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Preliminaries Problem Domain Likelihood Estimation Particle Filters

State-Space Models

@ We focus on time-homogeneous Markovian state-space models with
hidden states:

® Xo.T = {Xo,...,XT7}, each x; € X
and observations:
e yo.r = {Yo,...,y7}, eachy: € Y
@ The model is given by

p(x0|0) (initial state)
p(x¢|x¢—1,0) for1<t<T (evolution)
p(ye|xe, 6) for0<t<T (observation)

where 6 € © are the parameters of the model.
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Preliminaries Problem Domain Likelihood Estimation Particle Filters

Likelihood Evaluation

o Given data yo.7, we want to evaluate p(yo.7|0) for any 6 € ©.
@ This is not straightforward in general. While we can compute
p(xo:7, Yo: 716),
e p(yo:7]0) usually cannot be computed analytically.
o p(yo.7|0) = [y P(X0.T, Yo7|0)dxo.7 is a very high-dimensional
integral.

e Difficult to find good proposal densities q(xo.7|yo:7,0)-
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Preliminaries Problem Domain Likelihood Estimation Particle Filters

Likelihood Decomposition

@ We can decompose the likelihood p(yo.7]6) as follows:

T

p(yo:710) = p(yol®) [ T P(yelyo:e-1,0)
t=1

where

P(Ytlyo:t—1,0) :/P(Ytaxt71|YO:t7179)dthl
= /P(Yt|xt7179)P(Xt71|)’o;t7179)dxt71
://p(yt,xt|xt,1,9)dxtp(xt,1\y0;t,1,9)dxt,1

://p(yt|xtae)p(xt|xt—17e)dxtp(xt—1|y0:t—17e)dxt—l
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Preliminaries Problem Domain Likelihood Estimation Particle Filters

Likelihood Decomposition I

()

o If we can sample x;”; ~ p(x¢—1|yo:t—1,6) and x() (xt|xt 1,0)
for i=1,..., N we can estimate p(y:|yo:t—1,0) via

N
Pn(yelyo:t—1,0) Z (yelxi, 0
e and log p(yo.7]0) via
.
On(yo:710) = log P (yol0) + > _ log pu(yelyo:e—1,6)
=1

@ SMC will allow us to sample from an empirical distribution
Pn(dx¢—1]yo:t—1,0) which approximates p(x:—1|yo:t—1,6).
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Preliminaries Problem Domain Likelihood Estimation Particle Filters

Sequential Monte Carlo for State-Space Models

1. At time t = 0 (same except for sampling density)...
2. For times t > 0.
e Fori=1,...,N, sample &) ~ q(xt|yt,x(t'll) and set
~ (1) def i ~(7
XE):)t = (XE):)tfl’ XE ))
e Fori=1,...,N, evaluate the importance weights:

<Ny _ () P(Yt|>~<(r1))P(’~(£')|X(t'll)
Wf(XO:t) =W =) 6)
q(xt ‘ybxt—l)

e Fori=1,..., N, normalize the importance weights:

e Resample (with replacement) N particles {x(()')t ci=1,...,N} from
{&{) . i =1,..., N} according to the importance weights
W i=1,... N}, Set w) = L fori=1,...,N.
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Preliminaries Problem Domain Likelihooc mation Particle Filters

Resampling

@ In resampling we replace

N
Pr(dxoclyo) = Wt(l)(sx((]':)r(dxo:t)
with

1 i
PN(dXO t|yo:t) = N;n 5x0, dxo:t)
where n{) € {0,1,..., N} and Z g n)

@ Usually we use schemes such that E[nt |Wt(1:N)l = NWt(i) so
Pn(dxo:¢|Yo:t) is an unbiased approximation of Py (dXo.+|yo:t)-

@ In multinomial resampling, we have nﬁlzN) ~ multinomial(N, Wt(lzN)).
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Smooth Likelihood Estimation Definition Mechanism Theory Practice

Smooth Likelihood Estimation

e We would like an estimator Ly(6) of p(y|0) to have three properties:

1. Consistency: Ly(0) = p(y|#) as N — oco. .
2. Smoothness: p(y|@) is continuous in 8 = Ly(6) is continuous in 6.
3. Tractability: o(N?) time complexity in general.

@ Why smoothness?

