
Interface Foundation of America

Monte Carlo Filter and Smoother for Non-Gaussian Nonlinear State Space Models
Author(s): Genshiro Kitagawa
Source: Journal of Computational and Graphical Statistics, Vol. 5, No. 1 (Mar., 1996), pp. 1-25
Published by: American Statistical Association, Institute of Mathematical Statistics, and Interface Foundation
of America
Stable URL: http://www.jstor.org/stable/1390750 .

Accessed: 20/08/2013 04:33

Your use of the JSTOR archive indicates your acceptance of the Terms & Conditions of Use, available at .
http://www.jstor.org/page/info/about/policies/terms.jsp

 .
JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of
content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms
of scholarship. For more information about JSTOR, please contact support@jstor.org.

 .

American Statistical Association, Institute of Mathematical Statistics, Interface Foundation of America are
collaborating with JSTOR to digitize, preserve and extend access to Journal of Computational and Graphical
Statistics.

http://www.jstor.org 

This content downloaded from 205.133.226.104 on Tue, 20 Aug 2013 04:33:13 AM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/action/showPublisher?publisherCode=astata
http://www.jstor.org/action/showPublisher?publisherCode=ims
http://www.jstor.org/action/showPublisher?publisherCode=interface
http://www.jstor.org/action/showPublisher?publisherCode=interface
http://www.jstor.org/stable/1390750?origin=JSTOR-pdf
http://www.jstor.org/page/info/about/policies/terms.jsp
http://www.jstor.org/page/info/about/policies/terms.jsp


Monte Carlo Filter and Smoother for 
Non-Gaussian Nonlinear State Space Models 

Genshiro KITAGAWA 

A new algorithm for the prediction, filtering, and smoothing of non-Gaussian non- 
linear state space models is shown. The algorithm is based on a Monte Carlo method in 
which successive prediction, filtering (and subsequently smoothing), conditional proba- 
bility density functions are approximated by many of their realizations. The particular 
contribution of this algorithm is that it can be applied to a broad class of nonlinear 
non-Gaussian higher dimensional state space models on the provision that the dimen- 
sions of the system noise and the observation noise are relatively low. Several numerical 
examples are shown. 

Key Words: Fixed interval smoothing; Non-Gaussian state space model; Nonstationary 
time series; Recursive filtering; Time series modeling. 

1. INTRODUCTION 

This article shows a Monte Carlo method for non-Gaussian nonlinear filtering and 

smoothing. In this method, each distribution is expressed by many of its realizations, and 
the trajectory of each particle in successive prediction stages is simulated by using the 
assumed model. In the filtering stage, the resampling with a weight proportional to the 
likelihood is performed to get a set of particles that represents the filter distribution. 

The use of the state space model and the Kalman filter analysis have become very 
popular in time series applications within the past two decades, and the advantages of 

using the state space model have been widely recognized. However, with the expansion 
of applications-for example, in the detection of structural changes of time series models, 
in the analysis of time series with outliers, and in nonlinear time series modeling-the 
necessity of non-Gaussian state space modeling became apparent. For example, West, 
Harrison, and Migon (1986) introduced a generalized dynamic linear model (see also 
Fahrmeir 1992; Smith and Miller 1986). Various extensions of Kalman filtering have 
been proposed (e.g., Fahrmeir and Kaufmann 1991, Meinhold and Singpurwalla 1989, 
Sage and Melsa 1971, and Schnatter 1992). Also, several approximations to non-Gaussian 
filter have been developed (e.g., Masreliez 1975; Sage and Melsa 1971). Kitagawa (1987) 
directly generalized the state space model to the case where either the system noise 
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or the observation noise are non-Gaussian. In the method described there, recursive 
formulas for filtering and smoothing were derived and they were implemented using 
numerical computations. It was also demonstrated that many nonstandard situations in 
time series analysis, such as abrupt model parameter changes, time series with outliers 
and with skewed distributions, can be well handled with this modeling and computational 
technique. The method generalizes easily to discrete distribution models and to nonlinear 
models (Kitagawa 1987, 1991). 

On the other hand, a problem with this numerical method is that it requires intensive 
use of the computer, both in memory and CPU time and therefore it is difficult to apply to 
models with high dimensional states. Considerable work has been done on the refinement 
of the numerical algorithm for low-state dimensional modeling. For example, Hodges and 
Hale (1993) used a computationally more efficient integration algorithm and Tanizaki 

(1993) used a Monte Carlo random placement of knots method. In a different approach 
to mitigate the high-state dimensional computational difficulty, Kitagawa (1989, 1994) 
used a Gaussian-sum approximation, in a non-Gaussian seasonal adjustment problem, 
where, typically a 13-dimensional state space model was required. (The Gaussian-sum 

approximation was introduced for low dimensional models in Alspach and Sorenson 
1972.) 

In this article, we present a new direct Monte Carlo method for state space filtering 
and smoothing. The algorithm is based on the approximation of successive prediction 
and filtering density functions by many of their realizations. The difference between the 

present algorithm and other Monte Carlo-Gibbs sampling methods (Carlin, Polson, and 
Stoffer 1992; Fruhwirth-Schnatter 1994), is that we use the Monte Carlo method for the 
entire filtering and smoothing procedures whereas the other algorithms are used only 
for numerical integration. The virtue of this new algorithm is that it can be applied to 

very wide class. of nonlinear non-Gaussian higher dimensional state space models, on the 

provision that the dimensions of the system noise and the observation noise are relatively 
low-less than five, for example-by merely specifying the functions and noise densities. 

2. A NON-GAUSSIAN NONLINEAR STATE SPACE MODEL 
AND STATE ESTIMATION 

Assume that the time series yn is obtained by the following non-Gaussian nonlinear 
state space model 

Xn = F(xn-l,vn) (2.1) 

Yn = H(xn, wn), (2.2) 

where xn is a k-dimensional state vector, the system noise v, and the observation noise 
Wn are e-dimensional and 1-dimensional white noise sequences with densities q(v) and 

r(w), respectively. F and H are possibly nonlinear function Rk x Re - Rk, Rk x R - R, 
respectively. It is also assumed that given the state xn and the observation Yn, the 
observational noise Wn is uniquely determined by Wn = G(yn,xn), where G has a 
derivative as a function of y which is denoted by G. The initial state vector xo is 
assumed to be distributed according to the density po(x). This type of state space model 
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contains a broad class of linear, nonlinear, stationary, or nonstationary time series models. 
Some examples are given in Section 5. 

