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Abstract

Statistical methods of inference typically require the likelihood function to be computable

in a reasonable amount of time. The class of “likelihood-free” methods termed Approximate

Bayesian Computation (ABC) is able to eliminate this requirement, replacing the evaluation

of the likelihood with simulation from it. Likelihood-free methods have gained in efficiency

and popularity in the past few years, following their integration with Markov Chain Monte

Carlo (MCMC) and Sequential Monte Carlo (SMC) in order to better explore the parameter

space. They have been applied primarily to the estimation of the parameters of a given

model, but can also be used to compare models.

Here we present novel likelihood-free approaches to model comparison, based upon the

independent estimation of the evidence of each model under study. Key advantages of these

approaches over previous techniques are that they allow the exploitation of MCMC or SMC

algorithms for exploring the parameter space, and that they do not require a sampler able to

mix between models. We validate the proposed methods using a simple exponential family

problem before providing a realistic problem from population genetics: the comparison of

different growth models based upon observations of human Y chromosome data from the

terminal generation.
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1 Introduction

Any Bayesian model criticism, averaging or selection problem involves the computation of

the posterior probabilities of the models under consideration up to a common normalizing

constant. Calculating the Bayes Factor, or relative posterior probability, is consequently of

rather broad interest (Kass and Raftery, 1995; Robert, 2001).

Let xobs denote some observed data. If a model M has parameter θ, then the model

evidence (also termed marginal likelihood or integrated likelihood) is defined as:

p(xobs|M) =
∫

θ

p(xobs|M, θ)p(θ|M)dθ (1)

To compare two models M1 and M2 one may compute the ratio of evidence of two

models, called the Bayes Factor:

B1,2 =
p(xobs|M1)
p(xobs|M2)

(2)

If we assign equal prior probabilities to the two models M1 and M2, then their posterior

odds ratio is equal to the Bayes Factor:

p(M1|xobs)
p(M2|xobs)

=
p(xobs|M1)
p(xobs|M2)

p(M1)
p(M2)

= B1,2 (3)

Jeffreys (1961) gave the following qualitative interpretation of a Bayes Factor: 1 to 3 is

barely worth a mention, 3 to 10 is substantial, 10 to 30 is strong, 30 to 100 is very strong

and over a 100 is decisive evidence in favor of model M1. Values below 1 take the inverted

interpretation in favor of model M2.

The many approaches to the estimation of Bayes Factors can be divided into two classes:

those that estimate a Bayes Factor without computing each evidence independently and

those that do involve such an explicit calculation. Without exhaustively enumerating these

approaches, it is useful to mention those which are of particular relevance in the present

context. In the first category we find the reversible jump technique of Green (1995), as well

as the methods of Stephens (2000) and Dellaportas et al. (2002). In the second category

we find the harmonic mean estimator of Newton and Raftery (1994) and its variations, the

method of Chib (1995), the annealed importance sampling estimator of Neal (2001) and the

power posteriors technique of Friel and Pettitt (2008).

Here we present a method for estimating the evidence of a model when the likelihood

p(xobs|M, θ) is not available in the sense that it either cannot be evaluated or such evaluation
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is prohibitively expensive. This difficulty arises frequently in a wide range of applications,

for example in population genetics (Beaumont et al., 2002) or epidemiology (Luciani et al.,

2009). The remainder of this article is organized as follows. Section 2 presents the general

likelihood-free techniques applied to the inference of parameters and summarizes previous

methods for the computation of Bayes Factor when the likelihood is not available. Section

3 introduces general methods for estimating the evidence of a model when the likelihood is

not available and a discussion of the impact of using a summary statistic in place of the data

as is usually done with ABC techniques with a particular focus on the model comparison

context. Section 4 presents two applications of our methods: a simple example where the

Bayes Factor can be computed analytically in order to validate and compare the proposed

methods, and a more realistic population genetics example.

2 Background

Performing inference in models for which the likelihood is not available or is not easily

calculable has received a great deal of attention in recent years. Approximate Bayesian

Computation provides the basis of most such inference and we summarize it briefly in Section

2.1 before outlining the approaches to model selection that are applicable in the absence of

explicit evaluation of the likelihood in Section 2.2.

2.1 Approximate Bayesian Computation for Parameter Estimation

Approximate Bayesian Computation is the name which has been given to techniques which

avoid evaluation of the likelihood by simulation of data from the associated model. It was

described in this form by Pritchard et al. (1999) although similar approaches were previously

discussed by (Tavare et al., 1997; Fu and Li, 1997; Weiss and von Haeseler, 1998). The main

focus of work in this area to date has been the estimation of model parameters. We begin

with a survey of the basis of these methods and the various computational algorithms which

have been developed for their implementation.

2.1.1 Basic ABC algorithm

When dealing with posterior distributions that are sufficiently complex that calculations

cannot be performed analytically, it has become common place to invoke Monte Carlo

approaches: drawing samples which can be used to approximate the posterior distribution

and using that sample approximation to calculate quantities of interest. One of the simplest
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methods of sampling from a posterior distribution p(θ|xobs) is to use rejection sampling,

drawing samples from the prior distribution and accepting them with a probability in

proportion to their likelihood:

Algorithm 1.

1. Generate θ∗ ∼ p(θ)

2. Accept θ∗ with probability proportional to p(xobs|θ∗) otherwise return

to step 1

This however requires the explicit evaluation of the likelihood p(xobs|θ) for every simu-

lated parameter value. Representing the likelihood as a degenerate integral:

p̂(xobs|θ) =
∫

p(x|θ)δxobs(dx)

suggests that it could be approximated by replacing the singular mass at xobs with a

continuous distribution (or a less concentrated discrete distribution in the case of discrete

observations) to obtain the approximation:

p̂(xobs|θ) =
∫

p(x|θ)πε(x|xobs)dx (4)

where πε(x|xobs) is a normalized kernel (ie. a probability density with respect to the same

measure as p(x|θ)) centered on xobs and with a degree of concentration determined by ε.

The approximation in Equation 4 admits a Monte Carlo approximation that is unbiased

(in the sense that no further bias is introduced by the use of this additional step). If

X ∼ p(x|θ) then the expectation of πε(X|xobs) is exactly p̂(xobs). One can view this

approximation in the following intuitive way:

Ex∼p(x|θ)(πε(x|xobs)) =
∫

x

πε(x|xobs)p(x|θ)dx

= Ex∼πε(x|xobs)(p(x|θ))

≈ p(xobs|θ) when ε is small. (5)

This approximate equality holds in the sense that under weak regularity conditions, for

sufficiently-small, positive ε the error due to the approximation is a small and monotonically

decreasing function of ε which converges as ε ↓ 0.

Using this approximation in place of the likelihood in the rejection sampling algorithm
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above results in the basic Approximate Bayesian Computation (ABC) algorithm:

Algorithm 2.

1. Generate θ∗ ∼ p(θ)

2. Simulate x∗ ∼ p(x|θ∗)
3. Accept θ∗ with probability proportional to πε(x∗|xobs) otherwise return

to step 1

Here and below we assume that the full data xobs is used in the inference. It is usually

necessary in real inference problems to make use of summary statistics (Pritchard et al.,

1999) which we discuss in Section 3.2 in a model comparison context.