1. Captures the true nature of the likelihood.
2. Better facilitates likelihood maximization:

E[Ln(62) — Ln(61)] = p(yl62) — p(y|6)
var(Ly(602) — Ln(61)) = var(Ln(61)) 4 var(Ln(62)) — 2cov(Ln(61), Ln(62))
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Smooth Likelihood Estimation Definition Mechanism Theory Pra

Smooth Likelihood Estimation (visualization)

(a) weighted binary tree (b) vanilla

—

(c) true

Figure: 2D Gaussian State-Space Model Log-Likelihood
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Smooth Likelihood Estimation Definition Mechanism Theory Practice

Common Random Numbers

@ One way to achieve positive correlation is to use common random
numbers (CRN).

p(x|0)
CON

so each ‘CRN’ x; ~ g(x|0) gives the Monte Carlo estimate:
SN 2
p " a(xil0)

@ z;'s are common and x; = f(z;; 0) = x; ~ q(x;]0), where f is
continuous in 6.

py16) = [ ply.xi0)ix = [ plylx,6)2 5 a(xi8)cx

2 \

o Still, we shouldn’t use proposal distributions of this form.
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Smooth Likelihood Estimation Definition Mechanism Theor

CRN for Particle Filters

@ Transition:

o Use common {zt WY to produce xg) (xt|yt,x(till,0)
@ Resampling:

o Use common {ugi) N | to sample {ngi) N
@ Problem:

o "V muItinomiaI(N WM.

o The weights Wt(L are dependent on 6 = nt 9 ;é a:M)

t,0’ *

@ Key observation:

Fon() = X0, Wi,

o When weights change, we will pick a particle with a ‘close’ index.
o Can we make particles with close indices be close themselves?

o For 1D state variables, F; n(x) = ng,-)gx W will work [Pitt '02].

What can we do when state variables are not 1D?
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Smooth Likelihood Estimation Definition Mechanism Theory Pra

Tree-Based Resampling

@ Imagine we want to sample from p(x), x € R2.

@ If we can compute the median of any truncated version of p and sample
Bernoulli(0.5) rv's, we can recursively split regions along their medians
and pick either subregion with probability 0.5.

1101
0101 ottt

IRt}

0100 0110 1100

1110

0001 0011
1001 1011

0000 0010 1000 010

(a) tree representation (b) partition representation
Figure: Recursive binary partitioning of the space

@ The limit of the region contains a single point (almost surely) as the
length of the random binary string goes to oco.
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Smooth Likelihood Estimation Definition Mechanism Theory Practice

Theoretical Median-Cutting Algorithm £,(u)

e Draw u ~ U[0,1] and compute f,(u) as follows:
1. oSetal) m:---:agl):—ooandbp:bgl):---:bgl):oo
o Let X0 E 14 12, bM]
° Compute t; satisfying f;(lll) f;\a(_l} p(x)dxo.qdx1 = 0.5
e Fori=1,...,d: set 352) = afl) and b,@ = bll)
o If u<0.5, set b§2) =t and u = 2u, else set ag ) — = t; and
u=2(u—0.5)
2. Forj=2,...,n
o Let k=  modd. If k=0, Ietk—d
o Let A0 Z T 6O T o). b))

o Compute t; satlsfymg 2 f(j) Sty P(X)dxik—1dXks1.0dxc = 0.5
ay —k
e Fori=1,...,d: set a(’H) = am and bQJrl b,-m

o If u< 0.5, set b(JH) = t; and u = 2u, else set a(ﬁl) =t; and
u=2(u—0.5)

3. Return X(t1) = H;j:l[agjﬂ), b:(j+1)]'
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Smooth Likelihood Estimation € n Practice

Practical Algorithm |: Unweighted Binary Trees

@ Given N particles and weights, construct a tree as follows:
o Compute the weighted median of the particles in one dimension and
split the particles into two sets (children).
o For each child, compute the weighted median of its particles in the
next dimension and split the particles into two sets.
o Repeat, cycling through the dimensions.
@ We can pick a particle with a common random number v € R,
traversing the tree as in the theoretical version.
o Think of the path selected as a binary string 8 where each bit is
independent of the weights.
@ We need to replicate a particle at each split to make the weight of
each child equal.

o Total cost is usually in O(N log N) for constructing the tree and
sampling N particles.
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Smooth Likelihood Estimation e ol echanism Theory Practice

Practical Algorithm |I: Weighted Binary Trees

e Given N = 2k particles and weights, construct a tree as follows:
o Compute the (unweighted) median of the particles in one dimension
and split the particles into two sets (children).
o For each child, compute the (unweighted) median of its particles in
the next dimension and split the particles into two sets.
o Repeat, cycling through the dimensions.

