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Abstract

In this paper we introduce for the first time particle filtering for an exponential family of den-
sities. We prove that under certain conditions the approximated conditional density converges
to the true conditional density. In the realistic setting where the conditional density does not
lie in an exponential family but stays close to it, we show that under certain assumptions the
error of the estimate given by an approximate nonlinear filter (which we call projection particle
filter), is bounded. We use projection particle filtering in state estimation for a combination of
inertial navigation system (INS) and global positioning system (GPS), referred to as integrated
INS/GPS. We illustrate via numerical experiments that projection particle filtering outperforms
regular particle filtering in navigation performance, and extended Kalman filter as well when
satellite loss-of-lock occurs.

1 Introduction

Filtering problems consist of “estimating” a process {xt} (or something about it) given a related
process, {yt}, which can be observed [1]. The observation is available on an interval, i.e., {ys, 0 ≤
s < t} and the function of the state is estimated at time t. Except for the linear Gaussian system
and very special cases in nonlinear settings, estimating the state given the observations results in
an infinite dimensional filter [2]. Therefore, approximation methods of finite dimension are very
appealing.

The most widely used approximate filtering method is the Extended Kalman Filter (EKF),
which is a heuristic method based on the linearization of the state dynamics and the observation
near a nominal path [2].
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EKF is computationally simple but, the convergence of the estimated conditional density to the
actual conditional density is not guaranteed.

Projection Filtering (PrF) is another approximation method [3][4][5][6]. In PrF it is assumed
that the conditional density of the state of the system can be approximated by a member of
parametric family of densities. In this case, estimating the conditional density is equivalent to
estimating the parameter of the family. In [3][4][5] the exponential family of densities is chosen as
the parametric family. In [6] the approach is different; there a Galerkin approximation is used to
solve the Fokker-Planck equation [2].

An entirely different approach to approximate the conditional density is simulation based fil-
tering. Grid-less simulation based filtering, now known by many different names such as Particle
Filtering (PaF) [7][8], the Condensation Algorithm [9], the Sequential Monte Carlo (SMC) Method
[10], and Bayesian Bootstrap Filtering [11] was first introduced in [11] and then it was rediscovered
independently in [9] and [12]. Henceforth we refer to this filtering method as Particle Filtering.
The results in [11] are an extension of the results in [13] and [14] to the dynamic case and is based
on a method called Sampling/Importance Resampling (SIR). SIR is a key element of the grid-less
simulation based filtering methods which allows these methods to have automatically high resolu-
tion grids in the areas where the conditional density is significant and low resolution in the areas
where the conditional density is small.

PaF is based on the Monte Carlo method; in this method, the particles at time ti are i.i.d.
random vectors that are distributed according to the empirical conditional distribution of the
state, given the observations up to time ti. These particle/state vectors are used in the state
equation to find the values of particles at time ti+1. Then at time ti+1, the empirical distribution
is evaluated according to the values of the particles. The new observation at time ti+1 is taken
into account through Bayes’ Rule to calculate the conditional empirical distribution, this process
is then repeated. In [7] it is proved that using a large enough number of particles, one can get an
approximate conditional distribution that is arbitrarily close to the true conditional distribution.

In the cases where we have some prior information about the distribution, we should expect
to achieve higher performance if we take this information into account. By higher performance,
we mean a reduction in the computational cost and an increase in the convergence rate. Here
we assume that the conditional distribution has a density in an exponential family of densities,
or at least stays close to it in a sense that we will define. Using this assumption, we replace the
empirical distribution in [7] with the Maximum Likelihood Estimate (MLE) of the parameters of an
exponential density. We call this new method projection particle filtering. In Theorem 3 we show
that if the conditional density of the state given the observations lies in an exponential family of
densities then the estimated conditional density converges to the true conditional density in a sense
that will be defined. In Theorem 4 for the case where the true conditional density stays close to an
exponential family of densities we show that the error of the estimate given by projection particle
filtering is bounded. Approximating the conditional density of the state given the observation by
an exponential family of densities is addressed in [4]. Unlike our approach, in [4] no estimates on
the closeness of the true conditional density to the approximate conditional density is reported.

One of the applications of the new particle filtering method introduced in this paper is position
estimation in an integrated INS/GPS system. In [15] it was shown that when the number of GPS
satellites visible to a receiver drops below a critical number, there three, EKF could no longer
provide a reasonable estimate for the position, in fact the estimate given by EKF would diverge.
Here we show for these critical cases, projection PaF for an exponential family of densities can
provide an estimate of position that is accurate as well as smooth. We show that, on average, this
filter can perform better than regular PaF.
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In this paper, Section 2 states the nonlinear filtering problem. In Section 3 we review the results
in [3][4][5] on projection filtering. In Section 4 we discuss particle filtering and we state the results
in [7][8]. In Sections 5 and 6 we introduce a new PaF algorithm and we state the main results of
this paper. In Section 7 we apply the PaF for an exponential family of densities to estimate the
position in an integrated INS/GPS.

2 Nonlinear Filtering, Problem Setup

We assume that all stochastic processes are defined on a fixed probability space (Ω, F, P ), and a
finite time interval, [0, T ], on which there is defined an increasing family of σ-fields, {Ft, 0 ≤ t ≤ T}.
It is assumed that each process, {xt}, is adapted to Ft, i.e., {xt} is Ft-measurable for all t. We
assume that {xt} is a vector diffusion process of the form

xt = x0 +
∫ t

0
fs(xs)ds +

∫ t

0
Gs(xs)dws, (1)

where xt ∈ Rn, and wt ∈ Rq is a vector from an independent Brownian motion process; the
second integral is in the Ito sense [16], and the function ft(·) and the matrix Gt(·) have the proper
dimensions. The observation, yt, is a discrete time process given as follows:

ynτ = hn(xnτ ) + vn, (2)

where ynτ ∈ Rd, and vn ∈ Rd is a discrete time white Gaussian noise process with zero mean and
known covariance matrix. The state dynamics and observation equations can be rewritten formally
as follows:

dxt = ft(xt)dt + Gt(xt)dwt, given the distribution of x0

ynτ = hn(xnτ ) + vn
(3)

The noise processes {wt, t ≥ 0}, and {vn, n = 0, 1, · · ·} , and the initial condition x0 are
assumed independent. We use Qt and Rn for the covariance matrices of the processes wt and
vn, respectively. We assume that Rn is invertible for all n’s. We have the following additional
assumptions [17]:

A 1 [local Lipschitz continuity] ∀ x, x′ ∈ Br and t ∈ [0, T ], where Br is a ball of radius r, we
have

‖ft(x)− ft(x′)‖ ≤ kr‖x− x′‖, and
‖Gt(x)QtG

T
t (x)−Gt(x′)QtG

T
t (x′)‖ ≤ kr‖x− x′‖. (4)

A 2 [Non-Explosion] There exists k > 0 such that

xT ft(x) ≤ k(1 + ‖x‖2), and
trace(Gt(x)QtG

T
t (x)) ≤ k(1 + ‖x‖2).

(5)

∀ t ∈ [0, T ] and ∀ x ∈ Rn.

Under assumptions (A1) and (A2), there exists a unique solution {xt, t ∈ [0, T ]} to the state
equation, and xt has finite moment of any order [17].
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In addition to these, we assume that the probability distribution of the state xt, given the
observation up to time t, πt(dx) = P (xt ∈ dx|yt), where yt = {yn, i = 1, · · · , n, nτ < t}, has a
density pt with respect to the Lebesgue measure on Rn. Then {pt, t > 0} satisfies the following
PDE and updating equations [4]:

∂
∂tpt = L∗t pt nτ ≤ t < (n + 1)τ, and
pnτ = cnΨnpnτ−

(6)

where

L∗t (Φ) = −∑n
i=1

∂
∂xi

[f i
tΦ] + 1

2

∑n
i,j=1

∂2

∂xi∂xj
[aij

t Φ],

[aij
t ] = GtQtG

T
t ,

Ψn(x)
4
= exp

(
−1

2(ynτ − hn(x))T R−1
n (ynτ − hn(x))

)
,

and cn is a normalizing factor.
Except for the linear Gaussian case, and some very special nonlinear cases, solving System (6)

constitutes an infinite dimensional filter [2]. Therefore, for practical problems it is necessary to ap-
proximate the conditional density in (6). In the next section, we discuss one of these approximation
methods.

3 Projection Filtering on Exponential Families of Densities

This section is mainly a review of the results we use from [5]. We start this section with the
definition of the exponential family of densities.

Definition 1 Let {c1, · · · , cp} be affinely independent 1 scalar functions defined on Rn, and assume
that the convex set

Θ0 =
{

θ ∈ Rp : Υ(θ) = log

∫
exp

(
θTc(x)

)
dx < ∞

}
,

has nonempty interior. Then,

S = {p(·, θ), θ ∈ Θ}
p(x, θ):= exp

[
θTc(x)−Υ(θ)

]
,

where Θ ⊆ Θ0 is open, is called an exponential family of probability densities.