If πε(x|xobs)dx has probability 1 at xobs then the algorithm is exact, but the acceptance

probability is zero unless the data is discrete. More formally one can argue that, although

the limit as ε ↓ 0 is well defined under reasonable conditions, the Dirac measure does not

admit a density with respect to the same dominating measure as the likelihood of any model

with continuous data. Any other choice of kernel results in an algorithm producing samples

from an approximation of the posterior distribution p(θ|xobs). For example, Pritchard et al.

(1999) and many later applications used a locally uniform density

πε(x|xobs) ∝




1 if D(x, xobs) < ε

0 otherwise.
(6)

where D(·, ·) is some metric and ε is a (small) tolerance value. Other choices for πε(x|xobs)

are discussed in Beaumont et al. (2002). It is interesting to note that the use of such an

approximate kernel πε in the ABC Algorithm 2 can be interpreted as exact sampling under

a model where uniform additive error terms exist (Wilkinson, 2008).

2.1.2 ABC-MCMC

Markov Chain Monte Carlo (MCMC, Gilks and Spiegelhalter 1996; Robert and Casella

2004) methods are a family of more sophisticated simulation algorithms intended to provide

sequences of dependent samples which are marginally distributed according to a distribution

of interest. Application of ergodic theory and central limit theorems justifies the use of

these sample sequences to approximate integrals with respect to that distribution. MCMC

is often considered in situations in which more elementary Monte Carlo techniques, such

as rejection sampling, are unable to provide sufficiently efficient simulation. In the ABC

context, if the likelihood is sharply peaked relative to the prior, then the rejection sampling
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algorithm described previously is likely to suffer from an extremely low acceptance rate.

MCMC algorithms intended to improve the efficiency of ABC-based approximations have

been developed.

In particular, Marjoram et al. (2003) proposed the incorporation of the ABC approxi-

mation of Equation 4 into an MCMC algorithm, resulting in the following algorithm:

Algorithm 3.

1. Initialize θ0

2. For i = 1, . . . , N

(a) Generate θ∗ ∼ M(θ|θi−1)

(b) Simulate x∗ ∼ p(x|θ∗)

(c) Draw u ∼ Unif([0, 1]), and set θi = θ∗ if D(xobs, x
∗) < ε and u <

p(θ∗)
p(θi−1)

M(θi−1|θ∗)
M(θ∗|θi−1)

, otherwise set θi = θi−1

This algorithm, like any standard Metropolis-Hastings algorithm requires a mutation

kernel M to propose new values of the parameters given the current values and accepts them

with appropriate probability to ensure that the invariant distribution of the Markov chain is

preserved. This algorithm can be interpreted as a standard Metropolis-Hastings algorithm

on an extended space. It involves simulating a Markov chain over the space of both parame-

ters and data, (θ, x), with an invariant distribution proportional to p(θ)p(x|θ)ID(xobs,x)<ε in

the usual way. At stationarity, the marginal distribution of θ is proportional to p(θ)p̂(xobs|θ)
in the notation of Equations 4 and 6. Marjoram et al. (2003) demonstrated that this MCMC

algorithm converges in an appropriate sense to the posterior distribution p(θ|xobs) as ε ↓ 0.

2.1.3 ABC-SMC

The Sequential Monte Carlo sampler (SMC sampler, Del Moral et al. 2006) is another Monte

Carlo technique which can be employed to sample from complex distributions. It can provide

an alternative to MCMC in some settings. It employs importance sampling and resampling

techniques in order to efficiently produce a (weighted) sample from a distribution or sequence

of distributions of interest. It is particularly well suited to situations in which successive

members of the sequence of distributions are increasingly concentrated.

In the ABC context, it is natural to consider the use of SMC techniques applied to

the joint distribution of (θ, x) in the same way as the ABC-MCMC algorithm. A natural

sequence of distributions is obtained by considering a decreasing sequence of values of ε.

Although such an approach may seem computationally costly, it does not require a successful
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local exploration of the final distribution in order to characterize it well and hence may

outperform MCMC in situations in which it is rather difficult to design fast-mixing transition

kernels.

Sisson et al. (2007) proposed the integration of the ABC approximation of Section 2.1

within an SMC sampler in the following manner:

Algorithm 4.

1. Set t = 1. For i = 1, . . . , N, sample θi
1 ∼ p(θ) and set wi

1 = 1/N.

2. Increment t = t + 1. For i = 1, . . . , N

(a) Generate θi
t ∼ Mt(θ|θi

t−1),

(b) Simulate x∗ ∼ p(x|θi
t)

(c) Compute

wi
t =

p(θi
t)πεt(x

∗|xobs)∑N
j=1 Mt(θi

t|θj
t−1)

(7)

3. If t < T, resample the particles in population t and return to step 2.

Unlike standard SMC algorithms this approach employs a Monte Carlo estimate of

an importance weight defined on only the marginal space at the current iteration. Such

strategies (which can be justified via Slutzky’s lemma, the delta method and appropriate

conditioning arguments — see, for example, Shao 1999) have been previously employed in

particle filtering (Klass et al., 2005) and come at the cost of increasing the computational

complexity from O(N) to O(N2).

There is no fundamental need to employ such a marginalization and a more standard

SMC algorithm could also be considered — this point was made explicitly by Del Moral

et al. (2008) who also developed adaptive versions of the algorithm. They proposed an

O(N) approach of the following form:
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Algorithm 5.

1. Set t = 1. For i = 1, . . . , N, sample θi
1 ∼ p(θ) and xi

1 ∼ p(x|θi
1) and set wi

1 =

πε1(x
i
1|xobs).

2. Increment t = t + 1.

3. If t > 2 For i = 1, . . . , N, Compute

wi
t−1 =

πεt(x
i
t−1|xobs)

πεt−1(xi
t−1|xobs)

4. Resample.

5. For i = 1, . . . , N:

Generate (θi
t, x

i
t) ∼ Mt(θ, x|θi

t−1, x
i
t−1),

6. If t < T, return to step 2.

In this case Mt is a MCMC kernel of invariant distribution proportional to p(θ)p(x|θ)πεt(x|xobs).

This can be achieved by using a move of the form employed in Algorithm 3. Using an MCMC

kernel can be advantageous when compared to a simple random walk kernel: when using

Algorithm 4, the addition of a random walk component to the sample at time t−1 produces

a sample which is necessarily more dispersed than the previous one in spite of our knowledge

that πεt is more concentrated; the possibility of rejection in the MCMC proposal can help

to alleviate this mismatch between proposal and target.

A number of other algorithmic improvements were also suggested by Del Moral et al.

(2008), including the simulation of multiple replicates of the data for each parameter value

(improving the associated likelihood estimate) and the adaptive selection of εt. As in any

SMC algorithm, it is not essential to resample during every iteration, although it may be

advisable to do so when employing a locally uniform kernel (Equation 6). There seems to

be no particular difficulty with incorporating these improvements when performing model

selection but this paper focuses on this simple version of the algorithm in the interest of

simplicity.

