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Abstract

Interacting particle methods have been recently
proposed for the approximation of nonlinear filters.
These are efficient recursive Monte Carlo methods,
which in principle could be implemented in high
dimensional problems — i.e. which could beat the
curse of dimensionality — and where the particles
automatically concentrate in regions of interest of
the state space. In this paper we show that it is
sometimes necessary to add a regularization step,
and we analyze the approximation error for the re-
sulting regularized interacting particle methods.

1. Introduction

We consider the following model, where the un-
observed state process {X;,t > 0} satisfies the
stochastic differential equation (SDE) on R™

dXt = b(Xt) dt + U'(Xt) th 5 XO ~ o , (].)

with standard Wiener process {W;, ¢t > 0}, and
where d—-dimensional observations {z,, n > 1} are
available at discrete time instants 0 < t; < --- <
ty < -

Zn = h(th) + U,

in additional white noise sequence, i.e. {v,,n >
1} is an i.i.d. sequence (not necessarily Gaussian)
with absolutely continuous probability distribution
g(v)dv. We further assume that the initial state
Xo, the Wiener process {W;, t > 0}, and the white
noise sequence {v,, n > 1} are mutually indepen-
dent.

With the SDE (1) is associated the following second
order partial differential operator

L = 70 W § 4,5 (.
;b()6$i+22a ()81'1'6.%]'7

1,5=1
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with a = (a®/) = o ¢*, and let {P;, t > 0} be the
corresponding Markov semigroup, i.e.

Py () = E[p(Xt4s) | Xs = 1],

for any test function ¢ defined on R™, and any
time instant s > 0. Let tg = 0, and for any n >
1, let Qn = P, ¢, , denote the nonhomogeneous
probability transition kernel for the Markov chain
{X¢, , n >0}, ie.

Qn ¢(z) = B[¢(Xy,) | X,y = 1],
for any test function ¢ defined on R™.
Notice that

Plz, € dz | X;, = z] = g(z — h(z)) dz ,

hence the likelihood function for the estimation of
the unknown state X;, based on the observation z,
alone, is given by

¥, (z) = g(2n — h(2)) ,
for any z € R™.

The purpose of nonlinear filtering is to estimate the
unknown state at each time instant, from past ob-
servations. Optimal estimate in mean square sense
is given by the conditional probability distribution
Wn of the state X given past observations, i.e.
given Z, = o(z1, -+ ,2n). By definition

pn(dz) = P[X,, €dz | Z,] .

We introduce also the conditional probability dis-
tribution pi,,),—1 of the state X;, given Z, 1, i.e.

p’n|n—1(dx) = P[th € dr | Zn—l] -
The sequence {un , n > 0} takes values in the space

P = P(R™) of probability distributions on R™,
equipped with its Borel o—field. The transition



from pp—1 to pn, 1s conveniently described by the
following two steps :

prediction
Pn—1 ———————— Hnjn—1 = @ Hn—1

correction -0
HUn = %¥n* Hnn-1 >

where - denotes the projective product on P.

In the prediction step, finn—1 is the value taken
at time t, by the solution (in weak sense) of the
Fokker—Planck equation

ou

=L*up t>t,_ 2
3t /"’t I = 1 ( )
starting from p,_; at time ¢,_;. Notice that
<;u/n\n—1a¢> = </l/n—17Qn ¢>

_ /Rm E[¢(X.,) | Xe_, = 2] pin_1(dz) ,

for any test function ¢ defined on R™. In the cor-
rection step, p, is simply given by the Bayes rule

\Iln )u‘n\n—l

=V, - = .
fn nHnin-t <Hn|n—1:‘1’n)

Let W™P denote the Sobolev space of measurable
functions ¢ defined on R™, whose derivatives up
to order r (in the sense of distributions) belong to
L?. The norm || - ||, and the seminorm | - |, , are
defined by

1/p
Il = P dz )

[ [ o
|| <7
and
/
|¢|7‘,p— Z / |D* ¢(2)|” dz }lp >
lor|=r

respectively. Throughout the paper, the notation
| - || denotes the total variation norm on P, or the
supremum norm on the space of bounded measur-
able functions defined on R™, depending on the
context.

