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Abstract

Standard ensemble or particle filtering schemes do not properly repre-
sent states of low priori probability when the number of available samples
is too small, as is often the case in practical applications. We introduce
here a set of parametric resampling methods to solve this problem. Mo-
tivated by a general H-theorem for relative entropy, we construct para-
metric models for the filter distributions as maximum-entropy/minimum-
information models consistent with moments of the particle ensemble.
When the prior distributions are modeled as mixtures of Gaussians, our
method naturally generalizes the ensemble Kalman filter to systems with
highly non-Gaussian statistics. We apply the new particle filters pre-
sented here to two simple test cases: a one-dimensional diffusion process
in a double-well potential and the three-dimensional chaotic dynamical
system of Lorenz.
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1 Introduction

In many application areas a Markov chain model is appropriate but the process
is hidden and the only information available about it comes from a set of incom-
plete and imperfect measurements. This includes statistical signal processing,
econometrics, and data assimilation in the geosciences. In abstract terms, a
stochastic evolution equation produces successive transitions xt → xt+1, t ∈ N
between elements of the state space X . An observation equation gives the prob-
abilities of the measured values yt, t ∈ N in the space of possible outcomes
Y. From the statistical point of view, the most detailed estimate of the state
of the system up to time t is contained in the conditional probability density
P (x0, ...,xt|y1, ...,yt), given the observations up to that time. Such posterior
probabilities can be obtained from the prior distributions in the absence of ob-
servations by means of Bayes theorem. Particularly important in many appli-
cations, e.g. meteorological weather forecasting, is the estimation of the current
state of the system given the past observations, i.e. the probability density
P (xt|y1, ...,yt). To be useful, such an estimate must be obtained sequentially
or recursively in time, as new measurements become available. Obtaining such
probabilities in this way is known as the Bayesian filtering problem or optimal
filtering problem.

Ensemble or particle filtering methods are a set of efficient and flexible Monte
Carlo methods to solve the optimal filtering problem. These methods employ
a large number N of random samples or “particles,” advanced in time by the
stochastic evolution equation, to approximate the probability densities. A re-
sampling at measurement times both generates and destroys particles so as to
representatively populate the regions of state space with high posterior prob-
ability. Such schemes were first proposed by Ulam and Von Neumann (37),
but computing resources available at the time did not lend to their widespread
use. However, following the seminal paper of Gordon, Salmon and Smith (15),
particle filtering methods have attracted strong general interest. Several recent
books (19; 6) and review articles (4) testify to their growing popularity and
increasing range of applications. The methods possess several advantages that
account for this surge of interest. First, they are straightforward to apply, since
they require only the computation of a large number of solutions of the evolution
equation of the problem. Second, they can easily be applied when the dynamics
are nonlinear and the statistics highly non-Gaussian. Finally, the approxima-
tions that are yielded for the system statistics have been proved to converge to
the optimal filter results in the limit as N → ∞ and the convergence rate is
independent of the dimension of the state space; see (25; 28) or (4) for a review.

However, there are certain important application areas where the number
of samples N that are practically available is very restricted, due to the high
dimensionality of the state space X . For example, in fields such as oceanogra-
phy and climatology the computational cost of solving the evolution equation (a
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General Circulation Model, or GCM) is so high that only as many as N = 100
samples may be computed over time-intervals of interest. Nevertheless there
is great interest in making proper estimates of the state of such systems given
observational data (14). With so few samples Monte Carlo error estimates are
very large and the performance of ensemble/particle methods that are theoret-
ically convergent may in practice be quite poor. A typical failure that occurs
when the number of particles is small is that these methods neglect to sample
states properly —e.g. states that are very improbable before measurements but
very probable after them—because there are no particles present to represent
them. In any problem where the number N of samples is so restricted it is clear
that one must use some prior knowledge about the statistics of the system in
order to choose most judiciously the members of the small ensemble.

One way to solve these difficulties with small sample-size is to use paramet-
ric models to represent the state probabilities. Events of small probability are
always represented in such models and, if the model is carefully constructed,
at realistic levels. An example of a particle filtering scheme that uses such
an approach is the Ensemble Kalman Filter (EnKF), which was proposed by
Evensen(8; 9). As in all Kalman filtering schemes, it implements Bayes theorem
using a Gaussian probability density to model the system statistics prior to mea-
surements. It can be expected to work better than convergent particle filtering
schemes in certain cases where the number N of samples is small, because the
Gaussian model exhibits all states with a certain finite probability, even those
far from the mean. This superior performance will be exhibited in some con-
crete examples presented below. On the other hand, this method does not yield
the optimal estimates in the limit N → ∞, unless the state variables are nor-
mally distributed. Therefore, there is motivation to generalize this approach in
order to better predict large-scale nonlinear systems with highly non-Gaussian
statistics. In this paper, we shall explore such particle filtering schemes, using
non-Gaussian parametric models for the purpose of Bayesian updating and re-
sampling. In particular, the simplest generalization of the Ensemble Kalman
Filter will be considered, which models prior distributions by mixture models of
weighted sums of Gaussians (24). EnKF can be recovered in the special case
of a single Gaussian component. Mixture models are a very natural device to
accommodate multimodal and skewed distributions, with a modest additional
cost in computation compared with EnKF.

Another very important element of our approach is the use of a maximum
entropy characterization to select the weights, means, and covariances of the
Gaussian components of the mixture. In a certain sense, this scheme provides
“minimal models” consistent with the information contained in the particle en-
semble. The maximum entropy characterization yields a practical optimization
algorithm to determine parameters of the model density given moments of the
ensemble. In recognition of the important role of this characterization in our
proposed new filtering method, we shall refer to the method as the Maximum
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Entropy Filter (MEF). Furthermore, entropy plays other constructive roles in
our approach. A maximum-entropy estimate of the post-measurement state
provides a simplified “mean-field” approximation to the Bayesian update. This
estimate is substantially cheaper to calculate than the full Bayesian estimate
and may be a practical alternative when computational requirements for the
latter exceed available resources. The entropy itself also serves as a useful mea-
sure of the information content of the observations and its rate of degradation
over time (3; 20). The entropy is therefore a potentially very useful side-product
of our choice of maximum-entropy distributions as parametric models. A pre-
liminary discussion of this method applied to a particular model system has
already appeared (18).

A brief outline of the contents of the present paper is as follows: In Sec-
tion 2 we discuss the filtering problem in a general state-space model and its
recursive solution. In Section 3 we introduce our new entropy-based particle
filters. First we discuss the construction of models for prior distributions in the
absence of measurements, using Gaussian mixture models (3.1). Then we dis-
cuss the maximum-entropy estimation of probability densities with respect to a
chosen reference density (3.2). On the basis of these results, we then elaborate
our approach to particle filtering by resampling from maximum-entropy distri-
butions (3.3). A simplified mean-field approach is also introduced to update
distributions at measurements, based on a maximum-entropy criterion (3.4).
In Section 4 we present results of numerical experiments with these methods
applied to a diffusion process in a double-well potential (4.1) and to the chaotic
3-dimensional dynamical system of Lorenz (4.2). Our summary and conclusions
are given in Section 5. Finally, in Appendices, we briefly review some standard
ensemble/particle filters (Appendix A), and then we present important thermo-
dynamical relations and functions for our maximum-entropy models (Appendix
B), strategies for a efficient sampling from the models (Appendix C), and a
comparison of the computational costs of the various particle filters considered
(Appendix D).

2 The Filtering Problem

In this section we shall describe the optimal filtering problem in more technical
detail. We first discuss the general state space model set-up of the problem (see
(19; 6)). Let xt ∈ X and yt ∈ Y for t ∈ N be two vector-valued stochastic pro-
cesses, usually called the signal process and the observation process, respectively.
In most of the applications of interest, the states spaces of these processes may
be taken to be X = Rp and Y = Rq, and it can generally be assumed that
q < p. The signal process is a Markov process with initial distribution P0(dx0)
and transition probability Pt+1|t(dxt+1|xt). We shall usually assume that these
probability measures have densities P0(x0) and Pt+1|t(xt+1|xt) with respect to
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Lebesgue measure (at least in a generalized sense). A good example to keep in
mind is the solution xt of the following type of stochastic map

xt+1 = ft(xt,ηt), t = 0, 1, ..., T (1)

where ηt ∈ Rr is a random noise vector with known distribution Πt(dηt) and
ft : Rp × Rr → Rp. Thus,

Pt+1|t(xt+1|xt) =
∫

Πt(dηt)δ
p(xt+1 − ft(xt,ηt)). (2)

A special case of (1) of great practical importance is that when the equation is
deterministic, i.e. the distribution Πt(dηt) is a delta-measure and ηt appears
in (1) as a (non-random) parameter. As for the measurement process yt, it
is assumed to be conditionally independent of the signal process and to have
marginal distribution Gt(yt ∈ A|xt) =

∫
A
dqyt Gt(yt|xt). A simple example is

provided by the following measurement model

yt = ht(xt) + εt, t = 1, ..., T (3)

where ht : Rp → Rq are measured functions of the state variable and εt ∈ Rq

are random observation errors, mutually independent and independent of the
signal process, with probability density Rt(εt). In that case,

Gt(yt|xt) = Rt(yt − ht(xt)). (4)

This framework includes the case that measurements are made only at a subset
of times TM = {tm, m = 1, ...,M} (or at no times at all) by taking εt at all
other times t 6∈ TM to be normal with variance tending to infinity.

The optimal filtering problem is to obtain the set of conditional probability
densities P (xt|y1, ...,yt). These may be obtained by a standard recursive appli-
cation of Bayes’ Theorem. To state the algorithm, we introduce the following
notation for the filter densities before and after measurements:

P (x, t−) = P (xt = x|y1, ...,yt−1), P (x, t+) = P (xt = x|y1, ...,yt).
We also use the convention that P (x, 0+) = P0(x). Then the sequential filtering
algorithm can be implemented through a two-step procedure:

(1) Prediction: Advancing the probability density between measurements by
means of the forward Kolmogorov equation,

P (x, t−) =

∫
dpx′ Pt|t−1(x|x′)P (x′, t− 1+), (5)

(2) Updating: Conditioning upon measurements by means of Bayes’ rule,

P (x, t+) =
1

Nt
Gt(yt|x)P (x, t−), (6)
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where Nt is a normalization factor and t = 1, ..., T .
This simple recursive solution to the optimal filtering problem is the basis

of most numerical techniques to approximate the filter densities.
We recall that a useful side-product of this standard filter algorithm is

the likelihood function G1:T (y1,y2, ...,yT ) of the observations, or the prob-
ability density for this sequence of observations to occur. The normaliza-
tion factors in Bayes rule (6) are just the conditional probability densities
Nt = Gt(yt|y1, ...,yt−1) which, taken together, yield

G1:T (y1,y2, ...,yT ) =
T∏

t=1

Nt (7)

This is called the innovation form of the likelihood function (19).

3 Entropy-Based Particle Filtering Schemes

We shall now introduce our new ensemble/particle method for approximating
filter probability densities. Our aim is to generalize the Ensemble Kalman Filter
method (Appendix A) to achieve better performance when statistics are highly
non-normal. The key idea of the Bayes update in our approach is to use the
particle information prior to the measurement to determine a non-Gaussian
parametric model of the distribution. Bayes rule is then applied to this model,
altering the probabilities of the various states. Finally, new samples are drawn
from the model with the updated parameters to create a particle ensemble that
is evolved forward to the next measurement time.

3.1 Mixture Models for Priors

The first step in our construction of an appropriate parametric model is to de-
velop a representation for the prior distribution of the stochastic process in the
absence of any measurements. We shall denote by Q(x, t) this a priori distribu-
tion. Its importance is due to the fact that, at long times between measurements
and for sufficiently mixing Markov processes, the posterior distribution P (x, t)
is expected to relax back to this prior. That is, the memory of information
gained from observations is expected to fade between measurements. In gen-
eral, the prior distribution Q(x, t) is just the evolution of the initial distribution
P0(x) under the forward Kolmogorov equation. If the initial distribution is the
invariant distribution P∗(x), then the Markov signal process is stationary and
Q(x, t) = P∗(x) for all times t.

Within our general scheme, various approaches may be followed for modeling
the prior distribution Q(x, t). We shall consider here only one possibility, the
use of mixture models. In this approach, the model of the prior distribution is
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taken to be a convex combination of a finite number of normal distributions. In
other words, the model density is of the form

QM (x, t) =

M∑

m=1

wm(t)N(x;µm(t),Cm(t)) (8)

where N(x;µ,C) is the multivariate normal density with mean µ and covariance
matrix C. The positive integer M is called the mixture complexity. See (24)
for a comprehensive, current introduction to the literature. Methodologies for
consistent estimation of a mixing distribution are discussed e.g. in (17) and its
references. We obtain the weights and components in the mixtures for our nu-
merical examples, discussed later, by conditional averaging of a large ensemble
of realizations of the signal process solving (1), for carefully chosen conditions
that characterize the components. Thus, the components of the mixture model
represent different “regimes” of the system. A mixture model density can be
constructed to converge to the density of the true prior distribution by increas-
ing the mixture complexity M . Methods to estimate mixture complexity are
discussed in more detail in (24; 29; 30).