@ The weight associated with each node is the sum of the weights of
its constituent particles.

e We can pick a particle with a common random number u € R¥,
traversing the tree according to the weights.

o Think of the path selected as a binary string 8 where each bit is
dependent on the weights.
o Further improvement can be attained by using u € R?.
@ Total cost is in O(N log N) for constructing the tree and sampling N
particles.
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Smooth Likelihood Estimation Definition Mechanism weory Practice

Correctness

@ For any tree structure with properly weighted nodes we have

weight of particle 7

Prlselect index 7] = sum of all weights

@ Let the set of particles in the node at level j + 1 reached by a given
ﬂl:j S {0, 1}‘, be denoted Sj(ﬂlj)

Weight of Sj(ﬁl;j)
sum of all weights

P[] =

@ With respect to smoothness

o Nodes define similar regions when 6 changes.
o There is a common (possibly null) prefix of 3 between different runs.
= Particles tend to be close even when 6 changes.
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Smooth Likelihood Estimation Definition Mechanism weory Practice

Comparing the binary trees

For the weighted binary tree

o The random string (3 depends on the weights.
o Set membership for particles does not depend on the weights.

o For the unweighted binary tree

o The random string 3 is independent of the weights.
o Set membership for particles does depend on the weights.

It is hard to tell which is better in theory for finite N.

@ For the unweighted tree, as N — oo, the particle returned for u
converges in probability to the almost surely unique particle in
limp_ 00 fn(U).

@ The weighted binary tree is easier to implement.
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Applications Gaussian FSV SK DSGE Surface Maps MCMC Remarks

2D Gaussian State-Space Model

(a) weighted binary tree (b) unweighted binary tree

(c) CRN vanilla

Figure: N = 1024 for tree-based filters, N = 1536 for vanilla filters
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2D Gaussian State-Space Model Errors
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(a) weighted binary tree (b) unweighted binary tree

e W

(c) CRN vanilla (d) vanilla

Figure: N = 1024 for tree-based filters, N = 1536 for vanilla filters




Applications Gaussian FSV SK DSGE Surface Maps MCMC Remarks

2D Gaussian State-Space Model (locally optimal)

(a) weighted binary tree (b) unweighted binary tree

(c) CRN vanilla

Figure: N = 1024 for tree-based filters, N = 1536 for vanilla filters
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(a) weighted binary tree (b) unweighted binary tree
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(c) CRN vanilla (d) vanilla

Figure: N = 1024 for tree-based filters, N = 1536 for vanilla filters




Applications Gaussian FSV SK DSGE Surface Maps

Factor Stochastic Volatility Model

Used in quantitative finance.

Models volatility of asset values as a stochastic process.

Factor loading matrix allows us to model dependent item valuations.
Calibration (parameter estimation) is very important in practice.
Model is as in [Liu & West, '00]

Yt ~ N(Bft, ‘I’)
ft ~ N(O7 Ht)
[0 7 e N(@at_]_, U)

where ¥ = diag(1)1, ..., ¥m), He = diag(exp(a)),
® = diag(1, ..., oK)
o This gives y;|a; ~ N(0,BH,BT + ¥)
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Applications d FSV St

Factor Stochastic Volatility Results

T e Y

e
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(c) CRN vanilla

Figure: N = 1024 for tree-based filters, N = 1536 for vanilla filters
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Applications FSV SK DS

Partially Observed Lotka-Volterra Model

Simple case of stochastic kinetic models used in systems biology.

Describes evolution of predator and prey levels or concentrations of
chemical reactants.

Can use SMC to simulate a diffusion approximation of the model.

Particularly interesting when predator population is unobserved.

