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ABSTRACT: This paper proposes a hierarchical, multi-resolution framework for the identification of model
parameters and their spatial variability from noisy measurements of the response or output. Such parameters
are frequently encountered in PDE-based models and correspond to quantities such as density or pressure fields,
elasto-plastic moduli and internal variables in solid mechanics, conductivity fields in heat diffusion problems,
permeability fields in fluid flow through porous media etc. The proposed model has all the advantages of tradi-
tional Bayesian formulations such as the ability to produce measures of confidence for the inferences made and
providing not only predictive estimates but also quantitative measures of the predictive uncertainty. In contrast
to existing approaches it utilizes a parsimonious, non-parametric formulation that favors sparse representations
and whose complexity can be determined from the data. The proposed framework is based on a novel, adap-
tive Sequential Monte Carlo scheme which is directly parallelizable and makes use of a sequence of forward
solvers operating at various resolutions. As a result, inexpensive, coarse solvers are used to identify the most
salient features of the unknown field(s) which are subsequently enriched by invoking solvers operating at finer
resolutions. This leads to significant computational savings particularly in problems involving computationally
demanding forward models but also improvements in accuracy.

1 INTRODUCTION

We consider phenomena described by a set of (cou-
pled) elliptic, parabolic or hyperbolic PDEs and asso-
ciated boundary (and initial) conditions:

A(y(x);f(x)) = 0, ∀x ∈ D (1)

whereA denotes the differential operator defined on a
domainD ∈ R

d , whered is the number of spatial di-
mensions.A depends on spatially varying coefficients
f(x), x ∈ D. Our primary interest is to identifyf(x)
from a set of (potentially noisy) measurements of the
responseyi = y(xi) at a number of distinct locations
xi ∈ D.

Two basic approaches have been followed in ad-
dressing problems of data-driven parametric identifi-
cation. On one hand, deterministic optimization tech-
niques which attempt to minimize the sum of the
squares of the deviations between model predictions
and observations. On the other hand, in recent years
significant attention has been directed towards sta-
tistical approaches based on the Bayesian paradigm
which attempt to calculate a (posterior) probability

distribution function on the parameters of interest
(Lee, Higdon, Bi, Ferreira, and West 2002, Kitanidis
1986, Liu, Bayarri, Berger, Paulo, and Sacks 2008).

The accuracy of the predictions of computational
models is greatly influenced by the the multiscale na-
ture of property variations and a lot of research efforts
have been devoted to the development of scalable,
black box simulators that provide the coarse-scale so-
lution while capturing the effect of fine-scale fluctua-
tions (Dolbow, Khaleel, and Mitchell 2004). The mul-
tiscale analysis of such systems inherently assumes
that the complete, fine-scale variation of various prop-
erties (or model parameters in general) is known. This
assumption limits the applicability of these frame-
works since it is usually not possible to experimen-
tally determine the complete structure of the medium
of interest at the finest scale. More often than not,
what is experimentally available and accessible, are
measurements of the response of these systems under
prescribed input or excitation, at spatial scales much
coarser than those of the property variations.

This limited and noisy information naturally intro-
duces a lot of uncertainty and necessitates viewing
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the property variation as a random field whose sta-
tistical properties must be consistent with the avail-
able data. Identification of spatially varying model pa-
rameters poses several modeling and computational
issues. Representations of the parametric fields in
existing approaches artificially impose a minimum
length scale of variability usually determined by
the discretization size of the governing PDEs (Lee,
Higdon, Bi, Ferreira, and West 2002). Furthermore,
they are associated with a very large vector of un-
knowns. Inference in high-dimensional spaces us-
ing standard optimization or sampling schemes (e.g.
Markov Chain Monte Carlo (MCMC)), is generally
impractical as it requires an exorbitant number of
calls to the forward simulator in order to achieve con-
vergence.

In the present paper we adopt a nonparametric,
Bayesian model which is independent of the grid
of the forward solver and is reminiscent of non-
parametric kernel regression methods. The unknown
parametric field is approximated by a superposition
of kernel-type functions centered at various locations.
The cardinality of the representation, i.e. the number
of such kernels, is treated as an unknown to be in-
ferred in the Bayesian formulation. This gives rise to a
very flexible model that is able to adapt to the problem
and the data at hand and find succinct representations
of the parametric field of interest. Prior information
on the scale of variability can be directly introduced
in the model.