There are a number of practical advantages of mixture models for our pur-
poses. One of these is that they are relatively easy to sample, by simply selecting
among the M components with probabilities wm, m = 1, ...,M and then sam-
pling from the normal distribution N(µm,Cm) for the selected m. When the
dimension of the state space is small enough, simple standard methods may
also be used for constructing realizations of random vectors x chosen from the
distribution N(µm,Cm). For example, one may take

x = µm + Sm · ξ (9)

where ξ is a normal random p-vector with mean 0 and covariance matrix I,
and Sm is a matrix square root of the symmetric, positive-definite covariance
matrix Cm, satisfying Cm = SmS

>
m. Computable examples of square roots

include the lower-triangular Cholesky factor Lm and the square root obtained

by spectral analysis as Qm = OmD
1/2
m , where Dm = diag(γ1m, ..., γpm) is the

diagonal matrix of eigenvalues of Cm and Om = [ê1m, ..., êpm] is the orthogonal
matrix whose columns are the orthonormal set of eigenvectors. In that case,

x = µm +

p∑

a=1

ξa
√

γam ê
a
m, (10)

where ξa, a = 1, ..., p are i.i.d. normal random variables with mean 0 and
variance 1. Note that the eigenvectors are just the modes of the “principal
orthogonal decomposition” (POD) of the state space Rp or the “empirical or-
thogonal functions” (EOF’s) corresponding to the covariance Cm and (10) is the
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Karhunen-Loève (K-L) representation of Gaussian random vector x; see (22).
In addition to the ease in sampling, mixture models possess other advantages,
which appear in the next subsection.

3.2 Maximum-Entropy Distributions

We now consider the problem of modeling the filter or posterior density P (x, t),
given a model of the prior distribution Q(x, t). Needless to say, the effect in
P (x, t) of conditioning upon observations taken before time t will make it un-
equal to Q(x, t). However, at long times between measurements P (x, t) is ex-
pected to converge back toward its prior Q(x, t). A measure of this is the relative
entropy or Kullback-Leibler distance, defined as

H(P (t)|Q(t)) =

∫
dx P (x, t) ln

(
P (x, t)

Q(x, t)

)
. (11)

It is known that for an ergodic, Markov process this quantity is a Lyapunov
function, that is, a nonnegative, convex function of P (t) which is non-increasing
in time and which vanishes only when P (t) = Q(t) ; see (33; 32) and (3), section
2.9. When the process is non-deterministic—e.g. a non-degenerate diffusion—
then the relative entropy is monotonically decreasing in time. Therefore, to
represent the posterior distribution we would like to choose a model such that
this “distance” of P (x, t) from Q(x, t) is as small as possible, consistent with the
results of earlier measurements. At the current time t, new measurements of a
function ht(x) will be taken. We denote as P (x, t−) the filter distribution just
before those measurements. The moments in that distribution of the measured
variable,

ηt− = 〈ht〉t− , Ht− = 〈hth>t 〉t− , (12)

represent the measurement forecast at the time t, both the mean ηt− and the
covariance matrix CH

t− = Ht− − ηt−η
>
t− . Any reasonable model for P (x, t−)

should be consistent at least with these measurement forecasts. One could
demand consistency with still further moment constraints, for example, the first
and second moments µt− = 〈x〉t− , Mt− = 〈xx>〉t− of the state vector x itself.
These represent the state forecast, both its mean µt− and covariance Ct− =
Mt−−µt−µ>t− , and are also a very natural set of constraints. However, it would
entail prohibitive computational costs to enforce those when the dimension p of
the state space is very large.

We therefore take as our model the maximum-entropy (or, equivalently,
minimum-information) distribution consistent with the measurement forecast.
More precisely, we model P (x, t−) with the probability density which minimizes
(11) with the moments (12) as constraints. Introducing as Lagrange multipli-
ers a q-vector λ and a q × q symmetric matrix Λ, one easily finds that the
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maximum-entropy density belongs to an exponential family:

P (x, t;λ,Λ) =
exp[λ·ht(x) +

1
2Λ:ht(x)h

>
t (x)]

Zt(λ,Λ)
Q(x, t). (13)

Note that Zt(λ,Λ) is a normalization factor to ensure that (13) integrates to
unity. One can use this factor to define the convex, cumulant-generating func-
tion Ft(λ,Λ) = logZt(λ,Λ). Then the moments (η,H) in (12) are obtained by
taking derivatives, as follows:

ηi =
∂Ft
∂λi

(λ,Λ), Hij =
∂Ft
∂Λij

(λ,Λ), i 6= j,
1

2
Hii =

∂Ft
∂Λii

(λ,Λ), i = j (14)

In turn, the parameters (λ,Λ) corresponding to given (η,H) are uniquely de-
termined as the optimizers in the Legendre transform

Ht(η,H) = sup
λ,Λ
{η·λ+

1

2
H:Λ− Ft(λ,Λ)} (15)

which gives the relative entropy for the model density (13). Numerically, this
optimization may be carried out by efficient algorithms due to the convexity
of the function Ft. In our work below, we shall employ the conjugate gradient

(CG) algorithm in the space of q(q+3)
2 variables (λ,Λ). Note that the number of

variables only depends on the dimension q of the measured vector and not on
the dimension p of the state vector, so that computational cost is considerably
reduced when q ¿ p. The maximum-entropy approximation could in princi-
ple be systematized by considering sequences of moment-constraints involving
polynomials xii , xi1xi2 , ..., xi1 · · ·xin of increasing degree n. In certain cases this
sequence of maximum-entropy approximations to the probability density has
been proved to converge to the true density as n→∞ (e.g. (12)). Convergence
may hold more generally, but constructing the nth approximant in the sequence
involves the determination of O(pn) parameters and this will be prohibitively
difficult when pÀ 1.

Particular simplifications in the maximum-entropy formalism occur when the
model prior density QM (x, t) is a mixture of Gaussians, as in (8), and when the
measured quantities ht(x) in (3) are affine functions of x, i.e. ht(x) = Htx+dt
for each time t = 1, ..., T, as in EnKF. In that case, as shown in Appendix B,
, the cumulant-generating function Ft(λ,Λ) = logZt(λ,Λ) can be calculated
explicitly. The domain of this convex function, dom(Ft), has a non-empty com-
plement, at points where the matrix Λ is too large, and the values of Ft rise to
infinity approaching the boundary of the domain from the interior. Therefore,
algorithms to carry out the optimization in (15) must ensure that iterates stay
within the feasible region dom(Ft). As shown in Appendix B, inside the do-
main it is possible to calculate exactly the gradients of Ft in (14), which can be
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used in minimization by descent algorithms. In our experiments below, we shall
use the CG algorithm with a feasible Armijo line-search, so that the iterates
never go outside of dom(Ft) (27). The calculation of Ft(λ,Λ) and its gradi-
ents contains an efficient check of feasibility of the current trial vector (λ,Λ),
since model realizability can fail if and only if Cholesky factors employed in the
calculation fail to exist. See Appendix B.

Another advantage of the mixture model in (8) when the measurement func-
tion is affine is that the maximum-entropy densities (13) are also mixture mod-
els:

PM (x, t;λ,Λ) =

M∑

m=1

wm(t;λ,Λ)N(x;µm(t;λ,Λ),Cm(t;Λ)), (16)

where wm(t;λ,Λ), µm(t;λ,Λ) and Cm(t;Λ) are modified weights, means and
covariance matrices, respectively, calculated explicitly in Appendix B.

3.3 The Maximum Entropy Filter

We can now outline the basic steps in the Maximum Entropy Filter (MEF)
method. Between measurements, the particles x(n)(t), n = 1, ..., N evolve in-
dependently under (1), just as in the standard particle methods discussed in
Appendix A.The main difference with those methods consists in how Bayes the-
orem is applied at measurement times. We shall assume that the measurement
error εt in (3) is an N(0,Rt) random q-vector, i.e. normal with mean 0 and
covariance matrix Rt. This is the situation most frequently encountered in prac-
tice. There are then three main steps in the practical implementation of Bayes
theorem in the MEF method:

(i) Matching: The moments ηt− ,Ht− in (12) are determined by averaging

over the N -particle ensemble x
(n)
t− , n = 1, ..., N. A maximum-entropy den-

sity (13) is matched to these forecast statistics, with fitting parameters
(λt− ,Λt−) determined from the optimization in (15).

(ii) Updating: Bayes theorem is now applied, which, for normal error statis-
tics, yields another maximum-entropy distribution (13) with parameters
(λt+ ,Λt+) given by

λt+ = λt− +R−1t yt, Λt+ = Λt− −R−1t , (17)

if yt is the outcome of the measurement at time t.

(iii) Resampling: A new N -sample ensemble x
(n)
t+ , n = 1, ..., N is created,

by sampling from the model posterior P (x, t+), the maximum-entropy
distribution (13) with updated parameters (λt+ ,Λt+).
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When the prior distribution is represented by a mixture model QM (x, t) and the
measurement function is affine, then the matching step (i) can be carried out by
a feasible CG method, as discussed earlier. The resampling step (iii) can also be
carried out efficiently using the mixture representation (16), at least when the
dimension p of the state space is not too large. For resampling methods in case
p À 1, see Appendix C. Note that if the model prior distribution QM (x, t)
consists of a single Gaussian component and if the model posterior distribution
PM (x, t) is a maximum-entropy distribution constrained by the full state statis-
tics, µt− = 〈x〉t− , Mt− = 〈xx>〉t− , of second order, then the MEF method is
equivalent to the Ensemble Kalman Filter (EnKF) (9; 38; 2) (also, Appendix
A). Thus, our MEF method can be considered a natural generalization of EnKF
to problems with highly non-Gaussian statistics. Note that the algorithm yields
also a simple formula for the likelihood function, or rather, for the log-likelihood
L1:T in the innovation form L1:T = logG1:T =

∑T
t=1 logNt. In fact, it is easy

using (13) to calculate the normalization Nt as

logNt = ∆Ft −
1

2
y>t R

−1
t yt −

1

2
log[(2π)qDetRt], (18)

where
∆Ft = Ft(λt+ ,Λt+)− Ft(λt− ,Λt−)

is the jump in the function value of Ft during the measurement at time t.

3.4 A Mean-Field Filter

In certain applications—e.g. meteorological weather forecasting—the dimen-
sion of the measured vector is itself very large, q À 1. In such cases, the MEF

method as discussed above may not be practical. The optimization over q(q+3)
2

variables in the matching step (i) of MEF has computational cost O(Mq3),
growing rapidly with q (see Appendix D). Even EnKF requires O(p2q) mul-
tiplications in order to compute the Kalman gain matrix, and this will also
not be practical when p À q À 1. To deal with such cases, we can formulate
an alternative maximum-entropy procedure in which the optimization is over
only q variables. In this approach, we still apply Bayes’ rule, but in a more
approximate manner, to averages over the N particles. Therefore, we call this
alternative procedure the MEF method with a “mean-field update,” or, more
simply, the Mean-Field Filter (MFF). Both the matching step (i) and the update
step (ii) are now changed, as follows:

Matching: We now take as our model of P (x, t−), the filter density before
the measurement, a maximum-entropy distribution with only the first moments
in equation (12), i.e. ηt− = 〈ht〉t− , as constraints. This density is a member
of the exponential family

P (x, t;λ) =
1

Zt(λ)
exp[λ · ht(x)] ·Q(x, t) (19)
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with Zt(λ) the normalization factor. The q-vector λ is a Lagrange multiplier
whose value λt− is that yielding the supremum in

Ht(η) = sup
λ
{η · λ− Ft(λ)} (20)

for η = ηt− . Note that Ft(λ) = logZt(λ), similar to the definition earlier.
Updating: The update of ηt− to ηt+ is obtained from the optimization

ηt+ = arginf
η

{
Ht(η|ηt−) +

1

2
[η − yt]>R−1t [η − yt]

}

(21)

where
Ht(η|ηt−) = Ht(η)−Ht(ηt−)− (η − ηt−)·λt− . (22)

The latter is a positive, convex function whose minimum value (zero) is obtained
at the unique point η = ηt− . Thus, the update ηt+ is a compromise between
the minimizers ηt− and yt of the first and second terms in (21).

Resampling: This step is essentially the same as before. Once the value λt+
is determined corresponding to ηt+ , then the maximum-entropy distribution
(19) for λ = λt+ can be sampled using its representation by a mixture model
[equation (16) with Λ set to zero].

The meaning of the new update procedure is best seen from the significance
of the entropy function (22) in large deviations theory (7). If N independent

samples x
(n)
t− , n = 1, ..., N are drawn from the model distribution P (x, t;λt−),

the large-deviations result is, roughly speaking, that

Prob

{
1

N

N∑

n=1

ht(x
(n)
t− ) ≈ η

}
∼ exp[−N ·Ht(η|ηt−)] (23)

as N →∞, with Ht(η|ηt−) as in (22). We can also take an i.i.d. set {ε(n)t , n =
1, ..., N} of N(0,Rt) random variables, representing observation errors, and

define the ensemble of measured values y
(n)
t = ht(x

(n)
t− ) + ε

(n)
t , n = 1, ..., N.