The following stability result holds.

Lemma 1.1 If ug is absolutely continuous, with

d
density d/to € W21, then under suitable regularity
assumptions, pn and pn,_1 are absolutely contin-

uous for any n > 1, with density — € W21 and

d

% € W2 respectively. In addition
z
|% 2,1 < H(ty) ||d'u0||21
dx T ’

where the mapping H is nondecreasing.

For any u,p € °/, and any bounded measurable
function ¢ defined on R™, the following decompo-
sition holds

(Up - ) — U -, P)

W m Vo (Tapp)]) O
(W', ¥n) ’

hence the following Lipschitz (rough) estimate.

Lemma 1.2 If the likelihood function ¥, is
bounded, and bounded away from zero, then for any
p,p' €P

“‘I’n : /1'/ - ¥, /L” <24, ”:u'/ - :u'” :
2 Yn(2)
=z m . .
where 6, = mli;{n T,.(2) is finite.
zeR™

Remark 1.3 In principle, it should be possible to
adapt the Lemmas A.1 and A.2 in LeGland and
Mevel [1], and to get rid of the factor 2 in the above
estimate.

Obviously, the most time consuming part is the
prediction step, which requires the solution of the
linear parabolic partial differential equation (2).
Even though efficient numerical methods have
been recently proposed, see e.g. Cai, LeGland and
Zhang [2] which are based on implicit Euler time
discretization scheme, and multigrid method with
adaptive locally refined grid, these methods are
limited to low—dimensional examples. To over-
come the curse of dimensionality, interacting par-
ticle methods have been recently proposed in Gor-
don, Salmond and Smith [3] — see also Kitagawa [4]
— to approximate nonlinear filtering equations,
and have been thoroughly studied for discrete-time
models, in Del Moral [5, 6] and in Del Moral and
Guionnet [7, 8].

2. Interacting particle methods

For any probability distribution p € P, let S ()
denote the empirical distribution of an N—sample
{¢,i=1,--- N} of i.i.d. random variables with
common probability distribution u, i.e.

1 XN
NH):NZ‘M-
i=1

The following classical estimate holds, where Eyc
denotes the expectation w.r.t. the simulated ran-
dom variables only.



Lemma 2.1 For any p € 7, ana any boundea
measurable function ¢ defined on R™

Enc| (SN (1) — 1, 8) ¢l -

<75

The approximate sequence {ulY , n > 0} is related
with the empirical distribution of an interacting
particle system. The initial condition is pd = o,
and the transition from p? ; to plY is described by
the following two steps :

sampled
prediction

oy el = SN Qh i)
correction

In the sampled prediction step, one has to produce
an N-sample {Eflln_l ,i8=1,--- N} of i.i.d. ran-
dom variables with common probability distribu-
tion Q} plY_,. This can be achieved by the follow-

ing algorithm :

(i) produce an N-sample {&_,,i = 1,---,N}
of i.i.d. random variables with (discrete) com-
mon probability distribution pl_,,

(ii) independently for each ¢ = 1,--- , N, gener-
ate a random variable .ffl‘ n—1 With probability

distribution Qn(&%_4,").

The second step (ii) can be realized by solving in-
dependent copies of the SDE (1), i.e. f; n_1 is the
value taken at time t,, by the solution o{’l

dX; =b(X))dt +o(X})dWi ,  t>t,_1 (4)

starting from 5};_1 at time t,_1. In the correction
step, uY is given by the Bayes rule, and since

is a discrete probability distribution, this reduces
to

n|n 1

n|n—1

N
— § i .
n wn|n—1 5&'1 ’
i=1

where the weights {w! 1>t =1, ,N'} are pro-
portional to the likelihood functlon evaluated at the
particle locations, i.e.

~
z :\I’" n|n— 1
Jj=1

i

wn\n—l =

)

foranyi=1,---,N.

