
Stat Comput
DOI 10.1007/s11222-007-9037-8

Particle methods for maximum likelihood estimation in latent
variable models

Adam M. Johansen · Arnaud Doucet · Manuel Davy

Received: 15 May 2007 / Accepted: 31 August 2007
© Springer Science+Business Media, LLC 2007

Abstract Standard methods for maximum likelihood pa-
rameter estimation in latent variable models rely on the
Expectation-Maximization algorithm and its Monte Carlo
variants. Our approach is different and motivated by similar
considerations to simulated annealing; that is we build a se-
quence of artificial distributions whose support concentrates
itself on the set of maximum likelihood estimates. We sam-
ple from these distributions using a sequential Monte Carlo
approach. We demonstrate state-of-the-art performance for
several applications of the proposed approach.

Keywords Latent variable models · Markov chain Monte
Carlo · Maximum likelihood · Sequential Monte Carlo ·
Simulated annealing

1 Introduction

Performing Maximum Likelihood (ML) parameter estima-
tion in latent variable models is a complex task. First,
in many cases, the likelihood for the parameters of inter-
est does not admit a closed-form expression. Second, even
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when it does, it can be multimodal. When the likelihood can
be evaluated, the classical approach to problems of this sort
is the Expectation-Maximisation (EM) algorithm (Demp-
ster et al. 1977), which is a numerically well-behaved al-
gorithm. However the EM algorithm is a deterministic al-
gorithm, which is sensitive to initialization and can become
trapped in severe local maxima. To avoid getting trapped in
local maxima and to deal with cases where the E-step cannot
be performed in closed-form, some Monte Carlo variants of
the EM algorithm have been proposed.

More recently, an algorithm has been proposed to solve,
simultaneously, this joint integration/maximization prob-
lem; see Doucet et al. (2002) or Gaetan and Yao (2003),
Jacquier et al. (2007) for an independent derivation. The
main idea of this algorithm is related to Simulated Anneal-
ing (SA) and consists of building a sequence of artificial
distributions whose support concentrates itself on the set of
ML estimates. In cases where the likelihood does not ad-
mit a closed-form expression, these artificial distributions
are not standard and rely on the introduction of an increas-
ing number of artificial copies of the latent variables. To
sample from this sequence of distributions, the authors of
(Doucet et al. 2002) use non-homogeneous Markov chain
Monte Carlo (MCMC) algorithms which they term State
Augmentation for Marginal Estimation (SAME). Although
these iterative stochastic algorithms typically perform better
than deterministic EM and its variants (Robert and Casella
2004, Chap. 5), they can also get stuck in severe local max-
ima. We propose, here, original Sequential Monte Carlo
(SMC) methods to address this problem. In this approach,
the distributions are approximated by a large cloud of inter-
acting random samples. The performance of these methods
is much less sensitive to initialization than EM and MCMC
algorithms. We demonstrate their efficiency on a variety of
problems.
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The remainder of the paper is organized as follows. In
Sect. 2, we formally introduce the statistical model and a
sequence of artificial probability distributions which con-
centrates itself on the set of ML estimates. In Sect. 3, we
describe two generic SMC algorithms to sample from these
distributions: the first algorithm assumes the likelihood is
known pointwise whereas the second algorithm considers
the most general case. Finally in Sect. 4, we provide a num-
ber of example applications.

2 Maximum likelihood estimation in latent variable
models

Let y ∈ Y denote the observed data, z ∈ Z the latent vari-
ables and θ ∈ � the parameter vector of interest. The mar-
ginal likelihood of θ is given by

p(y|θ) =
∫

p(y, z|θ)dz, (1)

where p(y, z|θ) is the complete likelihood. The complete
likelihood is known pointwise but the marginal likelihood
might not be tractable. We are interested in the set of ML
estimates

�ML = argmax
θ∈�

p(y|θ). (2)

Instead of an EM approach to maximize p(y|θ), we pro-
pose an alternative related to SA. Let p(θ) be an instrumen-
tal prior distribution whose support includes the maximisers
of the likelihood function, then the probability distribution

πγ (θ) ∝ p(θ)p(y|θ)γ (3)

concentrates itself on the set of ML estimates as γ → ∞
under weak assumptions. Indeed, asymptotically the con-
tribution from this instrumental prior vanishes; this term is
only present to ensure that the distribution πγ (θ) is a proper
distribution—it may be omitted in those instances in which
this is already the case. If we could obtain samples from a
distribution πγ (θ) where γ is large, then the simulated sam-
ples would be concentrated around �ML. However, Monte
Carlo methods such as MCMC and SMC require that it is
possible to evaluate the distributions of interest up to a nor-
malizing constant: such methodology cannot be applied di-
rectly if p(y|θ) does not admit a closed-form expression.

2.1 Algorithms

To circumvent this problem, it has been proposed in Doucet
et al. (2002), in a Maximum a Posteriori (MAP) rather than
ML setting, to build an artificial distribution known up to
a normalizing constant which admits as a marginal distrib-
ution the target distribution πγ (θ) for an integer power γ

greater than one. A similar scheme was subsequently pro-
posed by Gaetan and Yao (2003), Jacquier et al. (2007) in
the ML setting. We note that closely related approaches have
also appeared in the literature to perform full ML estimation
(in the absence of latent variables) (Robert and Titterington
1998) and in an optimal design context (Müller et al. 2004;
Amzal et al. 2006). The basic idea consists of introducing γ

artificial replicates of the missing data and defining

πγ (θ, z1:γ ) ∝ p(θ)