Then a large deviations result holds also for the joint probability as N →∞

Prob

{
1

N

N∑

n=1

ht(x
(n)
t− ) ≈ η,

1

N

N∑

n=1

y
(n)
t ≈ y

}
∼ exp[−N ·Ht(η,y|ηt−)] (24)

where the joint-entropy Ht(η,y|ηt−) is the function in curly brackets in (21).
It follows that the value ηt+ defined in (21) is the most probable value of
1
N

∑N
n=1 ht(x

(n)
t− ) for the ensemble conditioned upon 1

N

∑N
n=1 y

(n)
t = y, in the

limit as N → ∞. This is still an application of Bayes’ rule, but with the
above “mean-field condition” on the sum rather than the correct condition that
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y
(n)
t = y for all n = 1, ..., N. There is expected to be not much difference between

the mean-field condition and the exact condition when the N -sample average
takes on the value y if and only if every term in the sum is approximately equal
to the same value y. For more discussion of this mean-field approximation, see
(10).

There is also a natural mean-field analogue of the log-likelihood. It follows
directly from (24) by a steepest descent result (contraction principle) that

Prob

{
1

N

N∑

n=1

y
(n)
t ≈ y

}
∼ exp[−N ·H Y

t (y|ηt−)]

(25)

as N →∞, where

H Y
t (y|ηt−) = min

η
Ht(η,y|ηt−) = min

η

{
Ht(η|ηt−) +

1

2
[η − y]>R−1t [η − y]

}

which is the same minimization as in the mean-field update (21). From (25) it
is reasonable to define

lnNt = −H Y
t (yt|ηt−) (26)

as the mean-field analogue of the log-innovation. Notice that this quantity is
always non-positive, is concave in yt, and = 0 if and only yt = ηt−. If the
dynamics is linear and all statistics are normal, then (26) becomes lnNt =
−[yt−ηt−]>(CY

t−)
−1[yt−ηt−]/2 with CY

t− = CH
t−+Rt. This is the exact result

up to constant terms independent of yt (cf. equation (35) below). Because the
large-deviations result (25) has only logarithmic accuracy, one should expect to
miss such constant terms. This does not detract necessarily from the utility of
(26) to make maximum-likelihood estimates of parameters for distinct sequences
y1,y2, ...,yT of observations.

In a practical implementation of the MFF method, one can avoid the cal-
culation of ηt+ in (21). Instead, one can calculate λt+ , H Y

t (yt|ηt−) directly by
combining (20) and (21) into a single optimization:

λt+ =

{
arginf
λ

ηt(λ) · (λ− λt−)− Ft(λ) + Ft(λt−)

+
[ηt(λ)− yt]>R−1t [ηt(λ)− yt]

2

}
(27)

with also

H Y
t (yt|ηt−) =

{
inf
λ

ηt(λ) · (λ− λt−)− Ft(λ)

+Ft(λt−) +
[ηt(λ)− yt]>R−1t [ηt(λ)− yt]

2

}
(28)
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where ηt(λ) = ∂Ft
∂λ

(λ). To carry out the optimization in (27) by a descent

algorithm, one must be able to calculate Ft(λ),
∂Ft
∂λ

(λ), and ∂2Ft
∂λ∂λ

(λ). In the

case that the model QM (x, t) is a finite mixture, these results are given in
Appendix B. Although it is necessary in the optimization to use the second-
derivative matrix of Ft, which is a q × q matrix, notice that all that is really
needed is the contribution to the λ-gradient of the function inside the brackets
in equation (27):

∂2Ft
∂λ∂λ

(λ)
{
λ− λt− +R−1t [ηt(λ)− yt]

}
. (29)

Hence, a descent algorithm may be coded so that storage requirements are only
O(q) and not O(q2). It is important to take advantage of such memory-savings
in order to make the algorithm practical when q is very large.

4 Numerical Experiments

In this section we shall test the previously discussed particle filtering schemes in
application to two simple dynamic models with highly non-Gaussian statistics.
The first model is a nonlinear stochastic diffusion process in a double-well po-
tential and the second is the 3-variable chaotic dynamical system of Lorenz(23).
These low-dimensional models have been chosen as test cases so that optimal
results from convergent filtering schemes are available for comparison with our
approximate (suboptimal) filtering methods. One of these optimal schemes is a
standard convergent particle method, which we call the Weight Resampling Fil-
ter (WRF), that is reviewed in Appendix A. We shall also compare the results
of our new filters with a standard suboptimal method, the Ensemble Kalman
Filter (EnKF), also reviewed in Appendix A.

4.1 Double-Well Diffusion

Our first experiments will be for a 1-variable diffusion process which is given as
the solution of the (Ito) stochastic differential equation with κ > 0

dx = f(x)dt+ κdW (t), (30)

where W (t) is the Wiener process and f(x) = 4x−4x3. We call this the double-
well (DW) diffusion model. The invariant measure of this random process has

probability density P∗(x) ∝ exp(− 2U(x)κ2 ) where the potential U(x) = −2x2+x4.
This density is bimodal and, in particular, non-Gaussian. The time series of the
process is characterized by random switches between the two “wells” of the
potential with minima located at x = ±1. An important issue in estimating this
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process is whether a given method can succeed in tracking a succession of such
transitions.

We shall perform so-called “identical twin” experiments on this system with
artificial measurements of the state x(t) itself taken at a discrete sampling in-
terval ∆T from a single realization of the process, which represents “reality”.
Observational errors will be simulated by adding to each of the sampled values
an independent random variable from a normal distribution with mean 0 and
variance R. We shall then make an estimate of the process conditioned upon
those measurements, using the various particle filtering methods. The algo-
rithms that we discussed in the previous sections were for discrete stochastic
maps with measurements taken at each time step. These apply to the above
stochastic differential equation when it is discretized for numerical integration.
We use the simple Euler-Maruyama scheme (21)

x(tk+1) = x(tk) + f(x(tk))∆t+ κNk

√
∆t,

tk+1 = tk +∆t (31)

with ∆t = 0.01, where Nk is a sequence of i.i.d. standard normal random
variables. When tk is an integer multiple of ∆T, then we take a measurement
with variance R, and otherwise we take no measurement or, equivalently, a
measurement with infinite variance. We shall test our various particle filtering
schemes in the experiments below against a convergent optimal filtering scheme
using a numerical discretization of the Fokker-Planck equation to evolve the
system statistics. For more details, see (10).

In order to apply the MEF method, we must construct a model for the
prior Q(x, t). Here we shall assume that the initial condition x0 is drawn from
the invariant measure P∗(x), so that the prior is time-independent and Q(x) =
P∗(x). Although we know the invariant measure exactly for this simple model, in
order to illustrate the MEF method we need to construct a model by a mixture
of Gaussians. Because of the bimodality of the invariant measure, we use a
mixture QM (x) of complexity M = 2. To construct the weights, means, and
variances of the components, we compute a single realization for a long time and
gather probabilities for the complementary events {sign(x) = ±1}, and means
and variances conditioned on these two events. Then we take w± to be the
probabilities, and µ±, C± to be the conditional means and variances. In practice,
we symmetrize the numerical results so that w− = w+ = 0.5, µ− = −µ+, and
C− = C+. Our mixture model is then

QM (x) = w−N(x;µ−, C−) + w+N(x;µ+, C+). (32)

By construction, (32) has the same mean and variance of x as does the exact
invariant measure. For the noise strength κ = 0.4 the densities of the invariant
measure and the mixture model with µ+ = 0.98, C+ = 0.011 are plotted in
Fig. 1. Clearly, the mixture model (32) is a quite good approximation in this
example.
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4.1.1 Experiment A:

Our first estimation experiment is for model (30) with this value, κ = 0.4.
The “true” sample path was chosen to start in the positive well at x = +1. A
realization starting in one well remains there an amount of time on average τ
which can be estimated from a weak-noise asymptotics, the Kramer formula:

τ ∼ 2π√
U ′′(1)|U ′′(0)|

exp

(
2∆U

κ2

)
, ∆U = U(0)− U(1), (33)

valid as κ → 0 (31; 16). For our choice of parameters in this experiment,
τ ≈ 3×105. On the other hand, when transitions occur, they require only about
5 ∼ 6 time units to complete. Hence, the dynamics of this system consists of
long periods of random diffusion about the bottom of a “well” interspersed with
relatively rapid transitions, occupying a fraction of only about 10−4 of the total
time. In our study we follow just the first such transition for a time-interval of
20 units around the point where the solution x(t) passes through the unstable
equilibrium at x = 0. On that interval we take seven measurements of the state
x(t) separated in time by ∆T = 2 and contaminated with normal random errors
of variance R = 0.04.

In this concrete setting, let us remind the reader of the specific steps that
are taken in our new entropy-based filters.

We first consider MEF. At each of the seven measurement times t, we must
choose a maximum-entropy distribution (13) to match the current particle en-
semble {xn(t−) : n = 1, ..., N} in the moments ηt− = 〈x(t−)〉, Ht− = 〈x2(t−)〉
of the measured variable ht(x) = x. The matching is accomplished by carrying
out the minimization in (15). The “free-energy” function Ft(λ,Λ) that appears
there is now a function of just two real variables and this function and its deriva-
tives are calculated from the formulas (68),(70),(71), (72) in Appendix B. Since
the domain of the convex function Ft has a non-empty complement, we use a con-
jugate gradient scheme with a feasible Armijo line-search for the minimization in
(15). This yields the parameters λt− ,Λt− that are then updated to λt+ ,Λt+ by
Bayes rule as in (17). The new maximum-entropy distribution with the updated
parameters must lastly be resampled to yield the post-measurement ensemble
{xn(t+) : n = 1, ..., N}. This is done by using the mixture representation (16)
for m = ±1, with weights, means, and covariances given by (69),(62),(58), re-
spectively, from Appendix B. These quantities are now all trivial to compute,
since vectors are 1-dimensional and matrices 1× 1. As discussed in Section 3.1,
we can finally obtain the updated ensemble by choosing, for each n = 1, ..., N,
one of the components m = ±1 of the mixture with probability wm(λt+ ,Λt+)—
call it mn—and then setting

xn(t
+) = µmn

(λt+ ,Λt+) +
√

Cmn
(Λt+)ξn, (34)

where ξn are i.i.d. N(0, 1) random variables for n = 1, ..., N . (34) is the analogue
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of (10) for our problem. This new set of samples is then evolved forward with
the equation (30) to the next measurement time and the process repeated.

The procedure for MFF is similar and even somewhat simpler. A maximum-
entropy distribution of the form (19) is chosen to match the pre-measurement
ensemble {xn(t−) : n = 1, ..., N} in just the first moment ηt− = 〈x(t−)〉. The
matching is accomplished by carrying out the minimization over the single vari-
able λ in (20), where the “free-energy” function Ft(λ) and its first derivative are
calculated from the formulas (77),(78) in Appendix B. We again use a conjugate-
gradient algorithm for the minimization, yielding the parameter λt− . However,
unlike MEF, the update step to calculate λt+ is now carried out by a second
minimization, as in (27). For this purpose the second derivative of Ft is also
needed, in addition to the function and its first derivative, and this is given by
(79) in Appendix B. Resampling the updated distribution is very similar as in
MEF but is even more elementary, since the weights, means, and covariances of
the two Gaussian components are given by the simpler formulas (74), (75),(76)
in Appendix B. In particular, the variances Cm, m = ±1 are not changed at
all in the update. The formula (34) is used finally, just as in MEF, in order
to generate the new ensemble {xn(t+) : n = 1, ..., N} of post-measurement
samples.

In Fig. 2 we show the results of applying the four particle methods, WRF,
EnKF, MEF and MFF, to the DW model with such a set of measurements,
using N = 102 particles. All the methods are initialized by sampling from the
exact invariant measure using a Metropolis-Hastings algorithm. Therefore, all
the methods show the same behavior, nearly zero mean and standard deviation
close to one, before the first measurement. Up to the time of the transition at
about t = 10, they continue to be very similar, except MFF, which shows a much
larger variance than the others at times t = 6 ∼ 12. After the transition, the
methods all differ considerably. WRF and EnKF completely miss the transition
and show almost no evidence of its existence. MEF and MFF capture the tran-
sition and estimate well its time and duration. MEF, in particular, is quite close
to the optimal filter result, which is included in Fig. 2 for comparison. Interest-
ingly, WRF performs the poorest of all the particle methods, despite its being
the only one of the four which is convergent to the optimal result in the limit
as N →∞. This exemplifies a general difficulty with WRF when the number of
samples is small and a state (x = −1) is very improbable before a measurement,
but very probable afterward. After several measurements at times t = 2 ∼ 8
indicating the state is near x = +1, all 100 particles are in that well. When
the measurement comes at t = 10 indicating a transition, there is no particle
in the well at x = −1 to carry the weight. EnKF fails for a related reason,
because it models the system statistics by a Gaussian density with mean ≈ +1
and small standard deviation ≈ 0.1 before the measurement. The Kalman gain
is essentially a ratio between this standard deviation and the standard devia-
tion of the measurement error, here 0.2. Therefore, there is insufficient gain at
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the observed transition to switch any of the 100 particles in EnKF to the other
well at x = −1. MFF tracks the transition well, but is a little “premature” in
suggesting a transition at time t = 8 ∼ 10. On the other hand, the mean stays
positive there and, despite the downward shift, the large standard deviation is
consistent with the trajectory remaining near x = +1. At time t = 10, the mean
becomes close to −1, faithfully reflecting the transition. As discussed in more
detail in (10), MFF in general follows observations too closely when the data
lie near to the prior average (here x = 0) and it tends to overpredict variances
during transitions. MEF performs so well in this experiment that it would be
hard to improve upon it.