Both Algorithms 4 and 5 can be understood in the framework of Del Moral et al. (2006),

with appropriate choices of auxiliary kernel. In the case of Algorithm 4, the auxiliary kernel

is the sample approximation of the optimal kernel first proposed by Peters (2005). In the

case of Algorithm 5, this is the time reversal kernel associated with the MCMC kernel,

with the selection and mutation steps exchanged because the importance weight at time t

depends only upon the sample at time t− 1 when this approximation is employed.
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2.2 Existing methods for likelihood-free model selection

The ABC techniques described so far were designed to infer the parameters of a given

model. Methods to test the fit of a model without explicit comparison to other models

(i.e. Bayesian model criticism) have been proposed by Thornton and Andolfatto (2006) who

computed posterior predictive p-values (Meng, 1994), and by Ratmann et al. (2009) who

extended a model with additional error terms, the posterior distributions of which indicate

how good the fit is.

Model criticism and assessment of goodness-of-fit is important in its own right, but there

are situations in which comparison of the models within some class or averaging over a

collection of models is desirable (Robert et al., 2010). In these settings, the computation

of the posterior probabilities of these models, or at least their pairwise Bayes Factors is

necessary.

There have been some recent attempts to perform such calculations, by Monte Carlo

approximation, in a likelihood-free setting and these are summarized below. We briefly

discuss three such approaches below: one suitable for nested models which uses standard

parameter estimation techniques, one based upon basic ABC approximation of posterior

odds, and one for SMC.

2.2.1 Nested models

When the two models that we wish to compare are nested, the basic ABC Algorithm 2 and

its MCMC and SMC extensions can be used directly to estimate a Bayes Factor. This is

achieved by performing inference under the larger model, but placing half of the prior weight

on the subspace of the full parameter space which corresponds to the simpler model. This

technique was first used by Pritchard et al. (1999) to compare a population genetics model

in which the population size grows exponentially at rate r > 0 with the model with r = 0.

Given any two (or more) models, it is possible to embed them within a single metamodel.

This fact is used by many model comparison procedures and is exploited below. However, if

there is no natural relationship between the parameters of one model and those of the other

it is rather difficult to construct algorithms for parameter estimation within this metamodel.

2.2.2 The Method of Grelaud et al. (2009)

In order to compute the Bayes Factor of two models M1 and M2 with parameters θ1 and

θ2, Grelaud et al. (2009) considered the model M with parameters (m, θ1, θ2) where m is

uniformly distributed in {1, 2}, θ1 = 0 when m = 2 and θ2 = 0 when m = 1. In this way, both
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models M1 and M2 are nested within model M and each has equal prior weight 0.5 in model

M — actually, better exploration of the parameter space of the less probable model may

be achieved by using an instrumental prior which is biased in favour of it for computational

reasons; the Bayes Factor (and hence the posterior under any prior distribution) can trivially

be retrieved from the posterior model probabilities.

Algorithm 6.

1. Set M∗ = M1 with probability 0.5, otherwise set M∗ = M2

2. Generate θ∗ ∼ p(θ|M∗)

3. Simulate x∗ ∼ p(x|θ∗,M∗)

4. Accept (M∗, θ∗) if D(x, xobs) < ε otherwise return to step 1

The ratio of the number accepted samples for which M = M1 to those for which M = M2

when the above algorithm is run many times is an estimator of the Bayes Factor between

models M1 and M2. One drawback of this algorithm is that it is based on the ABC rejection

sampling Algorithm 2 and does not take advantage of the improved exploration of the

parameter space available in the ABC-MCMC Algorithm 3 or the ABC-SMC Algorithms 4

and 5.

2.2.3 The Method of Toni et al. (2009)

Toni et al. (2009) proposed a modification of the ABC-SMC algorithm presented in Section

2.1.3 in order to compute the Bayes Factor of two models M1 and M2. The basic idea once

again is to consider the model M as described above in which both models M1 and M2 are

nested, and to perform inference under M using the ABC-SMC algorithm.

The implementations described by Toni et al. (2009) and Toni and Stumpf (2010) do

not allow SMC particles to move from one model to another. Although the number of

particles associated with each model is random, no information is transferred from one

model to another. They attempt to stabilize the algorithm by preventing the samples

associated with any model from disappearing completely via a mutation of the marginal

model indicator. It does not seem obvious that there is a gain in efficiency, especially when

stability is considered, resulting from simultaneously dealing with more than one model if

information is not transferred between the sample representations of the two models.

On the other hand, allowing particles to move from one model to the other would require

the design of a complicated mutation kernel similar to that of a reversible jump MCMC

(Green, 1995, 2003) and this is further complicated in the ABC setting in which likelihoods
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are typically unavailable. Our approach below avoids these difficulties by computing the

evidence of each model separately.

3 Methodology

This section presents an approach to the direct approximation of model evidence, and

thus Bayes Factors, within the ABC framework. It is first shown that the standard ABC

approach can provide a natural estimate of the normalizing constant that corresponds to the

evidence of each model, and then algorithms based around the strengths of MCMC and SMC

implementation are presented. The role of summary statistics when applying ABC-based

algorithms to the problem of model selection is then discussed.

3.1 Estimation of model evidence

Just as in the standard parameter estimation problem, the following ABC approach to

the estimation of model evidence is based around a simple approximation. This approx-

imation can be dealt with directly via a rejection sampling argument which subject to

certain additional constraints leads to the approach advocated by Grelaud et al. (2009).

Considering a slightly more general framework and casting the problem as that of estimating

an appropriate normalizing constant allows the use of other sampling methods based around

the same distributions. We present two such approaches here, but note that in principle any

method of estimating normalizing constants that does not require explicit evaluation of the

likelihood could be employed.

3.1.1 Basic ABC setting

When the likelihood is available, the model evidence can be estimated using importance

sampling. Let q(θ) be a distribution of known density over the parameter θ which dominates

the prior distribution and from which it is possible to sample efficiently. Using the standard

importance sampling identity, the evidence can be rewritten as follows:

p(xobs) =
∫

θ

p(xobs|θ)p(θ)dθ =
∫

θ

p(xobs|θ)p(θ)
q(θ)

q(θ)dθ

≈ 1
N

N∑

i=1

p(xobs|θi)p(θi)
q(θi)

with θi ∼ q(θ) (8)
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where w(θi) = p(xobs|θi)p(θi)
q(θi)

is termed the weight of θi and Equation 8 shows that the

evidence can be estimated by the empirical mean of the weights obtained by drawing a

collection of samples from q. This approach provides an unbiased estimate of the normalizing

constant but requires the evaluation of the importance weights. This normally requires the

evaluation of the likelihood.

When the likelihood is not available, we can use the ABC approximation of Equation 4

in place of the likelihood in Equation 8 to obtain the following algorithm:

Algorithm 7.