Inference is performed using Sequential Monte
Carlo samplers. They utilize a set of random sam-
ples, named particles, which are propagated using
simple importance sampling, resampling and updat-
ing/rejuvenation mechanisms. The algorithm is di-
rectly parallelizable as the evolution of each particle is
by-and-large independent of the rest. The sequence of
distributions defined is based on using solvers that op-
erate on different resolutions and which successively
produce finer discretizations. This results in an effi-
cient hierarchical approach that makes use of the re-
sults from solvers operating at the coarser scales in
order to update them based on analyses on a finer
scale. The particulate approximations produced pro-
vide concise representations of the posterior which
can be readily updated if more data become available
or if more accurate solvers are employed.

2 METHODOLOGY

Without loss of generality, we postulate the existence
of a deterministic, forward model which in most cases
of practical interest corresponds to a Finite Element
or Finite Difference model of the governing differ-
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Figure 1. Hierarchy of solvers operating on different resolutions

ential equations. Naturally, forward models allow for
various levels of discretization of the spatial domain
and let r denote the resolution they operate upon
(largerr implies finer resolution). In this paper, for-
ward solvers are viewed asmessengers, that carry in-
formation about the underlying material properties as
they manifest themselves in the response (mechani-
cal, thermal etc) of the medium of interest. In general,
the finer the resolution of the forward solver, the more
information this provides. This however comes at the
expense of computational effort. It is not unusual that
the sufficient resolution of the property fluctuations
in many systems of practical interest requires several
CPU-hours for a single analysis. Despite the fidelity
and accuracy of such high-resolution solvers, they can
be of little use in the context of parameter identifica-
tion as they will generally have to be called upon sev-
eral times and several system analyses will have to be
performed.

Hence an accurate but expensivemessengeris not
the optimal choice if several pieces of information
need to be communicated. In many cases however,
the fidelity of the message can be compromised if
the expense associated with the messenger is smaller.
This is especially true if the loss of accuracy can
be quantified, measures of confidence can be pro-
vided and furthermore if it leads to the same deci-
sions/predictions. In this project we propose a consis-
tent framework for using faster but less-accurate for-
ward solvers operating on coarser resolutions in or-
der to expedite property identification. Furthermore
these solvers provide a natural hierarchy of mod-
els that if appropriately coupled can further expedite
the identification process. Following the analog intro-
duced earlier, we propose using inexpensive messen-
gers (coarse scale solvers), several times to communi-
cate the most pivotal pieces of information and more
expensive messengers (fine scale solvers) fewer times
to pass on some of the finer details (Figure 1).

In the remainder of this section, we discuss the
basic components of the Bayesian model proposed,
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with particular emphasis on the prior for the unknown
parametric fields. We then present (sub-section 2.3)
the proposed inference techniques for the determina-
tion of the posterior.

2.1 Likelihood Specification

Let F
r = {F r

i } : G → E denote the vector-valued
mapping implied by the forward model (operating at
resolutionr), which givenf(x) ∈ G (Equation (1))
provides the values of response quantities represented
by the datay = {yi} ∈ E . This function is the dis-
cretized version of the inverse of the differential oper-
atorA in Equation (1) parameterized byf(x). Each
evaluation ofF r for a specific fieldf(x) implies a
call to the forward solver (e.g. Finite Elements) that
operates on a discretization/resolutionr. In the pro-
posed framework, the functionF r will be treated as
a black box. Naturally data and model predictions
will deviate when the former are obtained experimen-
tally due to the unavoidable noise in the measure-
ments. Most importantly perhaps this deviation can be
the result of the model not fully capturing the salient
physics either because the governing PDEs are an ide-
alization or because of the discretization error in their
solution. We postulate the following relationship:

yi
︸︷︷︸

datum i

= F
(r)
i (f(x))

︸ ︷︷ ︸

model prediction

+e
(r)
i i = 1,2, . . . , n (2)

wheree
(r)
i quantify the deviation between model pre-

dictions and data, and which will naturally depend on
the resolutionr of the forward solver. The probabilis-
tic model forer

i in Equation (2) gives rise to thelikeli-
hood function. In the simplest case wheree

