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Abstract. In earlier works, we have developed a Monte Carlo
method to compute the first eigenvalue of linear operators, which
is based on the simulation of exit times. In this paper, we show how
to use a branching method to handle in a better way the simulation
of large exit times. We show furthermore that this new method
provides naturally an estimation of the first eigenfunction of the
adjoint operator. Numerical examples are given on the Laplace
operator and on homogeneous neutron transport operators.

1. Introduction

The first eigenvalue of the neutron transport operator and of diffu-
sion operator in a bounded domain gives often some relevant physical
information regarding the large time behavior of the solutions of the
associated Cauchy problems. In the case of diffusion operators (e.g.
Laplace), this eigenvalue determines the speed of convergence toward
the steady-state, which is the rate of absorption by the boundary in
the probabilistic framework. In addition, the first eigenvalue also ap-
pears in some problems related to stochastic analysis: See [DV76] or
[IW89, Chap. VI, § 8] for example. In the case of the neutron transport
operator, the sign of this first eigenvalue determines if the system is
sub-critical or super-critical [DL87b].

The numerical computation of the first eigenvalue and eigenfunction
by a deterministic method requires to handle very large matrices ob-
tained after a refined enough discretization of the operator. S. Maire
and D. Talay [MT06] have shown how to estimate the first eigenvalue
of the neutron transport operator by combining the Feynman-Kac rep-
resentation of the solution of the relative Cauchy problem and the
spectral expansion of its solution, following similar ideas in the field of
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2 A. LEJAY AND S. MAIRE

particles methods (see [Kal81] for example). In the case of homoge-
neous neutron transport operators, this method reduces to the compu-
tation of the first time τ a particle exits from the domain. The idea is
to estimate F (t) = Px[τ < t] when all the particles start from a single
point x and to use the approximation F (t) ∼ C exp(λ1t) for t large
enough where λ1 < 0 is the first eigenvalue sought. The eigenvalue λ1

is then evaluated using a linear regression. This method was adapted
to the Laplace operator in [LM07] and could be suitable for more gen-
eral diffusion operators. In opposite to the neutron transport problem
for which exact simulation schemes exist, the choice of a simulation
scheme is crucial in this case. In the paper [LM07], we have also pro-
moted the random walk on squares [MT99, CL02] and the random walk
on rectangles [DL06] methods as the best ones for a polygonal domain
D.

We consider the Cauchy problem

(1)
∂u(t, x)

∂t
= Au(t, x) + c(x)u(t, x) with u(0, ·) = u0

in a bounded domain D, where A is a linear operator with absorption
on ∂D and c appears to be a gain or loss factor. In both cases, the
solution u admits a Feynman-Kac representation

(2) u(t, x) = Ex

[
u0(Xt) exp

(∫ t

0

c(Xs) ds

)
1τ>t

]

where (X,Px) is the Markov process associated to the operator A and
τ = inf{t ≥ 0 |Xt 6∈ D} is the first exit time from D. For instance,
if A is the Laplace operator, i.e. A = 1

2
4, the process X is just

the Brownian motion. The processes related to transport operators
are described in Section 4. We consider only homogeneous neutron
transport problems, that is c is constant, and we choose u0 = 1. The
solution u writes

(3) u(t, x) = exp(ct)Px[t < τ ],

so that the value of u(t, x) can be deduced from the distribution func-
tion of the first exit time τ . In the case of the Laplace operator,
we also let u0 = 1 and we set c = 0, so that the solution is just
u(t, x) = Px[t < τ ].

From an analytical point of view, the operator A generates a semi-
group which has a density p(t, x, y) with respect to the Lebesgue mea-
sure, and the solution u to (1) with a constant factor c may be written

u(t, x) = exp(ct)

∫

D

p(t, x, y)u0(y) dy.

In both cases, an indirect application of the Krĕın-Rutman theorem
([DL87a, Appendix of Chap. VIII], [Pin96a]) implies that there exists
an eigenvalue λ1 such that any element λ of its spectrum has a real part
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A MONTE CARLO COMPUTATION OF THE FIRST EIGENELEMENT 3

smaller than λ1. In addition, this eigenvalue has multiplicity one and
its associated eigenfunction does not vanish on the open domain D.

Throughout this paper, we assume that when c is constant, the so-
lution u(t, x) may be expanded as

(4) u(t, x) = 〈ϕ∗1, u0〉ϕ1(x) exp((c + λ1)t) + R(t, x)

with R(t, x) = o(exp(λ1t)), 〈f, g〉 =
∫

D
f(x)g(x) dx, ϕ∗1 is the first

eigenfunction of the adjoint A∗ of A such that ϕ∗1 > 0 and 〈ϕ∗1, ϕ1〉 = 1,
and the initial condition u0 is in a reasonable space of functions that
contains the constant functions over the domain D. The expansion (4)
holds for most of neutron transport operators used in practice, for self-
adjoint operators with a compact resolvent such as the Laplace operator
on a bounded domain, and more generally, for a large class of diffusion
operators.

Using (3) and (4), the distribution function F (t) = Px[τ < t] of the
first exit time τ of D is then expanded as

F (t) = 1− Px[t < τ ] = 1− exp(−ct)(〈1, ϕ∗1〉 exp(λ1t)ϕ1(x) + R(t, x)).

The idea now is to approximate F (t) by an empirical distribution
function obtained by simulating the first exit time τ . Thus, we have
developed some statistical methods to get λ1 from this empirical dis-
tribution function.

The problems we get for estimating λ1 are the following: we need to
estimate F (t) for t > T with T large enough such that the approxima-
tion 1 − F (t) ' C exp((λ1 − c)t) is fair enough. On the other hand,
as we use an empirical distribution function FN(t) with N samples to
estimate F (t), the variance of log(1 − FN(t)) explodes as t → ∞. A
first idea is to estimate FN(t) at two times t0 and t1 [Mai01, MT06].
Another possible approach, developed in [LM07], is to find a window
[t0, t1] on which FN(t) is a good approximation of F (t) in [t0, t1]. A last
possibility is to note that for t > t0 and c = 0, the exit time τ from D
is distributed like an exponential random variable of parameter −λ1.
Standard estimators like the maximum likelihood can then be used.