The most important problem in state space modeling is the estimation of the state xn 
from the observations. Many problems in time series such as the likelihood computation 
for parameter estimation and the prediction, the interpolation, and the decomposition of 
a stationary or nonstationary time series can be handled by estimating the state. 

The problem of state estimation can be formulated as an evaluation of the conditional 

density p(xnlYt), where Yt is the set of observations {yl,..., yt}. Corresponding to the 
three distinct cases, n > t, n = t and n < t, the state estimation problem can be classified 
into three corresponding categories where the conditional density p(XnlYt) is called the 

predictor, the filter, and the smoother, respectively. 
For the standard linear-Gaussian state space model, each density can be expressed 

by a Gaussian density and its mean vector and the variance-covariance matrix can be 
obtained by computationally efficient recursive formulas such as the Kalman filter and 

smoothing algorithms (Anderson and Moore 1979). 
For nonlinear or non-Gaussian state space models, however, the conditional distri- 

butions are non-Gaussian and various types of approximations to or assumptions on the 
densities are used to obtain recursive formulas for state estimation. Some of the exam- 

ples are the extended Kalman filter (Anderson and Moore 1979), the Gaussian-sum filter 

(Alspach and Sorenson 1972), the dynamic generalized linear model (West, Harrison, 
and Migon 1985), and the non-Gaussian filter and smoother (Hodges and Hale 1993; 
Kitagawa 1987; Tanizaki 1993). 

In this article, we take a different approach. We approximate or express each density 
function by many of the realizations from that distribution. Specifically, assume that each 
distribution is expressed by using m (say 1,000 or 10,000) particles as follows: 

{p() ,..., - P } , , p(xnlYn-l) predictor 

{f (),.7*,fn(} ~ p(xnlYn) filter 

{IN ... Sm)N} P(XnIYN) smoother. 

In effect we approximate the distributions by the empirical distributions determined by 
the set of particles. For example, when m independent realizations p(),... ,pm) from 

p(Xn Yn-_) are given, the distribution function of p(xn Yn-_) can be approximated by 
the empirical distribution function 

m 

Pn(x) =- I(x ), (2.3) 
j=1 

where I(x, a) is the indicator function defined by I(x, a) = 0 if x < a and I(x, a) = 1 
otherwise. This means that p(xnlYn-_) is approximated by the probability function 

Pr(xn = p)lYn_- ) = -, for j = 1,... m. (2.4) 

It will be shown that a set of realizations expressing the one step ahead predictor 
P(Xn Yn-I) and the filter p(nl Yn) can be obtained recursively. Namely, {p( ),... pm) } 
is obtained from {fp . .,nm) } and then {f(\)., f} ) is from {pn ) m. )}. 
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3. MONTE CARLO FILTERING 

In the following two sections, we show a Monte Carlo based algorithm for recur- 
sive evaluation of the predictor and the filter, separately. Two different algorithms for 

smoothing are discussed in Section 4. 

3.1 ONE STEP AHEAD PREDICTION 

In this subsection, we show that a set of m realizations {pn) . p(m) } can be ob- 
tained from {f) .., fm) }, a set of realizations ofp(xn- IYn-). Let {v), ..,Vm)} 
be independent realizations of the system noise Vn. Namely, for j = 1,..., m 

fn-()1 'p(Xn-IY 1)I V() v q(v). (3.1) 

Here the predictive distribution p(XnlYn- ) can be expressed by 

p(Xn,Xn- ,Vn\Yn-_)dVndXn- 

= P(XnlXn-l,V n,Yn-l)p(VnlXn-l,Yn-I)p(Xn-llYn-l)dVndXn- 

J/ p(XnlXn-l ,Vn)p(Vn)P(Xn-l IYn-l)dVndxn-l 

/ 6(Xn -F(Xn- ,Vn))p(Vn)p(Xn- IYn-! )dvndXn-l, (3.2) 

with 6(x) being the delta function. Therefore, if we define p(i), the jth particles, by 

P() = F(f,v (3.3) 

{p(). pm) P } can be considered as independent realizations of the one step ahead pre- 
dictor density, p(Xn Yn-l). We note that since f) and v(j) are independent realization 
from p(xn- lYn,-) and p(vn), respectively the prediction formula is valid even for a 
non-linear model. 

3.2 FILTERING 

Given the observation yn and the particle, pi), compute a(i), the likelihood of the 

particle pj) based on the observation yn. That is, 

) 
-p (ynPn ) = r 

(G (Yn,Pn ))) OG 

for j = 1, ..., m. Note that G is the inverse function of H, and r is the density of the 
observation noise w. 

Next, we obtain m particles {fn),..., fn) } by the resampling of {pn ).., p) }, 
with the probabilities proportional to a ,..., am, respectively. Namely, define f(j) 
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by 

1) 
Pn 

fn) = < 

Pn 

with probability a n)/ (a) + * + (m) 

with probability a m)/ (n +- + a+c()) n) 

Then {f),..., f(m) } can be considered as the realizations of the filter, p(xn Yn). 
This can be verified as follows. Given the observation Yn the posterior probability 

is obtained by 

Pr( =p()ly) = = Pr(xn=p(i)Yn-I,yn) 

Pr (xn = P),yn < Y < y n + AY n-I) 

Pr 
m 

Ay- ) Pr(y n L y < Yn + AylYn- ) 

,mp(yP())Pr(xn= P(i)YnI) 

Ej=lI P YinIPnU) Pr 
(xn 

= P(j)lyn- I 

E (i) I 
m 

Nm (j) 1 j= n l m 

(i) 
an 

cm i) ' 
(3.5) 

This means that the 
can be expressed by 

probability distribution function associated with Pr(xn = p )Y,n) 
a step function 

I 
m 

m (i)E (x ,p(i) 
j=i an i=1 

(3.6) 

(1) (m) which has jumps only at pi, ...., Pm with step sizes proportional to ac , ..., aI m). 

For the next step of prediction, it is necessary to represent this distribution function 

by an empirical distribution of the form 

(3.7) 
I I 

i=l 
This can be done by generating m realizations {fn'),..., f(m)} by the resampling of 

{p(),... pm) } with probabilities 

(j) 

Pr(fni) =-p(j'Yn) = O- 

an + ? --.+an 
fori = 1,...,m. 

The details of the resampling scheme and some modifications are discussed in the 

Appendix. 