We denote by S 1
2 the space of square roots of the densities in S , i.e., S 1

2 = {√p(·, θ); θ ∈ Θ}.
If p(·, θ) ∈ S, then

√
p(·, θ) ∈ L2. The functions 1

2
√

p(·,θ)
∂p(·,θ)

∂θi
, i = 1, · · · , p form a basis for the

tangent vector space at
√

p(·, θ) to the space S 1
2 , i.e., the tangent space at

√
p(·, θ) is given by [19]:

L√
p(·,θ)S

1
2 = span

{
1

2
√

p(·, θ)
∂p(·, θ)

∂θ1
, · · · , 1

2
√

p(·, θ)
∂p(·, θ)

∂θp

}
. (7)

1{c1, · · · , cp} are affinely independent if for distinct points x1,x2, · · · ,xp+1,
∑p+1

i=1
λic(xi) = 0 and

∑p+1

i=1
λi = 0

implies λ1 = λ2 = · · · = λp+1 = 0 [18].
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The inner product of any two basis elements is defined as follows
〈

1

2
√

p(·,θ)
∂p(·,θ)

∂θi
, 1

2
√

p(·,θ)
∂p(·,θ)

∂θj

〉
= 1

4

∫ 1
p(x,θ)

∂p(x,θ)
∂θi

∂p(x,θ)
∂θj

dx

= 1
4gij(θ)

(8)

It can be easily seen that g(θ) = (gij(θ)) = (E[cicj ]− E[ci]E[cj ]) is the Fisher information matrix
of p(·, θ), and this construction of a Riemanian metric in Θ goes back to an early paper of Rao [20].

Any member of L2 can be projected to the tangent space L√
p(·,θ)S

1
2 according to the following

projection formula

Πθ : L2 ⊇ V → L√
p(·,θ)S

1
2

v →
p∑

i=1

p∑
j=1

4gij(θ)
〈

v, 1

2
√

p(·,θ)
∂p(·,θ)

∂θj

〉
1

2
√

p(·,θ)
∂p(·,θ)

∂θi
.

(9)

Projection filtering seeks a solution for pt for (6) that lies in S. The exponential density should
be chosen so that the approximation error is small (in L2 sense).

If we consider the square root of the density in (6), we get

∂
√

pt

∂t
=

1
2
√

pt

∂pt

∂t
=

1
2
√

pt
L∗t pt . (10)

Define αt,θ = L∗t pt(·,θ)
pt(·,θ) . We assume that for all θ ∈ Θ and all t ≥ 0, Ep(·,θ){|αt,θ|2} < ∞, which

implies that L∗t pt(·,θ)√
pt(·,θ)

is a vector of L2 for all θ ∈ Θ and all t ≥ 0 [4].

Now assume that in equation (10), for {√pt, t ≥ t0}, starting at time nτ from the initial
condition,

√
pnτ =

√
p(·, θnτ ) ∈ S 1

2 for some θnτ ∈ Θ. Under these assumptions, the right hand
side of (10) is in L2, which can be projected into the finite dimensional tangent vector space
L√

p(·,θnτ )
S 1

2 . The projection filter for the exponential family, S, in the interval [nτ, (n + 1)τ), is
defined as the solution of the following differential equation in the same interval:

∂
√

pt(·, θt)
∂t

= Πθt

L∗t pt(·, θt)
2
√

pt(·, θt)
. (11)

We also assume that hn(x) in equation (2) is time invariant, i.e., hn(x) = h(x), and the
components of h(x), hi(x), and ‖h(x)‖2

R−1 are linear combinations of ci(x), i = 1, · · · , p:

1
2
‖h(x)‖2

R−1 =
p∑

i=1

λ0
i ci(x) and hk(x) =

p∑

i=1

λk
i ci(x), k = 1, · · · , d (12)

where ‖x‖A =
√

xT Ax. Then, if vn is stationary with the covariance matrix Rn = R, the likelihood
function Ψn(n) can be written as follows:

Ψn(x) = exp(−1
2(yT

nτR
−1ynτ )) exp(−1

2(hT (x)R−1h(x)) + (yT
nτR

−1h(x)))

= An exp

(
−

d∑
i=1

λ0
i ci(x) +

p∑
k=1

(
p∑

i=1
λk

i z
k
nτ )ci(x)

)
,

(13)

where znτ = yT
nτR

−1, and An is a constant depending on ynτ . Therefore, the coefficient Ψn(x) is
a member of exponential family of densities. This family is closed under multiplication. Using all
of these facts, we can present the following theorem [4]:
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Theorem 1 [ Brigo 1996] For system (3), where wt is a Brownian motion process with covari-
ance Qt and vi is a white Gaussian noise with covariance R, we assume (A1) and (A2) to be

true. We also assume that 1
2‖h(x)‖2

R−1 =
p∑

i=1
λ0

i ci(x), hk(x) =
p∑

i=1
λk

i ci(x), for k = 1, · · · , d, and

Ep(·,θ)‖L
∗
t p(·,θ)
p(·,θ) ‖2 < ∞, ∀θ ∈ Θ, ∀t ≥ 0. Then for all θ ∈ Θ, and all t ≥ 0, Πθ

L∗t p(·,θ)√
p(·,θ) is a vector

on the exponential manifold S 1
2 . The projection filter density, pΠ

t = pt(·, θt) is described by

∂
√

pt(·,θt)

∂t = Πθt

L∗t pt(·,θt)

2
√

p(·,θt)
, nτ ≤ t < (n + 1)τ

pnτ (·, θnτ ) = cnΨn(ynτ )pnτ−(·, θnτ−) ,

and the projection filter parameter satisfies the following combined deterministic differential equa-
tion and stochastic update map:

g(θt)dθt = Eθt{Ltc}dt, nτ ≤ t < (n + 1)τ,

θnτ = θnτ− − λ0
0 +

∑d
k=1 λk

0z
k
n,

where

Lt =
n∑

i=1

f i
t

∂

∂xi
+

1
2

n∑

i,j=1

aij
t

∂2

∂xi∂xj
,

and λi
0 = [λi

1, · · · , λi
p]

T , i = 0, · · · , d, and zk
n is the kth component of zT

nτ = R−1ynτ .

Henceforth, we shall use Eθ and Ep(·,θ), θnτ and θn, and pnτ and pn, interchangeably.
As can be seen from the statement of the theorem, the calculation of the conditional probability

density is reduced to the calculation of the parameter of an exponential family. But still, solving
the differential equation in the theorem is not an easy task. At each moment g(θt) and Eθt{Ltc}
need to be calculated. This requires a heavy computational load. In Section 5 of this paper, we
introduce a Monte Carlo method to calculate the parameter of the exponential family with a more
affordable computational load.

Although PrF gives a better solution than EKF, there is no known error bound with which we
can compare the distance between the real density and the density given by the PrF. In the next
section we review Particle Filtering as an alternative to optimal nonlinear filtering.

Remark : The assumption on hn(·) and Rn in this are made only to make sure that Ψn(·)
is in the family of exponential densities. These assumptions can be relaxed if Ψn(·) is otherwise
guaranteed to stay in the family.

4 Particle Filtering

Consider either the continuous dynamics and discrete observation in (3) or the discrete case,

xn+1 = fn(xn) + Gn(xn)wn, given the distribution of x0

yn = hn(xn) + vn.
(14)

We assume that in both cases, the initial distribution for x0 is given. The propagation of the
conditional density, at least conceptually, can be expressed as follows [2]:
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• Step 1 . Initialization:
p0(x0|y0) = p(x0).

• Step 2 . Diffusion:

p
(n+1)− (xn+1|Yn) =

∫
p(xn+1|xn)pn(xn|Yn)dxn,

where Yn = {y1,y2, · · · ,yn}.
• Step 3 . Bayes’ rule update:

p
(n+1)

(xn+1|Yn+1) =
p(yn+1|xn+1)p

(n+1)− (xn+1|Yn)
∫

p(yn+1|xn+1)p
(n+1)− (xn+1|Yn)dxn+1

,

• Step 4 . n ← n + 1; go to Step (2).

The conditional density given by the above steps is exact, but in general it can be viewed as an
infinite dimensional filter, thus, not implementable. PaF, in brief, is an approximation method that
mimics the above calculations with a finite number of operations using the Monte Carlo method.
The procedure for PaF is as follows [11][7]:

Algorithm 1 Particle Filtering

• Step 1 . Initialization

¦ Sample x1
0, · · · , xN

0 , N i.i.d. random vectors with the distribution P0(x).

