
Language-based feedback control using Monte
Carlo Sensing

submitted to ICRA 2005

Sean B. Andersson
Division of Engineering and Applied Sciences

Harvard University
Cambridge, MA 02138

sanderss@deas.harvard.edu

Dimitrios Hristu-Varsakelis
Department of Mechanical Engineering and

Institute for Systems Research
University of Maryland, College Park, MD 20742

hristu@glue.umd.edu

Abstract— Landmark-based graphs are a useful and parsimo-
nious tool for representing large scale environments. Relating
landmarks by means of feedback-control algorithms encoded in
a motion description language provides a level of abstraction that
enables autonomous vehicles to navigate effectively by composing
strings in the language to form complex strategies that would be
difficult to design at the level of sensors and actuators. In such a
setting, feedback control requires one to pay attention not only
to sensor and actuator uncertainty, but also to the ambiguity
introduced by the fact that many landmarks may look similar
when using a modest set of observations. This work discusses
the generation of language-based feedback control sequences for
landmark-based navigation together with the problem of sensing
landmarks sufficiently well to make feedback meaningful. The
paper makes two contributions. First, we extend previous work
to include the costs of sensing with varying degrees of accuracy.
Second, we describe a Monte Carlo based approach to landmark
sensing which relies on the use of particle filters. We include
simulation results that illustrate our approach.

I. INTRODUCTION

The design of feedback control laws that accomplish seem-
ingly straightforward tasks, such as those involving naviga-
tion in everyday environments or manipulation of objects, is
arguably a persistent challenge in the area of robotic motion
control. This is partly because much of systems theory applies
in domains (defined by various structural requirements on the
dynamics of a system) which are too narrow to capture a
variety of interesting and realistic situations. The available
control design tools are particularly effective for systems
that evolve in state-space like environments and for control
specifications which are narrowly defined (e.g. stabilization or
trajectory tracking). While such tools are necessary in almost
every application they are useful only locally in time and
space. For example, attempting to devise a state feedback law
that will steer a robot through a moderately sized building with
doors, human traffic, elevators, etc., quickly gets one mired in
complexity and leads to the idea of “breaking-up” the task into
many intermediate pieces.

Attempts to do precisely this have seeded research in the
area of motion description languages [6], [13], [20], or MDLs,
via which motion control tasks are described by symbolic

strings. Those strings are themselves composed from simple
control primitives that are eventually interpreted down to
precise feedback control laws. The specification of motion
control in terms of language agrees with human intuition and
enables one to manage the complexity of motion control tasks.
Furthermore, language based descriptions have a chance of
being universal because the same set of instructions can be
interpreted by robots that differ in their kinematics, mass,
sensor configuration, etc., to produce the same effect. Most
importantly, linguistic descriptions of control tasks provide a
useful abstraction that allows one to design feedback control
laws at the level of strings and primitives (each with a mathe-
matical interpretation as a feedback controller), rather than at
the level of sensors and actuators. Although this is perhaps one
of the greatest potential advantages of language-based control,
it has only recently begun to be explored [1], [7], [8], [11],
[12]. In the following, we discuss the use of language-based
control in robotic navigation and localization and describe an
approach for choosing optimal feedback control laws

One of the problems where the benefits of language-based
control are most evident is that of navigation and localization.
If a robot is given a map of its environment and sensors to
investigate its surroundings, the navigation problem can be
solved effectively using a variety of path-planning techniques
(see e.g. [14], [16], [17]), while efficient global localization
can be achieved using Monte Carlo methods [10]. These
approaches become infeasible as the size of the environment
becomes large compared to the robot’s sensing range. At the
same time however, it is often the case that only a small
portion of the environment is “interesting”. For example, in an
office environment hallways are often used only as a means for
moving from office to office. Language-based feedback control
laws (formalized in an MDL) can be used to form sequences
of instructions that steer a robot from one interesting region to
another. Each of these regions, termed landmarks, is endowed
with its own local map on which traditional map-based navi-
gation and localization can be performed. This approach yields
a natural but parsimonious representation of the environment
[12] and has been extended to handle sensor and actuator

uncertainties [2]. Furthermore, it suggests favoring linguistic
instructions (to be interpreted down to sensor and actuator-
level feedback laws) over geometric relationships and global
coordinates.