The aim of this article is to improve the results of [MT06] and
[LM07]. We propose a variance reduction scheme on the empirical
approximation of F (t) which is very easy to implement. As a byprod-
uct of this method, we can also estimate the first eigenfunction ϕ∗1 of
the adjoint A∗ of A. As the Laplace operator is self-adjoint, this first
eigenfunction is also the first eigenfunction of 1

2
4. For the neutron

transport operator, the adjoint is also a neutron transport operator,
so that the first eigenvalue of A may be computed using our method
on A∗.

This new method is based on a branching mechanism which has
been used in many fields (see for example [DM04, DMG05, CDMLL06,
La06a, La06a], ...). As we are interested in the estimation of the as-
ymptotic behavior of F (t) when t is large, we may restrict ourselves to
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4 A. LEJAY AND S. MAIRE

estimate
F (t)− F (T )

1− F (T )
= Px[τ < t | τ ≥ T ]

for a fixed T > 0 and t ≥ T . We assume that we know the distribution
πT of the stochastic process XT starting at x. By the Markov property,
for t > T ,

Px[τ < t|τ ≥ T ] = PπT
[τ < t] =

∫

D

Py[τ < t] dπT (y).

The algorithm is the following: we fix T > 0 and we get an estimator
π̂T of πT using a Monte Carlo method. Then we simulate the first exit
time τ from D for the process X with π̂T as initial distribution, and we
compute λ1 using the methods previously discussed in [MT06, LM07].

The number of particles we use to estimate the empirical distribution
function of τ given {t > T} is the same as the number of particles
we use to estimate π̂T . This approach compensates the absorption of
particles by the boundary. We may need to estimate π̂T1 , ..., π̂Tk

at
some times T1 < . . . < TN using a branching mechanism at each of
these times in order to get a good approximation of π̂T . Not only this
provides a much better approximation of F (t) — up to multiplication
and additive constants — when t is large, but π̂T approximates the first
eigenfunction of A∗ when T is large enough.

2. Estimating the first eigenvalue and its associated
eigenfunction

The idea of the algorithm is to launch N particles starting at a given
point x up to a fixed time T1 and to record the positions of the particles
that are still alive at this time. Then, we start again simulating N par-
ticles using the empirical distribution of XT1 given {τ > T1} as initial
distribution. From the Markov property, the particles have a distribu-
tion close to Px[·|τ > T1]. We can then use several slices T2, . . . , Tk and
then get a good approximation of the behavior of the particle given
{τ > Tk}.
2.1. The algorithm. Our algorithm is the following

• Fix some times T0 = 0 < T1 < T2 < . . . < Tk, a number N of
samples and a point x ∈ D. Set π̂T0 = δx.

• For i from 0 to k − 1 do
– Using π̂Ti

as the initial distribution, simulate N indepen-
dent realizations {X(j)}j=1,...,N of X(Ti+1−Ti)∧τ , where τ is
the first exit time from D.

– Let N(i) be the subset of {1, . . . , N} of random variables
such that X(j) belongs to D. Set π̂Ti+1

= 1
|N(i)|

∑
j∈N(i) δX(j) .

• Using π̂Tk
as the initial distribution, simulate N realizations

{t(j)}j=1,...,N of the first exit time τ from D.
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A MONTE CARLO COMPUTATION OF THE FIRST EIGENELEMENT 5

• Estimate λ1 from {t(j)}j=1,...,N and estimate ϕ∗1 from the the
realizations {X(j)}j=1,...,N(i) of the position of XTi+1

.
Of course, the quality of the result is sensitive to the choices of

T1, . . . , Tk, N , and in a smaller way, to the starting point x. Yet, as we
have shown in [LM07], the quality of the method used to simulate τ
and Xt is one of the main concern for the precision of the estimators.

2.2. How to choose the final time slice? To get a good estimate of
the first eigenvalue, we should choose the times T1, . . . , Tk in an appro-
priate way, and Tk should be large enough. As it was already noted, the
distribution of (Xt+T )t≥0 for T large enough is essentially given by the
first eigenvalue and the first eigenfunction. In particular, the density
of XTi

given {Ti < τ} and XTi+1
given {Ti+1 < τ} tends to converge to

the first eigenfunction ϕ∗1 (normalized to be a density of probability).
One can then test the L2-difference between two successive densities.
A simpler criterion is obtained by setting

pi = P[τ > Ti+1|τ ≥ Ti] ' ϕ1(x)〈1, ϕ∗1〉 exp(λ1(Ti+1 − Ti))

when Ti is large and choosing the first i such that pi is close to pi+1.

2.3. Estimating the first eigenvalue from the empirical distri-
bution function. We present now few possible estimators of λ1 from
the simulated values of the first exit time τ .

(a) Interpolation method. This method is very simple. It was originally
introduced by one of the author in his thesis [Mai01, MT06] (see also
[LM07]). Given two times t0 and t1 > t0, we estimate F (t0) and F (t1)

from the Monte Carlo simulation, which gives F̂ (t0) and F̂ (t1). If t0
and t1 are large enough, then

λLI(t0, t1) =
1

t1 − t0
log

(
F̂ (t1)

F̂ (t0)

)

is an estimator for λ1. In addition, one can give a confidence interval
for λ1 [LM07].

(b) Least square estimators. We construct the empirical distribution

function F̂ (t) of F (t) for t large enough and then estimate log(1 −
F̂ (t)) ' K + λ1t using a least square method.

The error between log(1− F̂ (t)) and log(1−F (t)) is approximatively
given by

log(1− F̂ (t)) ' log(1− F (t)) +
η ◦ F−1(t)√
N(1− F (t))

,

where (η(t))t∈[0,1] is a Brownian bridge. A consequence of this compu-
tation is that we shall consider t in some interval [t0, t1] with t0 large
enough so that the first eigenvalue dominates in the approximation of
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6 A. LEJAY AND S. MAIRE

F (t), and t1 > t0 not too large to keep the variance of the last term
small.