γ∏
i=1

p(y, zi |θ), (4)

with zi:j = (zi , . . . , zj ). Indeed it is easy to check that the
marginal in θ of (4) denoted πγ (θ) is equal to (3). Note that
it is straightforward to modify the distribution πγ (θ, z1:γ )

so that it concentrates itself on the set of the Maximum A
Posteriori (MAP) estimates of θ associated with the prior
p(θ) and the likelihood p(y|θ) by using a different sequence
of distributions

πγ (θ, z1:γ ) ∝
γ∏

i=1

p(θ)p(y, zi |θ). (5)

As it is usually impossible to sample from πγ (θ, z1:γ )

directly, MCMC algorithms have been proposed in the lit-
erature to achieve this. However, using an MCMC kernel
to sample directly from this distribution for a large integer
γ can be very inefficient as, by construction, the marginal
distribution πγ (θ) is sharply peaked and the mixing prop-
erties of MCMC kernels usually deteriorate as γ increases.
Such approaches can perform rather well if the likelihood is
unimodal but are likely to fail if it is multimodal. A popu-
lar approach, which alleviates this problem to some degree,
is adopted in the SAME algorithm. It consists of sampling
from a sequence of distributions {πγt (θ, z1:γt )}t≥1 evolving
over time, t , such that γ1 is small enough for πγ1(θ, z1:γ1)

to be easy to sample from and {γt }t≥1 is an increasing se-
quence going to infinity. However, in practice, this approach
suffers from two major drawbacks. First, in contrast to stan-
dard SA, we are restricted to integer inverse temperatures,
{γt }t≥1. Hence the discrepancy between successive target
distributions can be high and this limits the performance of
the algorithm. Second, a very slow (logarithmic) annealing
schedule is necessary to ensure convergence towards �ML.
In practice, a faster (linear or geometric) annealing sched-
ule is used, but, consequently, the MCMC chain tends to
become trapped in local modes.

To solve the first problem, we introduce for any real-
valued γ > 0 the target distribution

πγ (θ, z1:�γ �) ∝ p(θ)p(y, z�γ �|θ)γ
�

	γ 
∏
i=1

p(y, zi |θ), (6)
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where 	γ 
 � sup{α ∈ Z : α ≤ γ }, �γ � � inf{α ∈ Z : α ≥ γ }
and γ � � γ − 	γ 
. Distribution (6) coincides with (4) for
any integer γ ; for general γ , the marginal πγ (θ) of (6) is
not equal to πγ (θ) but still concentrates itself on �ML as
γ → ∞.

To solve the second problem, we propose to employ SMC
methods. The sequence of distributions is approximated by a
collection of random samples termed particles which evolve
over time using sampling and resampling mechanisms. The
population of samples employed by our method makes it
much less prone to trapping in local maxima.

3 SMC sampler algorithms

SMC methods have been used primarily to solve optimal
filtering problems; see, for example, Doucet et al. (2001)
for a review of the literature. They are used here in a com-
pletely different framework, that proposed by Del Moral
et al. (2006). This framework involves the construction of
a sequence of artificial distributions which admit the distri-
butions of interest (in our case those of the form of (4)) as
particular marginals.

SMC samplers allow us to obtain, iteratively, collec-
tions of weighted samples from a sequence of distributions
(πt (xt ))t≥1. These distributions may be defined over essen-
tially any random variables Xt on some measurable spaces
(Et ,Et ). Such sampling is facilitated by the construction of
a sequence of auxiliary distributions (π̃t )t≥1 on spaces of
increasing dimension, π̃t (x1:t ) = πt (xt )

∏t−1
s=1 Ls(xs+1, xs),

by defining a sequence of Markov kernels {Ls}s≥1 which
operate, in some sense backwards in time as, conditional
upon a point xs+1 in Es+1, Ls provides a probability distri-
bution over Es . This sequence is formally arbitrary but criti-

cally influences the estimator variance. In the present appli-
cation we are concerned with distributions over the collec-
tions of random variables Xt = (θt ,Zt,1:�γt �). See Del Moral
et al. (2006) for further details and guidance on the selection
of these kernels. Standard SMC techniques can then be ap-
plied to the sequence of synthetic distributions {π̃t }t≥1.

We distinguish here two cases: that in which the likeli-
hood p(y|θ) is known analytically and the general case in
which it is not.

3.1 Marginal likelihood available

It is interesting to consider an analytically convenient spe-
cial case, which leads to Algorithm 3.1. This algorithm is
applicable when we are able to sample from particular con-
ditional distributions, and evaluate the marginal likelihood
pointwise.

We note that the details of this algorithm can be under-
stood by viewing it as a refinement of a particular case of
the general algorithm proposed below. However, we present
it first as it is relatively simple to interpret and provides
some insight into the approach which we would ideally like
to adopt. Intuitively, one can view this algorithm as apply-
ing an importance weighting to correct for the distributional
mismatch between πγt−1 and πγt and updating Z

(i)
t,1:�γt � then

θ at each step by applying Gibbs sampler moves which are
πγt invariant.

Although the applicability of the general algorithm to
a much greater class of problems is potentially more in-
teresting we remark that the introduction of a latent vari-
able structure can lead to kernels which mix much more
rapidly than those used in a direct approach (Robert and
Casella 2004, p. 351). Here and throughout, we write
zt = z1:�γt � and Z

(i)
t = Z

(i)
t,1:�γt � to denote the collection of

Algorithm 3.1 SMC MML with Marginal Likelihoods

Initialisation: t = 1:

Sample {θ(i)
1 }Ni=1 independently from some importance distribution, ν(·).