In Fig. 3 we show the results of the four methods for the same estimation
experiment using N = 104 particles. It becomes clear now that WRF is a
convergent scheme, as it begins to approach closely the optimal filter results.
With N = 104, there are enough particles either remaining in the well at x = −1
or switching back to that well in order for WRF to catch the transition at time
t = 10. EnKF now indicates that there is a transition, but it lags the actual
one by four time units. Because EnKF is “overconfident” that the state is near
x = +1, two additional measurements indicating that the state is in the other
well are necessary to nudge some particles to make the transition. These results
do not change much when N is further increased and seem to represent the limit
for EnKF as N →∞. The results of both MEF and MFF for N = 104 are very
little changed from those for N = 102, except that fluctuations are smaller and
the curves are smoother. It is one of the virtues of these methods that they
very rapidly achieve their asymptotic N →∞ limit, already for relatively small
N. The conclusions that we have reached by examination of the plots can be
confirmed quantitatively by considering the relative mean error, defined, for any
quantity ξ(t) over the time interval 0 < t < T, as

∫ T

0

dt |ξap(t)− ξex(t)|
/∫ T

0

dt |ξex(t)|

where ξex is exact and ξap is approximate. We give these values in Table 1 for
the mean of the state variable x(t) over the interval 0 < t < 20 :

For N = 102, WRF and EnKF results are poor, MFF reasonable, and MEF
very good. For N = 104, MEF and MFF results are very similar to those for
N = 102, while the results for the convergent scheme WRF are much improved
(but not quite as good as those for MEF).

The likelihoods G1: t(y1, ...,yt) of the first t measured values are additional
quantities that are approximated by the various filtering schemes, whose ac-
curacy we would like to compare. Filtering methods supply the likelihoods in
the innovation form G1: t =

∏t
s=1Ns. Note that in WRF the innovation Nt

is obtained from the normalization in (42). In EnKF the innovation may be
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consistently taken to be a Gaussian

Nt =
exp

[
− 12 (yt − µYt−)>(CY

t−)
−1(yt − µYt−)

]
√

(2π)qDet(CY
t−)

,

(35)

with µYt− = µHt−, C
Y
t− = CH

t− +Rt. This is the standard result in the Kalman
formalism for linear problems with normal statistics (13). We have already
discussed how to obtain the likelihoods—or, rather, their logarithms—in the
entropy-based methods, MEF and MFF. In Figs. 4-5 we plot the log-likelihoods
L1: t = lnG1: t of the four methods plotted against t, with a linear interpolation
between measurement times. For comparison, we show the results obtained
when the innovations Nt are calculated using the Fokker-Planck solution of
(10). The results are quite consistent with those we saw in Figs. 2-3 for the
means and standard deviations. For N = 102, the plots in Fig. 4 show that
MEF is already very accurate and MFF reasonably good, but WRF and EnKF
are much worse. Both MEF and MFF show a slight drop around t ∼ 10,
associated to the transition between wells. Because they miss the transition,
WRF and EnKF show a continual, sharp decrease, indicating that—from the
point of view of these approximations—the measurements in the other “wrong”
well are very unlikely. For N = 104, the plots in Fig. 5 show that WRF and
MEF now both give very good results, MFF still reasonably good and EnKF
very poor. The results for MEF and MFF with N = 104 are both very close to
those with N = 102. The underestimation of L1: t by MFF is consistent with its
overestimation of the variance σ2(t), since the increased spread of the probability
density implies lower values of the density and thus decreased likelihoods. We
should caution that absolute values L1: t of the log-likelihood are of less interest
than differences ∆L1: t for the purpose of parameter estimation by a maximum
likelihood criterion.

Finally, we shall plot in Figs. 6-7 the relative entropy H(t) as a function of
time for both the MEF and MFF methods. For comparison, we show the exact
relative entropy calculated by a discretization of the integral (11) using the
Fokker-Planck solution from the scheme of (10). Furthermore, we also calculate
a relative entropy from EnKF using the formula for a pair of normal densities
P = N(µ,C), Q = N(µ∗,C∗) that

H(P |Q) =
1

2
(µ− µ∗)>C−1∗ (µ− µ∗) +

1

2
Tr[CC−1∗ − I]−

1

2
ln

(
DetC

DetC∗

)
.

We take µ,C to be the mean and covariance from EnKF and µ∗,C∗ to be
the mean and covariance for the invariant measure, calculated from long-time
averages. This formula is consistent with the basic assumption of the EnKF
method that statistics of the system are Gaussian. Note, however, that it is not
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practical to use this formula for EnKF when the dimension of the state-space p
is large, since the calculation of the determinant DetC at each time-step would
cost O(p3) multiplications. In Fig. 6 we plot the entropies for N = 102 and in
Fig. 7 for N = 104. Consistent with the results for the means and variances, we
see that for MEF and MFF there is little difference in these plots at different
N , except that the results for the smaller N are more random and rougher. All
of the methods agree in assigning a high information content to the final mea-
surements, slow to decay to zero, although EnKF poorly predicts the level. In
general, EnKF consistently underpredicts the relative entropy and furthermore
its approximation to the entropy often increases between measurements, violat-
ing the H-theorem (3). During transitions the MFF method also underpredicts
the information content of measurements because it (falsely) interprets them as
a return to the steady-state statistics described by the invariant measure rather
than the passage of the system through the rare saddle-point state at x = 0.
Away from transitions, the results for MFF are similar to those for MEF. The
entropy from MEF is very close to the exact entropy.

4.1.2 Experiment B:

Our second estimation experiment is for the same stochastic model (30) but
now with noise strength κ = 0.7. Because of the greater value of the diffusion,
transitions from one well to another are much more frequent and the mean
residence time in a well, as calculated from equation (33), is now τ ≈ 65.8. The
time required to make a transition is also somewhat shorter, taking about 1 ∼ 2
time units, but the fraction of time spent in transitions is greatly increased, to
about 0.01 ∼ 0.03. Thus, out of 100 randomly selected particles, a small handful
may be expected to be in the process of switching to the other well. Based upon
our considerations in the preceding subsection, we can expect that each of the
particle filtering methods will work well in this situation, using as few as just
100 samples. We carry out Experiment B in order to verify this expectation.

We consider again a 20 unit time-segment of a single realization, in this
case containing a transition of the sample out of the well at x = −1 and then
a second transition back into it. As before, seven measurements are taken
separated by ∆T = 2 time units and contaminated with normal random errors
of mean zero and variance R = 0.04. In MEF and MFF we use µ+ = 0.9322
and C+ = 0.0477 in the mixture model, calculated as discussed previously. The
results of the experiment for means and standard deviations are shown in Fig. 8
with N = 102 and in Fig. 9 with N = 104. There is little difference between
the two sets of figures, except that the first is rougher and more random. Of
the four methods, they may be rated in order as WRF, MEF, EnKF, and MFF,
from best to worst. However, all of the methods are relatively successful here
and give quite similar approximations to the filter mean. The worst failing of
the MFF method is that it, as usual, tends to overestimate the variance. These
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conclusions from inspection of the graphs are made quantitative by calculation
of the relative mean errors:

We next consider the log-likelihoods L1: t of the four particle filtering meth-
ods, presented versus time t as before. We consider in this Experiment B the
results of the methods only with N = 102, since those with N = 104 do not dif-
fer substantially. We now see that all of the methods work reasonably well, but
that WRF and MEF are both especially accurate. The remaining discrepancies
between the results of these two methods and those of the Fokker-Planck solu-
tion for the log-likelihoods are apparently due only to statistical errors in the
former and discretization errors in the latter. The MFF results again slightly
underestimate the true log-likelihoods, consistent with the overestimate of the
variances seen in Figs. 8-9. However, the MFF approximation is reasonably
good here. Of all the particle filtering methods, EnKF gives the worst approx-
imation to the log-likelihoods. This may be somewhat surprising, in view of
the fact that its approximations to the means and variances in Figs. 8-9 are
relatively accurate (better than those of MFF, for example). This poor per-
formance should be viewed as a failure of the Gaussian assumption for the
statistics, embodied in the standard Kalman formula (35) that we adopted for
EnKF. The true likelihoods are not normal distributions, as assumed in (35).
We should caution again that a better test of the methods from the point of view
of maximum-likelihood estimation would be to compare their maximizers over
a set of parameters, for a given set of observations y1, ...,yT . For this purpose,
only increments or differences of the log-likelihoods matter, not the absolute
values.

Finally, we consider the relative entropy as calculated approximately by
EnKF, MEF, and MFF. The results for N = 102 are given in Fig. 11 and for
N = 104 in Fig. 12. The two sets of figures again are quite close, with just an
increase of smoothness for larger N. EnKF and MFF are similar in their results,
with both somewhat underpredicting the entropy. EnKF also violates the H-
theorem by yielding occasionally an increasing relative entropy. MEF gives
a quite good approximation to the exact entropy calculated from the Fokker-
Planck solution.

4.2 Lorenz Model

Our last experiment will be for the chaotic 3-dimensional dynamical system of
Lorenz(23), given by the differential equations:

dx

dt
= σ(y − x),

dy

dt
= (r − z)x− y,

dz

dt
= xy − bz, (36)

with coefficients classically chosen as σ = 10, r = 28, b = 8/3. We include this
example to illustrate a set of issues in the application of the particle filtering
methods to deterministic dynamical systems. A priori this will be a stringent

21



test of the entropy-based methods, since the relative entropy of two solutions
of the Liouville equation —for the probability densities in phase space— is con-
served in time. In this sense, the H-theorem holds here in a trivial sense only.
Furthermore, the invariant measure of the system lives on a strange attrac-
tor with fractal dimension about 2.06, the famous Lorenz butterfly attractor.
Thus, the relative entropy of any measure absolutely continuous with respect to
Lebesgue and the invariant measure is infinite. On the other hand, this system
is generally quite similar in its behavior to the stochastic Double Well model
considered in the last section, especially in Experiment B. The phase point of
the system switches chaotically from wing to wing of the attractor, with a res-
idence time on each wing of similar order as the time to make the transition.
Thus, we expect that all of the parametric resampling methods will be able to
track the transitions with a relatively small number of samples, N = 102, say.

We shall compare the parametric methods with the results of a convergent
scheme, WRF, for a large number of samples. Since the Lorenz dynamics is
deterministic, we use a density kernel estimator to improve the representation of
the filter density, as discussed in Appendix A.1. To determine an optimal value
of the kernel width δN for sample size N, we employ a double density method (5).
In this approach, the kernel width is chosen to minimize the difference between
the density kernel estimates for two different choices of the kernel function K.
For our application, we take

δN = argmin
δ

{∫ T

0

dt‖µN (t;G, δ)− µN (t;U, δ)‖
}

(37)

where µN (t;K, δ) is the N -sample empirical mean of the state vector x(t) for the
density kernel K with width δ, and G and U are Gaussian and uniform densities,
respectively, with mean 0 and standard deviation 1. We shall verify numerically
that the WRF results with δN chosen by (37) converge as N →∞. These results
will then be taken as the exact conditional statistics for comparison with the
parametric particle filtering methods.

To apply the entropy filtering schemes, MEF and MFF, to the Lorenz equa-
tions (36) we must build a mixture model QM (x, t) for the prior distribution.
In our experiment below, we shall sample the initial conditions from the in-
variant measure on the strange attractor, which is thus the time-independent
prior. Because we are interested mainly in the switching transitions from one
wing to another of the attractor, we shall employ a Gaussian mixture of com-
plexity M = 2. We construct the component weights, means, and covariances
by considering the complementary sets {sign (x+ y) = ±1}, which each contain
one wing of the attractor. We then consider a single long time-trajectory of the
Lorenz system (36) for an initial condition on the attractor and extract from
it the probabilities w± of the two events, and the conditional means µ± and
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covariance matrices C± :

µ± = (x̄±, ȳ±, z̄±)
> = (±6.36389, ±6.69471602, 23.5506805)> (38)

C± =




22.3056857 20.2011608 ±24.9259341
20.2011608 36.3717702 ±1.57754284
±24.9259341 ±1.57754284 74.3283071


 (39)

The numerical results have been symmetrized under the reflection (x, y, z) →
(−x,−y, z) that maps one wing to the other. We then construct the mixture
model with w± = 0.5 and with µ±,C± from (38),(39). This construction guar-
antees that the model has the same second-order statistics (mean and covari-
ance) as the exact invariant measure. In Fig. 13 we compare the mixture model
with two Gaussian components and the Lorenz butterfly attractor. Although it
is relatively crude, the mixture model captures the dominant bimodality of the
Lorenz model statistics.