Hence, we pick m points {θi}i=1,...,m in [t0, t1] and then we use the

(θi, log(1− F̂ (θi)))’s as the points to perform the linear regression. Of
course, this estimator depends on the choice of the θi. We have dis-
cussed in [LM07] how to choose the best estimator when relatively few
points are used (with respect to the number of bins of the histogram

used to construct F̂ ). Another possibility consists in using a linear

interpolation of the discretely known function F̂ and then to use many
points {θi}i=1,...,m. If we pick m random points {θi}i=1,...,m on [t0, t1],
then the least square estimator is very stable with respect to the choice
of the points when m is large (in our numerical example, we construct
our histograms with 1,000 bins and m = 10,000). Note that the vari-
ability of the estimator as a function of the choice of [t0, t1] is greater
than the variability given by the confidence interval for the slope of
the curve in the linear regression. The quality of the estimator may
be deduced from the quantity 1 − R2, where R2 is the coefficient of
determination.

(c) Maximum likelihood. For T large enough, Px[τ > t|τ > T ] '
C exp(λ1t). Then τ is an exponential random variable of parame-
ter −λ1 (see [BB96]). The density of τ given {τ > T} is p(t, λ) =
−λ exp(−λ(t− T )) with λ = λ1. Hence, it is possible to use the stan-
dard estimators of the parameter of an exponential distribution. A
natural estimator of λ1 is the maximum likelihood estimator, i.e., the
value λML which maximizes λ 7→ ∏M

i=1 p(τ (i), λ), where {τ (i)}i=1,...,M

are the values of τ greater than T , that is

λML = − M∑M
i=1(τ

(i) − T )
.

It is also a classical result that such an estimator is asymptotically
normal. In addition, the variance of this estimator is known to be
related to the Fisher information I(λ1) of the exponential distribution.

This means that
√

M(λML − λ1) converges to a normal distribution of
mean 0 and variance 1/I(λ1) with

I(λ) =

∫ +∞

T

(∂λp(t, λ))2

p(t, λ)
dt =

1

λ2
.

On this topic, see for example [Wil01].

(d) Other possible estimators. Other estimators have been proposed to
estimate the parameter of an exponential distribution : see for example
[RC93, GS99]. In the previously cited articles, the proposed estimators
are robust ones and then less sensitive to the presence of outliers than
the maximum likelihood.
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A MONTE CARLO COMPUTATION OF THE FIRST EIGENELEMENT 7

2.4. Estimating the first eigenfunction. When c = 0, comparing
(2) and (4) respectively with a general bounded, measurable function u0

and with the function u0 = 1 leads to

Ex[u0(Xt) | t < τ ] =
Ex[u0(Xt); t < τ ]

Ex[1; t < τ ]

=
〈u0, ϕ

∗
1〉ϕ1(x) exp(λ1t) + o(exp(λ1t))

〈1, ϕ∗1〉ϕ1(x) exp(λ1t) + o(exp(λ1t))
' 〈u0, ϕ

∗
1〉

〈1, ϕ∗1〉
when the time t is large enough. Thus, the density of the position Xt

given {t < τ} is ϕ∗1/〈1, ϕ∗1〉 for large t, assuming that ϕ∗1 > 0 in D (one
knows that ϕ∗1 keep a constant sign over D).

The simplest way to estimate the first eigenvalue ϕ∗1 of the adjoint
A∗ of A consists in constructing an histogram of the positions Xt at a
given time t for t large enough, for a sample of the surviving particles
at this time. A less trivial way is to construct ϕ∗1 as a superposition of
a distribution density — a kernel — around each simulated point (see
[Sil86] for example). This gives a more regular density. In the numer-
ical examples of Sections 3 and 4, we show that we can obtain good
approximations of this eigenfunction using each of the two methods.

With λ1, ϕ1 and ϕ∗1, we have a complete description of the solution
of the Cauchy problem in large times for every initial functions and any
point, as shown in the expansion (4). If the function ϕ1 is not com-
pletely known, we know at least the value of ϕ1 at the point where the
simulation starts. Then we can estimate the solution to the Cauchy
problem (4) at this point for any initial condition, when the time is
large. Our algorithm allows us to estimate ϕ∗1. In some cases, if A is
self-adjoint or if the domain and the operator presents some symme-
tries, one can deduces ϕ1 from ϕ∗1. More generally, for a wide class of
operators, it is still possible to apply our algorithm to the adjoint of A
to estimate ϕ1.

2.4.1. On the adjoint of homogeneous neutron transport operator. The
neutron transport operator is a particular class of transport operators
that particles submitted to collisions. The kind of operators we consider
here are of type

Au(x, v) =
d∑

i=1

vi
∂u

∂xi

(x, v) + ν

∫

V

π(x, v, v′)(u(x, v′)− u(x, v)) dv′,

where (x, v) ∈ D = S × V ⊂ Rd × Rd, ν ∈ R∗+ and π(x, v, ·) is a
distribution function on V for any (s, v) ∈ D. Thus, we simulate a
particle with position Xt and velocity Vt. When a collision occurs at
time t, the new velocity Vt+ of the particle is chosen randomly using
the density π(Xt, Vt, ·). The particle then moves with constant velocity
until the next collision that happens after an independent exponential
time of parameter ν.
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8 A. LEJAY AND S. MAIRE

Formally, the adjoint A∗ of A is

A∗u(x, v) = −
d∑

i=1

vi
∂u

∂xi

(x, v) + ν

∫

V

π(x, v′, v)(u(x, v′)− u(x, v)) dv′,

If π(x, ·, v) is also the density of a probability distribution, then one
easily obtain that the solution to

∂u(t, x, v)

∂t
= A∗u(t, x, v) on D with u(0, x, v) = u0(x, v)

is equal to û(t, x,−v) = u(t, x, v), where û is solution to

∂û(t, x, v)

∂t
= Âû(t, x, v) on D̂ with û(0, x, v) = u(x,−v)

with D̂ = S× (−V) and

Âu(x, v) =
d∑

i=1

vi
∂u

∂xi

(x, v) + ν

∫

−V

π̂(x, v, v′)(u(x, v′)− u(x, v)) dv′,

π̂(x, v, v′) = π(x,−v′,−v), (v, v′) ∈ (−V)2.