Remark 2.2 lhe efiect of the resampling step (1)
is to select the more likely particles, i.e. those
which are associated with larger values of the like-
lihood function. Even though several copies of
these particles could be present in the particle sys-
tem {¢,_,,4 = 1,---,N}, one could rely on the
independent noises in equations (4) to produce a
sufficiently diverse particle system {§n|n 1,0 =
1,---,N}. This raises however the question of
noise—free state models, where the number of dif-
ferent particle locations can only decrease, and ul-
timately reduces to one. This motivates the intro-
duction of regularized interacting particle methods,
see Section 4 below, as a way to prevent the degen-
eracy of particle locations to occur.

Remark 2.3 If one would skip the resampling
step (i), then the method would reduce to
the weighted particle method first proposed by
Davis [9], where the sequence of observations is
used to update the weights associated with a non—
interacting particle system. It was observed by
LeGland [10] that this method is very unefficient,
in the sense that after a few time steps, most of the
particles get a negligible weight, and only a few (ul-
timately only one) particles significantly contribute
to the approximation. Resampling the particle sys-
tem (at each time step, or from time to time), is
sufficient in most cases to prevent the degeneracy of
particle weights to occur. This raises however the
question of systems with small observation noise,
where the degeneracy of particle weights can occur
already at the first step, and where the resampling
mechanism presented above is not sufficient. This
motivates the introduction of alternate regularized
interacting particle methods, see Section 5 below.

Remark 2.4 A more efficient implementation of
the resampling mechanism has been proposed by
Crigan [11] — see also Beadle and Djurié [12] —
where the number of offsprings of each particle is
proportional to its weight. In general, this number
is not an integer, and there is an additional sam-
ple of a Bernoulli random variable, so as to decide
between the two nearest integers, which results in
a (slightly) varying number of particles. On the
other hand, this branching mechanism runs much
faster and provides minimum variance approxima-
tion. Alternative branching mechanisms can be
found in Crigan, Del Moral and Lyons [13].

3. Time discretization scheme

Obviously, equations (4) cannot be solved ex-
plicitely, and one has to consider numerical approx-
imations. For any A > 0, any z € R™, and any
w € R%, let

Fa(z,w) =z +b(z) A +o(z) VA w,



and let L' A(z,-) denote the (aussian probability
distribution with mean vector ma(z) = z+b(z) A,
and covariance matrix Ya(z) = a(z) A. In prin-
ciple, the inter—observation time ¢, — t,—1 may
be too large to be used directly as a time dis-
cretization step, and we introduce a subdivision
tho1 = Tno < Tn,1 < -+ < Tp1, =ty of the time in-
terval [tn—1,t,], with time steps Apj = Tni—Tn,i—1
for il =1,---,l,. The second step (ii) is now real-
ized approximately, by running independent copies
of the Euler scheme for equation (1), i.e. E:L|n—1 is
the value taken at step I = [,, by the solution of the
recursion equation

ij,l = FAn,l(X’Ii,l—13’lD’f’L,l) ) I=1,---,1,
starting from & _; at step I = 0, where

(@}, 1, ,y,, ) are iid. Gaussian random vari-
ables with zero mean and identity covariance ma-
trix. Notice that for any x € R™

P[X:L,l € dz' | X:L,l—l =z]=Ta,,(z,ds") ,
forany I =1,---,l,, hence

P&, 1 €da’ | &,y = 2] = Qn(z,d2’) ,

n|n

where

Qn=Ta,, Ta,,,

denotes the transition probability kernel associ-
ated with the Euler scheme. Under suitable as-
sumptions, the probability distribution of the Euler
scheme has bounded moments of any order.

For any p,p' € P, and any bounded measurable
function ¢ defined on R™, the following decompo-
sition holds

Q' — Qp s )
=(Qhp—Qhu o)+ (W — 1, Qn o),
hence

H@nt — Qnp ) | < N1Q5 1 — Q5 pll 14l

The following error estimate is a direct consequence
of the estimate proved in Bally and Talay [14, The-
orem 3.1].

Lemma 3.1 Under suitable regularity assump-
tions, for any p € P and any n > 1

”Q:ll' - Q:/‘” S M(tn - tn—l) An )

where A, = | max Ap,, and where the mapping

M is nondecreasing.

