
Preliminaries Smooth Likelihood Estimation Applications References

Nearly Smooth Particle Filters for Likelihood
Estimation with Multivariate Latent Variables

Anthony Lee

Department of Statistics & Oxford-Man Institute of Quantitative Finance
University of Oxford

Greek Stochastics Meeting, August 2009

Joint work with Arnaud Doucet, ISM

Anthony Lee Smoother Particle Filters 1/ 35



Preliminaries Smooth Likelihood Estimation Applications References

1 Preliminaries
Problem Domain
Likelihood Estimation
Particle Filters

2 Smooth Likelihood Estimation
Definition
Mechanism
Theoretical Approaches
Practical Approaches

3 Applications
Gaussian State-Space Model
Factor Stochastic Volatility Model
Stochastic Kinetic Model
Dynamic Stochastic General Equilibrium Model
Surface Maps
Application to MCMC
Remarks

4 References

Anthony Lee Smoother Particle Filters 2/ 35



Preliminaries Smooth Likelihood Estimation Applications References Problem Domain Likelihood Estimation Particle Filters

State-Space Models

We focus on time-homogeneous Markovian state-space models with
hidden states:

x0:T = {x0, . . . , xT}, each xt ∈ X
and observations:

y0:T = {y0, . . . , yT}, each yt ∈ Y
The model is given by

p(x0|θ) (initial state)

p(xt |xt−1, θ) for 1 ≤ t ≤ T (evolution)

p(yt |xt , θ) for 0 ≤ t ≤ T (observation)

where θ ∈ Θ are the parameters of the model.
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Likelihood Evaluation

Given data y0:T , we want to evaluate p(y0:T |θ) for any θ ∈ Θ.

This is not straightforward in general. While we can compute
p(x0:T , y0:T |θ),

p(y0:T |θ) usually cannot be computed analytically.
p(y0:T |θ) =

∫
XT+1 p(x0:T , y0:T |θ)dx0:T is a very high-dimensional

integral.

Difficult to find good proposal densities q(x0:T |y0:T , θ).
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Likelihood Decomposition

We can decompose the likelihood p(y0:T |θ) as follows:

p(y0:T |θ) = p(y0|θ)
T∏

t=1

p(yt |y0:t−1, θ)

where

p(yt |y0:t−1, θ) =

∫
p(yt , xt−1|y0:t−1, θ)dxt−1

=

∫
p(yt |xt−1, θ)p(xt−1|y0:t−1, θ)dxt−1

=

∫ ∫
p(yt , xt |xt−1, θ)dxtp(xt−1|y0:t−1, θ)dxt−1

=

∫ ∫
p(yt |xt , θ)p(xt |xt−1, θ)dxtp(xt−1|y0:t−1, θ)dxt−1
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Likelihood Decomposition II

If we can sample x
(i)
t−1 ∼ p(xt−1|y0:t−1, θ) and x

(i)
t ∼ p(xt |x(i)

t−1, θ)
for i = 1, . . . ,N we can estimate p(yt |y0:t−1, θ) via

p̂N(yt |y0:t−1, θ) =
1

N

N∑
i=1

p(yt |x(i)
t , θ)

and log p(y0:T |θ) via

ˆ̀
N(y0:T |θ) = log p̂N(y0|θ) +

T∑
t=1

log p̂N(yt |y0:t−1, θ)

SMC will allow us to sample from an empirical distribution
P̂N(dxt−1|y0:t−1, θ) which approximates p(xt−1|y0:t−1, θ).
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Sequential Monte Carlo for State-Space Models

1. At time t = 0 (same except for sampling density)...

2. For times t > 0.

• For i = 1, . . . ,N, sample x̃(i)
t ∼ q(xt |yt , x

(i)
t−1) and set

x̃(i)
0:t

def
= (x(i)

0:t−1, x̃
(i)
t )

• For i = 1, . . . ,N, evaluate the importance weights:

wt(x̃
(i)
0:t) = w

(i)
t−1

p(yt |x̃(i)
t )p(x̃(i)

t |x
(i)
t−1)

q(x̃(i)
t |yt , x

(i)
t−1)

• For i = 1, . . . ,N, normalize the importance weights:

W
(i)
t =

wt(x̃
(i)
0:t)∑N

j=1 wt(x̃
(j)
0:t)