In a landmark-based setting, several methods have been
investigated for localization (e.g. [4], [24], [25]) and for
navigation (e.g. [15], [19], [23]). In this work we explore
the construction of optimal motion control sequences, paying
special attention to the problem of sensing landmarks. Rather
than being just simple features in the environment, we allow
landmarks to be (small) regions, such as a corner in a
hallway or the area around a door. To navigate effectively, a
robot must determine which landmark it is on using multiple
measurements from its sensor suite and here we propose a
Monte Carlo-based method to accomplish this. The essential
idea is to derive a probability distribution over the set of
landmarks (using the results of independent particle filter-
based localization algorithms) and to use that distribution to
inform the navigation problem.

Of course, the accuracy with which landmarks can be “iden-
tified” depends on the type and quality of the sensors used, the
amount of data which is used to make the measurement and
the “uniqueness” of the landmark. There is a tradeoff between
the cost of operating the sensors, the time spent collecting data,
the computational cost and the reliability of the measurement.
It is thus desirable, and in fact natural in our formulation, to
include a measure of the cost of sensing in the performance
functional which is to be optimized. The optimization results
in optimal sequences of control plans and measurements (with
respect to an appropriate objective function) to achieve a given
goal.

The remainder of this paper is organized as follows. In
Section II we describe a Markov-chain based approach to
landmark-based navigation and localization and formulate the
corresponding optimal control problem. The Monte Carlo-
based approach to landmark observation is described in Sec-
tion III. Section IV presents a simulation-based experiment
that illustrates the effectiveness of our approach.

II. STOCHASTIC LANGUAGE-BASED MOTION CONTROL

As described in [2], we let L = {L1, . . . , LnL
} denote a

collection of interesting or useful geographical areas in the
environment. We call these areas landmarks and associate
to each a local map and coordinate system. The problems
of navigation and localization are each divided into a pair
of subproblems, namely the local problem of navigation and
localization on a given landmark, and the global problem of
navigation between landmarks and localization on the set of
landmarks. Since each landmark is equipped with a map,
the local problem can in principle be solved through the
use of a variety of map-based path-planning and localization
techniques. Our focus here will be on the global version of
the problem instead.

When traveling between landmarks, the robot has no
global geographical information and therefore map-based
path-planning and localization algorithms cannot be used. In

lieu of the geographical information, we equip the robot with
a set of feedback-control laws encoded as sequences of motion
control primitives in the motion description language MDLe.
Each such sequence is known as a plan and steers the robot
through the environment from landmark to landmark. Due
to the noise inherent in real world sensors and actuators
and random (small) changes in the environment, the actual
outcome of a plan cannot be known exactly even if the robot
knows with certainty where it begins. We therefore represent
the action of each plan by a Markov matrix A(i) whose jk-th
element gives the probability of ending on landmark k given
that the robot started on landmark j.

At the completion of a plan the robot makes an observation
as to which landmark it is currently on. We do not assume that
each landmark is uniquely identifiable since, depending on the
sensor suite of the robot, different landmarks may appear to
be similar to varying degrees. Therefore we define the set
Z = {z1, . . . , zm}, m ≤ n, to be the collection of possible
observation outcomes. This set can be viewed as the set of
equivalence classes of the landmarks where two landmarks are
deemed equivalent if they cannot be distinguished using only
measurements taken while on either of the two. To generate an
observation, the robot collects sensor measurements from its
current local environment and uses them to obtain a measure-
ment from Z . To model this process, we define an observation
policy to be a motion plan which moves the robot locally (on
a fixed landmark), while gathering data using a collection of
sensors. These sensor measurements are uncertain, thus we
associate to each observation policy a Markov matrix O(i)
whose jk-th element gives the probability of observing zk

given that the robot is on landmark j and that policy oi is
executed.

To mathematically formulate the global navigation and
localization problem we take the set L of landmarks as the
state space for the robot, the set Z as the observation space,
and define the sets U = {A(1), . . . ,A(nc)} of control actions
and O = {O(1), . . . , O(no)} of observation policies. Let
xk, uk, ok, zk denote the actual landmark, control action, ob-
servation policy, and observation at time k, k ∈ {0, 1, . . . , N}.
Note that in this framework time is naturally a discrete variable
which is updated after the completion of a control action and
observation policy. Let Ik denote the usual information vector

Ik
4
= (u0, o0, z0, . . . , uk, ok, zk) (1)

and define the row vector of conditional probabilities

Pk|k
4
= (p1

k|k . . . pnL

k|k) (2)

where pi
k|k is the probability of being on landmark i given Ik.