(r)
i are as-

sumed independent, normal variates with zero mean
and varianceσ2

r :

pr(yi | f(x), σr) ∝ 1
σr

exp{−1
2

“

yi−F
(r)

i (f(x))
”

2

σ2
r

}
and

pr(y | f(x), σr) ∝ 1
σn

r
exp{− 1

2σ2
r

∑n
i=1

(

yi − F
(r)
i (f(x))

)2

}
(3)

More complex models which can account for the
spatial dependence of the error varianceσ2

r or the
detection of events associated with sensor malfunc-
tions at certain locations, can readily be formulated.
In general the variancesσ2

r are unknown (particu-
larly the component that pertains to model error) and
should be inferred from the data. When a conjugate,
Gamma(a, b) prior is adopted forσ−2

r , the error vari-
ances can be integrated out from Equation (3) further

simplifying the likelihood:

Lr(f(x)) = p(y | f(x)) ∝

Γ(a + n/2)/

(

b + 1
2

∑n
i=1

(

yi − F
(r)
i (f(x)

)2
)a+n/2

(4)
whereΓ(z) =

∫ +∞

0
tz−1 e−t dt is the gamma function.

2.2 Prior Specification

The most critical component involves the prior speci-
fication for the unknown material properties as rep-
resented byf(x). In existing Bayesian (Wang and
Zabaras 2005), but also deterministic (optimization-
based), formulations,f(x) is discretized according to
the spatial resolution of the forward solver. For ex-
ample, in cases where finite elements are used, the
property of interest is assumed constant within each
element and therefore the vector of unknowns is of di-
mension equal to the number of elements. This offers
obvious implementation advantages but also poses
some difficulties since the scale of variability of ma-
terial properties is implicitly selected by the solver
rather than the data. This is problematic in several
ways. On one hand if the scale of variability is larger
than the grid, a waste of resources takes place, at the
solver level which has to be run at unnecessarily fine
resolutions, and at the level of the inference process
which is impeded by the unnecessarily large dimen-
sion of the vector of unknowns. Furthermore, as the
number of unknowns is much larger by comparison
to the amount of data it can lead toover-fitting. This
will produce erroneous or even absurd values for the
unknowns that may nevertheless fit perfectly the data.
Such solutions will have negligiblepredictive ability
and would be useless in decision making. On the other
hand, if the scale of variability is smaller than the grid,
it cannot be identified even if the solver provides suf-
ficient information for discovering this possibility.

In order to increase the flexibility of the model, we
base our prior models for the unknown field(s)f(x)
on a discretized extension of a convolution represen-
tation of a non-stationary Gaussian process.

f(x) = a0 +
k

∑

j=1

ajKj(x;xj, τj) x ∈ D (5)

where Gaussian isotropic kernels were used:

K(x;xj, τj) = exp{−τj ‖ x−xj ‖2} (6)

The parametersτj directly correspond to the scale of
variability of f(x). It should also be noted that other
functional forms (e.g. discontinuous) for the kernels
Kj can also be used on their own or in combinations

1022



to enrich the expressivity of the expansion in Equation
(5).

Such representations can be viewed as a radial basis
network as in (Tipping 2001). Furthermore by inter-
preting the kernels as basis functions, Equation (5) it
can be seen as an extension of the the representer the-
orem of Kimeldorf and Wahba (Kimeldorf and Wahba
1971). Overcomplete representations as in Equation
(5) have been advocated because they have greater ro-
bustness in the presence of noise, can be sparser, and
can have greater flexibility in matching structure in
the data (Lewicki and Sejnowski 2000).

An important improvement of the proposed formu-
lation is that we allow the size of the expansionk to
vary. It is obvious that such an assumption is consis-
tent with theprinciple of parsimony, which states that
prior models should make as few assumptions as pos-
sible and allow their complexity to be inferred from
the data. Hence thecardinality of the model, i.e. the
number of basis functionsk is the key unknown that
must be determined so as to provide a good interpre-
tation of the observables.

Independently of the form of the kernel adopted,
the important, common characteristic of all such ap-
proximations (as in Equation (5)) is that the field
representationdoes not depend on the resolution of
the forward model. The latter affects inference only
through the black-box functionsF r

i (Equation (2),
Figure 1)) as it will be illustrated in the sequence.