Let {u;,, ,n =2 Ujy denote the resulting tully dis-
cretized approximate sequence. The initial condi-
tion is i)Y = po, and the transition from Y ; to
i is decribed by the following steps, which can be
implemented in a straightforward manner :

sampled
discretized

~ prediction _ —
., —PCEON N =SNG )

correction N N
Hn = ¥, - l‘l’n\n—l :

4. Regularized interacting particle methods

Let K be a symmetric probability density function
(kernel) on R™, such that

K(z)dz =1,
RTrL

/ zK(z)dr =0,
and
/ |z|? K (z) dz < oo,

and for any bandwidth h > 0, let the mollifier (ap-
proximation of identity) K} be defined by the fol-
lowing scaling

Kn(e) = 2 K(3),

for any x € R™. For any p € P, let Kp, x u be
the absolutely continuous probability distribution
on R™, with density

W(m) = Kp(z — 2') p(dz') ,
Rm

i.e. such that

<Kh * Wy ¢>

=/m{Rﬁmu—fW@w}wmm

:/m{ - Kp(z' — ) ¢(z) dm} p(dz")

=</I‘7Kh*¢) 9

for any test function ¢ defined on R™. Notice that
for any p,p’ € P, and any bounded measurable
function ¢ defined on R™

[(Kp*p—Kpxp' @) | =|(p—p,Kp*¢)|

<l = 1K @l < Ml =g/l 1]
hence
|1 EKh % p— Kp s p'|| < e —p'| -

The following bias estimate is proved in Raviart [15,
Lemma 4.4] — see also Holmstrém and Klemel4 [16,
Proposition 4].



Lemma 4.1 If p € 7 15 absolutely continuous,

d
with density ﬁ € W2, then for any bounded mea-
surable function ¢ defined on R™

| (Kn*p—po)| <C

hence

d
|Kn*p—pll <C R |£|2,1 .

For any p € P, let J(u) denote the (m + 1)-th
(noncentered) moment, i.e.

T = [l uds)

which could be finite or infinite. Assuming that the
kernel K satisfies

V= (1+ |z|™*) K*(2) dz < 00 ,
Rm

the following strong estimate holds, which im-
proves on the variation estimate of Holmstrém and
Klemel4 [16, Proposition 8]. The proof is omitted.

Lemma 4.2 For any p € P such that J(p) is finite

Envc|| K * SN (p) — K+ p|

]' !
< T € 0+ VTG

The approximate sequence {aY"",n > 0} is ob-
tained by regularizing before the prediction step.
The initial condition is ﬂév’h = lg, and the transi-
tion from " to aN'* is decribed by the following
steps, which can be implemented in a straightfor-
ward manner :

_n,n regularization N — K s Vo
” n—1 — 4Lip * )u‘n 1

n—1
sampled
discretized

prediction

_N,h « =N,h
'un|n—1 = SN(Qn Vp— 1)

correction _ _N,h
MN,h =, - s

mn T TN 'u'n\n—l'

Considering instead the absolutely continuous ap-
proximate sequence {72! | n > 0}, the initial con-

dition is ﬂév h - K h * po, and the transition from

v, 1 to v,,>" 1s decribed by the tollowing steps :

sampled
discretized

SN prediction

—>
nl nVn—_1

N = 5@ 7

correction _ _N,h
Miv,h =V, - 'un|n 1
regularization _
& b= Kn* "
In the sampled (discretized) prediction step,
one has to produce an N-sample {{nln 0=
1,---,N} of ii.d. random variables with common

probablhty distribution @}, ‘TJLV ’i This can be

achieved by the following algorithm :

(i) produce an N-sample {&_;,i=1,--- , N}
of i.i.d. random variables with common (dis-
crete) probability distribution ﬂglhl,

(ii) independently foreachi=1,---, N, generate
a random variable €* with probablhty distri-
bution K, and set 7, _; = &, _; + het,

(iii) independently for each i = 1,---, N, gener-
ate a random variable €Z|n—1 with probability
distribution Qn(7},_y,")-

In the correction step, "
rule, and since

,Nh Z
n|n 1= é’z

is a discrete probability distribution, this reduces
to

is given by the Bayes

|n—1

N

_§ n _

- wn|n—1 651 ’
i=1

nln—1

with weights

ci
,,‘ lI;”( n|n— 1)
n|n 1= N ’
Z\IJ" njn— 1
Jj=1

for any i =1,--- , N. Therefore

an\n 1 E:ﬂn—l) .

dVN h

5. Alternative regularization scheme

Alternatively, one can consider the absolutely con-
tinuous approximate sequence {EX"", n > 0}, ob-
tained by regularizing before the correction step.