3.3 AN ALGORITHM FOR FILTERING 

Summarizing the previous two subsections, we obtain the following recursive algo- 
rithm for one step ahead prediction and filter: 

(3.4) 

(3.8) 

5 

This content downloaded from 205.133.226.104 on Tue, 20 Aug 2013 04:33:13 AM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


G. KITAGAWA 

1. Generate a k-dimensional random number fo() po(x) for j = 1,..., m. 
2. Repeat the following steps for n = 1,..., N. 

(a) Generate an ?-dimensional random number vi) q(v) for j = 1,..., m. 

(b) Compute p() = F (fij),v)) for j = 1,... m. 

(b) ( p F ( j) 
_ J__ (c) Compute a) = r (G (YnPn)) ) G forj = 1... ,m 

(d) Generate fj) (j at)n) -Z= ani) I(x,pn)) for j = 1,...,m by the 

resampling of p( ),... ) pm) 

3.4 LIKELIHOOD OF THE MODEL 

The state space model, (2.1) and (2.2), usually contains several unknown parameters 
such as the variances of the noises and the coefficients of the functions F and H. The 
vector consisted of such unknown parameters is denoted by 0. 

Given the observations yl,..., YN, the likelihood of the parameter 0 of the model 

is obtained by 

N N 

L(O) = p(y, . . . ,N) = P(YnlIY, * * Y,n-l) = f p(ynYn In-), (3.9) 
n=l n=l 

where p(yl IYo) = po(yl). Therefore, by using the approximation, 

p(ynlYn- ) = P(ynXn)p(Xn lYn_ )dXn 

m 

: ZEp(yniPn)) 
m 

j=1 

Z 
- a(j) (3.10) 

j=1 

the log-likelihood can be approximated by 

N N 1 m 

e(S)= logp(YnlYn-,I) r log (nC) - Nlogm. (3.11) 
n=l n=l j=l 

The maximum likelihood estimate 0 of the parameter vector 0 can be estimated by 
maximizing the log-likelihood. 

If there are several candidate models, the goodness of the fit of each model is 
evaluated by the AIC criterion (Akaike 1973; Sakamoto, Ishiguro, and Kitagawa 1986) 

AIC = -2e(0) + 2(number of parameters). 
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Figure 1. One Step of the Monte Carlo Filter. Bold curve = exact density, step function: histogram obtained 
from the particles. Tick mark = location of the particle. (a) Predictor, m = 100; (b)filter, m = 100; (c) resampled 
filter, m = 100; (d) predictor, m = 1,000; (e) filter, m = 1,000; (f) resampled filter, m = 1,000. 

3.5 ILLUSTRATIVE EXAMPLES 

To illustrate how the one step ahead predictor and the filter distributions are expressed 
by the particles, first, one cycle of the prediction and the filter steps is described (e.g., 
n = 1). Consider a one-dimensional non-Gaussian state space model 

Xn - Xn-1 + Vn 

Yn = Xn + Wn (3.12) 

where vn and Wn are white noises distributed as the Cauchy distribution, Cauchy(0,.01), 
with density q(v) = .17r-'(v2 + .01)-1, and the standard normal distribution, N(O, 1), 
respectively. We further assume that the initial distribution po(ox) is also the stan- 
dard normal distribution, N(0, 1). This assumption of normality is not essential for the 
Monte Carlo filter. Under these assumptions, we now consider how the filter distribu- 
tion p(xl IYI) is obtained from the predictive distribution p(xl \Yo) when the observation 
yl = 2. The number of particles was set to m = 100 in one case and to 1,000 in another 
case. m = 100 is for illustrative purpose and is smaller than what we usually use in 
actual computation. 

Tick marks in Figure la show the 100 realizations of p(xl IYo) directly computed by 
(3.3). The histogram obtained from these realizations approximates the "exact" density 
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0 100 200 300 400 500 

0 100 200 300 400 500 0 100 200 300 400 500 

Id) I e 

0 CO 200 300 400 500 0 100 200 300 400 500 

Figure 2. (a) Test data and the true trend function. (b)-(e) Posterior distributions of the filter. Bold curve 
= median; fine curve = .13%, 2.3%, 15.9%, 84.1%, 97.7%, and 99.87% points. (b) Monte Carlo filter with 
m = 10,000, Gaussian model; (c) Monte Carlo filter with m = 10,000, Cauchy model; (d) exact distribution 
obtained by the Kalman filter for the Gaussian model; (e) exact distribution obtained by the Cauchy filter for 
the non-Gaussian model. 

function (bold curve) obtained by the numerical convolution of two densities q(v) and 

p0(xo). Figure lb shows the filtered density p(xn\Yn) and its Monte Carlo approximation. 
The locations of the 100 realizations in Figure lb are the same as the ones in Figure 

steps. Figure ic shows 1 30realizations obtained by the resampling of the data shown in 

Figure lb according to the probability given by (3.8). It can be seen that the histogram 

shown in Figure 2. (a) Test data and the true trendnction. (be) Poste distribution in Figure b and approximates the 
= median; fine curve = .13, 2.3 15.9, .1, 97 , and 99.87 points. (b) Monte Carlobold curve.with 

Figuresm = 10,000, Gaussian model; (c) Monte Carlo ilter when the number of particles m = ,000distribution 
obtained by the Kalapproximations to the exact densities are obtained by the Cauchym 1,000. filter 

Fore omplete illn-Gaustrative example, we onsider the problem shown in Kita- 

function (bold curve) obtained by the numerical convolution of two densities q(v) and 

po(so). Figure lb shows the filtered density p(xIlY,) and its Monte Carlo approximation. 
The locations of the 100 realizations in Figure lb are the same as the ones in Figure 
la. However, the height of the jth each tick mark is proportional to a(j), and the 

corresponding cumulative distribution function defined by (3.6) approximates the filtered 

density and is quite different from the one in Figure la, which has equal probability 
steps. Figure Ic shows 100 realizations obtained by the resampling of the data shown in 

Figure lb according to the probability given by (3.8). It can be seen that the histogram 
shown in Figure Ic closely resembles the distribution in Figure lb and approximates the 
exact one shown by the bold curve. 

Figures Id, le, and If show the case when the number of particles m = 1,000. 
Closer approximations to the exact densities are obtained when m = 1,000. 

