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Abstract. Human motion capturing can be regarded as an optimiza-
tion problem where one searches for the pose that minimizes a previously
defined error function based on some image features. Most approaches
for solving this problem use iterative methods like gradient descent ap-
proaches. They work quite well as long as they do not get distracted by lo-
cal optima. We introduce a novel approach for global optimization that is
suitable for the tasks as they occur during human motion capturing. We
call the method interacting simulated annealing since it is based on an in-
teracting particle system that converges to the global optimum similar to
simulated annealing. We provide a detailed mathematical discussion that
includes convergence results and annealing properties. Moreover, we give
two examples that demonstrate possible applications of the algorithm,
namely a global optimization problem and a multi-view human motion
capturing task including segmentation, prediction, and prior knowledge.
A quantative error analysis also indicates the performance and the ro-
bustness of the interacting simulated annealing algorithm.

1 Introduction

1.1 Motivation

Optimization problems arise in many applications of computer vision. In pose
estimation, e.g. [28], and human motion capturing, e.g. [31], functions are mini-
mized at various processing steps. For example, the marker-less motion capture
system [26] minimizes in a first step an energy function for the segmentation. In a
second step, correspondences between the segmented image and a 3D model are
established. The optimal pose is then estimated by minimizing the error given
by the correspondences. These optimization problems also occur, for instance,
in model fitting [17, 31]. The problems are mostly solved by iterative methods as
gradient descent approaches. The methods work very well as long as the start-
ing point is near the global optimum, however, they get easily stuck in a local
optimum. In order to deal with it, several random selected starting points are
used and the best solution is selected in the hope that at least one of them is
near enough to the global optimum, cf. [26]. Although it improves the results in
many cases, it does not ensure that the global optimum is found.
In this chapter, we introduce a global optimization method based on an inter-
acting particle system that overcomes the dilemma of local optima and that is
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suitable for the optimization problems as they arise in human motion captur-
ing. In contrast to many other optimization algorithms, a distribution instead
of a single value is approximated by a particle representation similar to particle
filters [10]. This property is beneficial, particularly, for tracking where the right
parameters are not always exact at the global optimum depending on the image
features that are used.

1.2 Related Work

A popular global optimization method inspired by statistical mechanics is known
as simulated annealing [14, 18]. Similar to our approach, a function V ≥ 0 inter-
preted as energy is minimized by means of an unnormalized Boltzmann-Gibbs
measure that is defined in terms of V and an inverse temperature β > 0 by

g(dx) = exp (−β V (x)) λ(dx), (1.1)

where λ is the Lebesgue measure. This measure has the property that the prob-
ability mass concentrates at the global minimum of V as β → ∞.
The key idea behind simulated annealing is taking a random walk through the
search space while β is successively increased. The probability of accepting a
new value in the space is given by the Boltzmann-Gibbs distribution. While
values with less energy than the current value are accepted with probability
one, the probability that values with higher energy are accepted decreases as
β increases. Other related approaches are fast simulated annealing [30] using a
Cauchy-Lorentz distribution and generalized simulated annealing [32] based on
Tsallis statistics.
Interacting particle systems [19] approximate a distribution of interest by a finite
number of weighted random variables X (i) called particles. Provided that the
weights Π(i) are normalized such that

∑
Π(i) = 1, the set of weighted particles

determines a random probability measures by

n∑

i=1

Π(i)δX(i) . (1.2)

Depending on the weighting function and the distribution of the particles, the
measure converges to a distribution η as n tends to infinity. When the par-
ticles are identically independently distributed according to η and uniformly
weighted, i.e. Π(i) = 1/n, the convergence follows directly from the law of large
numbers [3].
Interacting particle systems are mostly known in computer vision as particle
filter [10] where they are applied for solving non-linear, non-Gaussian filtering
problems. However, these systems also apply for trapping analysis, evolutionary
algorithms, statistics [19], and optimization as we demonstrate in this chapter.
They usually consist of two steps as illustrated in Figure 1. During a selec-
tion step, the particles are weighted according to a weighting function and then
resampled with respect to their weights, where particles with a great weight
generate more offspring than particles with lower weight. In a second step, the
particles mutate or are diffused.
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Fig. 1. Operation of an interacting particle system. After weighting the particles (black
circles), the particles are resampled and diffused (gray circles).