Calculate importance weights W
(i)
1 ∝ πγ1 (θ

(i)
1 )

ν(θ
(i)
1 )

,
∑N

i=1 W
(i)
1 = 1.

for t = 2 to T do
Calculate importance weights:

W
(i)
t ∝ W

(i)
t−1p(y|θ(i)

t−1)
γt−γt−1 ,

N∑
i=1

W
(i)
t = 1.

if Effective Sample Size (ESS, see Liu and Chen 1998) < Threshold, then
Resample from {W(i)

t , θ
(i)
t−1}Ni=1.

end if
Sample {(θ(i)

t ,Z
(i)
t )}Ni=1 such that:

Z
(i)
t ∼ πγt (·|θ(i)

t−1) and θ
(i)
t ∼ πγt (·|Z(i)

t ).

end for
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Algorithm 3.2 A general SMC algorithm for MML estimation

Initialisation: t = 1:

Sample {(θ(i)
1 ,Z

(i)
1 )}Ni=1 independently from some importance distribution, ν(·).

Calculate importance weights W
(i)
1 ∝ πγ1 (θ

(i)
1 ,Z

(i)
1 )

ν(θ
(i)
1 ,Z

(i)
1 )

,
∑N

i=1 W
(i)
1 = 1.

for t = 2 to T do
if ESS < Threshold, then

Resample from {W(i)
t−1, (θ

(i)
t−1,Z

(i)
t−1)}Ni=1.

end if
Sample {(θ(i)

t ,Z
(i)
t )}Ni=1 such that (θ

(i)
t ,Z

(i)
t ) ∼ Kt((θ

(i)
t−1,Z

(i)
t−1), ·).

Set importance weights,

W
(i)
t

W
(i)
t−1

∝ πγt (θ
(i)
t ,Z

(i)
t )Lt−1((θ

(i)
t ,Z

(i)
t ), (θ

(i)
t−1,Z

(i)
t−1))

πγt−1(θ
(i)
t−1,Z

(i)
t−1)Kt ((θ

(i)
t−1,Z

(i)
t−1), (θ

(i)
t ,Z

(i)
t ))

.

end for

replicates of latent variables associated with the ith particle
at time t .

When the marginal likelihood is known, it is unnecessary
to introduce a sequence of distributions πγt (θ, zt ). It can be
seen that, as γ → ∞, this algorithm resembles a stochas-
tic variant of EM and, indeed, it would be computationally
more efficient to switch from this algorithm to conventional
EM updates after some number of iterations (by employing
this approach initially, one hopes to alleviate some of the
difficulties caused by the presence of local optima).

3.2 Marginal likelihood unavailable

Algorithm 3.2 introduces the general framework which we
propose. We then show that Algorithm 3.1 is an important
special case within this framework. Finally we present a
generic form of the algorithm which can be applied to a
broad class of problems, although it will often be less ef-
ficient to use this generic formulation than to construct a
dedicated sampler for a particular class of problems.

Algorithm 3.1 is a particular case of this algorithm where
we move the particles according to a πγt -invariant Markov
kernel given by

Kt((θt−1, zt−1), (θt , zt )) = πγt (zt |θt−1)πγt (θt |zt )

and

Lt−1((θt , zt ), (θt−1, zt−1)) = πγt (θt−1|zt )πγt−1(zt−1|θt−1)

leading to the weight expression shown in the algorithm. As
the importance weight depends only upon θt−1, resampling
can be carried out before, rather than after the sampling step.

In order to understand this choice of kernel, it is useful to
consider an alternative interpretation of the algorithm which
targets the marginal distribution (3) directly, employing Zt

as an auxiliary variable in order to sample from the proposal
kernel

Kt(θt−1, θt ) =
∫

πγt (zt |θt−1)πγt (θt |zt )dzt

which is clearly πγt -invariant. In this case, using the time
reversal kernel as its auxiliary counterpart:

Lt−1(θt , θt−1) = πγt (θt−1)Kt (θt−1, θt )

πγt (θt )
,

leads to the weight expression shown in the algorithm. This
is a well known approximation to the optimal auxiliary ker-
nel (Del Moral et al. 2006).

To obtain an algorithm which may be applied to a wider
range of scenarios, we can select (Kt )t≥1 as a collection of
Markov kernels with invariant distributions corresponding
to (πγt )t≥1. We then employ, in Algorithm 3.2, proposal ker-
nels of the form:

Kt((θt−1, zt−1), (θt , zt ))

=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Kt−1((θt−1, zt−1), (θt , zt )) if �γt−1� = �γt�,
Kt−1((θt−1, zt−1), (θt , zt,1:�γt−1�))

× q
γ

�
t
(zt,�γt �|θt )

∏�γt �−1
j=�γt−1�+1 q(zt,j |θt )

otherwise,

where it is understood that q0(·|θ) = 1, and select auxiliary
kernels

Lt−1((θt ,Zt ), (θt−1,Zt−1))

= πγt−1(θt−1,Zt−1)Kt−1((θt−1,Zt−1), (θt ,Zt,1:�γt−1�))
πγt−1((θt ,Zt,1:�γt−1�))

.

As kernel selection is of critical importance to the perfor-
mance of SMC algorithms, a few comments on these choices
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Algorithm 3.3 A generic SMC algorithm for MML estimation

Initialisation: t = 1:

Sample {(θ(i)
1 ,Z

(i)
1 )}Ni=1 independently from some importance distribution, ν(·).