Due to space restrictions we briefly summarize the
parameters of the model and the prior distributions
used:

• k: the number of kernel functions. We employed
a Poisson distributionp(k | λ) = e−λ λk

k!
with an

exponential hyper-prior for the hyper-parameter
λ.

• {aj}k
j=1, the coefficients of the expansion

in Equation (5). A multivariate normal
N(0, σ2

a Ik+1) was used and a inverse-Gamma
hyper-prior for the hyper-parameterσ2

a.

• {τj}k
j=1 the precision parameters of each ker-

nel which pertain to the scale of the unknown
field(s). We employed independent Gamma pri-
ors:

p({τj}k
j=1 | k, aτ , bτ ) =

k
∏

j=1

baτ
τ

Γ(aτ )
τaτ−1
j exp(−bττj)

(7)
In order to automatically determine the mean of
the Gamma prior, we expressbτ = µjaτ whereµj

is a location parameter for which an Exponential
hyper-prior is used with a hyper-parameteraµ.

• {xj}k
j=1 the locations of the kernels which are

points inD for which a uniform distribution in
D was used.

Complete Model:
Letθk = {{aj}k

j=0,{τj}k
j=1,{xj}k

j=1} ∈Θk denote
the vector containing all the unknown parameters and
θ = (k,θk). Sincek is also assumed unknown and
allowed to vary, the dimension ofθk is variable as
well andΘk , (Rk+1 × (R+)k ×Dk. In 2D for ex-
ample and assuming a scalar unknown fieldf(x) in
the expansion of Equation (5) the dimension ofθk is
(k + 1) + k + 2k = 2 + 4k. Based on the aforemen-
tioned equations, the complete prior model is given
by:

p(θ | s, aτ , aµ, a0, b0) = 1
(s+1)k+1

×∏k
j=1

Γ(aτ+1)
Γ(aτ )

aaτ
τ

τ
(aτ−1)

j

1
aµ

1
(aτ τj+a−1

µ )(aτ +1)

× 1
(2π)(k+1)/2

Γ(a0+ k+1

2
)

(b0+ 1

2

Pk
j=0

a2

j)
a0+(k+1)/2

× 1
|D|

k

(8)

The combination of the priorp(θ) with the likeli-
hoodLr(θ) (Equation (4)) corresponding to a forward
solver operating on resolutionr, give rise to thepos-
terior densityπr(θ) which is proportional to:

πr(θ) = pr(θ | y) ∝ Lr(θ) p(θ) (9)

The support of the posteriorsπr lies on∪kmax

k=0 {k}×
Θk. Two important points are worth emphasizing.
Firstly, Equation (9) defines asequence of posterior
densities, each corresponding to a different likelihood
and a different forward solver of resolutionr. It is
clear that the black-box functionsF (r) appearing in
the likelihood in Equation (3) implydensermappings
for smallerr. This is because solvers corresponding to
coarser resolutions of the governing PDEs are more
myopic (compared to solvers at finer resolutions) to
small scale fluctuations of the spatially varying model
parametersf(x) (parameterized byθ). As a result the
likelihood functionsLr and the associated posteriors
πr will be flatter and have fewer modes for smaller
r. The task of identifying these posteriors becomes
increasingly more difficult as we move to solvers of
higher refinement (i.e. largerr). It is this feature that
we propose of exploiting in the next section in or-
der to increase the accuracy and improve on the effi-
ciency of the inference process. In addition, the poste-
riorsπr are only known up to a normalizing constant.
Each evaluation ofπr for a particularθ requires cal-
culatingF

(r) and therefore calling the corresponding
black-box solver. As each of these runs of the forward
solver may involve the solution of very large systems
of equations they can be extremely time consuming. It
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is important therefore to determineπr not only accu-
rately, but also with the least possible number of calls
to the forward solver. Since solvers corresponding to
coarser resolutions (smallerr) are faster, it would be
desirable to utilize the information they provide in or-
der to reduce the number of calls to more expensive,
finer resolution solvers.