Using Bayes rule we can update these probabilities after exe-
cuting a control action, an observation policy, and generating
an observation. We have

pi
k+1|k+1 = Pr(zk+1|xk+1=i,ok+1)Pr(xk+1=i|Ik,uk)∑m

i=1 Pr(zk+1|xk+1=i,ok+1)Pr(xk+1=j|Ik,uk) (3)

where

Pr(xk+1 = i|Ik, uk) =

n∑
j=1

Pr(xk+1 = i|xk = j, uk)pj
k|k (4)

and we have made the Markov assumption that the ob-
servation zk+1 depends only on the current landmark and
observation policy. For ease of notation define the diagonal
matrix

Pzk (ok) = diag(Pr(zk|xk = 1, ok), . . . , P r(zk|xk = nL, ok)) (5)

and the column vector e = (1, . . . , 1)′. The update equation
for the conditional probability vector can then be written
compactly as

Pk+1|k+1 = Pk|kA(uk)Pzk
(ok)

Pk|kA(uk)Pzk
(ok)e . (6)

Note that the observable zk is a random variable on Z whose
distribution is defined by the choice of ok.

The probability of arriving at a desired landmark clearly
depends on the sequence of control actions and observation
policies. In addition to their different distributions, there may
be different costs associated to the various actions and policies.
For example, a robot could make a quick observation involving
just a few measurements to get a rough estimate of its
surroundings or it could spend more time to investigate the
local details. Similarly, a control action may move the robot
very quickly at the expense of accurate sensing while another
may move the robot very slowly to minimize errors. To handle
such differences, we define the cost functions

gu : P × U × {0, . . . , N − 1} → R, (7)
go : P ×O × {0, . . . , N − 1} → R. (8)

where P is the space of distributions over L. Let π denote
a policy π = (u0, o0, . . . , uN−1, oN−1). We then define the
optimal control problem

minπ Jπ(P0|0) = Ezk,k=0,...,N−1

{
g(PN |N , N)

+
∑N−1

k=0

(
gu(Pk|k, uk, k) + go(Pk|k, ok, k)

)} (9)

which naturally fits into the framework of dynamic program-
ming (DP) [5]. The resulting feedback controller, selected via
DP, is a sequence of motion and observation plans which seek
to maximize J . By choosing appropriate cost functions, a
variety of different goals can be achieved. For example, to
maximize the probability of arrival at a desired landmark in
N steps, one could choose the final cost to be g(PN |N , N) =
PN |Nd where d is a column vector containing a 1 in the index
of the desired landmark and a 0 in every other position. To
minimize the actual time it takes to move to a given landmark,
one could choose the per-stage cost to be proportional to the
expected time it takes to complete the selected control and
observation plans.

III. MONTE CARLO-BASED LANDMARK SENSING

To generate an observation of the current landmark, the
robot must fuse a number of sensor measurements collected at
different times and different positions from possibly disparate

sensors. There are a variety of ways to handle this problem;
here we propose a solution based on the technique of Monte
Carlo (or particle filter) localization. Particle filtering is a
grid-less simulation-based filtering technique in which the
probability density of a stochastic process is represented by a
collection of samples (particles) generated by a Monte Carlo
method. It has been used effectively in a variety of estimation
problems including localization in mobile robotics [10], [18].

A. Particle filters

We outline here the basic particle filter algorithm for a
stochastic system with discrete dynamics. See [3] and refer-
ences therein for a more complete description. Consider the
discrete-time stochastic dynamical system given by

xk+1 = fk(xk, uk) + Gk(xk)wk,
yk = hk(xk) + vk

(10)

where wk, vk are independent noise processes and the dis-
tribution of x0 is assumed to be given and independent of
wk, vk. Define Dk = {y0, u0, . . . , yk, uk} to be the collection
of observations and controls up to time k. The propagation of
the conditional density is theoretically given by

1. Initialization: p0(x0|y0) = p(x0)
2. Diffusion:

pk+1|k(xk+1|Dk, uk+1)
=
∫

p(xk+1|xk, uk))pk|k(xk|Dk)dxk

3. Bayes’ rule update:

pk+1|k+1(xk+1|Dk+1)
= αp(yk+1|xk+1)pk+1|k(Dk, uk+1)

where α is a normalizing constant.
4. k ← k + 1. Go to Step 2.