4.2.1 Experiment C:

In our numerical experiment we integrate the system of equations (36) by the
4th-order Runge-Kutta method with an integration step of ∆t = 1/60. We
take as “reality” a particle started at x = (1.508870,−1.531271, 25.46091)>.
Measurements on the first two components (x, y) are collected every ∆T = 2

3
time units over the interval 0 < t < 16 and then contaminated with Gaussian

errors of mean zero 0 and covariance R =

(
1 0
0 4

)
for all measurement times.

We seek the conditional statistics given this “observational” data.
We should say a few words about the implementation of MEF and MFF in

this context, since this example is a little less trivial and thus more instructive
than the double-well system considered in the previous experiments. The mea-
sured variable ht(x) = (x, y)> is now a 2-vector, so that the dual variable λt is
also a 2-vector and Λt is a symmetric 2×2 matrix. Thus, the function Ft(λ,Λ)
that appears in the minimization (15) in the matching step of MEF depends
upon 5 variables, while the function Ft(λ) used in (20) for MFF depends upon
2 variables. The evaluation of the functions and their derivatives using the for-
mulas in Appendix B thus involved 2× 2 matrix operations for the former (e.g.
Cholesky decomposition and matrix inversion) and operations on 2-vectors for
the latter (e.g. multiplication by a known 2× 2 matrix). The minimizations in
each case were carried out with a conjugate gradient scheme, using a feasible
Armijo line-search in (15) for MEF, since the domain of the convex function
Ft(λ,Λ) has a non-empty complement.

Once the matching and updating steps were carried out by means of these
mimimizations, the new maximum-entropy distributions with updated param-
eters were resampled. We might have used the same procedure for the Lorenz
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model as we did earlier for the double-well model, based upon Karhunen-Loève
expansions for the Gaussian components of the mixture model (16). However,
in realistic applications of MEF this will not be practical, since it would require
computing the eigenvalues and eigenvectors of each of the symmetric matri-
ces Cm(Λt+), m = 1, ...,M at every measurement time t. Thus, we have em-
ployed instead the more economical sampling scheme discussed in Appendix
C, using a Metropolis-Hastings algorithm to sample the Gaussian component
N(µm(λt+ ,Λt+),Cm(Λt+)) for m = ±. That is, based upon the “Hamiltonian”
(81), we accepted or rejected proposals sampled from N(µm(λt+ ,Λt+),Cm),
with fixed covariance Cm, via its Karhunen-Loève expansion:

x′ = µm(λt+ ,Λt+) +

3∑

a=1

ξa

√
γ
(a)
m ê(a)m , m = ±. (40)

Here µm(λt+ ,Λt+) is the vector given by (62) in Appendix B, ξa, a = 1, 2, 3 are
i.i.d. N(0,1) random variables,

γ
(1)
± = 86.1296844, γ

(2)
± = 44.5555211, γ

(3)
± = 2.3205575

are the eigenvalues of the fixed matrices Cm, m = ± in (39), and

ê
(1)
± =




0.4096545
0.1945717
±0.8912491


 , ê

(2)
± =




0.3744077
0.8550490
∓0.3587618


 , ê

(3)
± =




0.8318666
−0.4806589
∓0.2774256




are the corresponding eigenvectors, or conditional EOF’s for the Lorenz model.
For full details of this sampling algorithm, see Appendix C. In the case of
MFF we could resample using (40) directly, without an accept/reject criterion,
because in MFF the covariances of the Gaussian mixture components for the
updated distribution are just the constant matrices C± in (39). This is true in
general for MFF and is another simplifying feature of that method.

Now let us consider results for Experiment C obtained by the different par-
ticle filtering schemes.

In Figs. 14-15 we illustrate the convergence of the WRF method. The opti-
mization in (37) gives δN = 0.6 for N = 102, and δN = 0.1 for N = 104. The
plots in Fig. 14(a)-(b) show the results for x̄(t), the conditional mean of the
first coordinate as a function of time, with both numbers of samples. Clearly,
there is little difference between the WRF results with N = 102 and N = 104.
For comparison, we have plotted the original solution trajectory from which
measurements were extracted. As can be seen, the “real” solution is here nearly
recoverable from the measurements. Fig. 15(a)-(b) shows σx(t), the conditional
standard deviation of the first coordinate, for both values of N , and these also
differ very little. Similar results have also been found for statistical moments
of the other variables y, z of the system. Thus, the WRF results for N = 104
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appear to be converged, and we shall take them as the exact conditional statis-
tics of the Lorenz model with these measurements and use them as a standard
of comparison for the other particle filters. It should be noted that, although
the WRF results with N = 102 are already quite accurate, this depends cru-
cially upon the choice of kernel width as the optimal value δN . In Figs. 14(c)
and 15(c) we show that the WRF results for x̄(t) and σx(t) with N = 102 are
quite different if we use instead δ = 0.1, for example. In general, the results
of WRF in this deterministic model depend quite sensitively on the choice of
kernel width δ. To get the good results in Figs. 14(a) and 15(a) with N = 102,
we had to scan over about 100 values of δ to find the approximate minimum in
(37). This is essentially the same amount of work as to carry out the calculation
with N = 104 for just a single kernel width. Thus, for very high-dimensional
deterministic dynamics WRF as employed here would not be a practical filtering
method.

In Figs. 16 and 17 we show the results of the EnKF, MEF, and MFF methods
with N = 102 for the mean x̄(t) and the standard deviation σx(t). We will not
show the results for N = 104, because they are almost identical to those for
N = 102. We can thus assume that the results in Figs. 16-17 well represent
the converged approximations of the methods as N →∞. This is supported by
the data in Table 3, which gives the relative mean errors for both sample-sizes
N = 102 and N = 104. As expected, we see that all of the methods do a
reasonable job of approximating the filter mean, with the MEF errors smaller
by about 10 ∼ 20 percentage points than those of the other two, and with
the EnKF errors just slightly smaller than those for MFF. All of the methods
underestimate—or even miss—a few transitions that occur in the exact filter
mean but follow its general trends. For the filter standard deviation, MEF and
EnKF perform quite similarly, but MFF is considerably worse. While all three
methods tend to overestimate the standard deviations, those for MFF are 2 ∼ 3
times too large. The results that we see here are generally consistent with those
obtained in other estimation experiments we have performed on the Lorenz
model (36). We find that for the means MEF is somewhat better than EnKF,
which is itself slightly better than MFF, but all three perform reasonably well.
All three methods give standard deviations that are too large, but MFF much
larger than the other two.

In Fig. 18 we plot the results for the log-likelihoods of the three methods
EnKF, MEF, and MFF with N = 102, where the results of WRF with N = 104

are taken as exact. By comparison, MEF performs best, MFF second best,
and EnKF least well. It is interesting to note that MFF overestimates the log-
likelihoods, although it also overestimates the variances in Fig. 17. This seems
to be due to MFF’s missing prefactors in its estimate of lnNt . We can make a
crude estimate of the correction as − 12 ln[(2π)qDetCY

t−], which is exact for linear
dynamics. If we add this correction to the MFF result for the log-likelihood (not
shown), then it also becomes an underestimate and lies between the results of
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MEF and EnKF.
Lastly, we consider the approximations previously proposed for the relative

entropy using the three methods, EnKF, MEF and MFF. These are plotted
in Fig. 19(a)-(c) for each method with N = 102. As above, the results with
N = 104 were so similar that they need not be considered here. It can be seen
that all of the approximate entropies behave qualitatively similarly, rising dis-
continuously at measurements and then decaying between measurements, but
non-monotonically. This behavior may seem paradoxical, in view of the fact
that the exact relative entropy H(P (t)|Q), where P (t) is the filter measure on
the Lorenz attractor and Q = P∗ is the invariant measure, does not change in
time between measurements. However, the approximate entropies that have
been constructed all have the property that they must converge to zero at
long times between measurements, because the moments employed, such as
x(t), y(t), x2(t), y2(t), etc. all converge as t→∞ to the corresponding averages
in the invariant measure x∗, y∗, etc. As a consequence, limt→∞ PM (t) = QM ,
so also H(PM (t)|QM ) → 0. Since the approximate entropies are based upon
only a few statistical moments of the Lorenz system, this amounts to an im-
plicit “coarse-graining” of the entropy. In fact, it follows from the exponential
formula (13) for the maximum-entropy distribution that, in the MEF method,

H(PM (t)|QM ) = H(P̃M (t)|Q̃M ), where P̃M , Q̃M are the marginal distributions
of PM , QM on measured variables (here, x and y). Because the invariant mea-
sure Q = P∗ of the Lorenz model is smooth on unstable manifolds (36; 40), the

marginals P̃ (t), Q̃ both have densities with respect Lebesgue measure on the 2-

dimensional space of x, y coordinates and H(P̃ (t)|Q̃) is finite. However, unlike
H(P (t)|Q), which is time-independent, the relative entropy of the marginal mea-

sures P̃ (t), Q̃ is expected between measurements to converge toward zero (but
not necessarily monotonically). Thus, it is more proper to compare the MEF

entropy with H(P̃ (t)|Q̃). We have approximated the latter using the WRF so-

lution to construct histograms that represent the densities P̃ (x, y; t), Q̃(x, y) in
the x, y-plane and then used a discrete quadrature formula for the integral (11).
The results are shown in Fig. 19(d) for histograms on a 40 × 40 grid in the
rectangle −20 < x < 20,−28 < y < 28 with N = 104 samples. The resolution
is low and the statistical fluctuations are still quite large, but these results will
suffice for a rough comparison. While the MEF entropy does not agree perfectly
with this relative entropy of the marginals, it does show qualitatively similar
behavior and it is more accurate quantitatively than either EnKF (which is too
large) and MFF (which is too small).

5 Summary and Conclusions

In this paper we have introduced two new entropy-based particle filtering schemes.
The first method uses maximum-entropy parametric models to implement the
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update by Bayes Theorem at measurement times, and has been called by us the
Maximum Entropy Filter (MEF). The second method updates the filter den-
sities by a maximum-entropy criterion that implements Bayes Theorem only
in a mean-field sense, and was called by us the Mean-Field Filter (MFF). We
have compared these new methods with two standard ensemble/particle fil-
ters, the Weight Resampling Filter (WRF) and the Ensemble Kalman Filter
(EnKF), which are reviewed in Appendix A. In terms of the computational cost
to implement them for a fixed number of samples, the methods can be ranked
in order, from cheapest to most expensive, as WRF, MFF, EnKF, and MEF,
when p À q À 1. Here the integer p is the dimension of the state space and q
is the dimension of the measured random variable. See Appendix D.

With small samples sizes N, the standard methods perform very poorly when
there are subsets of the state space that have low priori but high posteriori prob-
abilities, as in our Experiment A. Although WRF gives optimal results in the
limit N →∞, events of low priori probability are insufficiently represented when
the number of samples is too small. The method may thus converge only with
quite large N . In EnKF, the probability density in state space before the mea-
surement is modelled by a Gaussian density centered in the region of high prior
probability. Unless subsequent measurements are very accurate (lower variance
than the Gaussian model), the gain from the measurements is insufficient to
shift the state to the regions of high posterior probability. The parametric re-
sampling methods that have been introduced in this paper were designed to
work better precisely in the circumstance where there is a large disparity be-
tween priori and posteriori probabilities. This superior performance has been
confirmed in our experiment A with N = 102, where MEF performed the best
and MFF second best of all the four methods. In circumstances such as these,
MEF should be preferred, but MFF is an acceptable, cheaper substitute if the
former is unaffordable.

Even when the ratios between prior and posterior probabilities are not large,
the optimally convergent WRF scheme encounters another difficulty with de-
terministic dynamics, as in our Experiment C, because the resampling step is
ineffectual in such cases. We have found that a modification using a density ker-
nel method to represent the filter density in state space may give good results
with small N . However, the accuracy of this representation can depend sensi-
tively on the kernel width, and it will not be practical to search for the optimal
width if only a small number of samples is available. Here, EnKF can work
well with moderate N, and, based on the Experiment C that we performed, it
can be recommended, at least when the number of measurements q is not too
large. MEF gives somewhat better results but is also more expensive. If q À 1,
then both MEF and EnKF may be too costly to apply and MFF is a practical
substitute.

Where these difficulties do not occur, as in our Experiment B, WRF can
give the optimal results economically with small N . In such cases, or where
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large numbers of samples are readily available, it is the preferred method.
The parametric resampling methods introduced in this work are very ro-

bust. While WRF and EnKF may or may not perform well, depending on
the circumstances, MEF gave results of quality from excellent to good in all
of the experiments we performed. The results of MFF were less accurate, but
generally acceptable and less costly. Both MEF and MFF converge rapidly
as the number of samples N is increased, and, except for larger fluctuations,
gave nearly the same results for N = 102 as for N = 104. The price that must
be paid for these advantages is that the parametric methods cannot be car-
ried out “blindfolded” but require some prior knowledge of the system. In the
method as presented here, we constructed the parametric densities by minimiz-
ing the information relative to a carefully chosen model of the prior distribution
(with no measurements whatsoever). This is a well-motivated choice for Markov
stochastic processes, because of an “H-theorem” which requires that the rela-
tive entropy decreases monotonically in time. Even for deterministic dynamics,
the relative entropies of marginal distributions—which are the only statistics
practically accessible for large-scale systems—converge to zero. Our maximum-
entropy parametric models have other important practical advantages for the
filtering problem: matching parameters to ensemble statistics can be carried out
by minimization of a convex function; the Bayes update is implemented by a
trivial change of parameters; and, efficient methods exist for sampling from the
maximum-entropy distributions. The algorithms yield as side-products the log-
likelihood and relative entropy, which are of independent interest. We believe
these features should make the maximum-entropy filtering methods very useful
in a variety of applications to high-dimensional nonlinear stochastic dynamical
systems.
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A Standard Ensemble Filters

In this appendix, we briefly review some of the standard particle/ensemble meth-
ods that have been proposed to solve the optimal filtering problem.