For a more complete illustrative example, we consider the problem shown in Kita- 
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Table 1. The Effect of the Number of Particles, m 

m D1 D2 

100 .1060 .0471 
200 .0544 .0372 
400 .0276 .0281 
800 .0145 .0201 

1600 .0072 .0171 
3200 .0038 .0096 
6400 .0023 .0098 

12800 .0011 .0060 
25600 .0007 .0048 
51200 .0005 .0029 

gawa (1987, sec. 5.1). In that problem, a known abruptly changing mean value time series 
(or trend) is observed in the presence of additive Gaussian noise. A trend model estab- 
lishes a prior distribution on the trend parameters, t ,..., tN, N = 500. The problem is 
to obtain the smooth estimate of the trend. The quasi-Bayesian method of analysis yields 
the marginal posterior distribution of the trend. The data is analyzed by two different 
models for noise inputs. The first is a Gaussian system and Gaussian observation noise. 
The second is a Cauchy system and Gaussian observation noise. Figure 2a shows the 
known trend (dotted lines) and the observed trend plus noise data. 

For the estimation of the trend by the Gaussian model we use 

tn = tn-I + Vn, Vn ~ N(0, 1.22 x 10-2) 

Yn = tn +Wn, wn N(0, 1.043). (3.13) 

The number of realizations, m, is set to 10,000. 
Figure 2b shows the posterior mean (bold curve) and ?lae, 2c, 3cr intervals (fine 

curves) of the Monte Carlo filter for the Gaussian model. On the other hand, Figure 2c 
shows the Monte Carlo estimates obtained by a non-Gaussian model 

vn - Cauchy(0, 3.48 x 10-5), wn - N(0, 1.022). (3.14) 

In the figure, the bold curve shows the 50% points of the filter densities and the other six 
fine curves show .13%, 2.3%, 15.9%, 84.1%, 97.7%, and 99.87% points, respectively. 
These points correspond to the ?1, 2, 3 standard errors in Gaussian distributions. Figures 
2d and 2e show the exact estimates obtained by the Kalman filter and the non-Gaussian 
(numerical integration) filter described in Kitagawa (1987), respectively. It can be seen 
that the Monte Carlo filter densities agree with the ones obtained by the exact filter. In 
particular, in the Gaussian case, the two results are visually almost indistinguishable. 
It is remarkable that, in the Gaussian case, even with m = 10, we get a reasonable 
approximation to the exact posterior mean. 

Table 1 shows the effects of the selection of the number of particles m on the approx- 
imation. The second column shows the discrepancy between the exact filter distribution 
and the Monte Carlo distribution measured by D1 = , I E,K (gin 

- fin)2gin, where 

gin and fin are relative frequencies obtained from the exact and Monte Carlo distribu- 
tions, respectively, and K is the number of bins. On the other hand D2 shows the average 
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Table 2. The Effect of the Initial Distribution 

Log-likelihood 

Initial distribution Normal Cauchy 

N(0,1) -748.20 (.30) -742.11 (.18) 
U[-4,4] -749.25 (.26) -743.27 (.25) 

Cauchy(0,1/4) -748.29 (.37) -742.38 (.23) 
60 -747.08 (.27) -740.89 (.18) 
62 -761.27 (.38) -748.75 (.42) 

difference of the means of the exact and Monte Carlo distributions. From the table, it 
is seen that the average difference of the means is less than .01 for m > 3,200. As a 
rule of thumb, m = 10,000 is recommended for the estimation of the filter distribution. 
However, if only the mean value is required, m = 1,000 is often sufficient. 

We also considered how the selection of the initial state distribution affects the 

filtering. Table 2 shows the mean of the log-likelihoods obtained from 100 different 
random numbers for five distinct distributions: normal, uniform, Cauchy distributions, 
and two 6 functions concentrated at xo = 0 and 2, respectively. The variances of the 

log-likelihoods in 100 runs are shown in parentheses. One can see that, for the case of 
alternative continuous distributions, the log-likelihood values are rather insensitive to the 
selection of the particular initial distribution. Obtained posterior distributions are visually 
indistinguishable except for initial several steps. On the other hand, if the initial state 
is concentrated on one point, the likelihood value and posterior distribution are very 
sensitive to its location of the delta function. 

4. MONTE CARLO SMOOTHING 

The Monte Carlo filter idea can be generalized to achieve smoothing. In the following 
two subsections, we present two different algorithms for smoothing. 

4.1 SMOOTHING BY STORING THE STATE VECTOR 

The first algorithm is just a simple modification of the filter shown in Section 3. In 

this section, (si . .., s(l) denotes the jth realization of the conditional joint density 

p(x,..., xlYi). 

U)s? U Yn_) I-- /m and v? ,.) q(v), Assume that Pr (x =( .. ,n - ...X = S Y- i = /mand n- q(v), 

and define (p( j) ..,Pi)t by 

(j) inln-l n (j) i |)Sln-I for i =1,...,n-1 (4.1) 
l- 

F(s) (j)n ) for i=n. 

Then (p(ln- , , P')n- ) can be considered as a realization from the conditional joint 

distribution of (x,., , n)t given the observations Yn-l. 
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Next, given the observation Yn, the distribution 

P U(),=p _ .., Up(_) |ye-,) 1Pr(x I 1 ]n--I1 ' ' Xn = 
Pnln- -! 

is updated as follows: 

Pr(xl = (Pj() Xn = P n) p lln- n ... nln-I 

= Pr(xl = PI * Xn = Pn IYn- , yn) 

p(y IxI = PlIn_ . Xn Y= P l"- Yn-I)Pr(xI = Pl In I ) n Pnin - ) P(Yn |Y ,f= ...- ,x=pn- 

p(ynIY n-) 

P(yn|pnn_,)Pr(x, =pln_,,...- n nYn- 

PYnly-1) 
(4.2) 

Since p(j1, is identical to the p() used in the filtering algorithm (3.5), this indicates that 
realization of the fixed interval smoother, p(xl,... ,xn Yn) can be obtained by storing 

U), U) 0 ) j = ...(j) I(J m)t and resampling m sets of vector realizations (p _ I ' . . Pnln)t, j = 1,..., m, with 
the same probability as for the filtering. 

Therefore, an algorithm for smoothing is obtained by replacing the Step 2d of the 

algorithm for filtering shown in section 3.3 with 

(d-S) Generate {(s(),., s)n, s() j = 1,..., m} by resampling {(sj) .. nn' fln .-. i...In nllnl''' nl1P ... 