1. For i = 1, . . . , N

(a) Generate θi ∼ q(θ)

(b) Simulate xi ∼ p(x|θi)

(c) Compute wi = πε(xi|xobs)p(θi)
q(θi)

2. Return 1
N

∑N
i=1 wi

In principle, the algorithm above can be used with any proposal distribution which

dominates the true distribution; in order to control the variance of the importance weights

it is desirable that the proposal should have tails at least as heavy as those of the target. One

possibility is to use the prior p(θ) as proposal distribution. In this case, the algorithm above

becomes similar to the ABC rejection sampling Algorithm 2 and the weights simplify into

wi = πε(xi|xobs). If πε(x|xobs) is taken to be an indicator function as in Equation 6, then the

result of the algorithm above is simply equal to the proportion of accepted values times the

normalizing constant of πε (which is easily computed, cf. Section 3.1.4). If this algorithm

is applied to two models M1 and M2 and the Bayes Factor B1,2 is formed, then the latter

is equal to the ratio of the number (or proportion if the two models are assigned unequal

prior probability) of accepted values under each model. This is equivalent to Algorithm 6.

This approach suffers from the usual problem of importance sampling from a posterior

using proposals generated according to a prior distribution (Kass and Raftery, 1995). If the

posterior is concentrated relative to the prior, most of the weights will be very small. In the

ABC context this phenomenon exhibits itself in a particular form: the θi will have small

probabilities of generating an xi similar to xobs and therefore most of the weights wi will be

small. Thus the estimate will be dominated by a few larger weights where θi happened to be

simulated from a region of higher posterior value, and therefore the estimate of the evidence

will have a large variance. Such a problem is well known when performing importance

sampling generally (Liu, 2001). In the scenario in which the likelihood is known this problem
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can be dealt with by employing an approximation of the optimal proposal distribution (see,

for example, Robert and Casella 2004). Unfortunately, it is not straightforward to do so in

the ABC context, which relies upon simulation from p(x|θ). To avoid this issue, we show

how the algorithm above can be applied to take advantage of the improvements in parameter

space exploration introduced by ABC-MCMC and ABC-SMC.

3.1.2 ABC-MCMC setting

Let θ1, . . . , θN denote the output from the ABC-MCMC Algorithm 3 so that they are

approximately drawn from p(θ|xobs,M). Let M denote a mutation kernel like the one

described in Section 2.1.2, let θ∗i be the result of applying M to θi and let q(θ) denote

the resulting distribution of the θ∗i . Then a Monte Carlo approximation of the unknown

marginal proposal distribution, q(θ), is given by:

q(θ) ≈ 1
N

N∑

j=1

M(θ|θj) (9)

Using this proposal distribution q(θ) in Algorithm 7 together with the estimate above for

its density leads to the following algorithm to produce an estimate of the evidence p(xobs|M)

from the output of the ABC-MCMC Algorithm 3:

Algorithm 8.

1. For i = 1, . . . , N

(a) Generate θ∗i ∼ M(θ|θi)

(b) Simulate x∗i ∼ p(x|θ∗i )

(c) Compute

wi =
p(θ∗i )πε(x∗i |xobs)
1
N

∑N
j=1 Mt(θ∗i |θj)

(10)

2. Return 1
N

∑N
i=1 wi

Equation 10 provides a consistent estimate of the exact importance weight. Therefore

Algorithm 8 is valid in the sense that under standard regularity conditions, it provides a

consistent estimate of the ABC approximation of the evidence discussed in the previous

section.
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3.1.3 ABC-SMC setting

The ABC-SMC Algorithms 4 and 5 produce weighted samples approximately from the

posterior p(θ|xobs,M). These samples could be resampled and Algorithm 8 could be applied

to produce an estimate of the evidence. However, like any SMC sampler, the ABC-SMC

algorithm produces a natural estimate of the unknown normalizing constant which in the

present case is the quantity which we seek to estimate. An indication of this is given by

the fact that Algorithm 8 to estimate evidence from a posterior sample takes a very similar

form to each step of the ABC-SMC Algorithm 4.

In particular, the weights estimated in Equation 7 of the ABC-SMC Algorithm 4 of

Sisson et al. (2007) are of the exact same form as those calculated in Equation 10. It is

therefore straightforward to obtain an estimate of the evidence (noting that this differs from

the MCMC version slightly in that in the SMC case the distribution of the previous sample

was intended to target πεt−1 rather than πεt):

p(xobs|M) ≈ 1
N

N∑

i=1

wi
T (11)

In contrast, the ABC-SMC Algorithm 5 of Del Moral et al. (2008) allows for the estima-

tion of the normalizing constant via the standard estimator:

p(xobs|M) ≈
T∏

t=1

1
N

N∑

i=1

wi
t (12)

Notice that the estimator in Equation 12 employs all of the samples generated within the

SMC process, not just those obtained in the final iteration as does Equation 11.

That SMC algorithms produce (unbiased) estimates of unknown normalizing constants

is widely known in the context of particle filtering (see Doucet and Johansen (2010) and

references within) and that the same property holds for general SMC samplers was noted

in Del Moral et al. (2006). Here we simply use this result in an ABC-SMC context. See

Del Moral (2004) for an explanation of the surprisingly well-behaved nature of this compound

estimator.

3.1.4 Normalizing constant of πε

We originally defined πε(x|xobs) as a normalized probability density centered on xobs. In the

classical ABC methods described in Section 2.1 where sampling of the parameters is the aim,

πε needs only to be known up to a multiplicative constant, which is why it is often defined so,
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for example in Equation 6. But in the algorithms above which are aimed at computing the

evidence of a model, it is necessary to know πε(x|xobs) including the multiplicative constant.

So if we write πε(x|xobs) = (1/Zε) · λε(x|xobs) where λε(x|xobs) is an unnormalized density,

we need to compute:

Zε =
∫

x

λε(x|xobs)dx (13)

If for example πε is an indicator function as in Equation 6, then the constant Zε is the

volume of the values of x that are accepted. It therefore depends on ε, n = dim(x) and

the metric D(., .) being used. If D(., .) is the Chebychev distance (as used for example

by Pritchard et al. 1999), then Zε is the volume of the hyper-cube of dimension n and

edge-length 2ε:

Zε = (2ε)n (14)

If on the other hand D(., .) is a Euclidian distance (as used for example by Beaumont

et al. 2002), then we have that Zε is the volume of the hyper-ball of dimension n and radius

ε:

Zε =
πn/2εn

Γ(n/2 + 1)
(15)

Zε can be easily computed for these and many other choices of kernel and the fact that

πε(x|xobs) needs to be known completely in the algorithms above aimed at estimating the

evidence of a model does not significantly complicate implementation. There is considerable

freedom available in the choice of πε and ensuring that the normalizing constant is available

is just an additional factor which can be included in the selection process. It is also worth

noting that if the evidence of two models is estimated using the same density πε and the

same value of ε, then Zε cancels out when forming the Bayes Factor of the two models.

3.2 Working with summary statistics

From the outset of ABC it has been acknowledged that it is not typically practical to consider

kernels defined directly upon the data space. If the data set is large then it is very unlikely

that two data sets generated, even with exactly the same parameters, will be close in every

particular. The approach which has been proposed to deal with this, since Pritchard et al.

(1999), is to employ summary statistics and to consider the difference between the summary

statistics of the observed data and those of the simulated data. Some difficulties with this
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approach in the context of model selection were identified by Grelaud et al. (2009); we

provide some additional discussion of this problem here.