2.3 Determining the Posterior - Inference

The posterior defined above is analytically in-
tractable. For that reason,Monte Carlomethods pro-
vide essentially the only accurate way to inferπr.
TraditionallyMarkov Chain Monte Carlotechniques
(MCMC) have been employed to carry out this task
(Higdon, Lee, and Bi 2002, Ferreira and Lee 2007).
These are based on building a Markov chain that
asymptotically converges to the target density (in this
caseπr) by appropriately defining a transition kernel.
While convergence can be assured under weak condi-
tions (Liu 2001), the rate of convergence can be ex-
tremely slow and require a lot of likelihood evalua-
tions and calls to the black-box solver. Particularly
in cases where the target posterior can have multi-
ple modes, very largemixing timesmight be required
which constitute the method impractical or infeasi-
ble. In addition, MCMC is not directly parallelizable,
unless multiple independent chains are run simulta-
neously and it can be difficult to design a good pro-
posal distribution when operating in high dimensional
spaces. More importantly perhaps, standard MCMC
is not capable of providing ahierarchical, multi-
resolutionsolution to the problem. Consider for ex-
ample, the case that several samples have been drawn
using MCMC from the posteriorπr1

corresponding to
a solver operating on resolutionr = r1. If samples of
the posteriorπr2

are needed, corresponding to a solver
of finer resolutionr2 > r1 but not significantly differ-
ent fromr1, then MCMC iterations would have to be
initiated anew. Hence there is no immediate way to
exploit the inferences made aboutπr1

even though the
latter might be quite similar toπr2

.
In this work we advocate the use ofSequential

Monte Carlotechniques (SMC). They represent a set
of flexible simulation-based methods for sampling
from a sequence of probability distributions (Doucet,
de Freitas, and Gordon 2001)). As with Markov Chain
Monte Carlo methods (MCMC), the target distribu-
tion(s) need only be known up to a constant. They uti-
lize a set of random samples (commonly referred to as
particles), which are propagated using a combination
of importance sampling,resampling and MCMC-
basedrejuvenationmechanisms (Del Moral, Doucet,
and Jasrau 2006, Del Moral, Doucet, and Jasra 2006).
Each of these particles, which can be thought of as a

π1(θ) π2(θ)
π12,γs1

(θ) π12,γs2
(θ)

coarse fine

bridging scales

θ

θθ

θ

γ0 = 0 γS = 1

γs1
= 0.25 γs2

= 0.75

Figure 2. Illustration of bridging densities as defined in Equation
(12) between posterior distributionsπ1(θ), π2(θ) corresponding
to different resolutions of the governing PDEs. These allow for
accurate and computationally efficient transmission of the infer-
ences made to finer scales.

possible configuration of the system’s state, is associ-
ated with animportance weightwhich is proportional
to the the posterior value of the respective particle.
These weights are updated sequentially along with the
particle locations. Hence if{θ(i)

r , w
(i)
r }N

i=1 represent
N such particles and associated weights for distribu-
tion πr(θ) then:

πr(θ) ≈
N

∑

i=1

W (i)
r δ

θ
(i)
r

(θ) (10)

where W
(i)
r = w

(i)
r /

∑N
i=1 w

(i)
r are the normalized

weights andδ
θ

(i)
r

(.) is the Dirac function centered at

θ
(i)
r . Furthermore, for any functionh(θ) which isπr-

integrable (Del Moral 2004):

N
∑

i=1

W (i)
r h(θ(i)

r ) →
∫

h(θ) πr(θ) dθ almost surely

(11)
The goal is to obtain samples from each of the pos-

terior distributions in Equation (9) corresponding to
solvers with increasingly finer spatial resolution of
the governing PDEs,r = r1, r2, . . . , rM wherer1 is
the coarsest torM the finest. For economy of nota-
tion we define the artificial posteriorπr0

(θ) = p(θ)
that coincides with the prior (which is common to all
resolutions and independent of the forward solver).
To demonstrate the proposed process it suffices to
consider a pair of these posterior densitiesπ1(θ) ∝
L1(θ) p(θ) andπ2(θ) ∝ L2(θ) p(θ) corresponding to
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forward solvers at two successive resolutionsri1 and
ri2 (Figure 2) and discuss the inferential transitions.
Let π12,γ(θ) denote a sequence of artificial, auxiliary
distributions defined as follows (γ∈ [0,1])):