UJ~ ) (n~jY~)~( () 
n-ln-pn ), j = ,...,m} 

In this modification, the past trajectories s( ) 1... S 
) 

ln- are preserved and the set 

{ (S(J) () i )t, j = 1,...,m} is resampled with the same weights as the 
one obtained by Step 2d of Section 3.3. This algorithm realizes fixed interval smoothing 
for the nonlinear non-Gaussian state space model. In practice, however, because the 
number of realizations is finite, the repetition of the resampling (d-S) will gradually 
decrease the number of different realizations in { s(),..., s( ) and the shape of the 
distribution will deteriorate. 

In Figures 3a-f, the fine curve shows the fixed point smoother, p(xllYn), for six 
distinct time points n = 1, 5, 10, 20, 100, and 500, respectively. In comparison with 
the final smoothed estimate shown by the bold curve, p(xlY5soo), it can be seen that 

p(x [Yn) quickly converges to p(xl IYsoo). 
The histograms o h rcl generams of the Monte Carticles {lo 

smoother with m = 1,000 are also shown. For n = 1 shown in Figure 3a, the histogram 
is a reasonable approximation to p(xl IYi). However, for larger n, such as n = 100 
and 500, the histogram is significantly different from p(xi IYn). In fact, the histogram of 

Figure 3f is concentrated on a single bin. In Figure 3g, the fine curve shows the change 
of a measure of the discrepancy between p(x IYn) and p(xl IYoo) as n increases from 
1 to 10 0 (see (A.1) in the Appendix). It rapidly converges to 0. On the other hand, the 
bold curve shows discrepancy between p(xl IYn) and the empirical distribution defined 
by {s(i) ,..., )}. Due to the overlap of the realizations, it increases as n increases. 
In one case, the number of different realizations, which was originally 1000 at n = 1, 
reduced to only 84 after 50 steps and to 51 at n = 100. 

11 
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Figure 3. (a)-(f) Bold curve = p(xi [Ysoo); fine curve = p(x IYn), step function: histogram obtainedfrom 

{s() .,s(I }. m = 1,000. (a) n = 1, (b) n = 5, (c) n = 10, (d) n = 20, (e) n = 100, (f) n = 500. (g) 
Fine curve = distance between p(xi IYn) and p(xj IYsoo); dashed curve = distance between p(x/ IYn) and 

,'" I In}' 

Considering this, the step (d-S) needs to be modified to as follows: 

(d-L) For fixed L, generate {(sI() Ln' . ) U() ), j = 1,..., m} by the resam- 

pling of {(P(*) , ,p)) j = 1, . ,m} with f(j) = s() 
n-Lln-11' n-In- n' 

This is equivalent to applying the L-lag fixed lag smoother rather than the fixed interval 
smoother (Anderson and Moore 1979). The increase of lag, L, will improve the accuracy 
of the p(Xn |Yn+L) as an approximation to p(n IYN), while it is very likely to decrease the 

accuracy of {s(l) ,...,s(7)} as representatives of p(XnIYn+L). Because p(xnlYn+L) 

usually converges quickly to p(xn IYN), it is recommended to take L not so large (say, 
10 or 20, at the largest 50). 

It is also advantageous in storage. The original algorithm requires m x k x N storage 
and thus requires huge memory for large sample size N. On the other hand, the modified 

fixed-lag smoother algorithm needs only m x k x L storage and is independent of the 

sample size N. For example, for m = 10,000, k = 10, N = 1,000 the necessary storage 
is 100M; necessary storage is 1M when L = 10. 

Figures 4a and b show the exact fixed interval smoother, p(XnIYN), obtained by the 
Kalman smoother and the non-Gaussian smoother, respectively. The estimated curves 

1.5 
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MONTE CARLO FILTER AND SMOOTHER 13 

are much smoother than the ones by the filters shown in Figure 2 and the non-Gaussian 
estimate shown in Figure 4b detects the jumps more clearly than the ones in Figures 2b 
and 2d. 

Figure 4 also shows the Monte Carlo 10-lag smoother obtained by using m = 100 

(Figs. 4c and 4d), m = 1,000 (Figs. 4e and 4f), and m = 10,000 (Figs. 4g and 4h) 
particles. Note that for m = 100 and 1,000, the outermost .13% and 99.87% points are 

meaningless or very unreliable and only the inner 5 curves are shown. These figures 
suggest that, to get good approximations of the posterior distributions, we need at least 
m = 1,000 particles. 

(a) lb) 

._ r -- 

r - , * * ~n I I I. 

0 100 200 300 400 500 0 100 200 300 400 500 

N N - , 

10 20 30 0 400 500 0 100 200 300 400 500 

1,0 Gusa ( ;e)m 1,0 h(d 

C- - * t\ , | 

0 100 200 300 400 500 0 100 200 300 400 500 

- ? - . _ 

0 100 200 300 400 500 0 100 200 300 400 500 

Figure 4. Posterior Distribution of the Smoother. Bold curve = median; fine curve = .13%, 2.3%, 15.9%, 84.1%, 
97.7%, 99.87% points. (a) Exact distribution by the fixed interval smoother for the Gaussian model (b) Exact 
distribution by the non-Gaussian smoother for the Cauchy model. (c)-(h) Monte Carlo smoother with lag L = 
10. (c) m = 100, Gaussian; (d) m = 100, Cauchy; (e) m = 1,000, Gaussian; (f) m = 1,000, Cauchy; (g) m = 

10,000, Gaussian; (h) m = 10,000, Cauchy. 
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One way to get a closer approximation to the smoothed distribution is to generate d 
random numbers vU') ~ q(v), i = 1,..., d, for each fJ)L. In smoothing, this may help 
to avoid a significant reduction of the different realizations. Figures 5a and 5b show, 
respectively, the 10-lag fixed lag smoothed estimate with m = 10,000, L = 20, and 
d = 10 for Gaussian and Cauchy system noise models. Closer approximations to the 
exact smoothed estimates shown in Figures 4a and 4b are obtained. 