• Resample (with replacement) N particles {x(i)
0:t : i = 1, . . . ,N} from

{x̃(i)
0:t : i = 1, . . . ,N} according to the importance weights

{W (i)
t : i = 1, . . . ,N}. Set w

(i)
t = 1

N
for i = 1, . . . ,N.
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Resampling

In resampling we replace

P̂N(dx0:t |y0:t) =
N∑

i=1

W
(i)
t δ

x
(i)
0:t

(dx0:t)

with

P̃N(dx0:t |y0:t) =
1

N

N∑
i=1

n
(i)
t δ

x
(i)
0:t

(dx0:t)

where n
(i)
t ∈ {0, 1, . . . ,N} and

∑N
i=1 n

(i)
t = N.

Usually we use schemes such that E [n
(i)
t |W

(1:N)
t ] = NW

(i)
t so

P̃N(dx0:t |y0:t) is an unbiased approximation of P̂N(dx0:t |y0:t).

In multinomial resampling, we have n
(1:N)
t ∼ multinomial(N,W

(1:N)
t ).
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Smooth Likelihood Estimation

We would like an estimator L̂N(θ) of p(y|θ) to have three properties:

1. Consistency: L̂N(θ)
P→ p(y|θ) as N →∞.

2. Smoothness: p(y|θ) is continuous in θ ⇒ L̂N(θ) is continuous in θ.
3. Tractability: o(N2) time complexity in general.

Why smoothness?

1. Captures the true nature of the likelihood.
2. Better facilitates likelihood maximization:

E [L̂N(θ2)− L̂N(θ1)]
P→ p(y|θ2)− p(y|θ1)

var(L̂N(θ2)− L̂N(θ1)) = var(L̂N(θ1)) + var(L̂N(θ2))− 2cov(L̂N(θ1), L̂N(θ2))
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Smooth Likelihood Estimation (visualization)

(a) weighted binary tree (b) vanilla

(c) true

Figure: 2D Gaussian State-Space Model Log-Likelihood
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Common Random Numbers

One way to achieve positive correlation is to use common random
numbers (CRN).

p(y|θ) =

∫
p(y, x|θ)dx =

∫
p(y|x, θ)

p(x|θ)

q(x|θ)
q(x|θ)dx

so each ‘CRN’ xi ∼ q(x|θ) gives the Monte Carlo estimate:

Î (θ) =
1

N

N∑
i=1

p(y|xi , θ)
p(xi |θ)

q(xi |θ)

zi ’s are common and xi = f (zi ; θ)⇒ xi ∼ q(xi |θ), where f is
continuous in θ.

Still, we shouldn’t use proposal distributions of this form.
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CRN for Particle Filters

Transition:

Use common {z(i)
t }Ni=1 to produce x(i)

t ∼ q(xt |yt , x
(i)
t−1, θ)

Resampling:

Use common {u(i)
t }Ni=1 to sample {n(i)

t }Ni=1.

Problem:

n
(1:N)
t ∼ multinomial(N,W

(1:N)
t ).

The weights W
(1:N)
t are dependent on θ ⇒ n

(1:N)
t,θ 6= n

(1:N)
t,θ′ .

Key observation:

F̂t,N(j) =
∑j

i=1 W
(i)
t .

When weights change, we will pick a particle with a ‘close’ index.
Can we make particles with close indices be close themselves?
For 1D state variables, F̂t,N(x) =

∑
x

(i)
t ≤x

W
(i)
t will work [Pitt ’02].

What can we do when state variables are not 1D?
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Tree-Based Resampling

Imagine we want to sample from p(x), x ∈ R2.
If we can compute the median of any truncated version of p and sample
Bernoulli(0.5) rv’s, we can recursively split regions along their medians
and pick either subregion with probability 0.5.