3.2.1 Summary statistics in ABC

The ABC algorithms described in Section 2.1 were written as though the full data xobs was

being used and compared to simulated data using πε. In practice this is not often possible

because most data is of high dimensionality, and consequently any simulated data is, with

high probability, in some respect different from that which is observed. To deal with this

difficulty some summary statistic, s(xobs), is often used in place of the full data xobs in the

algorithms of Section 2.1, and compared to the corresponding statistics of the simulated

data. A first example of this is found in Pritchard et al. (1999).

Sufficient statistics are ubiquitous in statistics, but when considering model comparison

it is important to consider precisely what is meant by sufficiency. A summary statistic s is

said to be sufficient for the model parameters θ if the distribution of the data is independent

of the parameters when conditioned on the statistic:

p(x|s(x), θ) = p(x|s(x)) (16)

If s is sufficient in this sense, then substituting s(x) for x in the algorithms of Section

2.1 has no effect on the exactness of the ABC approximation (Marjoram et al., 2003). It

remains the case that the approximation error can be controlled to any level by choosing

sufficiently small ε. If the statistics are not sufficient then it introduces an additional layer

of approximation. A compromise is required: the simpler and lower the dimension of s the

better the performance of the simulation algorithms (Beaumont et al., 2002) but the more

severe the approximation.

3.2.2 Summary statistics in ABC for model choice

The algorithms in Section 3.1 intended for the calculation of Bayes Factors have also been

written assuming that the full data xobs is being used. For the same reasons as above, this

is not always practical and summary statistics often have to be used. If a summary statistic

s(xobs) is substituted for the full data xobs in the algorithms of Section 3.1, the result is that

they estimate p(s(xobs)|M) instead of the evidence p(xobs|M).

As s(xobs) is a deterministic function of xobs, the relationship between these two quan-

tities can be written as follows:
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p(xobs|M) = p(xobs, s(xobs)|M) = p(s(xobs)|M)p(xobs|s(xobs),M) (17)

Unfortunately the last term in Equation 17 is not readily computable in most models of

interest. Here we consider the conditions under which this does not affect the estimate of a

Bayes Factor. In general, we have:

B1,2 =
p(xobs|M1)
p(xobs|M2)

=
p(s(xobs)|M1)
p(s(xobs)|M2)

p(xobs|s(xobs), M1)
p(xobs|s(xobs), M2)

(18)

We say that a summary statistic s is sufficient for comparing two models, M1 and M2,

if and only if the last term in Equation 18 is equal to one, so that:

B1,2 =
p(s(xobs)|M1)
p(s(xobs)|M2)

(19)

This definition can be readily generalized to the comparison of more than two models.

When Equation 19 holds, the algorithms described in Section 3.1 can be applied using s(xobs)

in place of xobs for two models M1 and M2 to produce an estimate of the Bayes Factor B1,2

without introducing any additional approximation.

As was noted by Grelaud et al. (2009), it is important to realize that sufficiency for

M1, M2 or both (as defined by Equation 16) does not guarantee sufficiency for comparing

them (as defined in Equation 19). For instance, consider xobs = (x1, . . . , xn) where each

component is independent and identically distributed. Grelaud et al. (2009) consider models

M1 where xi ∼ Poisson(λ) and M2 where xi ∼ Geom(µ). In this case s(x) =
∑n

i=1 xi is

sufficient for both models M1 and M2, yet p(xobs|s(xobs),M1) 6= p(xobs|s(xobs), M2) and it

is apparent that s(x) is not sufficient for comparing the two models.

3.2.3 Finding a summary statistic sufficient for the model choice prob-

lem

A generally applicable method for finding a summary statistic s sufficient for comparing two

models M1 and M2 is to consider a model M in which both M1 and M2 are nested. Then

any summary statistic sufficient for M (as defined in Equation 16) is sufficient for comparing

M1 and M2 (as defined in Equation 19):
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p(x|M1) =
∫

θ

p(x|θ, M1)p(θ|M1)dθ =
∫

θ

p(x|θ, M)p(θ|M1)dθ

=
∫

θ

p(x|s(x), θ, M)p(s(x)|θ, M)p(θ|M1)dθ

= p(x|s(x),M)
∫

θ

p(s(x)|θ,M1)p(θ|M1)dθ

= p(x|s(x),M)p(s(x)|M1) (20)

Similarly p(x|M2) = p(x|s(x),M)p(s(x)|M2) and therefore:

p(x|M1)
p(x|M2)

=
p(x|s(x),M)p(s(x)|M1)
p(x|s(x),M)p(s(x)|M2)

=
p(s(x)|M1)
p(s(x)|M2)

(21)

which means that Equation 19 holds and therefore s is sufficient for comparing M1 and M2.

Note that this approach exploits the fact that under these circumstances the problem of

model choice becomes one of parameter estimation, albeit in a context in which the prior

distributions take a particular form which may impede standard approaches to computation.

Of course, essentially any model comparison problem can be cast in this form.

3.2.4 Summary statistics sufficient for comparing Gibbs Random Field

models

Grelaud et al. (2009) found that in the case of Gibbs Random Field models, the combination

of their sufficient statistics was sufficient for comparing them. Here we show how this result

is a special case of our method above. If M1 and M2 are Gibbs Random Field models, then

the likelihood under each model i = {1, 2} can be written as:

p(x|Mi, θi) ∝ exp(si(x)T θi) (22)

where si is a vector of sufficient statistics for model i.

Consider the extended model M with parameter (θ1, θ2) and likelihood:

p(x|M, θ1, θ2) ∝ exp
(
s1(x)T θ1 + s2(x)T θ2

)
(23)

If we take θ2 = 0 then M reduces to M1 and if we take θ1 = 0 then M reduces to M2.

Therefore both M1 and M2 are nested within M . If is furthermore clear from Equation 23

that the model M is a Gibbs Random Field model with sufficient statistic [s1(x), s2(x)]. By

applying the result of the previous Section, we therefore established that the combination of
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the sufficient statistics of two Gibbs Random Field models is sufficient for comparing them,

in agreement with Grelaud et al. (2009).

3.2.5 Summary statistics sufficient for comparing exponential family

models

We now consider the case where comparison is made between two models that are both

members of the exponential family. In this case, the likelihood under each model i = {1, 2}
can be written as:

p(x|Mi, θi) ∝ exp(si(x)T θi + ti(x)) (24)

where si is a vector of sufficient statistics (in the ordinary sense) for model i, θi the

associated vector of parameters and ti(x) captures any intrinsic relationship between model

i and its data which is not dependent upon its parameters. The ti(x) terms are important

when comparing members of the exponential family which have different base measures:

they capture the interaction between the data and the base measure which is, of course,

independent of the value of the parameters but is important when comparing models. It is

precisely this ti term which prevents statistics sufficient for each model from being adequate

for the comparison of the two models.