Calculate importance weights W
(i)
1 ∝ πγ1 (θ

(i)
1 ,Z

(i)
1 )

ν(θ
(i)
1 ,Z

(i)
1 )

.

for t = 2 to T do
if ESS < Threshold, then

Resample from {W(i)
t−1, (θ

(i)
t−1,Z

(i)
t−1)}Ni=1.

end if
Sample {(θ(i)

t ,Z
(i)
t )}Ni=1 such that (θ

(i)
t ,Z

(i)
t,1:�γt−1�) ∼ Kt−1(θ

(i)
t−1,Z

(i)
t−1; ·),

and if �γt� > �γt−1�, then for j = �γt−1� + 1 to 	γt
, Z
(i)
t,j ∼ q(·|θ(i)

t ) and, if

γ
�
t = 0, Z

(i)
t,�γt � ∼ q

γ
�
t
(·|θ(i)

t ).

Set importance weights, when �γt� = �γt−1�,

W
(i)
t /W

(i)
t−1 ∝ p(y,Z

(i)
t,�γt �|θ

(i)
t )γt

�−γt−1
�
,

otherwise, we have that (note that the final term vanishes when γ
�
t = 0):

W
(i)
t

W
(i)
t−1

∝ p(y,Z
(i)
t,�γt−1�|θ

(i)
t )

p(y,Z
(i)
t,�γt−1�|θ

(i)
t )γt

�

[ 	γt 
∏
j=�γt �+1

p(y,Z
(i)
t,j |θ(i)

t )

q(Z
(i)
t,j |θ(i)

t )

]
p(y,Z

(i)
t,�γt �|θ

(i)
t )γt

�

qγt
� (Z

(i)
t,�γt �|θ

(i)
t )

.

end for

are justified. The proposal kernel Kt can be interpreted as
the composition of two components: the parameter value
and existing latent variable replicates are moved according
to a Markov kernel, and any new replicates of the latent vari-
ables are obtained from some proposal distribution q . The
auxiliary kernel, Lt−1 which we propose corresponds, to
the composition of the time reversal kernel associated with
Kt−1, and the optimal auxiliary kernel associated with the
other component of the proposal.

In this case, as summarised in Algorithm 3.3, we also as-
sume that good importance distributions, q(·|θ), for the con-
ditional probability of the variables being marginalised can
be sampled from and evaluated. If the annealing schedule
is to include non-integer inverse temperatures, then we fur-
ther assumed that we have appropriate importance distribu-
tions for distributions proportional to p(z|θ, y)α,α ∈ (0,1),
which we denote qα(z|θ). This is not the most general pos-
sible approach, but is one which should work acceptably for
a broad class of problems.

3.3 General comments

Superficially, these algorithms appear very close to mutation-
selection schemes employed in the genetic algorithms liter-
ature. However, there are two major differences: First, such
methods require the function being maximized to be known
pointwise, whereas the proposed algorithms do not. Second,
convergence results for the SMC methods follow straight-
forwardly from general results on Feynman-Kac flows (Del
Moral 2004).

There are a number of possible estimators associated with
these algorithms. In those cases in which the marginal like-
lihood can be evaluated cheaply, the most obvious tech-
nique is monitoring the marginal posterior of every parame-
ter combination which is sampled and using that set of para-
meters associated with the largest value seen. The only ob-
vious advantage of this method over other approaches might
be robustness in particularly complex models. We note that
informal experiments revealed very little difference in the
performance of this approach and the more generally ap-
plicable approach proposed below when both could be used.
When the marginal likelihood cannot readily be evaluated,
we recommend that the estimate is taken to be the first mo-
ment of the empirical distribution induced by the final par-
ticle ensemble; this may be justified by the asymptotic (in
the inverse temperature) normality of the target distribution
(see, for example, Robert and Casella 2004, p. 203) (al-
though there may be some difficulties in the case of non-
identifiable models for which more sophisticated techniques
would be required).

Under weak regularity assumptions (Hwang 1980), it is
possible to demonstrate that the sequence of distributions
which we employ concentrates itself upon the set �ML. Un-
der additional regularity assumptions, the estimates obtained
from the particle system converge to those which would
be obtained by performing integrals under the distributions
themselves—and obey a central limit theorem. The variance
of this central limit theorem can be quantitatively bounded
under strong regularity assumptions. All of this follows by a
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rather straightforward generalisation of the results in Chopin
(2004), Del Moral (2004); details are provided in Johansen
(2006, Sect. 4.2.2).

4 Applications

We now show comparative results for a simple toy exam-
ple and two more challenging models. We begin with a one
dimensional example in Sect. 4.1, followed by a Gaussian
mixture model in Sect. 4.2 and a non-linear non-Gaussian
state space model which is widely used in financial mod-
elling in Sect. 4.3.

For the purpose of comparing algorithms on an equal
footing, it is necessary to employ some measure of com-
putational complexity. We note that almost all of the com-
putational cost associated with all of the algorithms consid-
ered here comes from either sampling the latent variables or
determining their expectation. We introduce the quantity χ

defined as the total number of complete replicates of the la-
tent variable vector which needs to be simulated (in the case
of the SMC and SAME algorithms) or estimated (as in the
case of EM) in one complete run of an algorithm. Note that
in the case of SAME and the SMC algorithm, this figure de-
pends upon the annealing schedule in addition to the final
temperature and the number of particles in the SMC case.

In those examples in which the marginal likelihood can
be evaluated analytically, we present for each algorithm a
collection of summary statistics obtained from fifty runs.
These describe the variation of the likelihood of the esti-
mated parameter values. We remark that, although it is com-
mon practice to employ multiple, differently replicated ini-
tialisations of many algorithms, which would suggest that
the highest likelihood obtained by any run might be the im-
portant figure of merit other factors must also be considered.
In many of the more complex situations in which we en-
visage this algorithm being useful, the likelihood cannot be
evaluated and we will not have the luxury of employing this
approach. The mean, variance and range of likelihood esti-
mates in the simpler examples allow us to gauge the con-
sistency and robustness of the various algorithms which are
employed.