(a) tree representation (b) partition representation

Figure: Recursive binary partitioning of the space

The limit of the region contains a single point (almost surely) as the
length of the random binary string goes to ∞.
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Theoretical Median-Cutting Algorithm fn(u)

Draw u ∼ U[0, 1] and compute fn(u) as follows:

1. Set a
(1)
1 = a

(1)
2 = · · · = a

(1)
d = −∞ and b

(1)
1 = b

(1)
2 = · · · = b

(1)
d =∞

Let X (1)
−1

def
=

∏d
i=2[a

(1)
i , b

(1)
i ]

Compute t1 satisfying
∫ t1

a
(1)
1

∫
X (1)
−1

p(x)dx2:ddx1 = 0.5

For i = 1, . . . , d : set a
(2)
i = a

(1)
i and b

(2)
i = b

(1)
i

If u < 0.5, set b
(2)
1 = t1 and u = 2u, else set a

(2)
1 = t1 and

u = 2(u − 0.5)

2. For j = 2, . . . , n

Let k = j mod d . If k = 0, let k = d .

Let X (j)
−k

def
=

∏k−1
i=1 [a

(j)
i , b

(j)
i ]

∏d
i=k+1[a

(j)
i , b

(j)
i ]

Compute tj satisfying 2j−1
∫ tj

a
(j)
k

∫
X (j)
−k

p(x)dx1:k−1dxk+1:ddxk = 0.5

For i = 1, . . . , d : set a
(j+1)
i = a

(j)
i and b

(j+1)
i = b

(j)
i

If u < 0.5, set b
(j+1)
k = tj and u = 2u, else set a

(j+1)
k = tj and

u = 2(u − 0.5)

3. Return X (n+1) =
∏d

i=1[a
(j+1)
i , b

(j+1)
i ].
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Practical Algorithm I: Unweighted Binary Trees

Given N particles and weights, construct a tree as follows:

Compute the weighted median of the particles in one dimension and
split the particles into two sets (children).
For each child, compute the weighted median of its particles in the
next dimension and split the particles into two sets.
Repeat, cycling through the dimensions.

We can pick a particle with a common random number u ∈ R,
traversing the tree as in the theoretical version.

Think of the path selected as a binary string β where each bit is
independent of the weights.

We need to replicate a particle at each split to make the weight of
each child equal.

Total cost is usually in O(N log N) for constructing the tree and
sampling N particles.
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Practical Algorithm II: Weighted Binary Trees

Given N = 2k particles and weights, construct a tree as follows:

Compute the (unweighted) median of the particles in one dimension
and split the particles into two sets (children).
For each child, compute the (unweighted) median of its particles in
the next dimension and split the particles into two sets.
Repeat, cycling through the dimensions.

The weight associated with each node is the sum of the weights of
its constituent particles.

We can pick a particle with a common random number u ∈ Rk ,
traversing the tree according to the weights.

Think of the path selected as a binary string β where each bit is
dependent on the weights.
Further improvement can be attained by using u ∈ Rd .

Total cost is in O(N log N) for constructing the tree and sampling N
particles.
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Correctness

For any tree structure with properly weighted nodes we have

Pr[select index i ] =
weight of particle i

sum of all weights

Let the set of particles in the node at level j + 1 reached by a given
β1:j ∈ {0, 1}j be denoted Sj(β1:j)

Pr[β1:j ] =
weight of Sj(β1:j)

sum of all weights

With respect to smoothness

Nodes define similar regions when θ changes.
There is a common (possibly null) prefix of β between different runs.
⇒ Particles tend to be close even when θ changes.

Anthony Lee Smoother Particle Filters 17/ 35



Preliminaries Smooth Likelihood Estimation Applications References Definition Mechanism Theory Practice

Comparing the binary trees

For the weighted binary tree

The random string β depends on the weights.
Set membership for particles does not depend on the weights.

For the unweighted binary tree

The random string β is independent of the weights.
Set membership for particles does depend on the weights.

It is hard to tell which is better in theory for finite N.

For the unweighted tree, as N →∞, the particle returned for u
converges in probability to the almost surely unique particle in
limn→∞ fn(u).

The weighted binary tree is easier to implement.
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2D Gaussian State-Space Model

(a) weighted binary tree (b) unweighted binary tree

(c) CRN vanilla

Figure: N = 1024 for tree-based filters, N = 1536 for vanilla filters
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2D Gaussian State-Space Model Errors

(a) weighted binary tree (b) unweighted binary tree

(c) CRN vanilla (d) vanilla

Figure: N = 1024 for tree-based filters, N = 1536 for vanilla filters
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2D Gaussian State-Space Model (locally optimal)

(a) weighted binary tree (b) unweighted binary tree

(c) CRN vanilla

Figure: N = 1024 for tree-based filters, N = 1536 for vanilla filters
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2D Gaussian State-Space Model Errors (locally optimal)

(a) weighted binary tree (b) unweighted binary tree

(c) CRN vanilla (d) vanilla

Figure: N = 1024 for tree-based filters, N = 1536 for vanilla filters
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Factor Stochastic Volatility Model

Used in quantitative finance.