A.1 Convergent Particle Schemes for Optimal Filtering

The basic idea of all ensemble/particle methods is to employ an ensemble

x
(n)
t , n = 1, ..., N of solutions of (1) with independent realizations of the noise

in order to approximate the filter densities by empirical measures

P (N)(x, t) =

N∑

n=1

w
(n)
t δp(x− x(n)t ). (41)

The non-negative real numbers w
(n)
t , n = 1, ..., N are called importance weights

and must satisfy
∑N

n=1 w
(n)
t = 1. In common to all these methods is the very

desirable property that they implement the prediction step (5) in the Bayes
recursion exactly, at least in the limit N → ∞. Various methods differ in how
they approximate the update step (6).

In the simplest approach, the sample weights are updated by the formula

w
(n)
t+ =

Gt(yt|x(n)t )

Nt
w
(n)
t− , n = 1, ..., N (42)

which is determined so that the N -sample approximations (41) satisfy (6) ex-

actly. As in (6), Nt is a normalization factor to ensure that
∑N

n=1 w
(n)
t+ = 1

for all times t. If the initial samples are chosen so that x
(n)
0 , n = 1, ..., N are

i.i.d. distributed according to P0, then the initial weights may be taken to be

w
(n)
0 = 1/N for all n = 1, ..., N. Initialized in this manner, the algorithm outlined

above provides a systematic approach to approximating the filter distributions,
via (41). For convenient reference, we shall call this simple standard particle
method the Weighted Ensemble Filter (WEF). For more details, see (19; 6). It
has been proved by Moral(26) that the approximate filter densities produced
by this method converge (weakly) to the optimal filter density as N →∞. Un-
fortunately, despite being a convergent method, WEF often performs poorly in
practice. As can be seen from (42), if measurements are very accurate or if
the outcomes of measurement are very far from the predictions of the samples,
then updated weights may be very small. In that case, the effective size of the
ensemble can be much less than N, since samples with small importance weights
do not contribute significantly to any averages. Therefore, the convergence of
the WEF algorithm is often quite slow.

To overcome the difficulty with non-uniform weights, the update (42) in
the above method may be augmented with a resampling step, as was origi-
nally suggested by Ulam and von Neumann (37). That is, a new ensemble
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x
(n)
t+ , n = 1, ..., N with uniform weights 1/N may be selected independently

from the set of pre-measurement samples x
(n′)
t− with probabilities w

(n′)
t+ , for

n′ = 1, ..., N. In the process, realizations with high probability are multiply
resampled and “cloned,” while states with low probability are not sampled at
all and become “extinct”. In the case of genuinely stochastic dynamics, the
resampling procedure described above may already suffice. However, for de-
terministic dynamics, “cloned” individuals have identically the same behavior
in the future and act collectively as a single sample with high weight. In that
case, the results with resampling are equivalent to those for WEF. To deal with
this situation, the representation of the filter density by means of the empirical
measure (41) may be improved with kernel smoothing:

P (N, δ)(x, t) =

N∑

n=1

w
(n)
t Kp

δ (x− x
(n)
t ), (43)

where the “density kernel” Kp
δ (x − x′) is an approximate delta function in Rp

with width proportional to δ (35; 34; 39). Resampling from a distribution like
(43) may be accomplished in two steps: first, select an index n′ = 1, ..., N in

the sum with probability w
(n′)
t and, second, select a random sample x

(n)
t =

x
(n′)
t + ρ(n) where ρ(n) are i.i.d. samples drawn from Kp

δ (ρ), successively for
n = 1, ..., N . If the density kernel is of a simple standard type, such as a
multivariate Gaussian or a uniform distribution on a hypercube, then there are
efficient algorithms for drawing the random samples from Kp

δ (ρ). In this way,
the problem of “cloned” samples is eliminated by the random perturbations or
“mutations” of each sample. If the kernel width is chosen δN as a function of
N so that δN → 0 suitably as N → ∞, then the kernel density estimator (43)
will also converge to the true density P (x, t) as N →∞. We refer to standard
texts (35; 34; 39) for more details.

The algorithm with resampling as described above is one of the most widely
used particle filtering methods (e.g. see (6)), which we shall refer to, for conve-
nience, as the Weighted Resampling Filter (WRF). As with the simpler WEF
method, the approximate density fromWRF has been proved to converge weakly
to the optimal filter density as N →∞ ((25; 28) or (4) for a recent review.) The
rate of convergence of the approximation error to zero is the same as for stan-
dard Monte Carlo, i.e. O(N−1/2). In order to choose a large enough value of N,
one may simply monitor the convergence of statistics of interest for increasing
number of samples. Alternatively, a recent paper (11) has proposed a method
whereby the number of samples required for convergence may be determined au-
tomatically. The WRF method has become popular because it is simple to use,
handles with ease nonlinearity of the dynamics and non-Gaussianity of statis-
tics, and gives optimal results under conditions that are frequently achievable
in practice. It is possible to construct examples that “break” this method, even
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with N quite large, but WRF is probably the method of choice in cases where
a large number of samples are readily available.

A.2 Ensemble Kalman Filter

The Ensemble Kalman Filter (EnKF) was proposed by Evensen (8; 9) (with
an important correction in Burgers et al.(2)). This is also a sequential particle
filtering method, like those discussed in the previous subsection. However, the
update by Bayes theorem is only implemented approximately. It applies in the
most straightforward form only when observation errors are normal random
vectors with mean 0 and covariance Rt and when measurement functions are
affine,

ht(x) = Htx+ dt, (44)

where Ht is a q × p matrix and dt is a q-vector for each time t. Otherwise,
Taylor expansions of ht(x) and logGt(y|x) (to 1st and 2nd order, resp.) must be
employed. As in all Kalman filtering schemes, the statistical basis of this method
is the use of a Gaussian model for the prior P (x, t−). The mean and covariance
of this model are obtained by empirical averages over the N -sample ensemble.
A new ensemble is then generated by performing, for each sample state, a linear
interpolation between the original state and a sample measurement, weighted
by the so-called “Kalman gain matrix”.

The EnKF update algorithm may be divided into three steps, as follows:

(i) Matching: The mean µt− and covariance Ct− before the measurement are
obtained from particle averages:

µt− =
1

N

N∑

n=1

x
(n)
t− , Mt− =

1

N

N∑

n=1

x
(n)
t− [x

(n)
t− ]> (45)

with Ct− =Mt− − µt−µ>t− .

(ii) Resampling: An N -sample ensemble of measurement outcomes is gener-
ated from

y
(n)
t = yt + ε

(n)
t , n = 1, ..., N (46)

where ε
(n)
t , n = 1, ..., N are i.i.d. N(0,Rt) random vectors.

(iii) Updating: A new N -sample ensemble of state vectors is obtained from

x
(n)
t+ = x

(n)
t− + Kt[y

(n)
t − ht(x(n)t− )], (47)

with
Kt = Ct−H

>
t [HtCt−H

>
t +Rt]

−1, (48)

the Kalman gain matrix
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An easy computation (2) shows that the mean and covariance of the updated
ensemble are given in the limit N →∞ by

µt+ = µt− + Kt[yt − µHt− ] (49)

Ct+ = Ct− −Kt[C
H
t− +Rt]K

>
t , (50)

where µHt− = Htµt− + dt and C
H
t− = HtCt−H

>
t are the mean and covariance,

respectively, of the measured variable ht(x) in the N -sample ensemble before
the measurement. These formulas are the well-known results of the Kalman
filtering procedure, which are derived by applying Bayes theorem to a Gaussian
prior (13). Notice, however, that the posterior density P (x, t+) represented by

the samples x
(n)
t+ , n = 1, ..., N is non-Gaussian, because the original samples

x
(n)
t− , n = 1, ..., N are drawn from a non-Gaussian density P (x, t−). The Gaus-

sian model N(x;µt− ,C t−) for the prior distribution has the same mean and
covariance as the N -sample ensemble before the measurement, but other mo-
ments of the two distributions will be generally unequal. Thus, the Ensemble
Kalman Filter is only guaranteed to give the correct conditional statistics, in
the limit N → ∞, when the system statistics are indeed Gaussian. Otherwise,
its estimates of the conditional mean and covariance converge to suboptimal
values.

B Thermodynamics of Maximum-Entropy Mod-

els

In this appendix we derive the equations of a “thermodynamic formalism” for
maximum-entropy mixture models. We assume that the measurement function
is affine, h(x) = Hx+ d, and consider the mixture model (8), with

N(x;µm,Cm) =
exp

[
− 12 (x− µm)>C−1m (x− µm)

]
√

(2π)pDetCm

(51)

We first prove the following simple but useful lemma:

exp[λ·h(x) +
1

2
Λ:h(x)h>(x)]N(x;µm,Cm)

= Zm(λ,Λ)N(x;µm(λ,Λ),Cm(Λ)) (52)

with functions Zm(λ,Λ),µm(λ,Λ),Cm(Λ) described in detail below. Since the
lefthand side in (52) is a product of Gaussians, the equality is proved easily by
completing the square, with the results:

Cm(Λ) = (C−1m −H
>ΛH)−1 (53)
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µm(λ,Λ) = µm +Cm(Λ)H>(λ+ΛµHm) (54)

Zm(λ,Λ) =

√
DetCm(Λ)

DetCm
exp

[
λ>d+

1

2
d>Λd

−1

2
µ>mC

−1
m µm +

1

2
µ>m(λ,Λ)C−1m (Λ)µm(λ,Λ)

]
. (55)

Here we introduce µHm = Hµm + d and CH
m = HCmH

>, the mean and covari-
ance of h(x) for x an N(µm,Cm) random variable.

These formulas can be simplified by using the following matrix identities,
valid for A and C any p× p and q × q non-singular matrices, respectively, and
B an arbitrary q × p matrix:

(A−1 +B>C−1B)−1 = A−AB>(BAB> +C)−1BA, (56)

(A−1 +B>C−1B)−1B> = AB>(BAB> +C)−1C. (57)

These identities are standard in the Kalman filtering literature (13). From (56)
it follows immediately that

Cm(Λ) = Cm +CmH
>ΓHm[ΓHm −Λ]−1ΛHCm, (58)

where we have defined ΓHm = [CH
m]−1. Note that we have written this formula

so that it is valid even if Λ is singular. Applying (57) gives likewise

µm(λ,Λ) = µm +CmH
>ΓHm[ΓHm −Λ]−1(λ+ΛµHm) (59)

In these formulas, the combination Km = CmH
>ΓHm(Λ− ΓHm)−1Λ is the ana-

logue of the Kalman gain matrix and rm = HCm the representer of the mth
mixture component (1; 38). [In fact, our calculations here are a natural gener-
alization of the representer solution for Gaussian mixture models; e.g. see (62)
below.] Finally, simplifications can be made in the exponent of the normaliza-
tion factor Zm(λ,Λ) by using the formula

C−1m (Λ)µm(λ,Λ) = C−1m µm + H
>(λ+Λd)

and dotting with formula (54) for µm(λ,Λ). Cancelling many terms, one finds
finally that

Zm(λ,Λ) =

√
DetΓHm

Det(ΓHm −Λ)
exp

[
−1

2
(µHm)>ΓHmµ

H
m

+
1

2
(ΓHmµ

H
m + λ)>(ΓHm −Λ)−1(ΓHmµHm + λ)

]
. (60)
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We have also used the identity, for p× q matrix A and q × p matrix B,

Det(I−AB) = exp

[
−

∞∑

k=1

1

k
Tr((AB)

k
)

]
= Det(I−BA),

by cyclicity of the trace, in order to write

Det(Cm)/Det(Cm(Λ)) = Det(Cm) ·Det(C−1m −H
>ΛH)

= Det(I−CmH
>ΛH) = Det(I−ΛHCmH

>)

= Det[I−Λ(ΓHm)−1] = Det(ΓHm −Λ)/Det(ΓHm).

For purposes of numerical evaluations on the computer, it is convenient to
introduce ηm(λ,Λ) as the solution of the linear equation

(ΓHm −Λ) · ηm(λ,Λ) = ΓHmµ
H
m + λ. (61)

This equation can be solved using a Cholesky factorization of ΓHm−Λ, since this
matrix must be positive-definite in order for the model density to be statistically
realizable with the given matrix Λ. [Notice that lnZm in (60) must be a convex
function of λ for realizability to hold; moreover, (53),(57) imply that (ΓHm −
Λ)−1 = HCm(Λ)H> = CH

m(Λ), which must be positive-definite.] Introducing
the solution ηm(λ,Λ) into (59) gives

µm(λ,Λ) = µm +CmH
>ΓHm · [ηm(λ,Λ)− µHm]

(62)

The Cholesky factor can also be used to calculate the inverse [ΓHm −Λ]−1 and
the determinant Det(ΓHm − Λ) that appear in the formulae (58) and (60) for
Cm(Λ) and Zm(λ,Λ), respectively. In fact, we may rewrite (60) somewhat to
eliminate the inverse matrix:

Zm(λ,Λ) =

√
DetΓHm

Det(ΓHm −Λ)
×

exp

[
−1

2
(µHm)>ΓHmµ

H
m +

1

2
(ΓHmµ

H
m + λ)>ηm(λ,Λ)

]
.