The following notation is used to describe various prob-
ability distributions: Di(α) the Dirichlet distribution with
parameter vector α, N (μ,σ 2) describes a normal of mean
μ and variance σ 2, Ga(α,β) a gamma distribution of shape
α and rate β , and IG(α,β) the inverse gamma distribution
associated with Ga(α,β).

4.1 Toy example

We consider first a toy example in one dimension for which
we borrow Example 1 of Gaetan and Yao (2003). The model
consists of a Student t-distribution of unknown location pa-

rameter θ with 0.05 degrees of freedom. Four observations
are available, y = (−20,1,2,3). The logarithm of the mar-
ginal likelihood in this instance is given by:

logp(y|θ) = −0.525
4∑

i=1

log(0.05 + (yi − θ)2),

which is not susceptible to analytic maximisation. However,
the global maximum is known to be located at 1.997, and
local maxima exist at {−19.993,1.086,2.906} as illustrated
in Fig. 1. We can complete this model by considering the
Student t-distribution as a scale-mixture of Gaussians and
associating a gamma-distributed latent precision parameter
Zi with each observation. The log likelihood is then:

logp(y, z|θ)

= −
4∑

i=1

[0.475 log zi + 0.025zi + 0.5zi(yi − θ)2].

In the interest of simplicity, we make use of a linear tem-
perature scale, γt = t , which takes only integer values. We
are able to evaluate the marginal likelihood function point-
wise, and can sample from the conditional distributions:

πt (z1:t |θ, y)

=
t∏

i=1

4∏
j=1

Ga

(
zi,j |0.525,0.025 + (yj − θ)2

2

)
, (7)

πt (θ |z1:t ) = N (θ |μ(θ)
t ,�

(θ)
t ), (8)

where the parameters,

�
(θ)
t =

[
t∑

i=1

4∑
j=1

zi,j

]−1

=
[

1/�
(θ)
t−1 +

4∑
j=1

zt,j

]−1

, (9)

μ
(θ)
t = �

(θ)
t

t∑
i=1

yT zi = �
(θ)
t (μ

(θ)
t−1/�

(θ)
t−1 + yT zt ), (10)

may be obtained recursively. Consequently, we can make
use of Algorithm 3.1 to solve this problem. We use an instru-
mental uniform [−50,50] prior distribution over θ . Some
simulation results are given in Table 1. The estimate is taken
to be the first moment of the empirical distribution induced
by the final particle ensemble.

This simple example confirms that the algorithm pro-
posed above is able to locate the global optimum, at least in
the case of extremely simple distributions. It also illustrates
that it is reasonably robust to the selection of the number of
particles and intermediate distributions. Generally, increas-
ing the total amount of computation leads to very slightly
more accurate localisation of the mode. Only a single simu-
lation failed to find the global optimum—one of those with
N = 20 and T = 30.
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Fig. 1 The log marginal
likelihood of the toy example of
Sect. 4.1

Table 1 Simulation results for
the toy problem. Each line
summarises 50 simulations with
N particles and final inverse
temperature T . Only one
simulation failed to find the
correct mode

N T Mean Std. Dev. Min Max

50 15 1.992 0.014 1.952 2.033

100 15 1.997 0.013 1.973 2.038

20 30 1.958 0.177 1.094 2.038

50 30 1.997 0.008 1.983 2.011

100 30 1.997 0.007 1.983 2.011

20 60 1.998 0.015 1.911 2.022

50 60 1.997 0.005 1.988 2.008

4.2 A finite Gaussian mixture model

To allow comparison with other techniques, and to illustrate
the strength of the method proposed here in avoiding local
maxima, we consider a finite Gaussian mixture model. A set
of observations {yi}Pi=1 is assumed to consist of P i.i.d. sam-
ples from a distribution of the form:

Yi ∼
S∑

s=1

ωsN (μs, σ
2
s ), (11)

where 0 < ωs < 1;
∑S

s=1 ωs = 1 are the weights of each
mixture component and {μs,σ

2
s }Ss=1 is the set of their means

and variances. As is usual with such mixtures, it is conve-
nient to introduce auxiliary allocation variables, Zi which
allow us to assign each observation to one of the mixture
components, then we may write the distribution in the form:

Yi |({ω,μs, σ
2
s },Zi = zi) ∼ N (μzi

, σ 2
zi
),

p(Zi = zi) = ωzi
.

It is both well known and somewhat obvious, that the
maximum likelihood estimate of all parameters of this
model is not well defined as the likelihood is not bounded.
However, the inclusion of prior distributions over the para-
meters has a bounding effect and makes MAP estimation
possible (Robert and Titterington 1998). We consequently
show the results of all algorithms adapted for MAP estima-
tion by inclusion of diffuse proper priors (see, for example
Robert and Casella 2004, p. 365), which are as follows:

ω ∼ Di(δ),

σ 2
i ∼ IG

(
λi + 3

2
,
βi

2

)
,

μi |σ 2
i ∼ N (αi, σ

2
i /λi),

with δ, λi and βi are hyperparameters, whose values are
given below.
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It is straightforward to adjust our Algorithm 3.1 to deal
with the MAP, rather than ML case. For this application it
is possible to sample from all of the necessary distributions,
and to evaluate the marginal posterior pointwise and so we
employ such an algorithm.