π12,γ(θ) = π
(1−γ)
1 (θ) πγ

2 (θ) = L
(1−γ)
1 (θ) Lγ

2(θ) p(θ)
(12)

where γ plays the role ofreciprocal temperature.
Trivially for γ = 0 we recoverπ1 and forγ = 1, π2.
The role of these auxiliary distributions is tobridge
the gap betweenπ1 andπ2 and provide a smooth tran-
sition path where importance sampling can be effi-
ciently applied. In this process, inferences from the
coarser scale solver aretransferred and updatedto
conform with the finer scale solver. Starting with a
particulate approximation forπr0

(θ) = p(θ) (which
trivially involves drawing samples from the prior with
weightsw

(i)
0 = 1), the goal is to gradually update the

importance weights and particle locations in order to
approximate the target posteriors at various resolu-
tions. We have developed an adaptive SMC scheme
(summarized in Table 1) where the necessary number
of intermediate distributions is determined automati-
cally.

Adaptive SMC algorithm:

1. Fors = 0, let {θ(i)
0 , w

(i)
0 }N

i=1 be the initial partic-
ulate approximation toπ12,γ0

= π1 andESS0 the
associated effective sample size. Sets = 1.

2. Reweigh: Ifw(i)
s (γs) = w

(i)
s−1

π12,γs (θ
(i)
s−1

)

π12,γs−1
(θ

(i)
s−1

)
are the

updated weights as a function ofγs then deter-
mineγs so that the associatedESSs = ζESSs−1

(the valueζ = 0.95 was used in all the examples).
Calculatew(i)

s for thisγs.

3. Resample: IfESSs ≤ ESSmin then resample.

4. Rejuvenate: Use an MCMC kernelPs(., .) that
leavesπ12,γs

invariant to perturb each particle
θ

(i)
s−1 → θ

(i)
s

5. The current population{θ(i)
s ,w

(i)
s }N

i=1 provides a
particulate approximation ofπ12,γs

in the sense
of Equations (10), (11).

6. If γs < 1 then sets = s + 1 and goto to step 2.
Otherwise stop.

Table 1. Basic steps of theAdaptive SMC algorithm proposed

(a) 2D view (b) 3D view

Figure 3. Referenceσyield(x) field for Example A

3 NUMERICAL EXAMPLE

The method proposed is illustrated in a problem
from nonlinear solid mechanics using artificial data.
The governing PDEs are those of small-strain, rate-
independent, perfect plasticity with a von-Mises yield
criterion and associative flow rule (Simo and Hughes
2000). The field of interest in all the problems ex-
amined was the yield stressσyield(x) which was as-
sumed to vary spatially (Young’s modulusE = 1000
and Poisson’s ratioν = 0.3 were assumed known. A
square two-dimensional domainD = [0,1]× [0,1] un-
der plane stress conditions was considered and the
forward solvers were Finite Element models which
discretize the governing PDEs.

The adaptive SMC scheme (Table 1) withN = 100
particles was employed in the examples presented
with ζ = 0.95 andESSmin = N/2.

In order to generate datay, it was assumed that the
yield stress varied as follows (Figure 3):

logσyield(x) = −e−10 x2
−2 (y−1)2 − e−2 (x−1)2−10 y2

(13)
The nonlinear governing PDEs were solved using a

64× 64 uniform finite element mesh with the follow-
ing boundary conditions:

• vx = vy = 0 alongx = 0

• vx = −vy = 0.001 alongx = 1

The displacementsvx, vy at a regular grid consisting
of 72 points with coordinates(0.125 i, 0.125 j), for
i = 1, . . . ,8 andj = 0, . . . ,8 were recorded resulting
in n = 144 data points (as in Figure 3). The empir-
ical mean (of the absolute values) of these observa-
tionsµA was calculated and the recorded values were
contaminated by Gaussian noise of standard deviation
5% µA in order to obtain sets ofobservablesdenoted
by {yi}n

i=1 in our Bayesian model (Equation (2)). We
note that in this example the scale of variability of the
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Solver Degrees of Normalized
Computa-
tional

Resolution Freedom Time (Actual
in sec)

16× 16 510 1
156

(0.55)
32× 32 2,046 1

18
(4.8)

64× 64 8,190 1 (86)
Table 2. Computational cost of different resolution solvers for
Example A

unknown fieldσyield(x) is larger than the scale of ob-
servations, i.e. the grid size where displacements were
recorded.