(63)

It is important for the numerical feasibility of these calculations that ΓHm−Λ is
a q × q matrix, where we assume that q ¿ p.

The derivatives of Zm are also straightforward to evaluate. We use

lnZm(λ,Λ) =
1

2
(ΓHmµ

H
m + λ)>(ΓHm −Λ)−1(ΓHmµHm + λ)

− 1

2
(µHm)>ΓHmµ

H
m −

1

2
Tr[ln(ΓHm −Λ)− lnΓHm] (64)
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and two standard identities for differentiation of a matrix with respect to a
parameter: ∂

∂λA
−1 = −A−1 ∂A∂λA−1 and ∂

∂λTr lnA = Tr
(
A−1 ∂A∂λ

)
. Then

∂Zm
∂λ

(λ,Λ) = Zm(λ,Λ)ηm(λ,Λ), (65)

for i 6= j,

∂Zm
∂Λij

= Zm(λ,Λ)

{
[ηm(λ,Λ)]i[ηm(λ,Λ)]j + [(ΓHm −Λ)−1]ij

}
, (66)

and for i = j,

∂Zm
∂Λii

=
1

2
Zm(λ,Λ)

{
[ηm(λ,Λ)]i[ηm(λ,Λ)]i + [(ΓHm −Λ)−1]ii

}
, (67)

We can now easily deduce the results claimed in the text. First we derive
the mixture representation (16) of the maximum-entropy densities. This follows
directly from the main lemma (52) with

Z(λ,Λ) =

M∑

m=1

wmZm(λ,Λ) (68)

and

wm(λ,Λ) = wm
Zm(λ,Λ)

Z(λ,Λ)
, (69)

where Zm(λ,Λ),µm(λ,Λ),Cm(Λ), m = 1, ...,M are given by (63),(62),(58).
Second we derive the thermodynamic functions for the mixture model, starting
with F (λ,Λ) = lnZ(λ,Λ) and Z(λ,Λ) given in (68). The derivatives are then
obtained from

∂F

∂λ
(λ,Λ) =

1

Z(λ,Λ)

M∑

m=1

wm
∂Zm
∂λ

(λ,Λ)

and the similar formula for the derivative with respect to Λ. Using (65)-(67)
one obtains:

∂F

∂λ
(λ,Λ) =

M∑

m=1

wm(λ,Λ)ηm(λ,Λ), (70)

for i 6= j,

∂F

∂Λij
=

M∑

m=1

wm(λ,Λ)

{
[(ΓHm −Λ)−1]ij + [ηm(λ,Λ)]i[ηm(λ,Λ)]j

}
(71)

and for i = j,

∂F

∂Λii
=

1

2

M∑

m=1

wm(λ,Λ)

{
[(ΓHm −Λ)−1]ii + [ηm(λ,Λ)]i[ηm(λ,Λ)]i

}
. (72)
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The computational cost to determine F (λ,Λ) and its derivatives is dominated
by the Cholesky factorization, for which the operation count (number of mul-
tiplications) is O(Mq3). Calculation of the vectors ηm(λ,Λ) is O(Mq2) op-
erations, while calculation of the inverses (ΓHm − Λ)−1 requires an additional
O(Mq3) operations. This will be feasible as long as M and q are not too large.
On the other hand, even if the p×q matricesCmH

>ΓHm and q×p matrices HCm

are stored in advance, calculating µm(λ,Λ),Cm(Λ) for m = 1, ...,M from (62)
and (58) requires O(Mpq) and O(Mp2q) operations, respectively, in addition to
the Cholesky factorization. These calculations are expensive if pÀ q.

All of the above formulae simplify considerably within the mean-field ap-
proximation, and, in fact, remain valid simply upon setting Λ = O. Thus, (61)
becomes

ηm(λ) = µHm +CH
mλ, (73)

(63) becomes

Zm(λ) = exp

[
−1

2
(µHm)>ΓHmµ

H
m +

1

2
(ΓHmµ

H
m + λ)>ηm(λ)

]
,

(74)

(62) becomes
µm(λ) = µm +CmH

>λ, (75)

and (58) becomes simply
Cm(λ) = Cm. (76)

The thermodynamics also simplifies, with

F (λ) = lnZ(λ) = ln

(
M∑

m=1

wmZm(λ)

)
, (77)

∂F

∂λ
(λ) =

M∑

m=1

wm(λ)ηm(λ) = η(λ), (78)

∂2F

∂λi∂λj
(λ) =

M∑

m=1

wm(λ)

{
[CH

m]ij + [ηm(λ)− η(λ)]i[ηm(λ)− η(λ)]j
}

(79)

and wm(λ) = wmZm(λ)/Z(λ), as in (69). The cost to calculate ηm(λ), Zm(λ)
for m = 1, ...,M and F (λ) and its first and second derivatives is O(Mq2), while
the cost to calculate µm(λ) is O(Mpq). Thus, there are considerable savings
with the mean-field approximation.
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C Sampling from the Maximum-Entropy Mod-

els

Direct sampling from the maximum-entropy distributions using the mixture rep-
resentation (16) is prohibitively expensive when p À 1. For example, sampling
the Gaussian components using their Karhunen-Loève expansions would require
calculating the EOF’s of the p× p covariance matrices Cm(Λ+t ), m = 1, ...,M
for every new value of Λ+t . It might be possible to calculate the EOF’s for the
covariance matrices Cm(t), m = 1, ...,M of the components of the mixture-
model (8) for QM (x, t), especially if the latter is time-independent or changes
sufficiently slowly in time that only a few representative values of t need be
considered. In that case, a more efficient sampling strategy can be based upon
the identity

C−1m (Λ) = C−1m −H
>ΛH, (80)

the inverse of (53) [where we drop from here on the explicit time label t]. This
formula implies that the Gaussian componentN(µm(λ,Λ),Cm(Λ)) can be sam-
pled by the Metropolis-Hastings algorithm with N(µm(λ,Λ),Cm) as the pro-
posal distribution and with

E(x) = −1

2
[h(x)− ηm(λ,Λ)]>Λ[h(x)− ηm(λ,Λ)] (81)

as the “energy function” to calculate acceptance probabilities. Using the Karhunen-
Loève representation of N(µm(λ,Λ),Cm), proposed updates have the form

x′ = µm(λ,Λ) +

p∑

a=1

ξa
√

γamê
a
m, (82)

where ξa, a = 1, ..., p are i.i.d. normal random variables and γam, êam are the
eigenvalues and eigenvectors of Cm. Note that the eigensystems do not depend
on Λ and that the vectors µm(λ,Λ) can be efficiently calculated from (62). The
updates (82) are accepted with probability min{1, e−∆E} to replace a current
state vector x, where ∆E = E(x′)− E(x).

An efficient algorithm to sample PM (x;λ,Λ) is then as follows: First, set
xm = µm(λ,Λ) as an initial guess of the state in the mth component for each
m = 1, ...,M . Then, successively for n = 1, ..., N, choose x(n) by first selecting a
component index m = 1, ...,M with probability wm(λ,Λ). For the selected m,
generate a new trial state x′m via (82) and then accept or reject it compared with
the current state xm by the Metropolis-Hastings algorithm. That is, replace xm
with x′m if accepted and otherwise leave xm intact. In either case, after com-
pletion of the trial, take x(n) = xm. In this way, the entire N -sample ensemble
x(n), n = 1, ..., N will be generated, distributed according to PM (x;λ,Λ). In
practice, it is advisable to consider some number nT of trial vectors x′m for each
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selected component m and to successively accept or reject them, in order to
generate each member of the N -sample ensemble. This will help to ensure bet-
ter equilibration in the Metropolis-Hastings algorithm. Furthermore, it has the
benefit for deterministic dynamics that it helps to guarantee that x(n) = x(n

′)

for n 6= n′, i.e. that members of the ensemble are not identical.
This Metropolis-Hastings scheme will work well if Λ is small, but rejection

rates will be high if the values of the energy function E in (81) become large.
This is precisely what occurs as a consequence of the Bayes rule update (17),
when measurements are very accurate. In fact, in the limit that ‖R‖ is small,

λ+ = λ− +R−1y ≈ R−1y, Λ+ = Λ− −R−1 ≈ −R−1, (83)

and updated values of parameters, to leading order, are independent of their
values λ−,Λ− before the measurement. In that case, the mixture model
PM (x;λ+,Λ+) simplifies considerably. It is easy to show using (58), (62), (63)
that, as ‖R‖ → 0, the following asymptotic formulas hold for the component
weights

w+m =
wm exp

{
− 12 [y − µHm]>ΓHm[y − µHm]

}

N
√

DetCH
m

[1 +O(‖R‖)] (84)

(where N is a normalization factor), for component means

µ+m = µm +CmH
>ΓHm(y − µHm) +O(‖R‖) (85)

and for component covariances

C+m = Cm −CmH
>(ΓHm − ΓHmRΓHm)HCm +O(‖R‖2). (86)

Notice that the exponential factor in (84) is the normal density N(y;µHm,CH
m)

of the measurement function h(x) in the mth component, evaluated at the
measured value y. Notice also that Hµ+m+d = y+O(‖R‖) from (85) and that
HC+mH

> = R+O(‖R‖2) from (86), as would be expected for the limit of very
accurate measurements. A simple sampling scheme in this limit, therefore, is to
choose components m = 1, ...,M with the probabilities w+m in (84) and then to
draw samples from the selected Gaussian component N(µ+m,C+m) directly, e.g.
using its Karhunen-Loève representation. For that purpose, the EOF’s of the
covariance matrices C+m may be calculated and stored in advance. It is crucial
that C+m in (86) does not depend upon λ−,Λ−.

The two sampling schemes that have been discussed in this section of the
Appendix are efficient and accurate for opposite limits of large ‖R‖ and small
‖R‖, respectively. Therefore, the best results should be obtained from a hybrid
approach, that switches from the first method to the second as ‖R‖ decreases.
As a practical criterion for switching, the rejection rate of the nT proposals in
the Metropolis-Hastings algorithm may be monitored and the second method
employed when the rejection rate becomes too large in the first method.
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D Computational Costs of the Methods

We here briefly compare the computational costs of the four main particle fil-
tering methods considered: WRF, EnKF, MEF, and MFF.

WRF: The main cost lies in the computation of the probability density
of measurement errors, Gt(yt|x(n)), n = 1, ..., N for the update (42). When
this density is Gaussian, O(q3) multiplications are required to calculate the
determinant DetRt and inverse R−1t , then O(Nq2) multiplications to calculate
the quadratic forms [yt−ht(x(n))]>R−1t [yt−ht(x(n))] and Npq multiplications
to calculate the values h(x(n)) of the linear measurement function (44), for
n = 1, ..., N . Resampling requires just N independent random numbers.

EnKF: To calculate the mean and the covariance by N -sample averages in
the matching step (45) uses O(Np2) multiplications. In the limit p À q which
mostly concerns us, the further calculation of CH

t− requires O(p2q) multipli-

cations, dominated by the matrix multiplication Ct−H
>
t . Calculation of the

inverse and/or Cholesky factors of CH
t− +Rt is O(q3) multiplications and cal-

culation of Kt by multiplication of Ct−H
>
t and the inverse matrix requires an

additional O(pq2). Hence, the total cost to calculate the Kalman gain matrix

in (48) scales as O(p2max{N, q}) in the limit pÀ q. Update of x
(n)
t− to x

(n)
t+ for

n = 1, ..., N via (47) is another O(Npq) operations, either by matrix multipli-
cation with Kt or by backsubstitution using the Cholesky factors of CH

t− +Rt

followed by multiplication with Ct−H
>
t . Nq random numbers must be gener-

ated for the measurement resampling in (46).
MEF: The matching and updating steps, (15) and (17), take place entirely

in the space of 12q(q+3) variables (λ,Λ). Hence, these are relatively inexpensive
when q ¿ p. As discussed above, calculation of Ft and its gradients at one value
of (λ,Λ) requires O(Mq3) multiplications. Hence, the total cost of the optimiza-
tion in (15) by conjugate-gradient (CG) is O(n

CG
Mq3), where n

CG
is the number

of iterations. For our convex cost function, CG is convergent globally but, gen-
erally, only linearly. Hence, it is better in practice to use a hybrid algorithm
that switches to a superlinearly convergent, quasi-Newton method close to the
solution, if storage of an approximate Hessian is affordable. The most expensive
step of the algorithm, however, is the resampling. This can be accomplished, for
example, using the standard sampling scheme (9) for the Gaussian components
of the mixture model (16). As discussed above, calculating µm(t;λ,Λ) and
Cm(t;Λ) for m = 1, ...,M in (16) requires O(Mpq) and O(Mp2q) operations,
respectively, at each measurement time t. This is just M times the cost to cal-
culate the Kalman gain matrix in EnKF. On the other hand, generating new
samples by (9) requires Np random numbers and O(Np2) multiplications, more
expensive than the O(Npq) multiplications for EnKF. Furthermore, a matrix
square root (Cholesky factor or EOF’s) of Cm(t;Λ) is required in (9), which
costs O(Mp3) multiplications to calculate. This is very expensive for large p,
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too expensive in general to perform at each measurement time t.
If the model prior distribution QM (x, t) in (8) is time-independent (or varies

sufficiently slowly in time), then there is the alternative sampling method dis-
cussed in Appendix C using a Metropolis-Hastings algorithm. In this scheme,
proposals are generated from the Gaussian components in the mixture model
for the prior (8). A number nT of such trials are successively generated and
accepted/rejected according to a Metropolis criterion, in order to produce each
new ensemble member. An advantage of this approach is that one does not
need to calculate the covariance matrices Cm(t;Λ) in (16) at all. One saves
O(Mp2q) multiplications by avoiding the calculation of updated covariances.
On the other hand, this alternative algorithm requires NpnT random numbers
and O(Np2nT ) multiplications to generate the new ensemble. The main savings
lies in the fact that one needs only to calculate Cholesky factors or EOF’s of the
(time-independent) covariances Cm, m = 1, ...,M in (8) at the outset of the
algorithm, a single-time cost of O(Mp3), rather than to calculate new matrix
square roots at each measurement time. Since it will be true generally that
nT ¿ p, this provides considerable economy when measurements are taken at
many times.