Hence, the first eigenfunction ϕ1 of A is also the first eigenfunction of
the adjoint of A∗, which may then be deduced from the first eigenfunc-

tion ϕ̂1 of Â by ϕ1(x, v) = ϕ̂1(x,−v).
Thus, under the assumption that π(x, v, ·) and π(x, ·, v) are proba-

bility densities — this hypothesis is really practical —, one can use our

algorithm on Â to get the first eigenfunction ϕ1 of A, as well as its first
eigenvalue. As we will see it in the examples, there are realistic cases
where one can deduce the first eigenfunction of A from the one of A∗

using symmetry arguments.

The first eigenvalue of Â is equal to the first eigenvalue of A, so that
taking the average of the two estimators for the first eigenvalue of A

and Â gives a slightly better approximation of this quantity.

2.4.2. On diffusion processes. Of course, if A is the Laplace operator
1
2
4, then ϕ∗1 = ϕ1 since A est self-adjoint. Thus, our algorithm gives

us directly the first eigenfunction of A.
We have also asserted in [LM07] that our approach can be used for

a more general diffusion process whose infinitesimal generator is

A =
1

2

d∑
i,j=1

ai,j
∂2

∂xi∂xj

+
d∑

i=1

bi
∂

∂xi

.

Although A is not self-adjoint in general, under mild regularity assump-
tions on the coefficients and the domain, it has a discrete spectrum and
there exists a real eigenvalue λ1 such that any other (possibly complex)
eigenvalue has a smaller real part: See [Pin96a] for example. In order
to compute the first eigenvalue of A, an appropriate simulation scheme
shall be used. The problem of obtaining a good approximation of the
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A MONTE CARLO COMPUTATION OF THE FIRST EIGENELEMENT 9

first exit time from a domain has given rise to a large literature: see
[MT99, Go00, JL05, BP06] for example.

The adjoint A∗ of A is given by

A∗ =
1

2

d∑
i,j=1

∂2

∂xi∂xj

(ai,j·)−
d∑

i=1

∂

∂xi

(bi·)

and our algorithm gives us directly the first eigenfunction ϕ∗1 of A∗.
The first eigenvalue of A∗ is also λ1. If one wishes to compute the first
eigenfunction ϕ1 of A, one can use that A∗∗ is equal to A and then, the
first eigenfunction of the adjoint of A∗ is ϕ1. If the coefficients a and b
are smooth enough, this operator A∗ may be written

A∗ =
1

2

d∑
i,j=1

ai,j
∂2

∂xi∂xj

+
d∑

i=1

βi
∂

∂xi

+ γ

with

βi =
1

2

d∑
j=1

∂ai,j

∂xi

− bi and γ =
1

2

d∑
i,j=1

∂2ai,j

∂xi∂xj

−
d∑

i=1

∂bi

∂xi

.

Note that if the coefficients are constant, then γ = 0, so that ϕ1 may
be computed by simulating the process associated to A∗.

We now deal with the case of a non-constant γ. The approach pre-
sented here can also be used to deal with a non-homogeneous cre-
ation/destruction rate c. Let L be the differential operator

L =
1

2

d∑
i,j=1

ai,j
∂2

∂xi∂xj

+
d∑

i=1

βi
∂

∂xi

so that A∗ = L + γ. Let us assume that γ is bounded by a constant α,
and let v be the solution to

∂v

∂t
= Lv + γv − αv with v(0, ·) = v0

with a Dirichlet boundary condition on the boundary of the cylinder
R+ × ∂D. The solution v may be represented by the Feynman-Kac
formula

v(t, x) = Ex

[
v0(Yt) exp

(∫ t

0

γ(Ys) ds− αt

)
; t < τ

]

where Y is the process generated by L. Let ζ be an exponential random
variable of parameter 1. Then v(t, x) may be written also

(5) v(t, x) = Ex

[
v0(Yt);

∫ t

0

γ(Ys) ds− αt > ζ and t < τ

]
.

On the other hand

(6) v(t, x) ' exp(λ∗1t)〈v0, ψ
∗
1〉ψ1(x) when t is large,
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10 A. LEJAY AND S. MAIRE

where λ∗1 is the first eigenvalue of A∗ − γ = L∗ − γ and ψ1 is its first
eigenfunction with 〈ψ1, ψ

∗
1〉 = 1. Let us note that ψ1 = ϕ∗1, ψ∗1 = ϕ1

and λ∗1 = λ1 − α. As above, we obtain from (5) and (6) that

〈v0, ϕ1〉
〈1, ϕ1〉 ' Px

[
v0(Yt)

∫ t

0

γ(Ys) ds− αt > ζ and t < τ

]

when t is large. Hence, a branching Monte Carlo may still be used. But
here, unless γ = 0, one needs also to compute the integral

∫ t∧τ

0
γ(Ys) ds

along the simulated paths of Y .
Computing numerically the first eigenvalue λ∗1 while estimating ϕ1

also helps us to improve slightly the estimation of λ1.

2.5. Estimating the second eigenvalue of the Laplace operator?
As the Laplace operator with a Dirichlet boundary condition is self-
adjoint, the spectrum {λk}k≥1 of 1

2
4 is countable, real and negative.

In addition,

(7) p(t, x, y) =
∑

k≥1

exp(λkt)ϕk(x)ϕk(y), t > 0, x, y ∈ D,

where we use the convention · · · ≤ λ3 ≤ λ2 < λ1 < 0 and the ϕk are the
normalized eigenfunctions associated to λk. The distribution function
F (t) = Px[τ < t] is given by the relation

1− F (t) = Ex[1; t < τ ] =

∫

D

p(t, x, y) dy =
∑

k≥1

e−λktϕk(x)

∫

D

ϕk(y) dy.

One may wonder whether or not it is possible to estimate — at least
roughly — the second eigenvalue with this algorithm, as the density
may be written

p(t, x, y) = eλ1tϕ1(x)ϕ1(y) + eλ2tϕ2(x)ϕ2(y) + r(t, x, y),

where e−λ2tr(t, x, y) decreases to 0 and both λ1 and ϕ1 are estimated
using the previous algorithm. Two methods appear to be natural.