Consider the extended model M with parameter (θ1, θ2, α1, α2), where θ1 and θ2 are as

before and αi ∈ {0, 1}, defined via:

p(x|M, θ1, θ2, α) ∝ exp
(
s1(x)T θ1 + s2(x)T θ2 + α1t1(x) + α2t2(x)

)

∝ exp




[s1(x)T , s2(x)T , t1(x), t2(x)]




θ1

θ2

α1

α2







(25)

M reduces to M1 if we take θ2 = 0, α1 = 1, α2 = 0, and M reduces to M2 if we take θ1 = 0

and α1 = 0, α2 = 1. Thus both M1 and M2 are nested within M . It is furthermore clear

that the model M is an exponential family model for which S(x) = [s1(x), s2(x), t1(x), t2(x)]

is sufficient. Following the argument of Section 3.2.3, S(x) is a sufficient statistic for the

model choice problem between models M1 and M2 (as defined by Equation 19). Again, this

approach generalizes straightforwardly to the simultaneous comparison of more than two

models.
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4 Applications

4.1 Toy Example

4.1.1 The problem

It is convenient to first consider a simple example in which it is possible to evaluate the

evidence analytically in order to validate and compare the performance of the algorithms

described. We turn to the example described by Grelaud et al. (2009) in which the observa-

tions are assumed to be independent and identically distributed according to a Poisson(λ)

distribution in model M1 and a geometric(µ) distribution in model M2 (cf. Section 3.2.2).

The canonical form of the two models (as defined in Equation 24), with n observations, is:

p(x|θ1,M1) ∝ exp




n∑

j=1

xjθ1 −
n∑

j=1

log xj !


 (26)

p(x|θ2,M2) ∝ exp




n∑

j=1

xjθ2


 (27)

where θ1 = log λ and θ2 = log(1 − µ) under the usual parametrization. Hence, we can

incorporate both in a model of the form:

p(x|θ, α,M) ∝ exp


(θ1 + θ2)

∑

j

xj + α
∑

j

log xj !


 (28)

In this particular case θ1 and θ2 can be merged as they both multiply the same statistic. This

leads to the conclusion that (s1, t1) = (
∑

j xj ,
∑

j log xj !) is sufficient for comparing models

M1 and M2. Here
∑

j xj is a statistic suficient for parameter estimation in either model

whilst
∑

j log xj ! captures the differing probabilities of the data under the base measure of

the Poisson and geometric distributions.

We assign equal prior probability to each of the two models and complete their definition

by assigning an Exponential(1) prior to λ in model M1 and a Uniform([0,1]) prior to µ in

model M2. These priors are conjugate to the likelihood distribution in each model, so that

it is possible to compute analytically the evidence under each model:

p(x|M1) =
s1!

exp(t1)(n + 1)s1+1
(29)

p(x|M2) =
n!s1!

(n + s1 + 1)!
(30)
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Figure 1: Comparison of the exact and estimated values of the posterior probability p1 of model
M1 for each of the three estimation schemes for the example of Section 4.1.

4.1.2 Comparison of algorithms

In order to test our approximate method of model choice in this context, we generated

datasets of size n = 100 made of independent and identically distributed random variables

from Poisson(0.5). We generated 1000 such datasets, and used rejection sampling to ensure

uniform coverage of the range of p1 = p(x|M1)
p(x|M1)+p(x|M2)

from 0.01 to 0.99, to ensure that testing

is performed in a wide range of scenarios. For each dataset, we estimated the evidence of

the two models M1 and M2 using three different schemes:

1. The rejection Algorithm 7 using the prior for proposal distribution, N = 30, 000

iterations and tolerance ε. This is equivalent to using the algorithm of Grelaud et al.

(2009).

2. The MCMC Algorithm 3 run for N = 15, 000 iterations with tolerance ε followed by

Algorithm 8 to estimate the evidence.

3. The SMC Algorithm 4 run with N = 10, 000 particles and the sequence of tolerances

{3ε, 2ε, ε}, followed by Equation 11 to estimate the evidence.

Note that each of these three schemes requires exactly 30,000 simulations of datasets,

so that if simulation was the most computationally expensive step (as is ordinarily the case

when complex models are considered) then each of the three schemes would have the same

computational cost. Furthermore, we used the same tolerance ε = 0.05 in the three schemes

so that they are equally approximate in the sense of Equation 4. The main difference between

these three schemes therefore lies in how well they explore this approximate posterior, which

directly affects the precision of the evidence estimation.

Figure 1 compares the values of the posterior probability of model M1 being correct

p1 = p(x|M1)
p(x|M1)+p(x|M2)

computed exactly (using Equations 29 and 30) and estimated using
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Figure 2: Comparison of the exact and estimated values of the log- Bayes Factor for each of the
three estimation schemes for the example of Section 4.1.

each of the three schemes above. In each case the difference between exact and estimated

p1 tends to be higher when the models are equally valid (ie. around p1 = 0.5) and smaller

when one model is clearly favored. The estimates of p1 produced by the rejection scheme

are visibly less accurate than those produced by the MCMC or SMC schemes. The MCMC

scheme however seems to suffer from a few very poor estimates which can be linked with bad

convergence and mixing of the chain. The SMC scheme performs best and most consistently

overall.

Figure 2 compares the values of the log- Bayes Factor B1,2 = p(x|M1)
p(x|M2)

computed exactly

(using Equations 29 and 30) and estimated using each of the three schemes. All three

schemes perform best when the Bayes Factor is moderate in either direction. When one

model is clearly preferable to the other, all three methods become less accurate because the

estimate of the evidence for the unlikely model becomes more approximate. However, as

pointed out by Grelaud et al. (2009), precise estimation of the Bayes Factor is not important

when one model is clearly favored over the other since it does not affect the conclusion of

which model is correct. In cases where it is less clear which of the two models is correct

(for example where the log- Bayes Factor is between -2 and 2) the estimation of the Bayes

Factor is less accurate using the rejection scheme than using the MCMC or SMC schemes.

Figure 3 shows the log-ratio of the exact and estimated values of the Bayes Factor

represented as a boxplot for each of the three estimation schemes. The interquartile ranges

are 0.33 for the rejection scheme, 0.24 for the MCMC scheme and 0.23 for the SMC scheme.

It is therefore clear that both the MCMC and SMC schemes perform better at estimating

the Bayes Factor than the rejection scheme. This difference is explained by the fact that

the MCMC and SMC schemes explore the posterior distribution of parameter under each

model more efficiently than the rejection sampler, thus resulting in better estimates of the
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Figure 3: Boxplot of the log-ratio of the exact and estimated values of the Bayes Factor for
each of the three estimation schemes for the example of Section 4.1.

evidence of each parameter and therefore of the Bayes Factor. Because the example we

considered here is relatively simple, with only one parameter in each model, the rejection

scheme was still able to estimate Bayes Factors reasonably well (Figure 2). But for more

complex models where the prior distribution of parameters would be very diffuse relative

to their posterior distribution, the acceptance rate of a rejection scheme would become

very small for a reasonably small value of the tolerance ε (Marjoram et al., 2003; Sisson

et al., 2007). In such cases it becomes necessary to improve the sampling of the posterior

distribution using MCMC or SMC techniques. We also implemented a scheme based on

Algorithm 5 and Equation 12 (results not shown) which resulted in an improvement over

the rejection sampling scheme but which did not perform as well as the other schemes

considered. Due to the different form of the estimator used by this algorithm it is not

clear that this ordering would be preserved when considering more difficult problems. The

question of which sampling scheme provides the best estimates of evidence is of course

highly dependent on the problem and exact implementation details as it is when sampling

of parameters is the aim.
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Figure 4: Boxplot of the log-ratio of the exact and estimated values of the Bayes Factor in the
SMC scheme with 4 different values of the final tolerance ε for the example of Section 4.1.