• Step 2 . Diffusion

¦ Find x̂1
n+1, · · · , x̂N

n+1 from the given x1
n, · · · , xN

n , using the dynamic rules:

dxt = ft(xt)dt + Gt(xt)dwt, nτ ≤ t < (n + 1)τ
or

xn+1 = fn(xn) + Gn(xn)vn.

• Step 3 . Find the empirical distribution

PN
(n+1)−(x) =

1
N

N∑

j=1

δ
x̂j

n+1
(x)

• Step 4 . Use Bayes’ Rule

PN
(n+1)(x) =

1
N

N∑
j=1

δ
x̂j

n+1
(x) ·Ψn+1(x)

1
N

N∑
j=1

δ
x̂j

n+1
(x̂j

n+1) ·Ψn+1(x̂
j
n+1)
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• Step 5 . Resample

¦ Sample x1
n+1, · · · , xN

n+1 according to PN
n+1|n+1(x)

• Step 6 . n ← n + 1; go to Step (2).

where δv(w) = 1 if w = v and 0 otherwise, and Ψn(x) is the conditional density of the observation
yn given the state x.

It is customary to call x1
n, · · · , xN

n particles. In the next few lines, we try to explain in words
the evolution of these particles using the above algorithm.

Let x̂1
n, · · · , x̂N

n be the distinct particles at time n before incorporating the observation at
time n. The probability of each particle is 1

N , that is, is uniformly distributed. After using the
observations, the conditional probability of each particle changes. Some will have small, and some
large probabilities. Therefore, in the process of resampling, it is very likely that some particles will
never be used and instead some other particles (with high probabilities) will be sampled more than
once. Therefore, after resampling, some particles have repeated versions, but in the diffusion phase
they go through different paths and at the end of the diffusion phase, it is very likely, we would
have N distinct particles. This automatically makes the approximation one of better resolution in
the areas where the probability is higher.

In [7] it is proved under some conditions that

lim
N→∞

E

( ∣∣∣∣∣
1
N

N∑

i=1

f(x̂i
n)−EPn(f(x))

∣∣∣∣∣

)
= 0 (15)

for every bounded Borel test function, f(·).
One problem in using the PaF method is the computational cost. For a high dimensional system,

getting reasonable accuracy means using a large N , which results in a heavy computational cost.
In the next section, we propose a method that can reduce the number of particles for a certain
class of problems.

5 Particle Filtering for Exponential Families of Densities

In the previous sections, we saw two approximation methods for nonlinear filtering. In the PaF
method, we saw that the conditional distribution is approximated by the empirical distribution.
In most cases, the actual conditional distribution is smooth, unlike the empirical distribution.
Intuition suggests that if we have prior knowledge of some properties of the distribution, we should
make effective use of such knowledge. In the following, we assume that the conditional density
lies in a parametric family of densities. We will see that with this assumption, we can show the
convergence of the approximated density to the actual one. In this section, after introducing our
algorithm, we present some convergence results, and after that, we compare our method with the
methods introduced in the previous sections.

For System (3), we assume that the probability density of xt, given the observation, is in a
family of exponential densities S. This assumption is rather strong. We will drop this assumption
later, and we will only assume that there exists a known family of densities that approximates the
real density with acceptable accuracy.
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With this assumption, the proposed algorithm is as follows:

Algorithm 2 Particle Filtering for an Exponential Family of Densities.

• Step 1 . Initialization

¦ Sample x1
0, · · · , xN

0 , N i.i.d. random vectors with the density, p0(x).

• Step 2 . Diffusion

¦ Find x̂1
n+1, · · · , x̂N

n+1 from the given x1
n, · · · , xN

n , using the dynamic rule:

dxt = ft(xt)dt + Gt(xt)dwt, iτ ≤ t < (i + 1)τ

• Step 3 . Find the MLE of θ̂(n+1)− given x̂1
n+1, · · · , x̂N

n+1

θ̂(n+1)− = arg max
θ

N∏

i=1

exp(θTc(x̂i
n+1)−Υ(θ))

• Step 4 . Use Bayes’ Rule

p(x, θ̂(n+1)) =
exp

(
θ̂T
(n+1)−c(x)−Υ(θ̂(n+1)−)

)
Ψn+1(x)

∫
exp

(
θ̂T
(n+1)−c(x)−Υ(θ̂(n+1)−)

)
Ψn+1(x)dx

• Step 5 . Resample

¦ Sample x1
n+1, · · · , xN

n+1 according to p(x, θ̂n+1).

• Step 6 . n ← n + 1; go to Step (2).

To generate x1
n+1, · · · , xN

n+1, a Gibbs sampler can be used [21]. This brings an extra computational
cost, which should be taken into account when choosing Algorithm 2 over Algorithm 1.

It is constructive to discuss the structure of the ML estimator [22]. We are going to use this
structure for the proof of convergence.

Let x̂1
n, · · · , x̂N

n be the values of the particles right before the measurement at time n. The
MLE of θn, θ̂n, satisfies the first order necessary condition

N∑

i=1

cj(x̂i
n)−N

∫
x cj(x) exp(θ̂T

n c(x))dx∫
x exp(θ̂T

n c(x))dx
= 0.

Therefore, we get

1
N

N∑

i=1

cj(x̂i
n) = Eθ̂n

(cj(x)), for j = 1, · · · , p . (16)
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Equation (16) says that the sample average of cj(x) and its probabilistic average, evaluated at θ̂n,
should be equal. Therefore, the MLE of θ is the solution to the system of equations in (16). Let
Fj(θ) be as follows:

Fj(θ) =
1
N

N∑

i=1

cj(x̂i
n)−

∫
cj(x) exp(θTc(x))dx∫

exp(θTc(x))dx
, j = 1, · · · , p.

For simplicity we drop the index n from θn. It is easy to see that

−∂Fi

∂θj
= Eθ(ci(x)cj(x))− Eθ(ci(x))Eθ(cj(x)).

This shows that (−∂Fi
∂θj

)i,j = g(θ), where g(θ) is the Fisher information matrix of the exponential
density at θ. Since ci(x), i = 1, · · · , p are affinely independent g(θ) is positive definite ∀θ ∈ Θ.
Therefore (16) is the necessary and sufficient condition for optimality.

In the next few pages, we prove the convergence of the MLE of θn, θ̂n, to θn in the mean square
sense. This results in the convergence of the density in the weak sense.

In each iteration the proposed algorithm starts from the density pθ̂t

(
xt|yt

)
, t = τn, where θ̂t

is the best estimate θt according to the algorithm. After a full iteration the algorithm yields θ̂t+1

which is the best estimate of θt+1. The error in θ̂t+1 is a combination of a series of possible errors
for which we want to find upper bounds. The first source of error is the error in θ̂t, which will
propagate even if no other error is considered. The other source comes from the fact that in each
iteration new particles are resampled based on the estimated density which is different from the
actual density. Finally, the last source of error comes from the discretization of the stochastic
dynamics of the system. We want to emphasize that here we assume Ψn(x) = exp(−1

2(ynτ −
hn(xnτ ))T R−1

n (ynτ −hn(xnτ ))) lies in the family of densities. Therefore, no other error is added to
the estimate because of the Bayes’ correction.

We recall the following fact [22]:

Fact 1 For the family of densities S with probability density p(x, θ) = exp(θTc(x) − Υ(θ)), the
Fisher information matrix g(θ) = (E(ci(x)cj(x)) − E(ci(x))E(cj(x)))i,j is positive definite. Also
the likelihood function

l(θ) = θTC(x)−Υ(θ),

is strictly concave. Therefore, for

cj(x) = Eθ[cj(x)], j = 1, · · · , p,

if a solution exists2, it is unique. In addition if x1, · · · , xN are N i.i.d. random variables distributed
according to p(x, θ), then the MLE of θ, θ̂N , is asymptotically normal, i.e.

θ̂N = arg max
θ

N∏
i=1

p(xi, θ) ,
√

N(θ̂N − θ) ∼ N (0, g−1(θ)).

2In [18] it is shown that if N > p, the solution to (16) exists almost surely.
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Using this fact, it is easy to see that

E

(∥∥∥θ̂N − θ
∥∥∥
2
)

=
1
N

trace(g−1(θ)),

therefore, when N −→ ∞, θ̂N −→ θ in the m.s. sense. On the other hand, θ̂N is the solution to
(16). Using the strong law of large numbers [23], when N → ∞ the left hand side in (16) goes to
Eθ(cj(x)), j = 1, · · · , p, with probability one. In other words, the solution to (16) when the left
hand side is the exact Eθ(cj(x)), j = 1, · · · , p, gives the exact solution for θ. Using this argument,
one can expect that by finding a good estimate of the left hand side of (16), a good estimate of θ
is accessible. In each iteration of the algorithm presented in this section the estimate of the left
hand side of (16) is found by using the Monte Carlo method and the approximate solution for the
stochastic differential equation (3).