(a) Substract to FN(t) the estimation of the quantity 1−exp(λ1t)ϕ1(x)〈ϕ1, 1〉
and estimate ϕ2〈ϕ2, 1〉 exp(λ2t) the same way λ1 was estimated.

Instead of starting from the point x, one may also look for a proba-
bility measure µ on D such that

∫
D

ϕ1(x) dµ(x) is as small as possible.
This is justified by

Pµ[T < τ ] =

∫

D

∫

D

p(t, x, y) dy dµ(x)

'
(∫

D

ϕ1 dµ

)
〈ϕ1, 1〉 exp(λ1t) +

(∫

D

ϕ2 dµ

)
〈ϕ2, 1〉 exp(λ2t).

The effect is then to increase the relative importance of the second
eigenvalue while approximating Pµ[T < τ ].
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A MONTE CARLO COMPUTATION OF THE FIRST EIGENELEMENT 11

(b) Create a function ϕ⊥1 orthogonal with respect to the L2(D) scalar
product. If ‖ϕ1‖L2(D) = 1, then ϕ⊥1 = 1 − (∫

D
ϕ1(y) dy

)
ϕ1 is such a

function. Then evaluate the quantities

vi = Ex[ϕ
⊥
1 (XTi

); Ti < τ ] ' exp(λ2Ti)ϕ2(x)〈ϕ2, ϕ
⊥
1 〉

for i = 1, 2, where T1 and T2 are two times not too large. Then set
λ2 = (T1 − T2)

−1 log(v1/v2).

On the test cases of Section 3, we have performed numerical exper-
iments for both methods. Unfortunately, none of these methods has
provided a stable enough estimator of λ2.

3. Numerical examples on the Laplace operator

In this Section, we give two numerical examples related to the Laplace
operators. The first test case is just a rectangle, where the eigenvalues
and the eigenfunctions are explicitly known. This case gives us the
inherent limit of the implementation of the Monte Carlo method: One
cannot expect to get a better precision for a general case than for this
case with the same number of samples. The second one has a slightly
more complicated geometry and has been already studied in [LM07].

In the sequel, we denote by λML the maximum likelihood estimator.
The width of the 90 % confidence interval is 2λ1

√
1.64/

√
M , where M is

the number of samples used to compute the maximum likelihood. We
denote by λLS(t0, t1) the least square estimator on the time interval
[t0, t1] and a large set of points (m = 10,000).

3.1. Case of a rectangle. The eigenvalues and eigenfunctions of 1
2
4

are explicitly known when D is the rectangle [−L,L]× [−`, `]. We have
for any integers n,m ≥ 1,

λn,m =
1

2

((nπ

2L

)2

+
(mπ

2`

)2
)

and ϕn,m(x, y) = sin
(nπ

2L
(x + L)

)
sin

(nπ

2`
(y + `)

)
.

We consider the rectangle D = [−2, 2] × [−3/2, 3/2] for which the
first eigenvalue λ1,1 is −0.856735. In order to optimize the estimation
of λ1,1.

We perform five scenarios with N particles each. The results are
summarized in Table 1. Except in Case (b), the particles start from
the center of the rectangle in order to get a high number of living
particles at time T1.

We use several slices at times Ti, and we compute the empirical
distribution function ψi of XTi

obtained from the samples. To construct
these functions, we use an histogram of cells of size 0.01 × 0.01. The
functions ψi are normalized to have a L2-norm equal to 1. In all cases,
the L2-norm of the difference between ψi and the adequately normalized
eigenfunction ϕ1,1 is around 0.5.
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12 A. LEJAY AND S. MAIRE

Simulation (a). We do not use the branching algorithm, so that we
keep only the first exit times that are larger than 2.

Simulation (b). In order to get a comparison between the use of the
empirical distribution function of XT for T large enough instead of the
density ϕ1,1/

∫
D

ϕ1,1, we draw randomly the starting point according
to the probability law µ with density ϕ̂ = ϕ1,1/

∫
D

ϕ1,1. With this
initial distribution µ, since the eigenfunctions are orthogonal, let us
note that Pµ[τ > t] = exp(λ1t), so that τ is exactly an exponential
random variable of parameter −λ1.

Simulation (c). We use only one time slice at T1 = 2. The probability
that the particle is alive at time T1 is p1 = 19.2%.

Simulation (d). We use the time slices T1 = 2 and T2 = 4. The
probabilities of survival pi at time Ti are p1 = 19.2%, p2 = 5.2%.

Simulation (e). We use the time slices T1 = 2, T2 = 4 and T3 = 6.
The probabilities of survival pi at time Ti are p1 = 19.2%, p2 = 5.2%,
p3 = 0.9%.

3.2. A 2-dimensional test case. Our estimation algorithm was pre-
sented in [LM07] on a 2-dimensional test case, which is the domain
presented in Figure 1. The results are then compared with the ones
obtained with the pdetool package from Matlab. Using a very fine
mesh, this deterministic solver gives the value λ1 = 0.73952. Our nu-
merical results are given in Table 2.

Simulation (a). Here, there is no branching. For the Maximum likeli-
hood estimator, we keep only the values of τ that are greater than 2,
which means that we use only 36 % of the particles.

Simulation (b). We use only a time slice at T = 2. Regarding the first
eigenvalue, we compute ϕ1 at time T with an histogram with square
cell 0.05 × 0.05, which we compare with the eigenfunction given by
Matlab. The L2-norm of the difference between these two functions
is 0.1.