1.3 Interaction and Annealing

Simulated annealing approaches are designed for global optimization, i.e. for
searching the global optimum in the entire search space. Since they are not ca-
pable of focusing the search on some regions of interest in dependency on the
previous visited values, they are not suitable for tasks in human motion cap-
turing. Our approach, in contrast, is based on an interacting particle system
that uses Boltzmann-Gibbs measures (1.1) similar to simulated annealing. This
combination ensures not only the annealing property as we will show, but also
exploits the distribution of the particles in the space as measure for the uncer-
tainty in an estimate. The latter allows an automatic adaption of the search on
regions of interest during the optimization process. The principle of the annealing
effect is illustrated in Figure 2.
A first attempt to fuse interaction and annealing strategies for human motion
capturing has become known as annealed particle filter [9]. Even though the
heuristic is not based on a mathematical background, it already indicates the
potential of such combination. Indeed, the annealed particle filter can be re-
garded as a special case of interacting simulated annealing where the particles
are predicted for each frame by a stochastic process, see Section 3.1.

1.4 Outline

The interacting annealing algorithm is introduced in Section 3.1 and its asymp-
totic behavior is discussed in Section 3.2. The given convergence results are based
on Feynman-Kac models [19] which are outlined in Section 2. Since a general
treatment including proofs is out of the scope of this introduction, we refer the
interested reader to [11] or [19]. While our approach is evaluated for a standard
global optimization problem in Section 4.1, Section 4.2 demonstrates the per-
formance of interacting simulated annealing in a complete marker-less human
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Fig. 2. Illustration of the annealing effect with three runs. Due to annealing, the parti-
cles migrate towards the global maximum without getting stuck in the local maximum.

motion capture system that includes segmentation, pose prediction and prior
knowledge.

1.5 Notations

We always regard E as a subspace of Rd, and let B(E) denote its Borel σ-algebra.
B(E) denotes the set of bounded measurable functions, δx is the Dirac measure
concentrated in x ∈ E, ‖ · ‖2 is the Euclidean norm, and ‖ · ‖∞ is the well-known
supremum norm. Let f ∈ B(E), µ be a measure on E, and let K be a Markov
kernel on E1. We write

〈µ, f〉 =

∫

E

f(x) µ(dx), 〈µ, K〉(B) =

∫

E

K(x, B) µ(dx) for B ∈ B(E).

Furthermore, U [0, 1] denotes the uniform distribution on the interval [0, 1] and

osc(ϕ) := sup
x,y∈E

{|ϕ(x) − ϕ(y)|} . (1.3)

is an upper bound for the oscillations of f .

2 Feynman-Kac Model

Let (Xt)t∈N0 be an E-valued Markov process with family of transition kernels
(Kt)t∈N0 and initial distribution η0. We denote by Pη0 the distribution of the

1 A Markov kernel is a function K : E × B(E) → [0,∞] such that K(·, B) is
B(E)-measurable ∀B and K(x, ·) is a probability measure ∀x. An example of a
Markov kernel is given in Equation (1.11). For more details on probability theory
and Markov kernels, we refer to [3].
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Markov process, i.e. for t ∈ N0,

Pη0 (d(x0, x1, . . . , xt)) = Kt−1(xt−1, dxt) . . .K0(x0, dx1) η0(dx0),

and by Eη0 [·] the expectation with respect to Pη0 . The sequence of distributions
(ηt)t∈N0 on E defined for any ϕ ∈ B(E) and t ∈ N0 as

〈ηt, ϕ〉 :=
〈γt, ϕ〉
〈γt, 1〉

, 〈γt, ϕ〉 := Eη0

[
ϕ (Xt) exp

(
−

t−1∑

s=0

βs V (Xs)

)]
,

is called the Feynman-Kac model associated with the pair (exp(−βt V ), Kt).
The Feynman-Kac model as defined above satisfies the recursion relation

ηt+1 = 〈Ψt(ηt), Kt〉, (1.4)

where the Boltzmann-Gibbs transformation Ψt is defined by

Ψt (ηt) (dyt) =
Eη0

[
exp

(
−∑t−1

s=0 βs V (Xs)
)]

Eη0

[
exp

(
−∑t

s=0 βs V (Xs)
)] exp (−βt Vt(yt)) ηt(dyt).