To approximate the solution to the stochastic differential equation (3), we employ a method
used in [24]. In the following, we review this method briefly. The stochastic differential equation
in (3) can be rewritten as follows:

dxt = ft (xt) dt +
q∑

r=1

gr
t (xt) dwr

t , (17)

where gr
t (·) is the rth column of the matrix Gt(·), and wr

t is the rth component of wt. We introduce
the operators

Λru =
(
gr ,

∂

∂x

)
u,

Lu =


 ∂

∂t
+

(
f ,

∂

∂x

)
+

1
2

q∑

r=1

n∑

i=1

n∑

j=1

gr
i g

r
j

∂2

∂xi∂xj


 u,

where
(
a , ∂

∂x

)
=

n∑
i=1

ai
∂

∂xi
. Then, an approximate solution for (17) can be written as follows:

xk+1 = xk +
q∑

r=1
gr
tk

ξr
kh

1
2 + ftkh +

q∑
r=1

q∑
i=1

(Λrgr)tk
ξir
k h+

1
2

q∑
r=1

(Lgr + Λrf)tk
ξr
kh

3
2 + (Lf)tk

h2

2 ,
(18)

where h is the step size and the coefficients gr
tk

, ftk , (Λigr)tk
, etc., are computed at the point

(tk,xk). Also, the sets of random variables ξr
k, ξir

k are independent for distinct k and can, for each
k, be modelled as follows:

ξij =
1
2
ξiξj − 1

2
γijζ

iζj , γij =
{−1 , i < j

1 , i ≥ j .

and ξi and ζj are independent random variables satisfying

Eξi = Eξ3
i = Eξ5

i = 0, Eξ2
i = 1, Eξ4

i = 3,
Eζj = Eζ3

j = 0, Eζ2
j = ζ4

j = 1.

In particular, ξi can be modelled by the law P (ξ = 0) = 2
3 , P

(
ξ =

√
3
)

= P
(
ξ = −√3

)
= 1

6 , and

ζj can be modelled by P (ζ = −1) = P (ζ = 1) = 1
2 .

11



Definition 2 We say that a function u(·) belongs to the class F , written as u ∈ F , if we can find
constants, k > 0, and κ > 0, such that for all x ∈ Rn, the following inequality holds:

‖u(x)‖ ≤ k (1 + ‖x‖κ) .

Before we present the convergence results we need to define the probability space in which the
random variables are defined. As we mentioned before, the stochastic determined by the dynamics
and the observation equation are defined on a fixed probability space (Ω, F, P ), the expectation
associated to this probability space is denoted as E. In Algorithm 2 the generated particles form a
Markov process. We denote the probability space associated to this process by (Ω′, F ′, P ′

[Y ]). The
subindex Y is used to emphasize that this Markov process is driven by the observation yn. The
expectation associated to this process is denoted as E′

[Y ]. A set of random variables, ξi, ζi, are
defined for the numerical approximation of the stochastic differential equation (17). We denote the
probability space associated to these random variables by (Ω′′, F ′′, P ′′). The expectation associated
to this process is shown by E′′. Finally we define (Ω̃, F̃ , P̃ ) and Ẽ to be the probability space and
the expectation associated to joint distribution of random variables defined in the three mentioned
probability space, respectively.

The following theorem summarizes the weak approximation results for (18).

Theorem 2 [Milstein [24]] Suppose (A1) from Section (2), and suppose that the functions f(·),
gr(·), r = 1, · · · , q together with the partial derivatives of sufficiently high order, belong to class F .
Also, suppose that the functions Λigr, Lgr, Λrf , and Lf grow at most as a linear function in ‖x‖.
Then, if the function u(·) and all its derivatives up to order 6 belong to class F , the approximation
(18) has the order of accuracy 2, in the sense of weak approximation, i.e.,

‖Ẽu (x0,x0 (tk))− Ẽu (x̂0,x0 (tk)) ‖ ≤ Kh2, tk ∈ [0, T ],

where K is a constant (which depends on T ) and x0,x0(·) and x̂0,x0(·) are the exact and approximate
solutions for the stochastic differential equation, respectively.

The Monte Carlo approximation of Ẽu (x0,x0 (tk)) brings in another error term. The combination
of these errors can be expressed as follows:

∥∥∥∥∥Ẽu (x0,x0 (tk))− 1
N

N∑
i=1

u
(
x̂0,xi

0
(tk)

)∥∥∥∥∥ ≤
∥∥∥Ẽu (x0,x0 (tk))− Ẽu (x̂0,x0 (tk))

∥∥∥ +

∥∥∥∥∥Ẽu (x̂0,x0 (tk))− 1
N

N∑
i=1

u
(
x̂0,xi

0
(tk)

)∥∥∥∥∥ .

If the variance of u (x̂0,x0 (tk)) is bounded, we have

Ẽ

∥∥∥∥∥Ẽu (x0,x0 (tk))− 1
N

N∑

i=1

u
(
x̂0,xi

0
(tk)

)∥∥∥∥∥ ≤ Kh2 +
k
′

N1/2
, (19)

where K and k
′
are constants, and h is the step size for the numerical approximation of the solution

of the stochastic differential equation.
The next lemma relates the approximate solution to the stochastic differential equation and the

estimate of the parameter θ. This lemma is the main building block for our result in this section.
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Lemma 1 For the SDE

dxt = ft (xt) dt + Gt (xt) dwt, x0, t ∈ [0, tf ],

assume that ft(·), Gt(·) are such that for the Brownian motion, wt, the probability density of the
state xt lies in the family S for Θ bounded, with g(θ) ≥ ϑI for some ϑ > 0. We also assume the
conditions in Fact 1 and in Theorem 2 with c(x) replacing u(x). Then, there exist k1 and k2 such
that

Ẽ[‖θt − θ̂t‖] ≤ k1h
2 +

k2

N1/2
, t ∈ [0, tf ] (20)

where θ̂t is the estimate of θt, and N and h are the number of particles and the time step, respec-
tively.

Proof: Let θ0 be the initial condition for θ. At t = 0, N independent initial conditions are
generated based on the density p (x, θ0), and the approximation method (18) is applied. From (19)
we know that:

Ẽ‖Eθtc (xt)− 1
N

N∑

i=1

c
(
x̂i

t

)
‖ ≤ Kh2 +

k
′

N1/2
.

On the other hand, from (16), we know that θ̂ is a solution to the system of equations

1
N

N∑

i=1

cj(x̂i
t) = Eθ̂t

(cj(xt)), for j = 1, · · · , p.

From Fact 1, the solution is exact if we replace 1
N

N∑
i=1

cj(x̂i
t) by Eθt(cj(xt)). Subtracting the term

Eθt(cj(x)) from both sides of the above equation and using the vector form for it, we get

1
N

N∑

i=1

c(x̂i
t)− Eθt(c(xt)) = Eθ̂t

(c(xt))− Eθt(c(xt)).

On the other hand, we know that Eθ(c(x)) is a differentiable and one to one function of θ ( see
Fact 1). The derivative of this function, g(θ), is positive definite and by assumption g(θ) ≥ ϑI.
Furthermore since Θ is compact, ∃α > 0 such that

‖θt − θ̂t‖ ≤ α‖Eθt(c(xt))−Eθ̂t
(c(xt))‖

= α‖Eθt(c(xt))− 1
N

N∑
i=1

c(x̂i
t)‖.

Taking the expectation on both sides of the inequality we have

Ẽ‖θt − θ̂t‖ ≤ α Ẽ‖ 1
N

N∑
i=1

c(x̂i
t)−Eθt(c(xt))‖

≤ α

(
Kh2 + k

′

N1/2

)

= k1h
2 + k2

N1/2

¦
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Now we are ready to present the main result of this section.

Theorem 3 For System (3) assume that ft(·), Gt(·), and h(·) are such that for the Brownian mo-
tion wt, and the Gaussian noise vn, the conditional probability density of the state xt, conditioned
on the observations yt, lies in the family S for Θ bounded and for t ∈ [0, T ]. Also assume the
conditions in Fact 1 and in Theorem 2 with c(x) replacing u(x). Then, if g−1 (θt) Eθt (Ltc (x)) is
Lipschitz with the Lipschitz constant L and g(θ) ≥ ϑI, there exist l1 and l2 such that

Ẽ‖θn − θ̂n‖ ≤
n−1∑

i=0

exp(Liτ)
(

l1h
2 +

l2
N1/2

)
, nτ ∈ [0, T ],

where θ̂n is the estimate of θn, and N and h are the number of particles and the time step, respec-
tively. This inequality implies convergence of the parameter estimate, θ̂n, to the true parameter,
θn, as h −→ 0 and N −→∞.

Proof: Let θt and θ̂t be the actual and the estimated values of the parameter of the density at
time t = nτ , respectively. At time t

′
= (n + 1)τ the error in the estimate of θt′ is a combination of

the error in the estimate in θ̂t and the error added in the time interval [t, t
′
].