‘1I'he 1itial condition is Ho " = Mo, and the transi-

tion from ,un 1 to X" is decribed by the following

steps :
sampled
discretized
sy BN = SY(@; )
regularization . 5 71:‘( ,:_1 = K, ﬂg‘ Jh
correction

=N,h _ _N,h
't =9, Vnln—1 -

In the sampled (discretized) prediction step,
one has to produce an N-sample {{nln 1,0 =
1,---,N} of i.i.d. random variables with common
probability distribution Q;, ﬂnNth. This can be
achieved along the following steps :

(i) produce an N-sample {& _,,i =1,---,N}
of i.i.d. random variables with common prob-
ability distribution ",

(ii) independently for each ¢ = 1,---, N, gener-
ate a random variable .{;'m el With probability
distribution Q,(&_,,-).

In the correction step, X" is given by the Bayes
rule, and since ﬁﬁf_l is an absolutely continuous
probability distribution with density

d"
1
T:iln ZKh n\n 1) ’
this reduces to
dﬂN’h ZKh n|n 1)
1o (@)=
Z Ky x ¥, n|n 1)

In step (i) of the algorithm, one has to generate ran-
dom variables £ with absolutely continuous proba-
bility distribution "*. This can be achieved by
the following rejection algorithm, see Devroye [17,
page 47] :

(i-1) pick j € {1,---, N} with uniform probability,
generate a random variable & with probability
distribution K, and set ¢ = & 1 +he,

nln—

(i-2) generate a uniform random variable U on the
interval [0, 1],

(i-3) return to step (i-1) unless ¥, (§) > U ¥,

max __ —
where ¥R = Inax U, (z) = max gn(2zn — h(z)).

6. Error estimates (weak sense)

The following decomposition holds
(K" % SN (u') =y ¢) = (SN (W) — ', K x @)

+<:u‘l_iu‘7Kh*¢>+<Kh*iu‘_:u‘7¢>7

and combining the estimates of Lemmas 2.1 and 4.1
yields the following (weak sense) estimate.

Lemma 6.1 For any u,p' € P, such that p is ab-

d
solutely continuous, with density o € W, and

for any bounded measurable functioﬁz ¢ defined on
Rm
Enc| (K"« SN (1) — p, 6} | < [{p' — p, K" x )|

+[\/—N+Ch2|—21]ll¢ll-

For the approximation defined in Section 5, the fol-
lowing error estimate holds.

Theorem 6.2 Under suitable regularity assump-
tions

sup Enc| (" — pn, ) |

llpll=1

d
+ H OB [ 22 2]

where Mp** = max Mty —tk—1), and H® =
, Dnax H(ty) = H(ty).
Proof: Let ¢, = sup Eygc| (ﬂg’h — fin, @) | for

llpll=1
any n > 0.

For the approximation defined in Section 5, the de-
composition (3) yields

</_l'g’h — Hn, ¢)

_ (En* SN (@5 iy = Qn tnr n )
<Hﬂ "I'n)

(1n, @) ], hence

?

with u, = ¥, [¢p —

| <p’ﬁ’h — Hn, ¢) |
1
< G | Fn xS (@, En) = Qi pin—1,tn )| -

Notice that u,, does not depend on any of the sim-
ulated random variables, and

1Qn (Kn *un) | < [1Kn * un|| < [lun]l < 227 ||g]] .