4.1.3 Choice of the tolerance ε

A key component of any Approximate Bayesian Computation algorithm is the choice of the

tolerance ε (eg. Marjoram et al. 2003). If the tolerance is too small then the acceptance

rate is small so that either the posterior is estimated by only a few points or the algorithm

would need to be run for longer. On the other hand if the tolerance is too large then

the approximation in Equation 4 becomes inaccurate. We found that the choice of the

tolerance is also paramount when the aim is to estimate an evidence or a Bayes Factor.

Figure 4 shows the log-ratio of the exact and estimated values of the Bayes Factor for the

SMC scheme described above, using four different values of the final tolerance ε: 0.1, 0.075,

0.05 and 0.025 (similar results were obtained using the rejection and MCMC schemes). As

ε goes down from 0.1 to 0.05, the estimation of the Bayes Factor improves because each

evidence is calculated more accurately thanks to a more accurate sampling of the posterior.

However, the estimation of the Bayes Factor is less accurate when using ε = 0.025 than

ε = 0.05 because the number of particles accepted in each model becomes too small for the

approximation in Equation 8 to hold well.

It should be noted that all three techniques produce better estimates with greater

simulation effort. Figure 4 shows that ε = 0.05 performs best, but this is only true for
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the number of simulation (30,000) that we allowed. Using a larger number of simulations

allows both the use of a smaller ε, reducing the bias of the ABC approximation (although

in this simple example ABC bias is not large), and the use of a larger number of samples

which reduces the Monte Carlo error.

4.2 Application in population genetics

4.2.1 The problem

Pritchard et al. (1999) used an Approximate Bayesian Computation approach to analyze

microsatellite data from 8 loci on the Y chromosome and 445 human males sampled around

the world (Pérez-Lezaun et al., 1997; Seielstad et al., 1998). This data was also later

reanalyzed by Beaumont et al. (2002). The population model assumed by both studies

was the coalescent (Kingman, 1982a,b,c) with mutations happening at rate µ per locus per

generation. A number of mutational models were considered by Pritchard et al. (1999),

but here we follow Beaumont et al. (2002) in focusing on the single-step model (Ohta and

Kimura, 1973). Pritchard et al. (1999) used a model of population size similar to that

described by Weiss and von Haeseler (1998), where an ancestral population of previously

constant size NA started to grow exponentially at time tg generations before the present and

at a rate r per generation. Let M1 denote this model of population size dynamics. Thus

if t denotes time in generations before the present, the population size N(t|M1) at time t

follows:

N(t|M1) =





NA if t > tg

NAexp(r(tg − t)) if t ≤ tg

(31)

Pritchard et al. (1999) also considered a model where the population size is constant at

NA. This can be obtained by setting tg = 0 in Equation 31. The constant population size

model is therefore nested in the above model, which allows to perform model comparison

between them directly as described in Section 2.2.1 by performing inference under the larger

model with half of the prior weight placed on the smaller model, ie. tg = 0. Pritchard et al.

(1999) used this method and found strong support for the exponential growth model, with

a posterior probability for the constant model < 1%.

4.2.2 Algorithmic framework

Here we propose to reproduce and extend those results by considering other population size

models which are not necessarily nested into one another. Simulation of data under the
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coalescent with any population size dynamics can be achieved using the following algorithm

(Griffiths and Tavare, 1994):

Algorithm 9.

1. Start with k = n lineages at time t = 0

2. Increase t by an exponentially distributed amount of time with

parameter k(k−1)
2

3. Merge two lineages uniformly chosen at time t so that k := k−1 lineages

remain

4. If k > 1, go back to step 2

5. Rescale time according to the function N(t) of the population size in

the past

6. Add mutations on the branches of the tree at rate θ/2 = µN0 for each

locus

The first four steps correspond to simulation of a coalescent tree under a constant

population size model (Kingman, 1982a). Step 5 is described in detail for example by

Hein et al. (2005).

We summarize the data using the same three statistics as Pritchard et al. (1999), namely

the number of distinct haplotypes n, the mean (across loci) of the variance in repeat numbers

V̄ and the mean effective heterozygosity H̄. For the observed data, we find that n = 316,

V̄ = 1.1488 and H̄ = 0.6358. Beaumont et al. (2002) supplemented these with a number

of additional summary statistics but found little improvement. Note that the summary

statistics we use are not sufficient either for the estimation of the parameters of a given

model (ie. in the sense of Equation 16) or for the comparison of two models (ie. in the sense

of Equation 19). We will return to this difficulty in the discussion. We also use the same

definition of πε as Pritchard et al. (1999), namely an indicator function (Equation 6) with

a Chebyshev distance.

µ (×10−4) r (×10−4) tg NA (×103)
Prior Γ(10,8·10−5) Exp(0.005) Exp(1000) Log-N (8.5,2)

8 [4;14] 50 [1.3;180] 1000 [25;3700] 36 [0.1;250]
Pritchard et al. (1999) 7 [4;12] 75 [22;209] 900 [300;2150] 1.5 [0.1;4.9]
Beaumont et al. (2002) 7.2 [3.5;12] 75 [23;210] 900 [320;2100] 1.5 [0.14;4.4]

This study 7.4 [3.6;12] 76 [22;215] 920 [310;2300] 1.4 [0.08;4.4]

Table 1: Means and 95% credibility intervals for the estimates of the parameters of the model
M1 used by Pritchard et al. (1999) and defined by Equation 31.
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Pritchard et al. (1999) used the rejection Algorithm 1 to sample from the parameters

(µ, r, tg, NA) of their model (Equation 31) assuming the priors shown in Table 1. Beaumont

et al. (2002) repeated this approach, and found that they get ∼ 1600 acceptable simulation

when performing 106 simulations with ε = 0.1. We repeated this approach once again and

found that it took ∼600000 simulations to get 1000 acceptances, which is in accordance

with the acceptance rate reported by Beaumont et al. (2002). To generate this number of

simulations took ∼ 12 hours using our own implementation of Algorithm 9 on a modern

computer.

To reduce this computational cost, we implemented the SMC Algorithm 4 with the

sequence of tolerances {ε1 = 0.8, ε2 = 0.4, ε3 = 0.2, ε4 = 0.1}, and a requirement of

1000 accepted particles for each generation. The final generation therefore contained 1000

accepted particles for the tolerance ε = 0.1, making it comparable to the sample produced

by the rejection algorithm, with the difference that it only required ∼5% of the number of

simulations needed by the rejection algorithm. The results of this analysis are shown in

Table 1 and are in agreement with those of Pritchard et al. (1999) and Beaumont et al.

(2002).