If the conditional density stays in the exponential family of densities, θt has to satisfy the
following differential equation (see Theorem 1):

dθ

ds
= g−1 (θ) Eθs (Lsc (x)) , t = nτ ≤ s < t′ = (n + 1) τ, θ(t) = θ̂t .

Let θ̃t′ be the solution of the differential equation evaluated at s = t′. Then

‖θt′ − θ̂t′‖ ≤ ‖θt′ − θ̃t′‖+ ‖θ̃t′ − θ̂t′‖.

By the assumptions of the theorem, g−1 (θ)Eθs (Lsc (x)) is Lipschitz with Lipschitz constant L,
hence by continuity of the solution of the ordinary differential equation with respect to the initial
condition [25], we know that

∥∥∥θt′ − θ̃t′
∥∥∥ ≤

∥∥∥θt − θ̂t

∥∥∥ eL(t′−t),

therefore,

Ẽ
∥∥∥θt′ − θ̃t′

∥∥∥ ≤ Ẽ
∥∥∥θt − θ̂t

∥∥∥ eL(t′−t).

Also from the Lemma 1, ∃k1(t
′
) and k2(t

′
) such that

Ẽ[‖θ̃t′ − θ̂t′‖] ≤ k1(t
′
)h2 +

k2(t
′
)

N1/2
,

therefore,

Ẽ‖θt
′ − θ̂t

′‖ ≤ Ẽ
∥∥∥θt − θ̂t

∥∥∥ eL(t′−t) + k1(t
′
)h2 +

k2(t
′
)

N1/2
.

The observation noise vn and the function h(·) are such that Bayes’ Rule does not introduce any
further error in the estimate of θ̂t′ . More precisely, Ψn(x) is assumed to be a member of S. This
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implies that after applying Bayes’ Rule to p(x, θt′) and p(x, θ̂t′) parameters θt′ and θ̂t′ are shifted
with the same vector and therefore, ‖θt+

′−θ̂t+
′‖ = ‖θt

′−θ̂t
′‖ (c.f. Theorem 1, formula for θnτ ). Here

t+
′
represents the time right after Bayes’ correction. Therefore, starting from the initial condition

θ0 we get

Ẽ‖θn − θ̂n‖ ≤
n−1∑

i=0

exp(Liτ)
(

l1h
2 +

l2
N1/2

)
, nτ ∈ [0, T ]

where
li = max

n
ki(nτ), nτ ∈ [0, T ], i = 1, 2.

¦

Here, we would like to make a few remarks:

• The result of Theorem 3 can be easily extended to convergence in the mean square sense.

• If ‖u(x)‖ ≤ k(1 + ‖x‖κ) for k > 0 and κ > 0, then

lim
N−→∞
h−→0

Ẽ ‖Eθu(x)−Eθ∗u(x)‖ = 0.

This is the notion of convergence used in [7].

• In [4] the observation equation is considered to be time invariant. Here, the time-varying
nature of hn (x) does not complicate the algorithm.

• In the next section we will drop the assumption that the conditional density lies in the
exponential family of densities. There, we project the density into the exponential family at
each measurement epoch.

6 Projection Particle Filtering for Exponential Families of Densi-
ties

In this section, we drop the assumption that the conditional density of the state given the obser-
vation (6) lies in the exponential family of densities, S. Also, we do not require that Ψn(x) is a
member of S. Instead we make other assumptions. First we need the following definition:

Definition 3 We say that a function u(·) belongs to the class Fkκ, written as u ∈ Fkκ, for fixed
k > 0 and κ, such that for all x ∈ Rn, the following inequality holds:

‖u(x)‖ ≤ k (1 + ‖x‖κ) .

The next two assumptions are to guarantee the existence of an exponential density close to the
true conditional density.
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A 3 The density in (6) stays close to the given exponential family S in a weak sense:

∀t ∈ [0, T ], ∀u ∈ Fkκ ∃θ∗t ∈ Θ∗ s.t. Ẽ‖Ept
(u(x))− Eθ∗t (u(x))‖ ≤ ε (21)

where t− 1 < nτ ≤ t and Θ∗ is convex 3 and compact.

A 4 For θ∗n− in (A3) and Ψn(x), ∃Ψ∗
n(x) such that p(x, θ) =

p(x,θ∗
n− )Ψ∗n(x)∫

p(x,θ∗
n− )Ψ∗n(x)dx

is in the family S
for some θ ∈ Θ∗ and we have:

• ∀θ ∈ Θ∗ and ∀u(·) ∈ Fkκ, ∃ε > 0 such that

Ẽ‖EθΨn(x)u(x)
EθΨn(x)

− EθΨ∗
n(x)u(x)

EθΨ∗
n(x)

‖ ≤ ε.

• ∀u(·) ∈ Fkκ, ∃ε > 0 such that

Ẽ‖
Eθ∗

n−
Ψ∗

n(x)u(x)

Eθ∗
n−

Ψ∗
n(x)

−
Ep

n−
Ψn(x)u(x)

Ep
n−

Ψn(x)
‖ ≤ ε.

From Assumption (A4) it is clear that if Ψ∗
n(·) satisfies the requirements of the assumption then

cΨ∗
n(·) satisfies the same requirements, where c is a positive constant. It is further clear that

Ψ∗
n(·) = exp(αTc(·)) for some α ∈ Rp. Using Assumption (A3), we can state the following fact.

Fact 2 ∀θ1, θ2 ∈ Θ∗ and ∀u ∈ Fkκ, ∃K1,K2 positive such that

‖Eθ1u(x)−Eθ2u(x)‖ ≤ K1‖θ1 − θ2‖ (22)

‖θ1 − θ2‖ ≤ K2‖Eθ1c(x)− Eθ2c(x)‖ . (23)

Proof: To prove (22), define fu(θ) = Eθu(x) for u(·) ∈ Fkκ. Then

d

dθi
fu(θ) = Eθci(x)u(x)−Eθci(x)Eθu(x).

Since ‖u(x)‖ ≤ k(1 + ‖x‖κ) and θ ∈ Θ∗, where Θ∗ is compact, then there exists a constant A such
that

‖dfu(θ)
dθ

‖ ≤ A ∀u(·) ∈ Fkκ and ∀θ ∈ Θ∗.

3It is easy to see that the assumption of convexity is very natural. Assume θ1, θ2 ∈ Θ∗ then
∫

exp(θT
i c(x))dx < ∞

for i = 1, 2. Therefore, using Holder inequality we have
∫

exp((µθT
1 + (1− µ)θT

2 )c(x))dx =
∫

(exp(θT
1 c(x)))µ(exp(θT

2 c(x)))(1−µ)dx

≤
(∫ ((

exp(θT
1 c(x))

)µ)1/µ
dx

)µ
(∫ ((

exp(θT
2 c(x))

)1−µ
)1/1−µ

dx

)1−µ

=
(∫

exp(θT
1 c(x))dx

)µ (∫
exp(θT

2 c(x))dx
)1−µ

< ∞
where 0 ≤ µ ≤ 1.
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Since Θ∗ is convex and compact, it is clear that ∃K1 independent of u(·) such that fu(x) is Lipschitz
over Θ∗ with the Lipschitz constant K1 [25].

Inequality (23) follows from the fact that Θ∗ is compact and the Fisher information matrix
g(θ) > ϑI over Θ∗.

¦
Denote the interior of the set Θ∗ by Θ∗

int. For Θ∗
int we can state the following fact.

Fact 3 The set

A =
{

α :
∫

exp(αTc(x)) exp(θTc(x)) < ∞, ∀θ ∈ Θ∗
int and α ∈ Rp

}

is closed.

Proof: Assume A is not closed. Therefore, there exists a converging sequence {αi} ⊂ A and
α /∈ A, and ∃θ ∈ Θ∗

int such that
∫

exp(αT c(x)) exp(θTc(x))dx > M, ∀M ∈ R.

Since Θ∗
int is an open set, ∃ε > 0 such that Nε(θ) ∈ Θ∗

int. Also, since {αi} is a converging sequence,
∃k > 0 such that αk ∈ Nε(α). This implies that θ1 ∈ Θ∗

int where θ1 = θ + α− αk. Therefore,
∫

exp(αT
k c(x)) exp(θT

1 c(x))dx < ∞.

On the other hand, we know exp(αT
k c(x)) exp(θT

1 c(x)) = exp(αTc(x)) exp(θTc(x)). This is a
contradiction, therefore, A is closed.

¦
The following lemma is one of the building blocks of the results of this section.