Even with the most efficient implementations that we have been able to
devise, this MEF algorithm is substantially more expensive than EnKF. The
additional cost can only be justified by improved accuracy of the results. Sub-
stantial savings can be obtained by making some further approximations, for
example, truncation of the K-L expansion (10) to a maximum number of EOF’s
pmax ¿ p. Finding just the pmax leading eigenvalues and eigenvectors of Cm

for m = 1, ...,M requires O(Mp2pmax) operations, e.g. by iterative Arnoldi
methods. This is smaller by a factor of pmax/p than the cost to determine all
of the eigenvalues and eigenvectors. Likewise, Metropolis sampling from the
truncated K-L expansion uses NpmaxnT random numbers and O(NppmaxnT )
multiplications, smaller by the factor pmax/p.

MFF: The number of operations to calculate the function inside the brackets
in (27) and its gradient in (29) is O(Mq2). Hence, the total cost of the matching
step is O(n

CG
Mq2) when using a conjugate-gradient algorithm. This is smaller

by a factor of 1/q than the cost of the matching for full MEF and smaller by a
factor O(n

CG
M(q/p)2/q) than the cost to calculate the Kalman gain matrix in

EnKF. The resampling step in the mean-field MEF uses O(Mpq) multiplications
to calculate the means µm(t;λ), m = 1, ...,M in (16) [now depending only on
λ]. As in MEF with the Metropolis-Hastings sampling, there is a one-time
expense ofO(Mp3) to calculate square roots of the time-independent covariances
Cm, m = 1, ...,M . Also, Np random numbers and O(Np2) multiplications are
needed to generate new samples by (9). Thus, resampling in MFF is cheaper
than in full MEF by a factor of 1/nT and more expensive than in EnKF by
a factor of p/q. However, if a truncated K-L expansion is used with only pmax
terms, as discussed above for MEF, then this latter factor is instead pmax/q and
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the cost will be similar as for EnKF if pmax ≈ q. In that case, MFF will be
much cheaper overall than EnKF, the savings being that it avoids calculation
of matrices such as the Kalman gain.
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Table Captions
1. Relative Mean Errors in Experiment A.
2. Relative Mean Errors in Experiment B.
3. Relative Mean Errors in Experiment C.
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Figure Captions
1. Exact steady state density for DW model, κ = 0.4 (dashed line) and mixture
model with M = 2 (solid line).
2. Particle filter results for Experiment A with N = 102 samples: (a) WRF, (b)
EnKF, (c) MEF, (d) MFF. The circles represent measurements taken from one
sample path and the solid lines are the mean and ± standard deviations of the
approximate filters. The dashed lines are the mean and ± standard deviations
from the Fokker-Planck solution of (10).
3. Particle filter results for Experiment A with N = 104 samples: (a) WRF,
(b) EnKF, (c) MEF, (d) MFF. Symbols as in Figure 2.
4. Log-likelihoods L1: t versus time t for Experiment A with N = 102 samples:
(a) WRF , (b) EnKF, (c) MEF, (d) MFF. The circles (joined by dotted lines)
are the exact values from the Fokker-Planck solution of (10), and the black dots
(joined by solid lines) are the approximate values from the particle filters.
5. Log-likelihoods L1: t versus time t for Experiment A with N = 104 samples:
(a) WRF , (b) EnKF, (c) MEF, (d) MFF. Symbols as in Figure 4.
6. Relative entropy for Experiment A with N = 102 samples: (a) EnKF, (b)
MEF, (c) MFF. The solid line is the approximation and the dashed line is the
exact result from the Fokker-Planck solution.
7. Relative entropy for Experiment A with N = 104 samples: (a) EnKF, (b)
MEF, (c) MFF. Symbols as in Figure 6.
8. Particle filter results for Experiment B with N = 102 samples: (a) WRF,
(b) EnKF, (c) MEF, (d) MFF. Symbols as in Figure 2.
9. Particle filter results for Experiment B with N = 104 samples: (a) WRF,
(b) EnKF, (c) MEF, (d) MFF. Symbols as in Figure 2.
10. Log-likelihoods L1: t versus time t for Experiment B with N = 102 samples:
(a) WRF , (b) EnKF, (c) MEF, (d) MFF. Symbols as in Figure 4.
11. Relative entropy for Experiment B with N = 102 samples: (a) EnKF, (b)
MEF, (c) MFF. Symbols as in Figure 6.
12. Relative entropy for Experiment B with N = 104 samples: (a) EnKF, (b)
MEF, (c) MFF. Symbols as in Figure 6.
13. (a) The Lorenz attractor and (b) scatterplot of samples from the mixture
model (M = 2), both projected to the xy-plane.
14. WRF results for x̄(t) in Experiment C. (a)N = 102, δN = 0.6, (b) N =
104, δN = 0.1, and (c) N = 102, δN = 0.1. Measurement data shown as circles,
mean as solid line, original solution trajectory as dot-dashed line.
15. WRF results for σx(t) in Experiment C. (a) N = 102, δN = 0.6, (b)
N = 104, δN = 0.1, and (c) N = 102, δN = 0.1. The conditional standard
deviation is plotted versus time as a solid line.
16. Approximate filter means x̄(t) for Experiment C with N = 102. (a) EnKF,
(b) MEF, and (c) MFF. Measurement data shown as circles, approximations as
solid lines, exact filter result (WRF) as dot-dashed line.
17. Approximate filter standard deviations σx(t) for Experiment C with N =
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102. (a) EnKF, (b) MEF, and (c) MFF. Approximations shown as solid lines
and exact filter result (WRF) as dot-dashed line.
18. Log-likelihoods L1: t versus time t for Experiment C with N = 102 samples:
(a) EnKF, (b) MEF, (c) MFF. The circles (joined by dotted lines) are the exact
values from the WRF method with N = 104, and the black dots (joined by solid
lines) are approximations from the other particle filters.
19. Entropy for Experiment C with N = 102. (a) EnKF; (b) MEF; and (c)
MFF; (d) Relative entropy of xy-marginals using WRF with N = 104.
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Table 1. Relative Mean Errors in Experiment A

(a) Filter Mean
N WRF EnKF MEF MFF
102 1.12297975 1.10542974 0.01507894 0.09369440
104 0.01067231 0.52647795 0.00187048 0.06703097

(b) Filter Standard Deviation
N WRF EnKF MEF MFF
102 0.03442152 0.03567663 0.03216601 0.57671912
104 0.02368712 0.01193383 0.00970724 0.54157417
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Table 2. Relative Mean Errors in Experiment B

(a) Filter Mean
N WRF EnKF MEF MFF
102 0.04648154 0.07271474 0.04568027 0.13560871
104 0.00739388 0.05204111 0.00687383 0.09932946

(b) Filter Standard Deviation
N WRF EnKF MEF MFF
102 0.08999746 0.18219459 0.08845087 0.404094241
104 0.01668710 0.15788042 0.01384682 0.379310678
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Table 3. Relative Mean Errors in Experiment C

(a) Filter Mean
N EnKF MEF MFF
102 0.65833419 0.44622136 0.64868442
104 0.54089056 0.41519496 0.62956885

(b) Filter Standard Deviation
N EnKF MEF MFF
102 1.48521106 1.52572389 3.28886961
104 1.43654565 1.63067845 3.28098684
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Figure 1: Exact steady state density for DW model, κ = 0.4 (dashed line) and
mixture model with M = 2 (solid line).
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Figure 2: Particle filter results for Experiment A with N = 102 samples: (a)
WRF, (b) EnKF, (c) MEF, (d) MFF. The circles represent measurements taken
from one sample path and the solid lines are the mean and ± standard deviations
of the approximate filters. The dashed lines are the mean and ± standard
deviations from the Fokker-Planck solution of (10).

51



0 5 10 15 20
−1.5

−1

−0.5

0

0.5

1

1.5

a
0 5 10 15 20

−1.5

−1

−0.5

0

0.5

1

1.5

b

0 5 10 15 20
−1.5

−1

−0.5

0

0.5

1

1.5

c
0 5 10 15 20

−1.5

−1

−0.5

0

0.5

1

1.5

d

Figure 3: Particle filter results for Experiment A with N = 104 samples: (a)
WRF, (b) EnKF, (c) MEF, (d) MFF. Symbols as in Figure 2.
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Figure 4: Log-likelihoods L1: t versus time t for Experiment A with N = 102

samples: (a) WRF , (b) EnKF, (c) MEF, (d) MFF. The circles (joined by dotted
lines) are the exact values from the Fokker-Planck solution of (10), and the black
dots (joined by solid lines) are the approximate values from the particle filters.
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Figure 5: Log-likelihoods L1: t versus time t for Experiment A with N = 104

samples: (a) WRF , (b) EnKF, (c) MEF, (d) MFF. Symbols as in Figure 4.
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Figure 6: Relative entropy for Experiment A with N = 102 samples: (a) EnKF,
(b) MEF, (c) MFF. The solid line is the approximation and the dashed line is
the exact result from the Fokker-Planck solution.
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Figure 7: Relative entropy for Experiment A with N = 104 samples: (a) EnKF,
(b) MEF, (c) MFF. Symbols as in Figure 6.
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Figure 8: Particle filter results for Experiment B with N = 102 samples: (a)
WRF, (b) EnKF, (c) MEF, (d) MFF. Symbols as in Figure 2.
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Figure 9: Particle filter results for Experiment B with N = 104 samples: (a)
WRF, (b) EnKF, (c) MEF, (d) MFF. Symbols as in Figure 2.
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Figure 10: Log-likelihoods L1: t versus time t for Experiment B with N = 102

samples: (a) WRF , (b) EnKF, (c) MEF, (d) MFF. Symbols as in Figure 4.
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Figure 11: Relative entropy for Experiment B with N = 102 samples: (a) EnKF,
(b) MEF, (c) MFF. Symbols as in Figure 6.
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Figure 12: Relative entropy for Experiment B with N = 104 samples: (a) EnKF,
(b) MEF, (c) MFF. Symbols as in Figure 6.
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Figure 13: (a) The Lorenz attractor and (b) scatterplot of samples from the
mixture model (M = 2), both projected to the xy-plane.
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Figure 14: WRF results for x̄(t) in Experiment C. (a)N = 102, δN = 0.6, (b)
N = 104, δN = 0.1, and (c) N = 102, δN = 0.1. Measurement data shown as
circles, mean as solid line, original solution trajectory as dot-dashed line.
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Figure 15: WRF results for σx(t) in Experiment C. (a) N = 102, δN = 0.6,
(b) N = 104, δN = 0.1, and (c) N = 102, δN = 0.1. The conditional standard
deviation is plotted versus time as a solid line.
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Figure 16: Approximate filter means x̄(t) for Experiment C with N = 102. (a)
EnKF, (b) MEF, and (c) MFF. Measurement data shown as circles, approxi-
mations as solid lines, exact filter result (WRF) as dot-dashed line.
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Figure 17: Approximate filter standard deviations σx(t) for Experiment C with
N = 102. (a) EnKF, (b) MEF, and (c) MFF. Approximations shown as solid
lines and exact filter result (WRF) as dot-dashed line.
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Figure 18: Log-likelihoods L1: t versus time t for Experiment C with N = 102

samples: (a) EnKF, (b) MEF, (c) MFF. The circles (joined by dotted lines)
are the exact values from the WRF method with N = 104, and the black dots
(joined by solid lines) are approximations from the other particle filters.
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Figure 19: Entropy for Experiment C with N = 102. (a) EnKF; (b) MEF; and
(c) MFF; (d) Relative entropy of xy-marginals using WRF with N = 104.
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