‘laking expectation w.r.t. simulated random vari-
ables used in the transition from ﬂf;hl to ﬁf‘ : 1
only, i.e. conditioning w.r.t. the o-field F,_; gen-
erated by the simulated random variables used in
the transition from /lév " to ﬁflhl, and using the
estimate of Lemma 6.1, yields

Encl|{an"" = tn, @) | | Fr-1]

1 A% —N,h
<—|< n:u’n 1

= gmin Q:“U/n—laKh*unH
n

1 2 d/j’n|n—1
T gmi Gmin [\/—— +Oh [——

Using the estimate (5) yields

| (Q* ﬂghl Qy tin—1, Kp * up) |

<@ sn—1 = Q pn—1 || 1K * |

2.1] [[unll -

+ | <ﬂgihl - //fn—laQ_n (Kh * Un) ) | .

Combining these estimates and the estimates in
Lemmas 1.1 and 3.1 yields

Envcl| (5" = pn, @) | | Foor]
1 _
< Jmin |<ﬁgihi _un—laQn (Kh *Un))|
260 [ Mty — tn1) A+ ——
n n n—1 n \/N

FH(t) OF |22, 7 ]

Notice that

EMC| <ﬂglhl — Mn—1, Qn (Kh * Un) ) |

< en—1 |Qn (Kh * un) || < €n—1 27> ||g]| -

Taking expectation w.r.t. simulated random vari-
ables yields

Ewmc| (in" — pn, ) |

S 26n [En—l + M(tn - tn—l) An +

-

d
+ H(ta) O || 7 Ho

= lealllel

hence the sequence {e, , n > 0} satisfies

1
VN

En S 26n [En—l +M(tn —1) An +

d
+H(t) OR |22 2]

and the result follows from the discrete Gronwall
lemma. m

Remark 6.5 VWhen n = 0, one recovers the result
obtained by Del Moral, Jacod and Protter [18]. Our
result says that the error estimate for regularized
schemes — which have qualitatively more stable
behaviour, for reasons explained at the end of Sec-
tion 2 — exhibits an additional term which can be
controlled in terms of the bandwidth parameter h.

Remark 6.4 As already mentioned in [18], the
constants in the estimate of Theorem 6.2 depend
exponentially on time. In principle, it should be
possible to obtain similar estimates, with uniformly
bounded constants over an infinite time interval,
provided some stability property holds for the fil-
tering process, such as exponential forgetting of its
initial condition. Some results in this direction have
been obtained recently by Del Moral and Guion-
net [19] for models which unfortunately do not in-
clude the model considered here.

7. Error estimates (strong sense)

The following decomposition holds

KpxSN(p) —p=(Kn*xSN(') — Kn* )

(K * p— )

and combining the estimates of Lemmas 4.2 and 4.1
yields the following (strong sense) estimate.

+ Knx (0 —p) +

Lemma 7.1 For any p € P, such that p is ab-

solutely continuous, with density a € W2, for
any p' € P, such that J(u') is finite, and for any
bounded measurable function ¢ defined on R™

Evcl| Kn*SY (') — pll < |0 = pll

Cl

+1 1] -

\/_

For the approximation defined in Section 5, the fol-
lowing error estimate holds. The proof is omitted.

Theorem 7.2 Under suitable regularity assump-
tions, the probability distribution of the Euler
scheme has bounded (m + 1)-th moments, i.e.
Jpax = max nEMC[J(Q;; fin")] is finite, and

Encl 23" = |

<24, -+ 01 [M® max Ay

k=1, ,n

1
+ C' (14 /Jmax
o C )

d
+ H OB [ 22 2



wnere M, =" = L nax Mty —tg—1), ana H,°" =
max H(tx) = H(tn).

k=1,---,n

Remark 7.3 Obviously one cannot take h = 0 in
the estimate of Theorem 7.2. In any case, when
h = 0, the probability distributions u, and iY"* are
respectively absolutely continuous and discrete, and
it does not make sense to study the total variation
distance ||zY"" — i, Instead, one should consider
weak sense estimates, as in Theorem 6.2.

Remark 7.4 The question of bandwidth selection
arises there. The optimal bandwidth could not
be computed, since it would depend on some un-
known quantities. On the other hand, to make the
bias, variation, and time discretization contribute
equally to the global error, the bandwidth should
be taken asymptotically as h ~ N—1/(m+4),
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