The particle approximation of the flow (1.4) depends on a chosen family of
Markov transition kernels (Kt,ηt

)t∈N0 satisfying the compatibility condition

〈Ψt (ηt) , Kt〉 := 〈ηt, Kt,ηt
〉.

A family (Kt,ηt
)t∈N0 of kernels is not uniquely determined by these conditions.

As in [19, Chapter 2.5.3], we choose

Kt,ηt
= St,ηt

Kt, (1.5)

where

St,ηt
(xt, dyt) = εt exp (−βt Vt(xt)) δxt

(dyt)

+ (1 − εt exp (−βt Vt(xt))) Ψt (ηt) (dyt), (1.6)

with εt ≥ 0 and εt ‖exp(−βt V )‖∞ ≤ 1. The parameters εt may depend on the
current distribution ηt.

3 Interacting Simulated Annealing

Similar to simulated annealing, one can define an annealing scheme 0 ≤ β0 ≤
β1 ≤ . . . ≤ βt in order to search for the global minimum of an energy function
V . Under some conditions that will be stated in Section 3.2, the flow of the
Feynman-Kac distribution becomes concentrated in the region of global minima
of V as t goes to infinity. Since it is not possible to sample from the distribution
directly, the flow is approximated by a particle set as it is done by a particle
filter. We call the algorithm for the flow approximation interacting simulated
annealing (ISA).
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3.1 Algorithm

The particle approximation for the Feynman-Kac model is completely described
by the Equation (1.5). The particle system is initialized by n identically, indepen-

dently distributed random variables X
(i)
0 with common law η0 determining the

random probability measure ηn
0 :=

∑n
i=1 δ

X
(i)
0

/n. Since Kt,ηt
can be regarded as

the composition of a pair of selection and mutation Markov kernels, we split the
transitions into the following two steps

ηn
t

Selection−−−−−−−−→ η̌n
t

Mutation−−−−−−−−→ ηn
t+1,

where

ηn
t :=

1

n

n∑

i=1

δ
X

(i)
t

, η̌n
t :=

1

n

n∑

i=1

δ
X̌

(i)
t

.

During the selection step each particle X
(i)
t evolves according to the Markov

transition kernel St,ηn
t
(X

(i)
t , ·). That means X

(i)
t is accepted with probability

εt exp(−βt V (X
(i)
t )), and we set X̌

(i)
t = X

(i)
t . Otherwise, X̌

(i)
t is randomly se-

lected with distribution

n∑

i=1

exp(−βt V (X
(i)
t ))

∑n
j=1 exp(−βt V (X

(j)
t ))

δ
X

(i)
t

.

The mutation step consists in letting each selected particle X̌
(i)
t evolve according

to the Markov transition kernel Kt(X̌
(i)
t , ·).

Algorithm 1 Interacting Simulated Annealing Algorithm

Requires: parameters (εt)t∈N0 , number of particles n, initial distribution η0, energy
function V , annealing scheme (βt)t∈N0 and transitions (Kt)t∈N0

1. Initialization
– Sample x

(i)
0 from η0 for all i

2. Selection
– Set π(i) ← exp(−βt V (x

(i)
t )) for all i

– For i from 1 to n:
Sample κ from U [0, 1]
If κ ≤ εtπ

(i) then
? Set x̌

(i)
t ← x

(i)
t

Else
? Set x̌

(i)
t ← x

(j)
t with probability π(j)

P

n
k=1

π(k)

3. Mutation
– Sample x

(i)
t+1 from Kt(x̌

(i)
t , ·) for all i and go to step 2
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There are several ways to choose the parameter εt of the selection kernel (1.6)
that defines the resampling procedure of the algorithm, cf. [19]. If

εt := 0 ∀t, (1.7)

the selection can be done by multinomial resampling. Provided that2

n ≥ sup
t

(exp(βt osc(V )) ,

another selection kernel is given by

εt(ηt) :=
1

n 〈ηt, exp(−βt V )〉 . (1.8)

In this case the expression εtπ
(i) in Algorithm 1 is replaced by π(i)/

∑n
k=1 π(k).