Table 2 reports the number of degrees of freedom
per solver and the normalized computational time for
a single run w.r.t. the64 × 64 solver. Each finite ele-
ment was assigned a constant yield stress equal to the
average value inside the element. This is of course
inconsistent with the governing PDEs as the geome-
try of the variability plays a critical role for the ef-
fective properties of each element. It is easily under-
stood though that the corresponding posterior should
have some similarities arising from the mere nature of
their construction.

Figure 4 depicts the posterior quantiles obtained
when a sequence of3 solvers was used (16× 16,
32 × 32 and64 × 64). It is observed that even using
the coarsest solver (16× 16), we are able to correctly
identify some of the basic features of the underlying
field. The inferences are greatly improved as solvers
at finer resolutions are invoked. Results on the com-
putational effort are summarized in Table 3 which
reports theeffectivecomputational cost at the vari-
ous stages. The total number of calls was6,265 in
contrast to16,300 that were required only when the
finest solver was used (detailed results for this case
are omitted due to space limitations) . Figure 5 de-
picts the posterior densities of the inferred model er-
ror standard deviationsσr described in Equation (3).
It is readily seen that the proposed technique is able to
quantify the magnitude of the model error for solvers
of various resolutions. Furthermore for the reference
resolution64 × 64 it correctly detects that the error
contamination is of the level of5%µA.

4 CONCLUSIONS

A general Bayesian framework has been presented
for the identification of spatially varying model pa-
rameters. The proposed model utilizes a parsimo-
nious, non-parametric formulation that favors sparse
representations and whose complexity can be deter-
mined from the data. An efficient inference scheme

(a) Resolution 16 × 16 -
quantile5%

(b) Resolution 16 × 16 -
quantile95%

(c) Resolution 32 × 32 -
quantile5%

(d) Resolution 32 × 32 -
quantile95%

(e) Resolution 64 × 64 -
quantile5%

(f) Resolution64× 64 - quan-
tile 95%

Figure 4. Posterior quantiles at various solver resolutions for
yield σyield(x) Example A

Solver Number of
Bridging

Computational
Effort

Resolution Distributions (w.r.t. calls
to 64 × 64
solver)

16× 16 176 113
32× 32 73 452
64× 64 54 5,700

Total 6,265

Table 3. Computational cost for inferences. Note that the effec-
tive cost when using only the64× 64 solver was16,300
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Figure 5. Posterior densities of model error st. deviationsσr as
in Equation (3). The values onx-axis have been divided byµA

based on SMC has been discussed which is embar-
rassingly parallelizable and well-suited for detect-
ing multi-modal posterior distributions. The key el-
ement is the introduction of an appropriate sequence
of posteriors based on a natural hierarchy introduced
by various forward solver resolutions. As a result,
inexpensive, coarse solvers are used to identify the
most salient features of the unknown field(s) which
are subsequently enriched by invoking solvers oper-
ating at finer resolutions. The overall computational
cost is further reduced by employing a novel adaptive
scheme that automatically determines the number of
intermediate steps. The proposed methodology does
not require that Markov Chains using all the solvers
to be run simultaneously as in other multi-resolution
formulations. The particulate approximations provide
a concise way of representing the posterior which can
be readily updated if the analyst wants to employ for-
ward models operating at even finer resolutions or in
general more accurate solvers. The output of the infer-
ence algorithm provides estimates of the model error
or noise contained in the data. A feature that was not
explored in the examples presented is the possibility
of performingadaptive refinement, not for the pur-
poses of improving the forward solver accuracy but
rather for increasing the resolution of the unknown
fields. This can be achieved in two ways and is a di-
rect consequence of the ability of the proposed model
(and Bayesian models in general) to produce credible
intervals for the estimates made at each step. Hence in
regions where the variance of the estimates (or some
other measure of random variability) is high, the reso-
lution of the forward solver can be increased. Further-
more, additional measurements/data can be obtained
at these regions if such a possibility exists. Hence the
proposed framework allows for near-optimal use of
the computational resources and sensors available.
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