The density p(xk+1|xk, uk) is called the motion model for the
system and describes the effect of the control action on the
state of the system. The density p(yk+1|xk+1) is called the
sensor model and is the probability density of the observation
given the state of the system; it is a probabilistic model of
perception.

Under appropriate assumptions the resulting conditional
density is exact but in general the steps describe an infinite di-
mensional filter. Particle filtering is an approximation method
that mimics the above calculations using a finite number of
operations. The algorithm is as follows.

1. Initialization: Sample N particles x1
0, . . . , x

N
0 according

to p0(x).
2. Diffusion: Find x̂1

k+1, . . . , x̂
N
k+1 from x1

k, . . . , xN
k using

the dynamic rule (10).
3. Form the empirical distribution:

pN
k+1|k(x) =

1
N

N∑
j=1

δx̂j
k+1

(x)

4. Use Bayes’ rule:

pk+1|k+1(x) =
α

N

N∑
j=1

δx̂j
k+1

(x)Ψk+1(x)

where α is again a normalizing constant.
5. Resample: Sample x1

k+1, . . . , x
N
k+1 according to

pk+1|k+1(x).
Here δv(w) is the Dirac delta function and Ψk(x) is the
conditional density of the observation yk given the state
x. It has been shown [22] that (under some assumptions)
the approximate density of this algorithm approaches (in an
appropriate sense) the true density as the number of particles
goes to infinity.

Note that the total weight of the particles before normaliza-
tion, given by

Ck+1 =
N∑

j=1

δx̂j
k+1

(x)Ψk+1(x), (11)

provides an indication of the quality of the approximation by
giving information as to how likely the current set of particles
is given the current observation. We will take advantage of this
below to generate a distribution on the space of observation
outcomes.

B. Particle filters for mobile robot localization

The problem of localization for a mobile robot is that of
specifying its position and orientation with respect to a fixed
coordinate system attached to the environment. If the actuators
and sensors are noisy, the problem becomes one of estimation
of the probability density over the space of possible positions
and orientations of the robot, i.e. over its position and heading
angle with respect to the fixed coordinate system. To use
the particle filter algorithm to estimate this pdf one needs to
specify the motion and sensor models that will govern the
dynamics of the particles. The motion model is simply given
by specifying a stochastic dynamical system describing the
evolution of the robot, while the sensor model provides a
probability density function over the possible sensor readings
given a position and orientation on the map.

To implement the particle filter algorithm, one first samples
N “particles” from an initial distribution (in the absence of any
prior information this could be a uniform one.) Each particle
evolves according to the stochastic equations of motion that
apply to the robot, using a fixed time step. Then, an observa-
tion is made using the sensors of the robot, and the particles
are weighted according to the sensor model. Finally, a new set
of samples is drawn from the approximation to the pdf of the
robot as given by the weighted particles.

C. Particle filters for landmark sensing

As mentioned above, the total weight of the particles before
normalization, Ck+1, gives information as to how likely the
current set of particles is. If more particles are in locations
which are more likely to yield the current sensor readings
then the total weight will be higher. This fact can be used to
provide a observation of the current landmark as follows.

Recall that at the completion of each motion plan, the
robot is able to execute a sensing plan in which it moves
locally while gathering data. If the robot were known to be

on a given landmark, then we would have an instance of the
standard localization problem, which can be solved using the
particle filter algorithm. The particle filter algorithm translates
the sensor data obtained while running the observation plan
into a pdf over all possible headings and all locations on the
given landmark map.