Lemma 2 For θ∗n− and Ψ∗
n(x) defined in (A4) and ∀u(·) ∈ Fkκ and ∀θ1, θ2 ∈ Θ∗, ∃ positive

numbers k1, k2, k3, k4 independent of θ∗n−, Ψ∗
n(x), θ1, and θ2 such that

(a) k1 ≤ ‖EθΨ∗
n(x)‖ ≤ k2 ∀θ ∈ Θ∗.

(b) ‖EθΨ∗
n(x)u(x)‖ ≤ k3 ∀θ ∈ Θ∗.

(c) ‖Eθ1Ψ
∗
n(x)u(x)−Eθ2Ψ

∗
n(x)u(x)‖ ≤ k4‖θ1 − θ2‖.

Proof: Let M be a set defined as follows

M = {m : m = θ1 − θ2, ∀θ1, θ2 ∈ Θ∗}.

We claim that M is compact. To prove this claim, assume {mi} to be a sequence in M, i.e
mi ∈ M such that lim

i−→∞
mi = m. We know that there exist sequences {θ1,i} and {θ2,i} such that

mi = θ1,i − θ2,i and θ1,i, θ2,i ∈ Θ∗. Since Θ∗ is compact there exist converging subsequences {θ1,i}
and {θ2,i} in Θ∗. This implies that m = θ1−θ2, where θ1 and θ2 are the limits of the subsequences
{θ1,i} and {θ2,i}. Since θ1 and θ2 ∈ Θ∗, then m ∈M, therefore M is closed. Since Θ∗ is bounded,
M is bounded and therefore, it is compact.
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We define set A1 as follows:

A1 =
{

α :
∫

exp(αT c(x)) exp(θTc(x)) < ∞,∀θ ∈ Θ∗ and α ∈ Rp
}

It is clear that A1 ⊂ A. From (A4), Ψ∗
n(x) = exp(αTc(x)) and α ∈ A⋂M. Since A⋂M and Θ∗

are compact we have

min
θ∈Θ∗

min
α∈A

⋂
M
‖EθΨ∗

n(x)‖ ≤ ‖EθΨ∗
n(x)‖ ≤ max

θ∈Θ∗
max

α∈A
⋂
M
‖EθΨ∗

n(x)‖.

In other words (a) is true with k1 = min
θ∈Θ∗

min
α∈A

⋂
M
‖EθΨ∗

n(x)‖ and k2 = max
θ∈Θ∗

max
α∈A

⋂
M
‖EθΨ∗

n(x)‖.
Similarly, since u(·) ∈ Fkκ, (b) is true.

Using the above argument and the argument in Fact 2, we can show that ‖ d
dθEθΨ∗

n(x)u(x)‖ is
uniformly bounded and since Θ∗ is convex and compact. Therefore, (c) is true [25].

¦
In the following we go through the proof of the theorem that we state later precisely. Assume

θ̂n is calculated according to Algorithm (2) and assume p(x, θ̂n) is such that ∀u ∈ Fkκ

Ẽ‖Eθ̂n
u(x)− Eθ∗nu(x)‖ ≤ δ , (24)

where θ∗n (see (A3)) satisfies

Ẽ‖Epnu(x)− Eθ∗nu(x)‖ ≤ ε. (25)

Using the density p(x, θ̂n), new particles x1
n, · · · ,xN

n are generated. The approximate solution for
the SDE at time (n + 1)τ maps these particles to x̂1

n+1, · · · , x̂N
n+1. From these new particles θ̂n+1 is

calculated. From (24) and (25) we have

Ẽ‖Epnu(x)−Eθ̂n
u(x)‖ ≤ δ + ε. (26)

We define the function r(x) as follows:

r(x) = E′′c(x̂n,x((n + 1)))

where x̂n,x((n+1)τ) is the approximate solution of SDE (17) at time (n+1)τ with the given initial
condition x at time nτ using the method in (18). Since according to our assumption c ∈ Fkκ, then
by using lemma 9.1 in [24], we have

‖r(x)‖ ≤ K3(1 + ‖x‖µ)

where K3 and µ only depend on the function c(·) and the dimension of x. Therefore, k and κ in
Definition 3 can be chosen such that r ∈ Fkκ. If the argument of r(·) is a random variable, then
using (26) we have

Ẽ‖Epnr(x)−Eθ̂n
r(x)‖ ≤ δ + ε. (27)

More explicitly,

Ẽ‖EpnE′′[c(x̂n,x((n + 1)τ))]−Eθ̂n
E′′[c(x̂n,x((n + 1)τ)]‖ ≤ δ + ε. (28)
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From Theorem (2) we have

Ẽ‖Epnc(xn,x((n + 1)τ))−EpnE′′c(x̂n,x((n + 1)τ))‖ ≤ K4h
2, (29)

for some K4 > 0. Using the Monte Carlo method to calculate the Epnc(x̂n,x((n + 1)τ)) brings
another error term that is due to the finite number of particles as the initial conditions for method
(18). The expectation of this error is bounded, i.e. ∃K5 > 0 s.t.

Ẽ‖Eθ̂n
E′′c(x̂n,x((n + 1)τ))− 1

N

N∑

i=1

c(x̂n,x̂i
i
((n + 1)τ))‖ ≤ K5

N
1
2

, (30)

where x̂i are distributed according to p(x, θ̂n). Combining (28), (29), and (30) we get

Ẽ‖Epnc(xn,x((n + 1)τ))− 1
N

N∑

i=1

c(x̂n,x̂i((n + 1)τ))‖ ≤ δ + ε + K4h
2 +

K5

N
1
2

. (31)

Based on (A3), we know that ∃θ∗(n+1)− such that

Ẽ‖Ep
(n+1)−c(x)− Eθ∗

(n+1)−
c(x)‖ ≤ ε. (32)

We know that, if x (initial condition at time nτ) is distributed according to pn(x), then
Ep

(n+1)−c(x) = Epnc(xn,x((n + 1)τ)), therefore, from (31) and (32) we get

Ẽ‖Eθ∗
(n+1)−

c(x)− 1
N

N∑

i=1

c(x̂n,x̂i((n + 1)τ))‖ ≤ δ + 2ε + K4h
2 +

K5

N
1
2

. (33)

Then θ̂(n+1)− given by Algorithm (2) satisfies the following inequality

Ẽ‖Eθ∗
(n+1)−

c(x)−Eθ̂
(n+1)−

c(x)‖ ≤ δ + 2ε + K4h
2 +

K5

N
1
2

. (34)

From (A4) we know that ∃θ ∈ Θ∗ such that

Ẽ

∥∥∥∥∥∥

Eθ∗
(n+1)−

Ψ∗
n+1(x)u(x)

Eθ∗
(n+1)−

Ψ∗
n+1(x)

−
Ep

(n+1)−
Ψn+1(x)u(x)

Ep
(n+1)−

Ψn+1(x)

∥∥∥∥∥∥
= Ẽ

∥∥∥Eθu(x)−Ep
(n+1)

u(x)
∥∥∥ ≤ ε.

Since θ satisfies the inequality in (A3), we can choose θ∗(n+1) to be θ, i.e. θ∗(n+1) = θ.
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On the other hand we have

∥∥∥Eθ∗
(n+1)

u(x)−Eθ̂(n+1)
u(x)

∥∥∥ =

∥∥∥∥∥
Eθ∗

(n+1)−
Ψ∗n+1(x)u(x)

Eθ∗
(n+1)−

Ψ∗n+1(x) −
Eθ̂

(n+1)−
Ψn+1(x)u(x)

Eθ̂
(n+1)−

Ψn+1(x)

∥∥∥∥∥

≤
∥∥∥∥∥

Eθ∗
(n+1)−

Ψ∗n+1(x)u(x)

Eθ∗
(n+1)−

Ψ∗n+1(x) −
Eθ∗

(n+1)−
Ψ∗n+1(x)u(x)

Eθ̂
(n+1)−

Ψ∗n+1(x)

∥∥∥∥∥ +

∥∥∥∥∥
Eθ∗

(n+1)−
Ψ∗n+1(x)u(x)

Eθ̂
(n+1)−

Ψ∗n+1(x) −
Eθ̂

(n+1)−
Ψ∗n+1(x)u(x)

Eθ̂
(n+1)−

Ψ∗n+1(x)

∥∥∥∥∥ +

∥∥∥∥∥
Eθ̂

(n+1)−
Ψ∗n+1(x)u(x)

Eθ̂
(n+1)−

Ψ∗n+1(x) −
Eθ̂

(n+1)−
Ψn+1(x)u(x)

Eθ̂
(n+1)−

Ψn+1(x)

∥∥∥∥∥

≤
‖Eθ∗

(n+1)−
Ψ∗n+1(x)u(x)‖

‖Eθ∗
(n+1)−

Ψ∗n+1(x)‖‖Eθ̂
(n+1)−

Ψ∗n+1(x)‖

∥∥∥∥Eθ∗
(n+1)−

Ψ∗
n+1(x)−Eθ̂

(n+1)−
Ψ∗

n+1(x)
∥∥∥∥ +

1
‖Eθ̂

(n+1)−
Ψ∗n+1(x)‖

∥∥∥∥Eθ∗
(n+1)−

Ψ∗
n+1(x)u(x)− Eθ̂

(n+1)−
Ψ∗

n+1(x)u(x)
∥∥∥∥ +

∥∥∥∥∥
Eθ̂

(n+1)−
Ψ∗n+1(x)u(x)

Eθ̂
(n+1)−

Ψ∗n+1(x) −
Eθ̂

(n+1)−
Ψn+1(x)u(x)

Eθ̂
(n+1)−

Ψn+1(x)

∥∥∥∥∥

Using Lemma 2 and (A4) we get

Ẽ‖Eθ∗
(n+1)

u(x)− Eθ̂(n+1)
u(x)‖ ≤ k3k4 + k1k4

k2
1

Ẽ‖θ∗(n+1)− − θ̂(n+1)−‖+ ε

Therefore, from (34) and Fact 2 we get

Ẽ‖θ∗(n+1)− − θ̂(n+1)−‖ ≤ K2

(
δ + 2ε + K4h

2 +
K5

N
1
2

)
.