4.2 SMOOTHING BY THE TWO-FILTER FORMULA 

Another way of achieving fixed interval smoothing is to apply the two-filter formula 
used in Kitagawa (1994). In this method, we perform forward and backward filtering 
and then combine the results to get the smoothed distribution. It is interesting that in 

combining two filters, the result by the backward filter plays the same role as the one 

point likelihood, p(yn,Xn_l), in the forward filter. 
Define YN = {yn,..., YN}, then we have YN = Yn-l UYN. Therefore, the smoother 

is divided into as follows: 

P(XnIYN) = p(XnlYn-1, YN) 
OC p(Xn,YNlyn-I) 

= p(YNxn)p(Xn, Yn-). (4.3) 

Here p(Xn Yn- ) is the forward filter and can be approximated by the Monte Carlo filter 
shown in Section 3.3. On the other hand, p(YklXn) can be evaluated by the following 
backward filtering algorithm: 

p(YNNfXN) = P(YNIXN) 

P(YN IXn) += 
f p(YN X In+l)P(Xn+l Xn) dxn+ 

p(YNlxn) = P(Ynlxn)P(Yk+ Ixn). (4.4) 

The two-filter formula (4.3) and the backward filtering (4.4) can be realized as 
follows: We assume that given x the function z = F(x,v) in (2.1) has an inverse 
function such that v = y(z, x). 

1. Do filtering as shown in Section 3.3 and store the realizations of the predictor, 
(p() j = ,..., m) for n = ,..., N. 

2. Do backward filtering and smoothing by the following algorithm 
(a) Generate a k-dimensional random numbers c -) pN(x), the unconditional 

distribution of XN, and set 6() = 1 for j = 1,..., m. 

(b) Repeat the following smoothing and backward filtering steps for n = N,..., 1. 

i. If n < N then compute 6(j) = d Ed=I q y (C ) 
)) 

) where 

ji is an integer selected from { 1,..., m}. It may be generated randomly 
or deterministically. 

ii. Compute /(j) = 6r (G (ynip, ))) G , forj 1,... ,m. 

iii. Generate, un..., ) by the resampling of p ...,n with the 

weights proportional to /3n')..., 3 ). 
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Figure 5. (a) Posterior distribution by the 10-lag Monte Carlo smoother with d = 10, Gaussian model (b) 
Posterior distribution by the 10-lag Monte Carlo smoother with d = 10, Cauchy model. (c) Posterior distribution 
by the Monte Carlo smoother based on the two-filter formula, Gaussian model. (d) Posterior distribution by the 
Monte Carlo smoother based on the two-filter formula, Cauchy model. 

iv. For the next step generate an ?-dimensional random number w(j) q(v) 
and compute e() = y(c), wj)). 

v. Compute EU) r- r(G(yn ,ej))) | -G and generate c)- ( i e'))7 
Eim e$)I(x, ei)) for j = 1,..., m by the resampling of e(),..., em) 

Figures 5c and 5d show the smoothed estimates obtained by the two-filter formula 
with d' = 1,000. Much smoother and closer approximations to the "true" ones in Figures 
4a and 4b than the other estimates are obtained. 

5. EXAMPLES 

5.1 FITrIG AR MODEL WITH OUTLIERS 

In this section we consider an outlier problem. Figure 6a shows the log-transformed 
version of the famous Canadian lynx (e.g., Tong 1977) data which we have artificially 
contaminated at nine randomly chosen time points with the addition of the quantity 1.0, 
to each of the selected data. The symbol + identifies the original uncontaminated data and 
o the contaminated ones. To detect the above mentioned additive outliers, we consider 

(a) 

- 

I 

a - 

c - N 

o- 
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CO 
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Figure 6. Outliers in Time Series. (a) Contaminated Canadian lynx data: + = 
contaminated data; and -- = smoothed data. (b) Estimated observation noise. 

100 

the original data; o = the 

the following AR model with observation error 

M 

Pn = E aiPn-i + Vn 

i=l 

Yn = Pn + Wn. (5.1) 

To simplify the discussion, the AR order M and the AR coefficients ai are assumed to 
be known. In the present example, M = 11 and thus the dimension of the state vector 
is 11. The number of particles, m, is set to 1,000. 

For this model, the general state space model (2.1)-(2.2) is specified by 

Pn 

Pn- 
Xn = 

- Pn-10 - 

F(n-_,Vn) = 

al a2 - * all 1 - 

1 0 
Xn-1 + vn,and 

1 --0 

H(Xn,wn) = [1 0 ... ]Xn + w. 

In this case the inverse function G is given by G(y,, Xn) = Yn -Pn and IOG = 1 
Four different models were fitted. Their associated AIC's are: 

(5.2) 

16 

- 

This content downloaded from 205.133.226.104 on Tue, 20 Aug 2013 04:33:13 AM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


MONTE CARLO FILTER AND SMOOTHER 

3000 - 

2000 - 

1000 - 

0 

-1000 - 

-2000 - 

1000 

0- 

-1000 

1000 - 

0- 

-1000 , 

0 12 24 36 48 60 72 84 

Figure 7. Seasonal Adjustment of Inventory of Private Companies in Japan. (a) Original data and the estimated 
trend. Dashed curve = Gaussian model; fine curve = non-Gaussian model. (b) Estimated seasonal component 
by a Gaussian model. (c) Estimated seasonal component by a Gaussian-mixture model. 

Model(G,G): vn N(0, r2), wn ~- N(0, a2), AIC=94 .46 

Model(G,C): vn N(0, r2), Wr, Cauchy(0, a2), AIC=47 .32 

Model(C,G): vn - Cauchy(0, r2), Wn - N(O, c2), AIC=13 7.04 

Model(C,C): vn - Cauchy(0, r2), wn - Cauchy(0, C2), AIC=10 1.48 

As expected, Model(G,C) is the AIC best model. In Figure 6a, the line identifies the 
smoothed estimate of the AR process. Figure 6b shows the plot of the estimated ob- 
servation noise sequence. Seven out of the nine noise contaminated data are properly 
detected and for the most part, recovered the original data. The noise contamination at 
the first observation was not detected at all and the contaminated data at n = 36 was 

considerably underestimated. 

5.2 SEASONAL ADJUSTMENT 

In Figure 7a, the variable curve shows the quarterly series of the inventory of private 
companies in Japan from 1965 to 1987. The standard state space model for the seasonal 

adjustment is (Kitagawa and Gersch 1984; Harvey 1989) 

yn=-Tn + Sn + Wn, (5.3) 

where Tn is a second-order trend component given by tn = 2tn-_ - tn-2 + Vn, and Sn 
is a seasonal component defined by 

(5.4) 

17 

sn = 
-(Sn-i + 

-- 
+ SnL-p+l) + Un. 