As described in Section II, among the n landmarks there are
m possible observation outcomes. Independent particle filter-
based localization algorithms can then be run on each of the
m maps simultaneously as the robot executes the observation
plan. At the completion of the plan, the total weight of the
particles on each map, Ci, i = 1, . . . ,m can be calculated.
An observation from the set of possible observations is then
generated by sampling from the probability distribution over
the m possible observations given by

prob(observation i) =
Ci∑m

j=1 Cj
. (12)

D. Comments

The efficacy of this approach is strongly influenced by the
number of particles chosen for each particle filter algorithm.
We note that this number need not be the same for each
landmark; if a landmark has many identifiable features that
make localization easy then fewer particles can be used.
However, using an insufficient number of particles on the
landmarks will generally lead to a uniform distribution over
the set of possible landmark observations and there is therefore
a tradeoff between the number of particles used (and thus the
computation time) and the amount of information generated.
This tradeoff can be captured by assigning different costs
to different choices for the number of particles used and
optimizing these costs under the general framework of Section
II.

The particle filter algorithm is an extremely powerful tech-
nique and it is applicable to arbitrary distributions. However, it
is computationally intensive; while performing the calculations
for a single particle is simple, a large number of particles
is usually required to obtain a good estimate of the pdf.
The algorithm presented here requires not just one but m
instances of the algorithm, one for each possible observation
outcome. This additional complexity is offset by two factors.
First, high accuracy is not necessarily required; so long as
some information is generated (i.e. the resulting distribution
is not uniform) the robot can be expected to determine where
it is with high probability in the long term by running
sequences of motions and landmark observations (see also
[9] for related work). Second, the particle filter algorithm is
inherently parallelizable and thus the additional complexity
can be handled using multiple processors.

It is important to note that the particle filter algorithm is to
be run only while the observation plan is being executed and
not while the motion plan is run. On small maps the particle
filter algorithm tends to converge fairly quickly to a sharp
distribution, even if the local environment of the robot looks
very different than that of the landmark. When the robot enters

the actual landmark and begins the observation phase, it would
then begin with a highly localized but most likely erroneous
distribution, akin to the “kidnapped robot” problem. While
there are variants of the basic particle filter-based localization
algorithm which can effectively solve the kidnapped robot
problem [10], the additional complications can be avoided
simply by running the particle filters only when observing the
landmark.

Finally, we note also that once the robot has determined with
high probability that it has arrived at the desired landmark,
the final estimate of the distribution can be used as an initial
density for a standard particle filter localization algorithm run
on that map.

IV. SIMULATIONS

To illustrate our approach to global navigation and local-
ization, we now present a simulation-based experiment of a
planar, direct-drive nonholonomic robot equipped with a laser
range finder sensor operating in an office-like environment
(shown in Figure 1). In the image, white denotes open space,
black denotes occupied space, and gray denotes no knowledge.
Superimposed on the map are nine landmarks , one at each of
the four hallway corners, one at each of the T-intersections, and
one at each of the three doorways. We classify these landmarks
into four groups- corner, T, left doorway, and right doorway,
giving us four possible observation outcomes. Each landmark
is represented as an occupancy grid map [21] with cells of
10cm square. As examples, the hallway and T landmarks are
shown in Figure 2. The landmarks are numbered from 1 to 9
beginning with the upper left corner and proceeding clockwise
around the map.

Fig. 1. Robot environment and landmarks

Corner map T map
Fig. 2. Sample landmark maps of a “corner” and “T-intersection”

The equations of motion for the nonholonomic robot are

ẋ = uf cos(θ),
ẏ = uf sin(θ),
θ̇ = ut.

(13)

where (x, y, θ) denote the position and orientation of the robot.
Here the control inputs are

uf = 1
2 (uL + ηL + uR + ηR),

ut = 1
w (uL + ηL − uR − ηR) (14)

where uL, uR are the commanded left and right wheel ve-
locities, w is the distance between the wheels, and ηL, ηR are
independent random variables. If we assume the control inputs
are constant over the time step ∆t then the dynamics can be
solved exactly (see [26]) to yield the discrete time evolution
equations for (x, y, θ).

xk+1 = xk + uf

ut
(sin(θk + ut∆t)− sin(θk))

yk+1 = yk + uf

ut
(cos(θk)− cos(θk + ut∆t))

θk+1 = θk + ut∆t.