Models volatility of asset values as a stochastic process.

Factor loading matrix allows us to model dependent item valuations.

Calibration (parameter estimation) is very important in practice.

Model is as in [Liu & West, ’00]

yt ∼ N(Bft ,Ψ)

ft ∼ N(0,Ht)

αt ∼ N(Φαt−1,U)

where Ψ def
= diag(ψ1, . . . , ψM), Ht

def
= diag(exp(αt)),

Φ def
= diag(φ1, . . . , φK )

This gives yt |αt ∼ N(0,BHtBT + Ψ)
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Factor Stochastic Volatility Results

(a) weighted binary tree (b) unweighted binary tree

(c) CRN vanilla

Figure: N = 1024 for tree-based filters, N = 1536 for vanilla filters
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Partially Observed Lotka-Volterra Model

Simple case of stochastic kinetic models used in systems biology.

Describes evolution of predator and prey levels or concentrations of
chemical reactants.

Can use SMC to simulate a diffusion approximation of the model.

Particularly interesting when predator population is unobserved.

Figure: Estimated expected predator-prey population levels for the partially
observed Lotka-Volterra model
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Partially Observed Lotka-Volterra Results

(a) weighted binary tree (b) unweighted binary tree

(c) CRN vanilla

Figure: N = 1024 for tree-based filters, N = 1536 for vanilla filters
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Dynamic Stochastic General Equilibrium Model

Used to explain macroeconomic phenomena using microeconomic
principles.

We observe representative rational agents in the market.

System is subject to random shocks.
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Dynamic Stochastic General Equilibrium Results

(a) weighted binary tree (b) unweighted binary tree

(c) CRN vanilla

Figure: N = 1024 for tree-based filters, N = 1536 for vanilla filters
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Dynamic Stochastic General Equilibrium Results II

Figure: DSGE log-likelihood plots for the vanilla particle filter with N = 20000
(red) and the weighted binary tree particle filter with 1024 particles (blue)
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2D Gaussian State-Space Model Log-Likelihood

(a) weighted binary tree (b) vanilla

(c) true

Figure: 2D Gaussian State-Space Model Log-Likelihood
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2D Gaussian State-Space Model Log-Likelihood Errors

(a) weighted binary tree (b) vanilla

Figure: 2D Gaussian State-Space Model Log-Likelihood Errors
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Application to MCMC

Note that the estimate of the likelihood is unbiased (without
interpolation)! [Del Moral ’04]

We can perform MCMC on (θ,u) treating u ∈ RNd as an auxiliary
variable.

For some steps, propose a new u, for others propose a new θ.

We obtain a reduction in the ‘variance’ of the acceptance ratio, ie.

min{1, p(y0:T |θ′,u′)p(θ′)p(u′)
p(y0:T |θ,u)p(θ)p(u) } is closer to min{1, p(y0:T |θ′)p(θ′)

p(y0:T |θ)p(θ) }
This can constitute an improvement over the standard PMMH
algorithm of [Andrieu, Doucet & Holenstein (to appear)]

For the 2D Gaussian state-space model, acceptance ratio
differences/move discrepancy rate of 9% for SPMCMC and 36% for
PMMH compared to the marginal acceptance ratios.
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(a) PMMH, 10000 steps (b) SPMCMC, 10000 steps

(c) PMMH, 30000 steps (d) SPMCMC, 30000 steps

Figure: PMMH and SPMCMC results on 2D Gaussian state-space model
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Remarks

The tree-based resampling schemes lead to significantly smoother
estimators.

It is the particles that are smooth as a function of θ.

T can be arbitrarily large: resampling ‘resets’ the particles.

There are no regularity conditions or auxiliary distributions or extra
parameters.

O(N log N) time complexity is not that bad in practice.

This type of variance reduction method can accelerate PMCMC
convergence.
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