This implies that, ∃ι1, ι2, ι3, ι4 > 0 such that

Ẽ‖Eθ∗
(n+1)

u(x)− Eθ̂(n+1)
u(x)‖ ≤ ι1δ + ι2ε + ι3h

2 + ι4N
− 1

2 .

The next theorem summarizes our result in this section.

Theorem 4 For the system (3) assume (A1), (A2), (A3), and (A4). We also assume the con-
ditions in Fact 1 and in Theorem 2 with c(x) replacing u(x), and we assume r ∈ Fkκ. Then in
Algorithm 2 with approximation (18), if ∀u(·) ∈ Fkκ

Ẽ‖Eθ̂n
u(x)− Eθ∗nu(x)‖ ≤ δ

then

Ẽ‖Eθ∗
(n+1)

u(x)− Eθ̂(n+1)
u(x)‖ ≤ ι1δ + ι2ε + ι3h

2 + ι4N
− 1

2 ,

for some ι1, ι2, ι3, ι4 > 0.
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In Theorem (4) only one step of Algorithm (2) is considered; it is straightforward to then use
Theorem(4) repeatedly for the time interval [0, T ], where T = Mτ . In that case, ‖Eθ̂0

u(x) −
Eθ∗0u(x)‖ ≤ δ0, then ∃α1, α2, α3, and α4 positive such that

Ẽ‖Eθ∗nu(x((n)τ))− Eθ̂n
u(x((n)τ))‖ ≤ αn

1δ0 +
n−1∑

i=0

αi
1(α2ε + α3h

2 + α4N
−1/2),

for 0 ≤ n ≤ M .

7 Applications of Projection Particle Filtering to Integrated
INS/GPS

GPS provides world wide positioning with acceptable accuracy, if four or more satellites are in
view of the receiver. Although the satellite constellation guarantees availability of four or more
(sometimes even nine) satellites world wide, natural or man-made obstacles can block the satellite
signals easily. To overcome this vulnerability, one might think of integrating dead reckoning or
INS with GPS [26][27][28][29][30][15]. In this case, INS or the dead reckoning provides positioning
that is calibrated by the GPS. In this section we consider the case of an integrated INS/GPS.
We show that using nonlinear filtering for positioning is essential, and we compare the proposed
Projection PaF with the regular PaF and EKF. One application of accurate INS/GPS navigation
is in formation flight of unmanned aerial vehicle to reduce drag [31]

7.1 GPS Observation Equation

The GPS signal consists of a clock signal and a navigation message that are amplitude modulated.
Each satellite sends the clock signal in two different bands, L1 and L2[32]. The GPS receiver
receives the signal corrupted by noise and other sources of error. The raw measurements of the
code and the carrier phase can be presented as follows [33]:

P i(tk) = ρi(tk) + c[dT (tk)− dti(tk)] + T i(tk) + Ii(tk) + Ei(tk) + εi(tk) ,

λΦi(tk) = ρi(tk) + c[dT (tk)− dti(tk)] + T i(tk)− Ii(tk) + Ei(tk) + λN i + ηi(tk) ,

where

• tk : GPS time at epoch k (s)

• P : code observation(m)

• i : satellite number

• ρ : distance between the receiver and the satellite position(m)

ρi(rx, ry, rz) =
√

(rx − si
x)2 + (ry − si

y)2 + (rz − si
z)2

where [rx, ry, rz]T and [si
x, si

y, s
i
z]

T are the coordinate of the receiver and the ith satellite,
respectively.

• c : speed of light (m/s)
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• dT : receiver clock bias(s)

• dt : satellite clock bias(s)

• E : effect of ephemeris error(m)

• I : ionospheric delay(m)

• T : tropospheric delay(m)

• ε: code observation noise(m)

• λ: carrier wavelength(m)

• Φ : carrier phase observation(cycles)

• N : integer ambiguity(cycles)

• η : carrier observation noise (m)

Access to the above observation depends on the type of user and the quality of the receiver. State-
of-the-art receivers can have access to code and carrier phase measurements of 12 satellites in 2
frequencies. With this kind of receiver a significant portion of the ionospheric delay can be corrected
and removed [34][35][36]. If it is possible to mount a GPS receiver at a known location, or base,
and broadcast the received GPS data to the mobile receiver, or rover, one can subtract the received
signal at the base from the received signal at the rover; this is called single differencing. Over
short distances, ionospheric and tropospheric errors are highly correlated, and can be eliminated
by the single differencing method. The definition of short distance depends on sunspot activities
[34]. When sunspot activities are low, distances less than 100 Km are considered short. It can be
shown that single differencing reduces ephemeris error by a factor of d/r [36], where d and r are the
distances from the rover to the base and to the satellite, respectively. Also by single differencing
the error due to satellite clock bias is completely eliminated.

For the rest of this paper we assume that the integer ambiguity resolution problem is resolved
(see [37] for example). Therefore, we consider the observation equation provided by ith GPS satellite
to have the following form:

yi = ρi(rx, ry, rz)− ρi(bx, by, bz) + cδ + vi , (35)

where [bx, by, bz]T is the known base coordinate, δ is the combination of the receiver clock bias in
the base and the rover, and vi is the measurement noise for the ith satellite signal.

Here we would like to mention that the nonlinearity in measurement is not only due to the
function ρ. As we explain later integrated INS/GPS requires coordinate transformations between
INS parameters and GPS parameters, which contributes to the nonlinearity of the measurement.

7.2 Coordinate Systems

Parameters of an integrated INS/GPS are expressed in different coordinate systems. In this sub-
section we intend to introduce these different coordinate systems and the transformation from one
to another [38].
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parameter value Description
a 6378137.0 m semi major axis
b 6356752.3142 m semi minor axis

ωie 7.292115× 10−5 angular velocity of the Earth
f f = a−b

a flatness of the ellipsoid
e

√
f(1− f) eccentricity of the ellipsoid

Table 1: Definition of the parameters for WGS84 reference frame

7.2.1 ECEF frame

The GPS measurements are given in an Earth Centered Earth Fixed (ECEF) frame. Two different
coordinate systems are commonly used for describing the location of a point in ECEF frame.

The usual rectangular coordinate system [px, py, pz]T for the point p, herein referred to as the
ECEF coordinate system, has its x axis extended through the intersection of the prime meridian
(0◦ longitude) and the equator (0◦ latitude). The z axis extends through the true north pole(i.e.
parallel to the Earth’s spin axis). The y axis completes the right-handed coordinate system.

The geodetic coordinate system is defined according to the familiar latitude, longitude, and
hight coordinate system and is shown by [p

λ
, p

φ
, p

h
]T . For this system of coordinates, the Earth’s

geoid is approximated by an ellipsoid. The defining parameters for the geoid according to the
WGS84 reference frame are given in Table 1.

The transformation from the ECEF geodetic to the ECEF rectangular coordinate systems is
given as follows

px = (N + p
h
)cos(p

λ
)cos(p

φ
)

py = (N + p
h
)cos(p

λ
)sin(p

φ
)

pz = (N(1− e2) + p
h
)sin(p

λ
),

(36)

where N = a√
1−e2sin2(p

λ
)
. The inverse transformation can be derived from (36).