(15)

The robot is equipped with three different MDLe plans for
moving through the environment. The first is designed to move
the robot around the landmarks in a counter-clockwise manner,
the second to move it in a clockwise manner, and the third is
the identity plan which applies a zero control, leaving the robot
in place (this would be used for example if the robot decides
to make additional measurements as opposed to attempting to
move to another landmark). To determine the corresponding
Markov matrices, each plan was run at least 50 times from
each landmark and the robot’s position at the end of each run
was recorded. The resulting matrices for each plan were

A(u1) =

0.36 0.01 0 0 0 0 0 0 0.63
0.56 0.39 0 0 0 0 0 0 0.05
0 0.83 0.15 0 0 0 0 0 0.02
0 0 0.52 0.44 0.04 0 0 0 0

0.04 0 0 0 0.36 0.60 0 0 0
0.56 0 0 0 0 0.44 0 0 0
0.05 0 0 0 0 0.74 0.21 0 0
0.03 0 0.01 0 0 0 0.48 0.48 0
0.01 0 0 0 0 0 0 0.68 0.31

,

A(u2) =

0.14 0.74 0 0 0 0 0 0 0.12
0 0.14 0.74 0.12 0 0 0 0 0
0 0 0.28 0.64 0.08 0 0 0 0
0 0 0.04 0.16 0.80 0 0 0 0

0.02 0 0 0.86 0.12 0 0 0 0
0.06 0 0 0 0 0.26 0.68 0 0
0.10 0 0 0 0 0 0.10 0.64 0.16
0.16 0 0 0 0 0 0 0.22 0.62
0.80 0 0 0 0 0 0 0.02 0.18

,

and A(u3) = 1I where 1I is the identity matrix. Here [A(uk)]ij]
is the probability of ending at landmark j given that the robot
starts at landmark i and executes motion plan k. The time for
the robot to complete the motion plan was also recorded. The
average times from each landmark were

T1 =
[

26.2 14.3 16.9 22.7 14.7 28.5 23.5 14.1 14.2
]

,

T2 =
[

16.6 18.8 29.6 21.5 27.9 23.6 25.5 18.6 28.1
]

,

T3 =
[

0 0 0 0 0 0 0 0 0
]

.

In addition to the three motion plans, two observation plans
were developed. The first moves the robot forward very briefly
(while avoiding any intervening obstacles) and gathers only
four sets of readings from the sensors. The plan was run with
300 particles on each landmark. As such it is intended to

be a fast but less informative observation plan. The second
moves the robot forward for a full second, gathering 20 sets
of readings, and uses 300 particles on each landmark. Recall
that the robot runs the observation plan only after completing
a motion plan and we therefore have some information as to
the possible starting position of the robot; consequently, the
statistics of the robot’s final positions (after having executed
a motion plan) were used to generate the initial pdf for the
particles in our localization algorithm. Each observation plan
was run at least 25 times from each landmark to determine an
estimate of the distribution on the observation. The resulting
matrices for the two observation plans are

O(1) =

0.78 0.05 0.15 0.02
0.19 0.62 0.12 0.07
0.40 0.07 0.43 0.10
0.82 0.04 0.07 0.07
0.02 0.14 0.05 0.79
0.99 0.01 0.00 0.00
0.36 0.10 0.37 0.17
0.16 0.57 0.14 0.13
0.82 0.04 0.10 0.04

O(2) =

0.97 0.01 0.01 0.01
0.03 0.65 0.20 0.12
0.13 0.21 0.63 0.03
0.81 0.09 0.04 0.06
0.00 0.29 0.03 0.68
0.90 0.07 0.03 0.00
0.10 0.25 0.59 0.06
0.02 0.64 0.12 0.22
0.45 0.27 0.21 0.07

In the simulations presented below, we sought to ensure
that the robot arrived at a desired landmark, while minimizing
the amount of time it takes to get there. To achieve this, we
defined the cost function (to be maximized):

J(P0|0) = a1PN |Nd−

(
N−1∑
k=0

a2Pk|kT ′
uk

+ a3Tok

)
(16)

where d is a column vector with a 1 in the position correspond-
ing to the desired landmark and zeros everywhere else, Tuk

is
the row vector of expected times to run the control uk given
position of the robot, Tok

is 0.2sec for the first observation
plan and 1sec for the second, and the ai are constant weights.
By choosing a1 much larger than the other weights we can
ensure that the controller will only optimize for time over those
control and observation sequences that have a high probability
of arrival at the desired landmark. We thus set a1 = 1000 and
a2 = a3 = 1. The optimal control/observation plan sequence
was then obtained by dynamic programming, with the number
of stages in Eq. 16 set to N = 4. If at any time the probability
of being on the desired landmark exceeds a threshold value
(0.85) then the controller terminates. Otherwise, if at the end
of 4 steps the probability of being on the desired landmark is
less than the threshold, then the controller was run again.

In the first simulation we placed the robot in a random
starting position on landmark 2, the top door of the large room,
and assumed the robot knew with certainty which landmark it
was on. The robot was asked to go to landmark 5, outside the
open office door on the right. The resulting trajectory of the
robot is shown in Figure 3, with the position of the robot at the
end of each control and observation plan indicated by an ’x’;
the evolution of the conditional probability vector is shown
in Figure 4. The optimal selection of control and observation
plans is shown in Table I and the actual and observed landmark
classes are shown in Table II. The robot successively navigated
to the desired landmark after running only four control and
observation plans but needed one additional observation before
it was certain it had arrived on landmark 5. Notice that the

controller always selected the brief observation plan; this is
because the small improvement in accuracy when using the
longer observation plan did not offset the cost of the longer
time needed to run it. In other simulations (not reported here)
where the weighting factor a3 was set to zero the controller
often choose the longer observation plan.

Fig. 3. Simulation 1: trajectory

Fig. 4. Simulation 1: Condition probability evolution

In the second simulation we again placed the robot in
a random starting position on landmark 2 and asked that
it proceed to landmark 5. This time, however, the initial
conditional density was uniform, that is the robot had no
information as to its starting position. The trajectory and the
evolution of the conditional probability are shown in Figures
5 and 6 respectively while the optimal control and observation
plans and the actual and observed landmark classes are shown
in Tables III and IV. In this case the robot took six pairs of
control and observation plans to be certain it had arrived at
the desired landmark.

Step Control plan Observation plan
0 2 1
1 2 1
2 2 1
3 2 1
4 3 1

TABLE I
SIMULATION 1: PLAN SEQUENCE

Step True landmark True landmark class Observed class
0 2 2 -
1 3 3 2
2 4 1 1
3 4 1 3
4 5 4 2
5 5 4 4

TABLE II
SIMULATION 1: STATE AND OBSERVATIONS

Fig. 5. Simulation 2: trajectory

V. CONCLUSIONS

We discussed the problem of landmark-based navigation and
localization for mobile robots. Our approach relies on the use

Fig. 6. Simulation 2: Condition probability evolution

Step Control plan Observation plan
0 2 1
1 2 1
2 2 1
3 3 1
4 2 1
5 2 1

TABLE III
SIMULATION 2: PLAN SEQUENCE

Step True landmark True landmark class Observed class
0 2 2 -
1 4 1 1
2 4 1 1
3 3 3 3
4 3 3 3
5 4 1 1
6 5 4 4

TABLE IV
SIMULATION 2: STATE AND OBSERVATIONS

of language-based control policies that are used to connect the
most interesting or relevant areas of an expansive environment,
alternating with observation policies that aim to inform the
robot’s best guess as to which landmark it is currently on.
The observation data are fed to a set of particle filters that
numerically approximate the conditional probability of being
on each landmark. The proposed approach fits naturally with
the idea of using language-based instructions to specify motion
control tasks and presents the first instance, to the authors’
knowledge, of a feedback control law that are implemented at
the level of a motion description language, as opposed to that
of sensors and actuators.

VI. ACKNOWLEDGEMENTS

The authors gratefully acknowledge the help of Aaron
Greene and Stephanie Tan in developing the simulator. This
work was supported by the National Science Foundation under
Grant No. EIA0088081 and by ARO ODDR&E MURI01
Grant No. DAAD19-01-1-0465, (Center for Communicating
Networked Control Systems, through Boston University).

REFERENCES

[1] S. Andersson and D. Hristu-Varsakelis. Stochastic language-based
motion control. In Proc. of the IEEE Conf. on Decision and Control,
pages 3313–8, Dec. 2003.

[2] S.B. Andersson and D. Hristu-Varsakelis. Stochastic language-based
motion control. In Proceedings of the 43rd IEEE Conference on
Decision and Control, pages 1–6, 2003.

[3] B. Azimi-Sadjadi. Approximate Nonlinear Filtering with Applications
to Navigation. PhD thesis, University of Maryland, 2001.