Simulation (c). We use two time slices at T1 = 2 and T2 = 4. The
proportion of particles remaining at the first slice is p1 = 36% and at
the second slice is p2 = 8%. The L2-norm of the difference between the
eigenfunction given by the Monte Carlo Method at time T = 4 and the
one given by the finite element method is 0.1.
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A MONTE CARLO COMPUTATION OF THE FIRST EIGENELEMENT 13

Estimator value 1−R2

Exact value −0.856735
Simulation (a) N = 106, θ = 1 unit

λML (τ ≥ 2) −0.8525± 2.5 · 10−3

λLS(2, 4) −0.8527 2 · 10−6

λLS(2, 6) −0.8518 3 · 10−6

λLS(2, 8) −0.8521 2 · 10−5

Simulation (a) N = 107, θ = 10 unit
λML (τ ≥ 2) −0.8554± 8 · 10−4

λLS(2, 4) −0.8553 5 · 10−7

λLS(2, 6) −0.8569 8 · 10−6

λLS(2, 8) −0.8580 6 · 10−6

Simulation (b) N = 106, θ = 3.5 unit
λML (τ ≥ 0) −0.8570± 1.1 · 10−3

λLS(0, 2) −0.8571 2 · 10−6

λLS(0, 4) −0.8588 4 · 10−6

λLS(0, 6) −0.8564 7 · 10−6

λLS(0, 8) −0.8556 15 · 10−6

Simulation (c) N = 106, θ = 3 unit
λML (τ ≥ 2) −0.8564± 10−3

λLS(2, 4) −0.8568 6 · 10−6

λLS(2, 6) −0.8571 7 · 10−7

λLS(2, 8) −0.8615 6 · 10−5

Simulation (d) N = 106, θ = 4.5 unit
λML (τ ≥ 4) −0.8577± 10−3

λLS(4, 6) −0.8567 1.2 · 10−6

λLS(4, 8) −0.8577 1.4 · 10−6

λLS(4, 10) −0.8549 7.0 · 10−6

Simulation (e) N = 106, θ = 6 unit
λML (τ ≥ 6) −0.8564± 10−3

λLS(6, 8) −0.8573 4 · 10−7

λLS(6, 10) −0.8565 9 · 10−7

λLS(6, 12) −0.8569 2.6 · 10−6

Table 1. Estimation of the first eigenvalue of the rec-
tangle using a sample size N . The quantity θ gives the
relative execution time.

4

3

1

1

2

1

1

3

Figure 1. A 2-dimensional domain. The dot repre-
sents the starting point.
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14 A. LEJAY AND S. MAIRE

Reference value −0.73952
Estimator value 1−R2

Simulation (a) N = 106, θ = 1 unit
λML (τ ≥ 2) −0.7373± 1.5 · 10−3

λLS(2, 4) −0.7403 2.0 · 10−5

λLS(2, 6) −0.7381 1.1 · 10−5

λLS(2, 8) −0.7378 1.5 · 10−5

Simulation (a) N = 107, θ = 10 unit
λML (τ ≥ 2) −0.7374± 0.5 · 10−3

λLS(2, 4) −0.7397 2.7 · 10−6

λLS(2, 6) −0.7387 0.8 · 10−6

λLS(2, 8) −0.7367 5.5 · 10−6

Simulation (b) N = 106, θ = 2.5 unit
λML (τ ≥ 2) −0.7378± 0.9 · 10−3

λML (τ ≥ 3) −0.7373± 1.3 · 10−3

λLS(2, 4) −0.7366 1.0 · 10−6

λLS(2, 6) −0.7378 7 · 10−7

λLS(3.5, 5.5) −0.7390 8 · 10−7

λLS(2, 8) −0.7392 1.2 · 10−6

Simulation (c) N = 106, θ = 4.2 unit
λML (τ ≥ 4) −0.7389± 0.9 · 10−3

λML (τ ≥ 5) −0.7389± 1.3 · 10−3

λLS(4, 6) −0.7396 1.9 · 10−6

λLS(4, 8) −0.7391 1.5 · 10−6

λLS(4, 10) −0.7375 3.5 · 10−6

Table 2. Estimation of the first eigenvalue of the 2d-
test case using a sample size N . The quantity θ gives the
relative execution time.

Remark 1. Let us note that with (7), if one knows λ1 and ψ1, then
one can approximate the density p(t, x, y) of the Laplace operator as
p(t, x, y) = exp(λ1t)ϕ1(x)ϕ1(y) for t large enough. This gives a large
time approximation of the solution of the Cauchy problems

∂u(t, x)

∂t
=

1

2
4u(t, x) with u(0, x) = u0(x)

for any function u0, since u(t, x) =
∫

D
p(t, x, y)u0(y) dy.

4. Numerical examples on Neutron transport operators

4.1. The Lehner-Wing model.

4.1.1. Description and stochastic representation. We study the Cauchy
problem

∂u

∂t
= −v

∂u

∂x
− u(t, x, v) +

c

2

∫

V

u(t, x, v′) dv′
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A MONTE CARLO COMPUTATION OF THE FIRST EIGENELEMENT 15

with initial conditions u(x, v, 0) = 1 and absorption boundary condi-
tions. The spatial domain is S =]0, d[, the velocity domain is V =
] − 1, 1[ and c is a positive constant. This model is homogeneous and
isotropic and we rewrite it as

(8)
∂u

∂t
= Au(t, x, v) + (c− 1) u(t, x, v)

with

Au = −v
∂u

∂x
+ c

{
1

2

∫

V

u(t, x, v′) dv′ − u(t, x, v)

}

to give the stochastic representation of its solution. Let us consider the
velocity (Vt)t≥0 of a particle with collisions at random times. After a
collision, the velocity has a uniform distribution on V. The cumulative
distribution of the time between two collisions is

1− exp

[
−

∫ t

0

c ds

]
= 1− exp (−ct) .

The process we consider now is solution (Xt, Vt)t≥0 of the differential
equation dXt

dt
= −Vt with initial conditions X0 = x and V0 = v. The

infinitesimal generator of this process (Xt, Vt)t≥0 is A. The solution
of (8) may then be written

u(t, x, v) = exp((c− 1)t)Px,v[τ > t]

where τ is the exit time from D = S × V for the process (Xt, Vt)t≥0

with X0 = x and V0 = v under Px,v.
This model is known as the Lehner-Wing model [DL87b, Chap. 21,

p. 1164] and is also called multiplying slabs [DS].
There are two kinds of eigenvalues problems in neutron transport.

The first one is the criticality computation. In our problem, it consists
in finding the value of the parameter c such that the first eigenvalue of
the operator Bu = Au + (c − 1)u is equal to 0. This means that the
first eigenvalue λ1 of A is equal to 1− c, since the first eigenvalue of B
is λ1 + c − 1. The second kind of problem is the computation of this
eigenvalue for a given value of c.