At iteration t of the algorithm, for each particle we sam-
ple the parameter estimates, conditioned upon the previous
values of the latent variables according to the conditional
distributions:

ω ∼ Di(γt (δ − 1) + 1 + n(	γt
) + γt
��n(�γt�)),

σ 2
i ∼ IG(Ai,Bi),

μi |σ 2
i ∼ N

(
γtλiαi + y(	γt
)i + γt

��y(�γt�)i
γtλi + n(	γt
)i + γt

��n(�γt�)i ,

σ 2
i

γtλi + n(	γt
)iγt
��n(�γt�)i

)
,

where we have defined the following quantities for conve-
nience:

n(i)j =
i∑

l=1

P∑
p=1

Ij (Zl,p),

�n(i)j = n(i)j − n(i − 1)j ,

y(i)j =
i∑

l=1

P∑
p=1

Ij (Zl,p)yj ,

�y(i)j = y(i)j − y((i − 1))j ,

y2(i)j =
i∑

l=1

P∑
p=1

Ij (Zl,p)y2
j ,

�y2(i)j = y2(i)j − y2(i − 1)j ,

and the parameters for the inverse gamma distribution from
which the variances are sampled from are:

Ai = γt (λi + 1) + n(	γt
)i + γt
��n(�γt�)i

2
+ 1,

Bi = 1

2

(
γt (βi + λiα

2
i ) + y2(	γt
)i + γt

��y2(�γt�)i

−
	γt 
∑
g=1

(�y(g)i + λiαi)
2

λi + �n(g)i
− γt

� (�y(�γt�)i + λiαi)
2

λi + �n(�γt�)i

)
.

Then we sample all of the allocation variables from
the appropriate distributions, noting that this is equivalent
to augmenting them with the new values and applying an
MCMC move to those persisting from earlier iteration.

As a final remark, we note that it would be possible to use
the proposed framework to infer the number of mixture com-

ponents, as well as their parameters—by employing Dirich-
let process mixtures, for example.

4.2.1 Simulated data

We present results first from data simulated according to
the model. 100 data were simulated from a distribution of
the form of (11), with parameters ω = [0.2,0.3,0.5], μ =
[0,2,3] and σ 2 = [1, 1

4 , 1
16 ]. The same simulated data set

was used for all runs, and the log posterior density of the
generating parameters was −155.87. Results for the SMC
algorithm are shown in Table 2 and for the other algorithms
in Table 3—two different initialisation strategies were used
for these algorithms, that described as “Prior” in which a
parameter set was sampled from the prior distributions, and
“Hull” in which the variances were set to unity, the mixture
weights to one third and the means were sampled uniformly
from the convex hull of the observations.

Two annealing schedules were used for the SAME algo-
rithm: one involved keeping the number of replicates of the
augmentation data fixed to one for the first half of the itera-
tions and then increasing linearly to a final maximum value
of 6; the other keeping it fixed to one for the first 250 it-
erations, and then increasing linearly to 50. The annealing
schedule for the SMC algorithm was of the form γt = Aebt

for suitable constants to make γ1 = 0.01 and γT = 6. This
is motivated by the intuition that when γ is small, the ef-
fect of increasing it by some amount �γ is to change its
form somewhat more than would be the case for a substan-
tially larger value of γ . No substantial changes were found
for values of γ greater than 6, presumably due to the sharply
peaked nature of the distribution. Varying the forms of the
annealing schedules did not appear to substantially affect the
results. Hyperparameter values were shared across all simu-
lations, with δ = 1, λi = 0.1, βi = 0.1 and αi = 0.

Several points are noticeable from these results:

• The SMC algorithm produce estimates whose posterior
density uniformly exceeded that of the generating para-
meters (and the SAME algorithm frequently produced
such estimates). Whilst this provides no guarantee that the
global optimum has been located it does provide some en-
couragement that the parameter estimates being obtained
are sensible.

• For a given computational cost, the SMC algorithm out-
performed SAME in the sense that both the mean and
maximum posterior is substantially increased.

• Whilst, as is well documented, the EM algorithm can per-
form well if favourably initialised, neither of the initialisa-
tion strategies which we employed led to a large number
of good performances. Furthermore, it can be seen that
taking the best result from 50 runs of the EM algorithm
lead to poorer performance than a single run of the SMC
algorithm with a lower cost:
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Table 2 Summary of the final
log posterior estimated by 50
runs of the SMC Algorithm on
simulated data from a finite
Gaussian mixture with varying
numbers of particles, N , and
intermediate distributions, T

N T χ Mean Std. Dev. Min Max

25 25 1325 −154.39 0.55 −155.76 −153.64

25 50 2125 −153.88 0.13 −154.18 −153.59

50 50 4250 −153.80 0.08 −153.93 −153.64

100 50 8500 −153.74 0.07 −153.91 −153.59

250 50 21250 −153.70 0.07 −153.90 −153.54

1000 50 85000 −153.64 0.04 −153.71 −153.57

100 100 20300 −153.73 0.08 −153.92 −153.61

Table 3 Performance of the
EM and SAME Algorithm on
simulated data from a finite
Gaussian mixture. Summary of
the log posterior of the final
estimates of 50 runs of each
algorithm

Algorithm Init. T χ Mean Std. Dev. Min Max

EM Prior 500 500 −169.79 8.50 −181.16 −160.70

EM Hull 500 500 −158.06 3.23 −166.39 −153.85

EM Prior 5000 5000 −168.24 8.41 −181.02 −153.83

EM Hull 5000 5000 −157.73 3.83 −165.81 −153.83

SAME(6) Prior 4250 8755 −155.45 0.82 −157.56 −154.06

SAME(6) Hull 4250 8755 −155.32 0.87 −157.35 −154.03

SAME(50) Prior 4250 112522 −154.91 0.81 −156.22 −153.94

SAME(50) Hull 4250 112522 −155.05 0.82 −156.11 −153.98

Table 4 Summary of the final
log posterior estimated by
50 runs of the SMC Algorithm
on the galaxy dataset of Roeder
(1990) from a finite Gaussian
mixture with varying numbers
of particles, N , and intermediate
distributions, T