4.2.3 Pure exponential growth model

As an alternative to the model M1 used by Pritchard et al. (1999), we consider a model

denoted M2 of pure exponential growth as used for example by Slatkin and Hudson (1991):

N(t|M2) = N0exp(−rt) (32)

This model has three parameters: the mutation rate µ, the current effective population

size N0 and the rate of growth r. We assume the same priors for µ and r as in the model M1

of Pritchard et al. (1999), and for N0 use the same diffuse prior as for NA in M1. Results for

inference under the pure exponential growth model M2 are shown in Table 2. The mutation

rate is found to be slightly smaller than in the model M1 of Pritchard et al. (1999), and

the rate of growth is approximately halved. The current effective population size is also

approximately half of that estimated under model M1 (which is equal to NAexp(r · tg) with

posterior mean 110 · 103).
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µ (×10−4) r (×10−4) N0 (×103)
Prior Γ(10,8·10−5) Exp(0.005) Log-N (8.5,2)

8 [4;14] 50 [1.3;180] 36 [0.1;250]
Posterior 8.9 [4.4;14] 41 [17;78] 61 [24;132]

Table 2: Means and 95% credibility intervals for the estimates of the parameters of the pure
exponential growth model M2 defined by Equation 32.

4.2.4 Model of sudden expansion

As a third alternative, we consider the model of sudden expansion (Rogers and Harpending,

1992) denoted M3 where tg generations back in time the effective population size suddenly

increased to its current size:

N(t|M3) =





N0 if t < tg

N0 · s if t ≥ tg

(33)

This model M3 has four parameters: the mutation rate µ, the current population size

N0, the time tg when the size suddenly increased and the factor s by which it used to be

smaller. The priors for µ, N0 and tg were as defined previously for models M1 and M2, and

for s we followed Thornton and Andolfatto (2006) in using a Uniform([0,1]) prior. Results

for inference under model M3 are shown in Table 3. The current effective population size

was very similar to that inferred under model M2. An increase of ∼40 fold in the effective

population was found to have occurred ∼18 kya (assuming a human male generation is 30

years, Wilder et al. 2004) which coincides roughly with the invention of agriculture.

µ (×10−4) s tg N0 (×103)
Prior Γ(10,8·10−5) Unif([0,1]) Exp(1000) Log-N (8.5,2)

8 [4;14] 0.5 [0.02;0.98] 1000 [25;3700] 36 [0.1;250]
Posterior 8.5 [4.1;14] 0.024 [0.003;0.07] 605 [133;1500] 67 [22;216]

Table 3: Means and 95% credibility intervals for the estimates of the parameters of the model
M3 defined by Equation 33.

4.2.5 Bottleneck model

Finally we consider a bottleneck model M4 as described by Tajima (1989) where the effective

population size was reduced by a factor s between time tg and tg + tb before the present:
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N(t|M4) =





N0 if t < tg

N0 · s if tg ≤ t < tg + tb

N0 if t ≥ tg + tb

(34)

This model has five parameters: the mutation rate µ, the current population size N0,

the time tg when the bottleneck finished, its duration tb and its severity s. The results for

inference under model M4 are summarized in Table 4. The duration tb of the bottleneck

was estimated to be quite high, so that coalescent events occurring before the start of the

bottleneck were very rare. For such high tb the bottleneck model M4 reduces approximately

to the sudden increase model model M3, which is a first indication that model M3 is preferred

over model M4.

µ (×10−4) s tg N0 (×103) tb

Prior Γ(10,8·10−5) Unif([0,1]) Exp(1000) Log-N (8.5,2) Exp(1000)
8 [4;14] 0.5 [0.02;0.98] 1000 [25;3700] 36 [0.1;250] 1000 [25;3700]

Posterior 9 [5;15] 0.016 [0.001;0.05] 781 [216;1732] 43 [19;89] 1709 [123;4812]

Table 4: Means and 95% credibility intervals for the estimates of the parameters of the model
M4 defined by Equation 34.

4.2.6 Comparison of models and consequences

For each of the 4 models described above, we computed the evidence using Equation 11

(excluding the multiplicative constant πε which is the same for all evidences since the same

tolerance and summary statistics were used). The Bayes Factors for the comparison of the

4 models are shown in Table 5. According to the scale of Jeffreys (1961) (cf. Introduction),

we have equivalently good fit to the data of models M1 and M2, substantial ground to reject

model M3 and very strong evidence to reject model M4. The fact that models M1 and M2

have a Bayes Factor close to 1 means that there is no evidence to support a period during

which the effective population size was constant (as assumed in the model of Pritchard et al.

1999) before it started its exponential growth.
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Figure 5: Plots of the posterior densities for the TMRCA under model M1 (black) and model
M2 (gray). The mean of each distribution is indicated by an arrow of the corresponding color.

M1 M2 M3 M4

M1 (Pritchard et al. 1999) 1.00 0.96 8.54 33.32
M2 (pure exponential growth) 1.04 1.00 8.92 34.80
M3 (sudden increase) 0.12 0.11 1.00 3.90
M4 (bottleneck) 0.03 0.03 0.26 1.00

Table 5: Bayes Factors for the comparison between models M1, M2, M3 and M4. The value
reported on the i-th row and the j-th column is the Bayes Factor Bi,j between models Mi and
Mj .

We estimated the time to the most recent common ancestor (TMRCA) of the human

male population by recording for each model the TMRCAs of each simulation accepted in

the last SMC generation. In spite of the fact that they fit equally well to the data, the models

M1 and M2 produce fairly different estimates of the TMRCA of the human male population

(Figure 5). The pure exponential growth model results in a point TMRCA estimate of 1600

generations which is almost half of the model of Pritchard et al. (1999) with an estimate

of 3000 generations. The TMRCA estimate under the pure exponential model is in better

agreement with the results based on different datasets of Tavare et al. (1997) and Thomson

et al. (2000).
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5 Discussion

We have presented a novel likelihood-free approach to model comparison, based on the

independent estimation of the evidence of each model. This has the advantage that it can

easily be incorporated within an MCMC or SMC framework, which can greatly improve the

exploration of a large parameter space, and consequently results in more accurate estimates

of evidence and Bayes Factor for a given computational cost. We also proposed a general

method for finding a summary statistic sufficient for comparing two models, and showed how

this could be applied in particular to models of the exponential family. Following this method

ensures that the only approximation being made comes from the use of the tolerance ε, and

the advanced sampling techniques that we use allow to reach low values of the tolerance in

much less time than would be needed using rejection sampling. We illustrated this point

on a toy example where marginal likelihoods can be computed analytically and sufficient

statistics are available.

However, for more complex models such as the ones we considered in our population

genetics application, sufficient statistics of reasonably low dimensionality (as required for

ABC to be efficient) are not available. In such situation one must rely on statistic that

are thought to be informative about the model comparison problem. This is analogous to

the necessity to use non-sufficient statistic in standard ABC (where sampling of parameters

is the aim) when complex model and data are involved (Beaumont et al., 2002; Marjoram

et al., 2003). New techniques have recently been proposed in this setting to help find

summary statistics that are close to sufficiency (Joyce and Marjoram, 2008; Fearnhead and

Prangle, 2010) and given the relationship that we established between sufficiency for model

comparison and sufficient for parameter estimation (cf. Section 3.2.3), these new techniques

should prove useful also in the likelihood-free model comparison context.

Although the proposed method inherits all of the difficulties of both ABC and Bayesian

model comparison based upon a finite collection of candidate models, the results of Section

4 suggest that when these difficulties (particularly the interpretation of the procedure,

the selection of appropriate statistics and the choice of prior distributions for the model

parameters) can be adequately resolved good results can be obtained by these methods.
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