[4] A. Bandera, C. Urdiales, and F. Sandoval. Autonomous global localisa-
tion using Markov chains and optimised sonar landmarks. In Proc. of
the IEEE/RSJ Int. Conference on Intelligent Robots and Systems, pages
288–293, 2000.

[5] D.P. Bertsekas. Dynamic Programming and Optimal Control, volume 1.
Athena Scientific, 1995.

[6] R. Brockett. On the computer control of movement. In Proc. of the
1988 IEEE Conference on Robotics and Automation, pages 534–540,
1988.

[7] M. Egerstedt and R. Brockett. Feedback can reduce the specification
complexity of motor programs. IEEE Trans. Robotics and Automation,
48(2):213–223, Feb. 2003.

[8] M. Egerstedt and D. Hristu-Varsakelis. Observability and policy opti-
mization for mobile robots. In Proceedings of the 41st IEEE Conf. on
Decision and Control, pages 3596–3601, Dec. 2002.

[9] M. Egerstedt and D. Hristu-Varsakelis. Observability and policy opti-
mization for mobile robots. In Proc. of the 2002 IEEE Conference on
Decision and Control, pages 3596–3601, 2002.

[10] D. Fox, S. Thrun, W. Burgard, and F. Dellaert. Particle filters for mobile
robot localization. In A. Doucet, N. de Freitas, and N. Gordon, editors,
Sequential Monte Carlo Methods in Practice. Springer-Verlag, 2000.

[11] E. Frazzoli. Maneuver-based motion planning and coordination for
multiple unmanned aerial vehicles. In Proc of the AIAA/IEEE Digital
Avionics Systems Conference, 2002.

[12] D. Hristu-Varsakelis and S. Andersson. Directed graphs and motion
description languages for robot navigation and control. In Proc. of the
IEEE Conf. on Robotics and Automation, pages 2689–2694, 2002.

[13] D. Hristu-Varsakelis, P.S. Krishnaprasad, S. Andersson, F. Zhang,
L. D’Anna, and P. Sodre. The MDLe engine: A software tool for hybrid
motion control. Technical Report TR2000-54, The Institute for Systems
Research, 2000.

[14] Y.K. Hwang and N. Ahuja. Gross motion planning - a survey. ACM
Computing Surveys, 24(3):219–291, 1992.

[15] B. Kuipers. The spatial semantic hierarchy. Artificial Intelligence,
119:191–233, 2000.

[16] J.C. Latombe. Robot Motion Planning. Kluwer Academic Publishers,
1991.

[17] J.-P. Laumond, editor. Robot Motion Planning and Control, volume 229
of Lecture Notes in Control and Information Sciences. Springer-Verlag,
1998.

[18] S. Lenser and M. Veloso. Sensor resetting localization for poorly
modelled mobile robots. In Proc. of the IEEE International Conference
on Robotics and Automation, page ??, 2000.

[19] R. Madhavan and H.F. Durrant-Whyte. Natural landmark-based au-
tonomous vehicle navigation. Robotics and Autonomous Systems, 46:79–
95, 2004.

[20] V. Manikonda, P. S. Krishnaprasad, and J. Hendler. Languages, be-
haviors, hybrid architectures and motion control. In J. Baillieul and
J.C. Willems, editors, Mathematical Control Theory, pages 199–226.
Springer, 1998.

[21] M. Martin and H. Moravec. Robot evidence grids. Technical Report
CMU-RI-TR-96-06, The Robotics Institute, Carnegie Mellon University,
1996.

[22] P. Del Moral. Non linear filtering: Interacting particle solution. Markov
Processes and Related Fields, 2(4):555–580, 1996.

[23] A. Schultz, W. Adams, and B. Yamauchi. Integrating exploration,
localization, navigation and planning with a common representation.
Autonomous Robots, 6(3):293–308, June 1999.

[24] S. Se, D. Lowe, and J. Little. Mobile robot localization and mapping
with uncertainty using scale-invariant visual landmarks. International
Journal of Robotics Research, 21(8):735–758, 2002.

[25] S. Thrun. Bayesian landmark learning for mobile robot localization.
Machine Learning, 33(1):41–76, Oct. 1998.

[26] D.P. Tsakiris. Motion Control and Planning for Nonholonomic Kine-
matic Chains. PhD thesis, University of Maryland, 1995.