N T χ Mean Std. Dev. Min Max

25 25 1325 −44.21 0.13 −44.60 −43.96

50 25 2650 −44.18 0.10 −44.48 −43.95

25 50 2125 −44.14 0.10 −44.32 −43.92

50 50 4250 −44.07 0.07 −44.22 −43.96

100 50 8500 −44.05 0.06 −44.18 −43.94

250 50 21250 −44.00 0.05 −44.10 −43.91

1000 50 85000 −43.96 0.03 −44.02 −43.92

100 100 20300 −44.03 0.05 −44.15 −43.94

Table 5 Performance of the
EM and SAME Algorithm on
the galaxy data of Roeder
(1990) from a finite Gaussian
mixture. Summary of the log
posterior of the final estimates
of 50 runs of each algorithm

Algorithm Init. T χ Mean Std. Dev. Min Max

EM Hull 500 500 −46.54 2.92 −54.12 −44.32

EM Hull 5000 5000 −46.91 3.00 −56.68 −44.34

SAME(6) Hull 4250 8755 −45.18 0.54 −46.61 −44.17

SAME(50) Hull 4250 112522 −44.93 0.21 −45.52 −44.47

– 50 runs of the EM algorithm with 500 iterations has

cost slightly higher than a single run of the SMC al-

gorithm with N = 250, T = 50 and the best result pro-

duced is significantly inferior to the poorest run seen in

the SMC case;

– 50 runs of the EM algorithm with 5000 iterations has a

cost more than 10 times that of the SMC algorithm with

N = 250, T = 50 and the best result produced is com-
parable to the worst result obtained in the SMC case.

This provides us with a degree of confidence in the al-
gorithms considered and their ability to perform well at the
level of computational cost employed here, and the next step
is to consider the performance of the various algorithms on
a real data set.
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Table 6 SMC sampler results
(mean ± standard deviation) for
simulated stochastic volatility
data with generating parameters
of δ = 0.95, α = −0.363 and
σ = 0.26

N T γT α δ σ

1,000 250 4 −0.45 ± 0.19 0.939 ± 0.026 0.36 ± 0.09

1,000 500 4 −0.59 ± 0.27 0.919 ± 0.037 0.43 ± 0.11

1,000 1,000 4 −0.21 ± 0.02 0.973 ± 0.003 0.25 ± 0.02

5,000 250 4 −0.33 ± 0.06 0.954 ± 0.008 0.31 ± 0.04

4.2.2 Galaxy data

We also applied these algorithms, with the same hyperpa-
rameters to the galaxy data of Roeder (1990). This data set
consists of the velocities of 82 galaxies, and it has been sug-
gested that it consists of a mixture of between 3 and 7 dis-
tinct components—for example, see Roeder and Wasserman
(1997) and Escobar and West (1995). For our purposes we
have estimated the parameters of a 3 component Gaussian
mixture model from which we assume the data was drawn.
Results for the SMC algorithm are shown in Table 4 and for
the other algorithms in Table 5.

We are able to draw broadly the same conclusions from
these results as we were from those obtained with simulated
data: the SMC algorithm performs more consistently than
the alternatives and provides better estimates at given com-
putational cost. It may be possible to fine tune all of the al-
gorithms consider to improve their performance (including
the SMC algorithm) but these results illustrate that a reason-
ably straightforward implementation of the SMC algorithm
is able to locate at least as good a solution as any of the
other algorithms considered here, and that it can do so con-
sistently.

4.3 Stochastic volatility

In order to provide an illustration of the application of the
proposed algorithm to a realistic optimisation problem in
which the marginal likelihood is not available, we take this
more complex example from Jacquier et al. (2007). We con-
sider the following model:

Zi = α + δZi−1 + σuui, Z1 ∼ N (μ0, σ
2
0 ),

Yi = exp

(
Zi

2

)
εi,

where ui and εi are uncorrelated standard normal random
variables, and θ = (α, δ, σu). The marginal likelihood of in-
terest, p(θ |y), where y = (y1, . . . , y500) is a vector of 500
observations, is available only as a high dimensional inte-
gral over the latent variables, Z, and this integral cannot be
computed.

In this case we are unable to use Algorithm 3.1, and em-
ploy a variant of Algorithm 3.3. The serial nature of the ob-
servation sequence suggests introducing blocks of the latent

variable at each time, rather than replicating the entire set
at each iteration. This is motivated by the same considera-
tions as the previously discussed sequence of distributions,
but makes use of the structure of this particular model. Thus,
at time t , given a set of M observations, we have a sample of
	Mγt
 volatilities, 	γt
 complete sets and 	M(γt − 	γt
)

which comprise a partial estimate of another replicate. That
is, we use target distributions of this form:

pt(α, δ, σ, zt ) ∝ p(α, δ, σ )

[	γt 
∏
i=1

p(y, zt,i |α, δ, σ )

]

× p
(
y1:M(γt−	γt 
), z

1:M(γt−	γt 
)
t,i |α, δ, σ

)
,

where z
1:M(γt−	γt 
)
t,i denotes the first 	M(γt − 	γt
)
 volatil-

ities of the ith replicate at iteration t .
Making use of diffuse conjugate prior distributions (uni-

form over the (−1,1) stability domain for δ, standard nor-
mal for α and inverse gamma with parameters α = 1, β =
0.1 for σ 2) for θ ensures that the prior distributions are
rapidly “forgotten”, leading to a maximum likelihood es-
timate. Our sampling strategy at each time is to sample
(α, δ) from their joint conditional distribution, then to sam-
ple σ from its conditional distribution. These distributions
are multivariate normal and inverse gamma, respectively.
Their parameters are given by Jacquier et al. (2007). New
volatilities were then sampled using a Kalman smoother
obtained by a local linearisation of the model as the pro-
posal distribution—an approach described in some detail in
Doucet et al. (2006).