This content downloaded from 205.133.226.104 on Tue, 20 Aug 2013 04:33:13 AM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


G. KITAGAWA 

p is the number of observations in one period. The state space model for this model for 
the decomposition of seasonal time series is 

tn 

tn- 

Sn 
Xn = Sn- 

Sn-p+2 

2 -1 
1 0 

-1 -1 ** -1 
F = 1 

1 

1 0 
0 0 
0 1 

G= 00 

0 0 

H = [1010-.- 0]. (5.5) 

(See Kitagawa and Gersch 1984 for the details and extensions of the model.) Usually, 
each of un, n,, and Wn is assumed to be Gaussian, and the Kalman filter and smoother are 

applied for the estimation of the trend and seasonal components and for the computation 
of the likelihood. However, if the trend or seasonal component changes abruptly, as in 
the case of Figure 7a, the non-Gaussian model is preferable since that model achieves 
automatic detection of abrupt changes, (Kitagawa 1987). The direct application of the 
non-Gaussian smoother is difficult for seasonal adjustment because it requires estimation 
of a p + 1 dimensional state vector. The Gaussian-sum filter and smoother shown in 

Kitagawa (1989, 1994), does satisfactorily cope with this problem. 
In this example, our Monte Carlo smoother with m = 40,000 was applied to the 

same problem as in the articles cited. We compared the Gaussian model Wn - N(O, a2), 
Vn ~ N(0, 12), Un ~ N(0,T22), and the following non-Gaussian (Gaussian-mixture) 
model: 

Wn ~ N(0, 2) 

Vn aN(O, T l2) + (1 - a)N(O, (2) 

Un /3N(O,22) + (1 - )N(0, 22). (5.6) 

In (5.6) Wn, Vn, and Un are respectively the observation, the trend and the seasonal 
noises. The maximum likelihood estimates of the Gaussian model are 02 = .874 x 105, 

18 
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,2 = .146 x 103 and f2 = .365 x 104. The log-likelihood of the model is -670.39 and the 
AIC= 1346.8. On the other hand the maximum likelihood estimates of the non-Gaussian 
model are &2 = 0.288 x 105, ?2 = .528 x 103, 22 = .362 x 103 and a = / = .98. In the 
estimation of these parameters, for simplicity we let ca nd arbraly and arbitrarily set and 22 
to the variance of the original series. The log-likelihood of that model is -667.01 and 
the AIC= 1342.0. According to the AIC criterion, the non-Gaussian model is better than 
the Gaussian model. 

Figure 7 shows the quarterly series of the inventories of private companies in Japan 
1965-1983 and the estimated trend and seasonal components of the Gaussian and non- 
Gaussian models. In Figure 7a, the dashed line and smooth curve show the estimated 
trends by the Gaussian and non-Gaussian models, respectively. Figures 7b and 7c respec- 
tively show the estimated seasonal component by the Gaussian and the non-Gaussian 
models. The 1973-1974 energy crisis occurred in the middle of the series, and the level 
of the series changed suddenly. The estimated trend (dashed line in Fig. 7a) and seasonal 
component (Fig. 7b) obtained by the Gaussian model is insensitive to the abrupt change 
of the series. On the other hand, the non-Gaussian model, without any explicit specifi- 
cation of the change points, clearly detects the abrupt changes of both the trend (line in 
Fig. 7a) and the seasonal pattern (Fig. 7c). 

5.3 NONLINEAR MODEL 

We consider the data artificially generated by the following model that was originally 
used by Andrede Netto, Gimeno, and Mendes (1978) and reconsidered in Kitagawa (1987, 
1991), 

1 25xn_l 
Xn = 2n- + 2 + 8cos(1.2n) + v, 2 1 + x 2 

x2 
Yn = n + , (5.7) 

with n N(0,0.1) and N 1). Figures 8a and 8b show the state signal 
with vn - N (0, 0.1) and wn- N (0, 1). Figures 8a and 8b show the state signal Xn 
and the observed data y,. The problem is to estimate the unobserved true signal Xn 
only from the sequence of observations {(yn assuming that the model (5.7) is known. 
It should be emphasized here that because the value of the state Xn is squared in the 
observation equation in (5.7), it is quite difficult to identify whether the state xn is 
positive or negative. The Monte Carlo filter and smoother can be easily applied to this 
problem. For comparison, the well-known extended Kalman filter based smoother (Sage 
and Melsa 1971) and a nonlinear smoother based on numerical integration, (Kitagawa 
1991) were also applied. 

Figure 8c shows the estimate of Xn by the Monte Carlo method with m = 10,000. 
The 2.7%, 50%, and 97.7% probability points are shown. It can be seen that, except for 
n = 3, 24, 36, 64, and 98, the median of the Monte Carlo smoother correctly identifies the 
sign of the signal. Figures 8d and 8e show the results by the exact, (numerical integration) 
nonlinear smoother and the extended Kalman smoother, respectively. They show that the 
Monte Carlo method provides a close approximation to the exact smoother and that its 
performance is greatly superior to the extended Kalman smoother which almost diverges. 

19 
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5.4 TIME SERIES WITH TREND AND TIME-VARYING VARIANCE 

Figure 9a shows the record of daily series of Japanese stock price in Yen (Nikkei 
225) from January 1987 to August 1990. It can be seen that this series has a generally 
increasing trend and the volatility increases after a significant decrease of trend around 
at n = 230, 840, and 940. For modeling this series, consider the trend model 

Yn = tn + Wn, (5.8) 

20- 
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Figure 8. Nonlinear Smoothing. (c)-(e), posterior distribution, bold curve = median, fine curve = 2.3% and 
97.7% points. (a) Unobserved signal. (b) Observed time series. (c) Monte Carlo smoother. (d) Exact non- 
Gaussian smoother. (e) Extended Kalman smoother. 
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Figure 9. Daily Stock Price Data. (a) Nikkei 225 data (Jan. 1987-Aug. 1990) and the estimated noise sequence 
(lower). (b) Estimated time-varying standard deviation. 

where tn is a trend and wn is a white noise sequence with unknown time-varying variance 

n r-,.. N(01n). (5.9) 