7.2.2 Local Geographical frame

It is convenient to express the navigation-frame velocity in the local coordinate system. This
coordinate system is rectangular, and it has the x axis, y axis, and the z axis extended through the
north, the east, and the down, respectively. With this definition for the local geographic coordinate
system, the navigation-frame velocity, [vN , vE , vD]T , is related to the geodetic rate vector according
to




vN

vE

vD


 =




Rλ + p
h

0 0
0 (Rφ + p

h
) cos(p

λ
) 0

0 0 −1







ṗ
λ

ṗ
φ

ṗ
h


 , (37)

where Rλ = a(1−e2)

(1−e2 sin2(p
λ
))

3
2
, and Rφ = a

(1−e2 sin2(p
λ
))

1
2
.
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7.2.3 Platform and Body frames

Measurements by accelerometers and gyros are expressed in the platform frame. For simplicity we
assume that the gyros and the accelerometers are aligned with the axis in the platform frame. Also,
we assume that the body frame and the platform frame are aligned, and the center of the coordinate
system is the same for both frames. The transformation from body frame to local geographical
frame is calculated at every moment. It depends on the angular rate change measured by the gyros,
the rotation of the Earth, and the rotation of the local frame with respect to an inertial frame, all
expressed in the body frame. The transform matrix from the platform frame to the local frame is
expressed as follows

d

dt
Rb2g = Rb2gΩb

gb, (38)

where

Ωb
gb =




0 −r q
r 0 −p
−q p 0


 , (39)

and ωb
gb = [p, q, r]T is the inertial angular rate expressed in the body frame. ωb

gb can be expressed
as follows




p
q
r


 =




p̃
q̃
r̃


 +




bp

bq

br


−Rg2b


wie




cos(p
λ
)

0
− sin(p

λ
)


 +




vE/(Rφ + p
h
)

−vN/(Rλ + p
h
)

vE tan(p
λ
)/(Rφ + p

h
)





 , (40)

where [p̃, q̃, r̃]T is the measured angular rate, and [bp, bq, br]T is the bias in the angular rate mea-
surement.

If we assume that in the time interval [t, t + δt], Ωb
gb is a constant matrix then we have

Rg2b(t + δt) = exp(−Ωb
gb(t)δt)Rg2b(t).

Since Ωb
gb is a skew symmetric matrix, then exp(−Ωb

gb(t)δt) has a simple form:

exp(−Ωb
gbδt) = [I +

sin(‖ωb
gb(t)δt‖)

‖ωb
gb(t)‖

Ωb
gb +

1− cos(‖ωb
gb(t)δt‖)

‖ωb
gb(t)‖2

(Ωb
gb)

2].

The transformation from the body frame to the local frame, Rb2g, is simply the transpose of Rg2b,
i.e. Rb2g = RT

g2b.

7.3 GPS Clock Drift and INS Dynamics

The GPS clock drift and the INS equations constitute key dynamics in integrated INS/GPS.
The INS dynamic equation can be expressed as follows.
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d




p
λ

p
φ

p
h


 =




1
Rλ+p

h
0 0

0 1
(Rφ+p

h
) cos(p

λ
) 0

0 0 −1







vN

vE

vD


 dt

d




vN

vE

vD


 =







− v2
E

Rφ+p
h

tan(p
λ
)− 2ωie sin(p

λ
)vE + vNvD

Rλ+p
h

vEvN
Rλ+p

h
tan(λ) + ωie sin(p

λ
)vN + vEvD

Rφ+p
h

+ 2ωie cos(p
λ
)vD

− v2
N

Rλ+p
h
− v2

E
Rφ+p

h
− 2ωie cos(p

λ
)vE




+

Rb2g







ãu

ãv

ãw


 +




bu

bv

bw





 +




0
0
g





 dt + dwv

t ,

(41)

where g = 9.780327m/s2 is the gravitational acceleration, [ãu, ãv, ãw]T is the accelerometer mea-
surement expressed in the body frame, [bu, bv, bw]T is the accelerometer measurement bias again
expressed in the body frame, and wv is a vector valued Brownian motion process with zero mean
and known covariance matrix. The measurement bias is assumed to have the following dynamics

d




bu

bv

bw


 = −ab




bu

bv

bw


 dt + dwb

t , (42)

where wb
t is a vector valued Brownian motion with zero mean and known covariance matrix, and

ab is a small positive constant.
The receiver clock drift, δt, is represented by the integration of an exponentially correlated

random process %t [15]

d%t = −a%%tdt + dw%
t

dδt = %tdt,
(43)

with a% = 1/500 and w%
t is a process of Brownian motion with zero mean and variance σ2

% = 10−24.
This dynamic model is typical for a quartz TCXO with frequency drift rate of 10−9s/s [15].

7.4 Simulation and Results

In this section we present simulation results for an integrated INS/GPS. Here we apply three
different filtering methods, EKF, PaF, and projection Particle Filtering for a specified exponential
density. We assumed that Rg2b is perfectly known, i.e. the estimation problem regarding the gyro
measurements is solved. Therefore, with our assumptions in the previous sections, the dimension
of the dynamical system in this simulation is eleven. The state of the dynamical system is

x = [p
λ
, p

φ
, p

h
, vN , vE , vD, bu, bv, bw, %, δ]T .

The dynamics of the system is the set of differential equation in (41), (42), and (43). Here, we
assume that ab = 0.001, and the covariance matrices for the Brownian motions in INS dynamic
equations, Σb and Σv, to be diagonal. To be more specific, Σb = 10−6I and Σv = 10−4I, where I
is the identity matrix of the right size. The observation equation is given in (35), where yi is one
component of the observation vector. The dimension of the observation vector is the same as the
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number of available satellites. In (35) the observation is given as a function of the position in ECEF
rectangular coordinate system. Therefore, to be able to write down the observation equation as a
function of the state of the system, one needs to use the transform in (36).

For this simulation we simply chose an 11 dimensional Gaussian density for the projection PaF.
This choice of density makes random vector generation easy and computationally affordable. To
be able to use projection PaF, we used maximum likelihood estimates of the parameters of the
Guassian density before and after Bayes’ correction.

In this simulation, we used two Novatel GPS receivers to collect the navigation data on April
2, 2000. From the collected data, we extracted position information for the satellites, the pseudo
range, and the carrier phase measurement noise powers for the L1 frequency. Using the collected
information we generated the pseudo range and the carrier phase data for one static and one moving
receiver (base and rover, respectively). Here we assume that for the carrier phase measurement
the integer ambiguity problem is already solved. The movement of the INS/GPS platform was
simulation based and the measurement data measured by the accelerometers, the gyros, the GPS
pseudo range, and the GPS carrier phase data were generated according to that movement.

In the simulation we assumed that the GPS receiver starts with 6 satellites. At time t = 100, the
receiver loses lock with 3 satellites, and it gains one satellite at t = 400. We want to emphasize that
for instantaneous stand alone positioning GPS requires at least 4 satellites. Figures 1-3 show the
actual and estimated x, y, and z components of the position of the platform in ECEF rectangular
system of coordinate. The estimates are given by three different methods, EKF, PaF, and projection
PaF. The errors in these three methods are plotted in Figure 4. From this figure, it can easily be
seen that EKF fails to give an acceptable estimate of the position when the number of satellites is
below 4. It is worth mentioning that whenever the number of satellites is more than 4, EKF can
provide a very good estimate of the position. Unlike EKF, PaF and projection PaF are successful
in providing a reasonable estimate of position. Figure 5 is a version of Figure 4 with an emphasis on
the comparison of the errors between PaF and projection PaF. It is seen that for the same number
of particles, here 500, the error of the estimate given by the projection PaF is smaller than the
error for PaF.

8 Concluding Remarks

Bringing together the distinct advantages of simulation-and-sampling based density computation
and analytic propagation in parameterized families of densities, we introduce in this paper a new
approach to the problem of nonlinear filtering - the projection particle filter. We develop the filter
for exponential families of densities. We provide bounds for estimation errors accounting for depen-
dence on population size of particles, and step size used in numerical integration of dynamics. We
illustrate the effectiveness of this new filter in the technologically important problem of integrating
INS and GPS. We aim to investigate in future work application of projection particle filtering to
stochastic control.
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Figure 2: Comparison of the estimated and actual y component. The estimated y component is given
with three different methods, EKF, PaF, and projection PaF. For t < 100, the number of satellites is 6, for
100 ≤ t ≤ 400, the number of satellites is 3, and for t > 400, the number of satellites is 4.
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Figure 3: Comparison of the estimated and actual z component. The estimated z component is given
with three different methods, EKF, PaF, and projection PaF.For t < 100, the number of satellites is 6, for
100 ≤ t ≤ 400, the number of satellites is 3, and for t > 400, the number of satellites is 4.
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Figure 4: The estimation error for platform position for three different methods, EKF, PaF, and projection
PaF.For t < 100, the number of satellites is 6, for 100 ≤ t ≤ 400, the number of satellites is 3, and for
t > 400, the number of satellites is 4.
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Figure 5: The estimation error for platform position for three different methods, EKF, PaF, and projection
PaF.For t < 100, the number of satellites is 6, for 100 ≤ t ≤ 400, the number of satellites is 3, and for
t > 400, the number of satellites is 4.
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