4.3.1 Simulated data

We consider a sequence of 500 observations generated from
a stochastic volatility model with parameter values of δ =
0.95, α = −0.363 and σ 2 = 0.26 (suggested by Jacquier
et al. 2007 as being consistent with empirical estimates for
financial equity return time series). The parameters μ0 =
−7, σ0 = 1 were assumed known. Results are shown in Ta-
ble 6.

Note that a greater number of particles and intermediate
distributions are required in this case than were needed in the
previous examples for a number of reasons. Unavailability
of the likelihood makes the problem a little more difficult,
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but the principle complication is that it is now necessary to
integrate out 500 continuous-valued latent variables.

The intention of this example is to show how the algo-
rithm can be applied in more complex settings. The results
shown here do not provide rigorous evidence that the algo-
rithm is performing well, but heuristically that does appear
to be the case. Estimated parameter values are close to their
true values1 and the degree of dispersion is comparable to
that observed by Jacquier et al. (2007) at small values of
γ using data simulated with the same parameters. It can be
seen that the results obtained are reasonably robust to varia-
tion in the number of particles and intermediate distributions
which are utilised.

References

Amzal, B., Bois, F.Y., Parent, E., Robert, C.P.: Bayesian optimal de-
sign via interacting particle systems. J. Am. Stat. Assoc. 101(474),
773–785 (2006)

Chopin, N.: Central limit theorem for sequential Monte Carlo methods
and its applications to Bayesian inference. Ann. Stat. 32(6), 2385–
2411 (2004)

Del Moral, P.: Feynman-Kac Formulae: Genealogical and Interacting
Particle Systems with Applications. Probability and its Applica-
tions. Springer, New York (2004)

Del Moral, P., Doucet, A., Jasra, A.: Sequential Monte Carlo samplers.
J. R. Stat. Soc. B 63(3), 411–436 (2006)

Dempster, A.P., Laird, N.M., Rubin, D.B.: Maximum likelihood from
incomplete data via the EM Algorithm. J. R. Stat. Soc. B 39, 2–38
(1977)

Doucet, A., de Freitas, N., Gordon, N. (eds.): Sequential Monte Carlo
Methods in Practice. Statistics for Engineering and Information
Science. Springer, New York (2001)

Doucet, A., Godsill, S.J., Robert, C.P.: Marginal maximum a posteriori
estimation using Markov chain Monte Carlo. Stat. Comput. 12,
77–84 (2002)

Doucet, A., Briers, M., Sénécal, S.: Efficient block sampling strate-
gies for sequential Monte Carlo methods. J. Comput. Graph. Stat.
15(3), 693–711 (2006)

Escobar, M.D., West, M.: Bayesian density estimation and inference
using mixtures. J. Am. Stat. Assoc. 90(430), 577–588 (1995)

Gaetan, C., Yao, J.-F.: A multiple-imputation Metropolis version of the
EM algorithm. Biometrika 90(3), 643–654 (2003)

Hwang, C.-R.: Laplace’s method revisited: weak convergence of prob-
ability measures. Ann. Probab. 8(6), 1177–1182 (1980)

Jacquier, E., Johannes, M., Polson, N.: MCMC maximum likelihood
for latent state models. J. Econom. 137(2), 615–640 (2007)

Johansen, A.M.: Some non-standard sequential Monte Carlo methods
with applications, Ph.D. thesis. University of Cambridge, Depart-
ment of Engineering (2006)

Liu, J.S., Chen, R.: Sequential Monte Carlo methods for dynamic sys-
tems. J. Am. Stat. Assoc. 93(443), 1032–1044 (1998)

Müller, P., Sansó, B., de Iorio, M.: Optimum Bayesian design by
inhomogeneous Markov chain simulation. J. Am. Stat. Assoc.
99(467), 788–798 (2004)

Robert, C.P., Casella, G.: Monte Carlo Statistical Methods, 2nd edn.
Springer, New York (2004)

Robert, C.P., Titterington, D.M.: Reparameterization strategies for hid-
den Markov models and Bayesian approaches to maximum like-
lihood estimation. Stat. Comput. 8, 145–158 (1998)

Roeder, K.: Density estimation with cofidence sets exemplified by su-
perclusters and voids in galaxies. J. Am. Stat. Assoc. 85(411),
617–624 (1990)

Roeder, K., Wasserman, L.: Practical Bayesian density estimation us-
ing mixtures of normals. J. Am. Stat. Assoc. 92(439), 894–902
(1997)

1Of course, there is no guarantee that the maximum likelihood estimate
should correspond to the true parameter value in the case of a finite
sample, but with a reasonably large number of observations one might
expect a degree of similarity.


	Particle methods for maximum likelihood estimation in latent variable models
	Abstract
	Introduction
	Maximum likelihood estimation in latent variable models
	Algorithms

	SMC sampler algorithms
	Marginal likelihood available
	Marginal likelihood unavailable
	General comments

	Applications
	Toy example
	A finite Gaussian mixture model
	Simulated data
	Galaxy data

	Stochastic volatility
	Simulated data


	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 600
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU (Use these settings to create Adobe PDF documents for journal articles and eBooks for online presentation. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice


