z, v, &5(w) | u(du) < K25 (3.1)

and

/U Bz, v,u) — B, v, &5(u)) Euldu) < K20, (3.2)

Remark 3.1 If a and B are Lipschitz functions and

/U (1, €5(s))2 () < K25, (3.3)
then (S4) holds.

Example 3.2 i) Let U = [0,1) and let p be Lebesque measure. Take
k() = [6 2] and
5 (- . .
U} =[G =DV, (Vo) AL),  j=1,2,--- k().

Then (3.3) holds.
ii) Let U = R and let p be the standard Gaussian measure. Take
k(6) =2[0"+2 and

(3508 =12 57,
5 [([a = VB, (57— 5+ V), G = 5]+ 1, 20571,
YT [pveee). j=2[]+1

| (—o0, - [5711V6), j=20""+2.

Then (8.3) holds.

Theorem 3.3 Assume (I) and (S1)-(S4). For each T > 0,

E( sup | X(t) = XP())P+ sup [Z7°(t) — Z7(1)[) < cao(T,m)s,
t<TApY? t<TAnY?

(3.4)
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where c1o(T,m) is a constant,

1 n 1 n

7,0 : n 2 2 n,0 (4\2 2

© = inf t:—g A%t > —g A1) > )
”m 1 { 0 z() m orn i () m}

i=1 i=1

and

Bl HRITEA, (0)?
Pl <1} < 0

Proof. Since

X100 = X7 (1)
= [ (X5 trs()), V™0 (5))) — o(X7(5), V™(5))) dBi()

+ / (X7 015(5)), V"9 s (5))) = (X7 (5), V7(5)) ) ds
# [ (O e, V(o) )

—a(X2(s), V(5), u)) W (duds),
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by Doob’s inequality and Hoélder’s inequality,
E sup |X[(t) - X7(t)] (3.5)
t<TAmR°
g [
<21 [ 5o (X (), V" s(5)
0
n,0 n,0 2
—o (XM (s), V™ (s))‘ 1 sds

§<NMm

46T [ B[P (), V™ 35(5))
(X3 (5), V()| 1, s

s<n

+24 / o B a(X 15(5)), V™ (15(s) ()

—a(X™(s), V™ (s), u) ‘Q;L(du) L sds

$<Nm

+24 /O B(o(X7(5), V™(5)) — o(X7 (s), V() "1, ads
+6T/0 ]Erc(Xi""s(s), V™o (s)) — e(XP(s), V™(s)) i 1, mods

+24 / B (X7 (5), V™(5), u)
Ux[0,T]
2
~a(X7(5), V"(s), )| p(du)1, s,

with a similar inequality holding for Esup, g, ns | Z™M0(t) — Z0(t)|2.
Note that N

ELXT () — X7 (0 (1)) (3.6)

< 3(t —ma(t ))EI (X7 (s (), V™ (15 (8)) |
+3(t—775 )Ele( X”‘j(m(t)) V™ (ns(1)))°

=m0 | JaXEe). V). ) )
< K? (6(t —15(t)) + 3(t — 7ms(t)) )
and that a similar bound holds for E|Z™’ (t) — Z™° (ns(t))|2. Since by (2.1),
(V”’J( ) V™ (ns(t)))

ZAM 0V AP (1s(1) (X7 () = X7 (0s(1))]

+ 27 (8) = 27 (ns (1)),
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we have
Ep” (V™ (£), V™ (05(£))) 1, s
]_ " n n n n
< Am?B(- NP (1) = XD ()] + 1Z00(0) - 20 s ()]
i=1

< e (m)(t = ns(2)).

Similarly,
Ep(V™ (1), V()1 ns
1 n
§4m2(E X — XD, s
n <N
=1
nd n
+E—Z|Z Oy )
Define
(1) = E sup |X(s) — X]'(s)]’
sgt/\nﬁ{‘s
P(t) = E sup [Z]°(s) — Z7'(s)].
s<tAm’

Then by (3.5), the Lipshitz conditions on the coefficients, and the esti-
mates above,

a’(t) < e12(m)dt + c13(m)St2 + (cra(m) + crs(m)t) fi (a(s) + b(s))ds .

(3.7)
A similar inequality holds for b°(t), and (3.4) follows by Gronwall’s in-
equality. O

The proof of the following corollary is similar to that of Corollary 2.4.

Corollary 3.4 Assume (I) and (S1)-(S8). For each bounded, Lipschitz
function f and T > 0,

E sup |V™(t)f —V™(t)f] < ee(T, m)V3|| Iz,

t<TAnS

and hence,
E sup p(V™(t), V(1)) < c1(T, m)V5. (3.8)

t<TAn°
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3.1. Application to filtering equations

Let X?, A? and p™° be the Euler scheme for the system (1.20-1.21)
given by formulae similar to (1.12-1.14). Let &; be as in Section 1. We
need the following additional assumption:

(F3) There exists a constant K such that for each z € R?,

[ Ihte) = ha () Pt
+/ oz, v, u) — a(z, v, E(u)Pu(du) < K26.
U
Corollary 3.5 Assume (I), (F1)-(F3). For each T > 0,

1/2 1/2
(msup 0 - x,07)  + (Bsupl 20 - Z)7) < @IV
t<T t<T
(3.9)
Proof. Since the coefficients do not depend on the empirical measure,
X™(t) = XI(t) and X(t) = X,(¢) in the filtering case. It also follows
we can take m = oo in the definitions of a5 and bs; and in (3.7), and we

obtain (3.9). O

Corollary 3.6 Assume (T), (F1)-(F3). Under both the model measure P
and the reference measure @), for each bounded, Lipschitz function f and
each T > 0,

Esup | f — 4 f| < exs(T)V6| Iz, (3.10)
and hence,
Esup plup’, 1) < ers(T)V. (3.11)

Proof. Under @,

% sup Iu?"sf — 1 f|

<®?sup Z[AJ 411 CEONIZ ) - 2:(0)

+ (X)) - f(Xi(t))|>}
< I7112(89 (sup Ai(t)° + sup A7 (1)?))

=
=

+ (89 sup | Z/(t) ~ Zi(H)")

(89 sup | X(1) = X,(8)) |

< 2||fllz exp (K°T) ¢17(T) V3,



Numerical solution of SPDFEs 23

and (3.10) follows. The analogous result for P follows as in (2.17).
(3.11) is a direct consequence of (3.10) and the definition of p. O

4. Overall error estimate

Finally, we combine the estimates of the sampling error and the dis-
cretization error to obtain the following:

Theorem 4.1 a) Let V"(t) = V™'/"(t) and 7% = 0 A net™ . Assume
(1) and (S1)-(S3). For each bounded, Lipschitz function f and eacht > 0,

C19 (t, m)

EV"(t)f — V() f[li<ay, < n

and hence
— C19 (t, m)

Ep(V™(t), V(1)) Li<an, < NG

As a consequence, for each fized t, the sequence {\/np(V"(t),V () }n>1 is
stochastically bounded, i.e., for each € > 0, there exists M > 0, such that
for all n,

(4.1)

P (Vap(V"(t), V() > M) <. (4.2)

b) For the filtering problem, let i = p"/™. Assume (T), (F1) - (F3).
Under both the model measure P and the reference measure QQ, for each
bounded, Lipschitz function f and each t > 0,

n Coo(t
]E|Mtf_,utf|§ 2\0/(5)7
and hence
~/—n Coo(?t
e (it ) < 200, (43)

Remark 4.2 Note that the estimates here are for fized t, while most of
the intermediate estimates involved a supremum inside the expectation.
The only point in the development where we have not been able to make
the estimates with the supremum inside the expectation is in (2.13).

Proof. (4.1) follows from (2.14) and (3.8) with § = <. (4.3) follows from
(2.16) and (3.11) with § = +.

n
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To obtain the stochastic boundedness, observe that
(fﬁ(”(t) V(D) > M)
~ n n M ~ n M
< (Vi @, V) > 3 ) + e (V. ve) > )

11»(\/5 (V™ (t Ay )V”(t/\n )) A;)+P(n%%<t)

3) el <o

r (fp(v"(t A V(EAT) >

2

§—1<SUE VnEp(V" (t/\n )V"(t/\n "))

1 1
+-—; sup E sup |AT ™ ()]
m” 1<n<oco 0<s<t

2
+M sup \/_Ep(Vn(t/\nm) V(tAny))
1<n<oo

1
+-— sup E sup |A}(s )|
m? 1<n<oco 0<s<t

Since for each fixed m, each of the suprema over n is finite, the right side
can be made less than € > 0 by first making m large enough so that the
second and fourth terms are each less than €¢/4 and then making M large
enough so that the first and third terms are each less than e/4. O
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