A third kernel is determined by

εt(ηt) :=
1

inf {y ∈ R : ηt ({x ∈ E : exp(−βt V (x)) > y}) = 0} , (1.9)

yielding the expression π(i)/ max1≤k≤n π(k) instead of εtπ
(i).

Pierre del Moral showed in [19, Chapter 9.4] that for any t ∈ N0 and ϕ ∈ B(E)
the sequence of random variables

√
n(〈ηn

t , ϕ〉 − 〈ηt, ϕ〉)

converges in law to a Gaussian random variable W when the selection kernel
(1.6) is used to approximate the flow (1.4). Moreover, it turns out that when
(1.8) is chosen, the variance of W is strictly smaller than in the case with εt = 0.
We remark that the annealed particle filter [9] relies on interacting simulated
annealing with εt = 0. The operation of the method is illustrated by

ηn
t

Prediction−−−−−−−−→ η̂n
t+1

ISA−−−−−−−−→ ηn
t+1.

The ISA is initialized by the predicted particles X̂
(i)
t+1 and performs M times the

selection and mutation steps. Afterwards the particles X
(i)
t+1 are obtained by an

additional selection. This shows that the annealed particle filter uses a simulated
annealing principle to locate the global minimum of a function V at each time
step.

3.2 Convergence

This section discusses the asymptotic behavior of the interacting simulated an-
nealing algorithm. For this purpose, we introduce some definitions in accordance
with [19] and [15].

2 The inequality satisfies the condition εt ‖exp(−βt V )‖
∞
≤ 1 for Equation (1.6).
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Definition 1. A kernel K on E is called mixing if there exists a constant 0 <
ε < 1 such that

K(x1, ·) ≥ ε K(x2, ·) ∀x1, x2 ∈ E. (1.10)

The condition can typically only be established when E ⊂ R
d is a bounded

subset, which is the case in many applications like human motion capturing. For
example the (bounded) Gaussian distribution on E

K(x, B) :=
1

Z

∫

B

exp

(
−1

2
(x − y)T Σ−1 (x − y)

)
dy, (1.11)

where Z :=
∫

E exp(− 1
2 (x − y)T Σ−1 (x − y) dy, is mixing if and only if E is

bounded. Moreover, a Gaussian with a high variance satisfies the mixing condi-
tion with a larger ε than a Gaussian with lower variance.

Definition 2. The Dobrushin contraction coefficient of a kernel K on E is de-
fined by

β(K) := sup
x1,x2∈E

sup
B∈B(E)

|K(x1, B) − K(x2, B)| . (1.12)

Furthermore, β(K) ∈ [0, 1] and β(K1K2) ≤ β(K1) β(K2).

When the kernel M is a composition of several mixing Markov kernels, i.e. M :=
KsKs+1 . . . Kt, and each kernel Kk satisfies the mixing condition for some εk,
the Dobrushin contraction coefficient can be estimated by β(M) ≤ ∏t

k=s(1−εk).
The asymptotic behavior of the interacting simulated annealing algorithm is
affected by the convergence of the flow of the Feynman-Kac distribution (1.4) to
the region of global minima of V as t tends to infinity and by the convergence of
the particle approximation to the Feynman-Kac distribution at each time step t
as the number of particles n tends to infinity.