Here, we first consider that we know a very good approximation of
the parameter c corresponding to the critical value. In this situation,
we have to check that the first eigenvalue is fairly close to 0 using
our estimator. Second, we take two values of c below and above the
critical value and we compute the corresponding first eigenvalues and
we compute the critical parameter using the secant method.

4.1.2. In the critical case. We consider in our numerical examples to
simulate (Xt, Vt)t≥0 when the spatial domain S is ]0, 8[. The value of
the critical parameter c is equal to 1.03639014 (See [DS]).

In our branching algorithms, we use slices at times T1 = 40, T2 = 80
and T3 = 120. In order to estimate the first eigenvalue of A, we use
the interpolation estimator λLI(t0, t1) with or without branching using
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16 A. LEJAY AND S. MAIRE

With branching Without branching
N 106 107 106 107

αLI(T1, T2) 2.2 · 10−5 1.0 · 10−5 6.5 · 10−5 0.2 · 10−5

αLI(T2, T3) −3.3 · 10−5 1.4 · 10−5 1.6 · 10−4 9.0 · 10−5

αLI(T1, T3) −5.4 · 10−6 1.2 · 10−5 1.1 · 10−4 5.1 · 10−5

Error max 3.3 · 10−5 1.1 · 10−5 1.6 · 10−4 9 · 10−5

Relative Time 2 20 1 10
Table 3. Estimation of the first eigenvalue α of B
for the critical value of c with N particles. The starting
point is (x, v) = (4,−0.2).

c = cmin = 1.036 c = cmax = 1.037
N 106 107 106 107

αLI(T1, T2) −0.000435 −0.000415 0.000633 0.000610
αLI(T2, T3) −0.00423 −0.000430 0.000564 0.00062
αLI(T1, T3) −0.000429 −0.00042 0.000598 0.000615

Table 4. Estimation of the first eigenvalue α of B for c
close to the critical value with N particles. The starting
point is (x, v) = (4,−0.2).

the values of F (t0) = Px,v[τ < t0] and F (t1) = Px,v[τ < t1] (See
Section 2.3). The probabilities pi = 1 − F (Ti) the particle is still
alive at time Ti are p1 = 30.7 %, p2 = 7.2 % and p3 = 1.7%. The ratio
p2/p1 = 0.2333 and p3/p2 = 0.2334 are pretty close. This confirms
that the system has reach the steady-state regime after time T1. When
the successive ratios pi+1/pi takes a stationary value, the behavior of
the system is dominated by the first eigenvalue and eigenfunction. In
Table 3, we do not report the first eigenvalue λ1 of A but the first
eigenvalue α = c− 1 + λ1 of B which shall be close to 0.

4.1.3. Computation of the criticality factor. We are going to use the
secant method to compute the criticality factor. In Table 4, we compute
the values of α = c− 1 + λ1 for c = cmin = 1.036 and c = cmax = 1.037
using the previous method assuming for the sake of simplicity that we
are already near criticality. The estimator we use for λ1 is still the one
given by linear interpolation, and we set αLI(t0, t1) = c−1+λLI(t0, t1).

The approximation of the criticality factor is then

ĉ = cmin − αmin
cmax − cmin

αmax − αmin

= 1.036406

with αmin = −0.000421 and αmax = 0.00615 are obtained by averaging
the 3 estimators of Tables 4 with N = 107 particles. The value of ĉ is
close to 1.5 · 10−5 to the true one. In the previous paper [MT06], such
an accuracy had required N = 109 simulations.
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A MONTE CARLO COMPUTATION OF THE FIRST EIGENELEMENT 17

4.1.4. Estimation of the solution of the Cauchy problem in large time.
We show how the estimation of the first eigenfunction provides a com-
plete description of the solution to (8) when the time is large.

Using the spectral expansion, the solution u(t, x, v) to (8) with the
initial condition u(0, x, v) = 1 may be written

(9) u(t, x, v) = exp((c− 1)t)(β(x, v) exp(λ1t) + o(exp(λ1t)))

where λ1 is the first eigenvalue of the neutron transport operator A
and β(x, v) = 〈1, ϕ∗1〉ϕ1(x, v). As u(t, x, v) = exp((c − 1)t)Px,v[t < τ ],
the quantity λ1 is related to the rate of absorption of the particles by
the boundary. The function β(x, v) is equal to 〈1, ϕ∗1〉ϕ1(x, v), where
ϕ1 and ϕ∗1 denote the first eigenfunctions of A and A∗ with 〈ϕ∗1, ϕ1〉 = 1
(see for example Chap. XXI, § 3 in [DL87b]).

The interpolation method or the least square method also give the
value of β0 = β(x0, v0) at the starting point (x0, v0) of the particles,
which can also be deduced from β0 exp(λ1t) = Px0,v0 [t < τ ]. With the
branching method, we can approximate

ψ∗1(x, v) =
ϕ∗1(x, v)

〈1, ϕ∗1〉
with the density of (XT , VT ) for T large enough. We set ψ1(x, v) =
ϕ1(x, v)〈1, ϕ∗1〉. Using this expression for β(x, v), the solution to (9)
with u(0, ·, ·) = u0 becomes

u(t, x, v) = 〈u0, ψ
∗
1〉 exp((c− 1− λ1)t)ψ1(v, x) + o(exp((c− 1− λ1)t)).

where ψ∗1(x, v) can be estimated from the simulations. From the esti-
mation of ψ∗1(x, v) and β0, one can estimate ψ1(x0, v0) at the starting
point (x0, v0).

Using the symmetries properties of the coefficients of the neutron
transport operator and the symmetries of the domain, we get that
ψ1(x, v) = ψ∗1(d− x,−v).

We give a numerical illustration of this in the critical case above with
107 particles. For β0 = β(x0, v0) with (x0, v0) = (4,−0.2), using the
times T2 and T3, we obtain β0 ' 1.316.

We now estimate ψ1 — the density of (XT , VT ) at time T = 80 —

from the positions (X
(i)
T , V

(i)
T ) of the J0 particles remaining at this time.