For the simultaneous estimation of trend and variance, we introduce the following 
smoothness prior models 

tn = 2tn,- - tn- 2 +n 

pn = 2p,'n - I,zPn 2 +bin (5.10) 

with g. = exp(p.). s, and 6ri are white noise sequences specified in the following. The 
exponential transformation is used to assure the positivity of the variance a2. The models 
(5.8), (5.9), and (5.10), can be expressed in a state space model (2.1) and (2.2) with the 
four-dimensional state vector x. = (ta,t, i, p,, pn1 )t, two-dimensional system noise 
Vn = (e, b7)t, and a nonlinear function H(X7,, wn) = H((tn,t I,Pn ,Pn - I )t,w7) = 
t7 +? w = tn + exp(pn/2)en with e7, N N(0, 1) and 

F(Xn,Vn) = F((tn17tn-h,pn7,pn-I)t* (n6 n)t) 
- 2tn-1 - tn-2+En 

- 

tn- I 

2pn-1 - Pn-2 ? 6n 

-(ntcn = Pn- I - 

G(yn1,xn) = e-P,(n-t) 

(5.11) 
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We considered the following two models: 

Model(G,G): Fn ~ N(0, 2), 6n N(0, r2), 

Model(C,G): en ~ Cauchy(0, r2), 6n N(0, r72). 

We used m = 10,000 particles for the Monte Carlo filter and smoother. The approximate 
maximum likelihood estimates obtained by discrete parameter search are: 

Model(G,G): rT = 9000, 22 = .0026, AIC = 13726.02 

Model(C,G): T2 = 700, 22 = .0005, AIC = 13765.84. 

The AIC criterion suggests that the Model(G,G) is better than the other. 
In Figure 9a the lower series shows the estimated noise series wn. The increase of 

the volatility around at n =230, 840, and 940 is seen. The trend is only a smoothed 
version of the original series and is not shown. Figure 9b shows the square root of the 
estimated time-varying variance, o/. Corresponding to the increase of the variance of 

Wn seen in Figure 9a, the estimated c/; clearly shows the increase of volatility after 
the sudden drops in the trend. 

6. CONCLUSION 

By approximating the density functions by many particles and by simulating the time 
evolution of the particles and resampling, we can develop algorithms for the filtering and 

smoothing of the general non-Gaussian nonlinear state space model. By using a simple 
example, for which an almost exact numerical integration based non-Gaussian filter and 
smoother can be applied, it was shown that the proposed Monte Carlo method can 

reasonably approximate the distribution of the state. 
The most significant merit of the method is that it can be applied to a state space 

model with higher dimension. The numerical examples in Sections 5.1 and 5.2 have state 
dimensions 11 and 5, respectively. In those examples, the numerical integration based 
non-Gaussian filter and smoother cannot be applied. Another merit of the method is that 
its application to various types of nonlinear or non-Gaussian models is very simple and 

only minor modifications for specifying the transition and observation functions F and 
H and the noise densities q and r are required. 

APPENDIX: RESAMPLING ALGORITHMS 

In this appendix, we consider the resampling algorithms for the filtering step. 
First we show the basic algorithm. 
1. Rearrange p() ...p() in order of magnitude. The results are expressed as 

(I) ~(m) 
F)n ,.4n Pn, * * *, pn 

2. For j = 1,..., m, repeat the following steps (a)-(c). 
(a) Generate a uniform random number u(j) U[0, 1]. 
(b) Find i such that c e=a- < u < E a (- ), where C = ( 

and (e) is the posterior weight corresponding to pn1. 
(c) Define f(=) pi) 
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A variety of modifications of this basic algorithm are possible. They are related to the 

sorting and the generation of random numbers. Because the purpose of the resampling is 
to obtain an empirical distribution function that mimics the distribution function defined 
in (3.6), it is not essential to do random resampling. A possible modification is stratified 

sampling. This scheme is devised so as not to draw more than one realization from a 

group of particles with total weight 1/m and is given as follows: Divide the interval [ 
0, 1) to m subintervals with identical width. In this case, Step (a) can be modified to 
either of the following two methods: 

(a-S) Generate a uniform random number ~ U [m n). 

(a-D) u() = J-a for fixed a E [0, 1). 
The sorting in Step 1 above is the most time-consuming job, especially for large m. It 
takes .0001, .0005, .020, and 1.736 seconds for m = 10, 100, 1,000 and 10,000, respec- 
tively, by the HEAPSORT algorithm, (Press et al. 1986), on a 40 MFLOPS computer. If 
the random sampling without stratification is used, sorting is unnecessary. 

Table A. 1 shows the Monte Carlo evaluation of the approximation of various resam- 

pling methods using the same model as the one for Figure 1 in Section 3.5. One step 
of filtering was repeated for 1,000 times and the discrepancy between the distribution 
functions given in (3.6) and (3.7) were evaluated by the following measure 

roo 

J(S, T)= J (Dp(x)-Df(x))2dx 
-oo 

-= J ( i)I(Ex,p(i)) I(x f(i)) dx, (A.1) 

where c = >m oa(i) and Dp(x) and Df(x) are distribution f unctions defined by (3.6) 
and (3.7), respectively. It can be seen that the deterministic method (a-D) and stratified 
method (a-S) outperform the random one. Within these two methods, the deterministic 
one is better than the stratified. When the realizations are ordered, stratified and deter- 
ministic ones show O(m-2) convergence, while in the unordered case, they show only 
O(m-') convergence. Obviously, the deterministic algorithm with sorting is the best. On 

Table A.1. Comparison of the Resampling Methods 

J(Df, Dp) J(Dp,DT;) 
Random Stratified Deterministic 

m =10 sort .0326 .00379 .00176 .1021 
no-sort .0321 .00859 .00513 .1021 

m= 100 sort .00381 .636 x 10-3 .311 x 10-4 .860 x 10-2 
no-sort .00405 .939 x 10-3 .612 x 10-3 .860 x 10-2 

m= 1,000 sort .398 x 10-3 .838 x 10-6 .407 x 10-6 .102 x 10-2 
no-sort .379 x 10-3 .982 x 10-4 .611 x 10-4 .102 x 10-2 

m =10,000 sort .387 x 10-4 .101 x 10-7 .498 x 10-8 .248 x 10-3 
no-sort .406 x 10-4 .936 x 10-5 .636 x 10-5 .248 x 10-3 
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the other hand, the rightmost column in Table A. 1 shows the discrepancy between {p) } 
and the "exact" filter distribution D*. This shows that, at least for large m, J(Df, Dp) 
is negligible compared with J(Dp, D*). Therefore, considering the significant computa- 
tional cost in sorting, the deterministic algorithm without sorting might be a reasonable 
choice. 
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