Figure: Estimated expected predator-prey population levels for the partially
observed Lotka-Volterra model
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Applications Gaussian FSV SK DSGE Surface Maps MCMC Remarks

Partially Observed Lotka-Volterra Results

(a) weighted binary tree (b) unweighted binary tree
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(c) CRN vanilla

Figure: N = 1024 for tree-based filters, N = 1536 for vanilla filters
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Applications

Dynamic Stochastic General Equilibrium Model

@ Used to explain macroeconomic phenomena using microeconomic
principles.
@ We observe representative rational agents in the market.

@ System is subject to random shocks.
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Applications Gaussian FSV SK DSGE Surface Maps MCMC Remarks

Dynamic Stochastic General Equilibrium Results

(c) CRN vanilla

Figure: N = 1024 for tree-based filters, N = 1536 for vanilla filters
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Applications Gaussian FSV SK DSGE Surface Maps MCMC Remarks

Dynamic Stochastic General Equilibrium Results Il

ag-tkalibacd
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alpha

Figure: DSGE log-likelihood plots for the vanilla particle filter with N = 20000
(red) and the weighted binary tree particle filter with 1024 particles (blue)
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Applications Gaussian FSV SK DSGE Surface Maps MCMC

2D Gaussian State-Space Model Log-Likelihood

(a) weighted binary tree (b) vanilla

—

(c) true

Figure: 2D Gaussian State-Space Model Log-Likelihood
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Applications Gaussian FSV SK DSGE Surface Maps MCMC Remarks

2D Gaussian State-Space Model Log-Likelihood Errors

(a) weighted binary tree (b) vanilla

Figure: 2D Gaussian State-Space Model Log-Likelihood Errors
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Applications Gaussian FSV SK DSGE Surface Maps MCMC Remarks

Application to MCMC

o Note that the estimate of the likelihood is unbiased (without
interpolation)! [Del Moral '04]

e We can perform MCMC on (6, u) treating u € RV as an auxiliary
variable.

@ For some steps, propose a new u, for others propose a new 6.

o We obtain a reduction in the ‘variance’ of the acceptance ratio, ie.

9’, 0")p(0
min{1, 08 s closer o min, )

@ This can constltute an improvement over the standard PMMH
algorithm of [Andrieu, Doucet & Holenstein (to appear)]

@ For the 2D Gaussian state-space model, acceptance ratio
differences/move discrepancy rate of 9% for SPMCMC and 36% for
PMMH compared to the marginal acceptance ratios.
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Applications Gaussian FSV SK DSGE Surface Maps MCMC Remarks

(b) SPMCMC, 10000 steps

(c) PMMH, 30000 steps (d) SPMCMC, 30000 steps

Figure: PMMH and SPMCMC results on 2D Gaussian state-space model
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Applications K DS aps MCMC Remarks

RENMEIS

@ The tree-based resampling schemes lead to significantly smoother
estimators.

@ It is the particles that are smooth as a function of 6.
@ T can be arbitrarily large: resampling ‘resets’ the particles.

@ There are no regularity conditions or auxiliary distributions or extra
parameters.

e O(Nlog N) time complexity is not that bad in practice.

@ This type of variance reduction method can accelerate PMCMC
convergence.

Anthony Lee Smoother Particle Filters 34/ 35



References

References

@ Michael K. Pitt. Smooth Particle Filters for Likelihood Evaluation
and Maximisation. The Warwick Economics Research Paper Series
651, University of Warwick, Department of Economics, 2002.

@ Jane Liu and Mike West. Combined parameter and state estimation
in simulation-based filtering. In Arnaud Doucet, Nando de Freitas,
and Neil Gordon, editors, Sequential Monte Carlo Methods in
Practice. Springer-Verlag, New York, 2000.

@ Pierre Del Moral. Feynman-Kac Formulae: Genealogical and
Interacting Particle Systems with Applications. New York: Springer.
2004.

@ Christophe Andrieu, Arnaud Doucet and Roman Holenstein. Particle
Markov chain Monte Carlo (with discussion). JRSS B (to appear).

Anthony Lee Smoother Particle Filters 35/ 35



	Preliminaries
	Problem Domain
	Likelihood Estimation
	Particle Filters

	Smooth Likelihood Estimation
	Definition
	Mechanism
	Theoretical Approaches
	Practical Approaches

	Applications
	Gaussian State-Space Model
	Factor Stochastic Volatility Model
	Stochastic Kinetic Model
	Dynamic Stochastic General Equilibrium Model
	Surface Maps
	Application to MCMC
	Remarks

	References