We then use a convolution kernel so that

ψ1(x, v) =
1

2πJ0h2

J0∑
i=1

exp

(
−(x−X(i))2

2h2

)
exp

(
−(v − V (i))2

2h2

)
.

With h = 0.1, we compute ψ1(4,−0.2) and we obtain 0.0883 which
leads to an approximation of K = 〈1, ψ∗1〉 = 14.9. Thus, in the critical
case,

u(t, x, v) = Kψ1(x, v) + o(exp((c− 1 + λ1)t)).
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18 A. LEJAY AND S. MAIRE

We have also computed ψ1(4, 0.2) = 0.0892 thanks to the same kernel
approximation, which should be equal by a symmetry argument to
ψ1(4,−0.2). The difference between ψ1(x0, v) and ψ1(x0,−v) with x0 =
4 in the middle of S provides us with a test for checking a possible error
in the algorithm. This also indicates the best precision one can expect
on ψ1.

Thus, with simulations starting from a single point, we obtain a
complete description of u(t, x, v) for any (x, v) ∈ D and t large enough.

We can use this description for some rare events estimations. For
example, if one needs to compute Px,v[τ > T ] for a larger value of T
than one used in this simulation, one can use the approximation

Px,v[τ > T ] ' exp(λ1T )Kψ1(x, v).

This can also simplify the simulation of rare some events. Thanks to
the Markov property, we have for any measurable event Γ that depends
only on what happens after a time T large enough,

Px,v[(Xt, Vt)t≥T ∈ Γ] ' Kψ1(x, v) exp(λ1T )Pψ∗1 [(Xt, Vt)t≥0 ∈ θ−1
T Γ],

where (θt)t≥0 is the shift operator of the Markov process. Thus, one has
only to perform a Monte Carlo estimation of Pψ∗1 [(Xt, Vt)t≥0 ∈ θ−1

T Γ] to
get an estimation of Px,v[(Xt, Vt)t≥T ∈ Γ].

4.2. Multiplying spheres. We now consider a similar problem where
the positions of the particles take their values in a ball and the veloc-
ities take their values in the unit sphere. The numerical resolution of
such a problem requires the discretization of 5 variables by means of
deterministic methods.

4.2.1. The physical model. We now consider the Cauchy problem

∂u(t, x, v)

∂t
= −v∇xu(t, x, v) + (c− 1)u(t, x, v)

+ c

(
1

4π

∫

S2
u(t, x, v′) dv′ − u(t, x, v)

)

with an initial condition u(x, v, 0) = 1 and absorption boundary condi-
tions. The velocity domain is the unit sphere S2, the spatial domain is
the unit ball of radius d and c plays the same role than in the previous
model. The solution of this equation is

u(t, x, v) = exp((c− 1)t)Px,v[τ > t],

where the transport process (Xt, Vt)t≥0 is solution of the differential
equation dXt

dt
= −Vt with initial conditions X0 = x and V0 = v. The

velocity after a collision has a uniform law on S2. The cumulative
distribution of the time between two collisions is

1− exp

(
−

∫ t

0

c ds

)
= 1− exp(−ct).

in
ria

-0
01

51
88

4,
 v

er
si

on
 1

 - 
5 

Ju
n 

20
07



A MONTE CARLO COMPUTATION OF THE FIRST EIGENELEMENT 19

c 1.138 0.1384602 1.139
αLI(T1, T2) −0.000419 7.1 · 10−5 0.00067
αLI(T2, T3) −0.000540 1.8 · 10−5 0.00056
αLI(T1, T3) −0.000480 4.7 · 10−5 0.00061

Mean −0.00052 4.5 · 10−5 0.000613
Table 5. Estimation of the first eigenvalue α of B for
the multiplying spheres models with N = 107 particles.

The simulation of (Xt, Vt)t≥0 is explained in [Mai01, MT06, LM07].

4.2.2. Numerical results. We compute an approximation of the criti-
cality factor when d = 4 using the least square method in the approx-
imation of the principal eigenvalues. We perform the simulation using
the time slices at times T1 = 20, T2 = 40 and T3 = 60 using N = 107

particles for values of c close to the critical one. The criticality factor
is about 1.1384602 [DS]. The principal eigenvalues of B relative to
c = 1.138 and c = 1.139 are respectively about −5 · 10−4 and 6 · 10−4.
The approximation of the criticality factor, given by the secant method,
is c ' 1.138459 which corresponds to an error of about 10−6. In the
previous paper [MT06], such an accuracy had required N = 2 · 109

simulations.

5. Conclusion

In the estimation of the first eigenvalue with a Monte Carlo method,
the branching algorithm is a very satisfactory way to improve the qual-
ity of the simulation proposed in [LM07]. On all the numerical tests,
the branching algorithm has provided a better accuracy than our previ-
ous method for comparable simulation times. Indeed, with the previous
method, the Monte Carlo error was roughly of order 1/

√
pN , where p

was the proportion of particles we keep to estimate the first eigenvalue.
As long time estimates are needed, the value of p was rather small.
With the branching algorithm, the Monte Carlo error is roughly of or-
der 1/

√
N . Using empirical distribution of the positions of the particles

at given time instead of the exact distribution has a low impact on the
quality of the estimation.

In addition, this method gives us a way to estimate the first eigen-
function of the adjoint operator using the density of the empirical dis-
tribution of the remaining particles. This could be important for some
applications, especially in the neutron transport criticality problem.
In addition, it may help to improve and quicken the estimation of the
probability of some events occurring after a large time. Similar Monte
Carlo techniques can also be used to simulate the first eigenfunction
of the operator when the latter is not self-adjoint, nor the eigenfunc-
tions of the operator and its adjoint are related by symmetry relations.
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20 A. LEJAY AND S. MAIRE

From this approximation of the eigenfunctions, we can also express an
approximation of the solution to the Cauchy problem for large times
and for any point, while the simulation only requires a single starting
point.

The only drawback of this method is that it requires to store large
amount of data. Note that however, that amount of data increases
only linearly with the dimension. On the other hand, the computa-
tional cost does not really depend on the dimension. In addition, the
branching algorithm is easy to implement, and hence may be used for
high-dimensional problems.
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