Convergence of the flow We suppose that Kt = K is a Markov kernel sat-
isfying the mixing condition (1.10) for an ε ∈ (0, 1) and osc(V ) < ∞. A time
mesh is defined by

t(n) := n(1 + bc(ε)c) c(ε) := (1 − ln(ε/2))/ε2 for n ∈ N0. (1.13)

Let 0 ≤ β0 ≤ β1 . . . be an annealing scheme such that βt = βt(n+1) is constant in
the interval (t(n), t(n+1)]. Furthermore, we denote by η̌t the Feynman-Kac dis-
tribution after the selection step, i.e. η̌t = Ψt(ηt). According to [19, Proposition
6.3.2], we have

Theorem 1. Let b ∈ (0, 1) and βt(n+1) = (n + 1)b. Then for each δ > 0

lim
n→∞

η̌t(n) (V ≥ V? + δ) = 0,

where V? = sup{v ≥ 0; V ≥ v a.e.}.
The rate of convergence is d/n(1−b) where d is increasing with respect to b and
c(ε) but does not depend on n as given in [19, Theorem 6.3.1]. This theorem es-
tablishes that the flow of the Feynman-Kac distribution η̌t becomes concentrated
in the region of global minima as t → +∞.
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Convergence of the particle approximation Del Moral established the
following convergence theorem [19, Theorem 7.4.4].

Theorem 2. For any ϕ ∈ B(E),

Eη0

[∣∣〈ηn
t+1, ϕ〉 − 〈ηt+1, ϕ〉

∣∣] ≤ 2 osc(ϕ)√
n

(
1 +

t∑

s=0

rsβ(Ms)

)
,

where

rs := exp

(
osc(V )

t∑

r=s

βr

)
,

Ms := KsKs+1 . . . Kt,

for 0 ≤ s ≤ t.

Assuming that the kernels Ks satisfy the mixing condition with εs, we get a
rough estimate for the number of particles

n ≥ 4 osc(ϕ)2

δ2

(
1 +

t∑

s=0

{
exp

(
osc(V )

t∑

r=s

βr

)
t∏

k=s

(1 − εk)

})2

(1.14)

needed to achieve a mean error less than a given δ > 0.

Fig. 3. Impact of the mixing condition satisfied for εs = ε. Left: Parameter c(ε) of
the time mesh (1.13). Right: Rough estimate for the number of particles needed to
achieve a mean error less than δ = 0.1.

Optimal transition kernel The mixing condition is not only essential for
the convergence result of the flow as stated in Theorem 1 but also influences
the time mesh by the parameter ε. In view of Equation (1.13), kernels with ε
close to 1 are preferable, e.g. Gaussian kernels on a bounded set with a very
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high variance. The right hand side of (1.14) can also be minimized if Markov
kernels Ks are chosen such that the mixing condition is satisfied for a εs close
to 1, as shown in Figure 3. However, we have to consider two facts. First, the
inequality in Theorem 2 provides an upper bound of the accumulated error of
the particle approximation up to time t + 1. It is clear that the accumulation of
the error is reduced when the particles are highly diffused, but it also means that
the information carried by the particles from the previous time steps is mostly
lost by the mutation. Secondly, we cannot sample from the measure η̌t directly,
instead we approximate it by n particles. Now the following problem arises. The
mass of the measure concentrates on a small region of E on one hand and, on
the other hand, the particles are spread over E if ε is large. As a result we get
a degenerated system where the weights of most of the particles are zero and
thus the global minima are estimated inaccurately, particularly for small n. If
we choose a kernel with small ε in contrast, the convergence rate of the flow is
very slow. Since neither of them is suitable in practice, we suggest a dynamic
variance scheme instead of a fixed kernel K.
It can implemented by Gaussian kernels Kt with covariance matrices Σt propor-
tional to the sample covariance after resampling. That is, for a constant c > 0,

Σt :=
c

n − 1

n∑

i=1

(x
(i)
t − µt)ρ (x

(i)
t − µt)

T
ρ , µt :=

1

n

n∑

i=1

x
(i)
t , (1.15)

where ((x)ρ)k = max(xk, ρ) for a ρ > 0. The value ρ ensures that the variance
does not become zero. The elements off the diagonal are usually set to zero, in
order to reduce computation time.

Optimal parameters The computation cost of the interacting simulated an-
nealing algorithm with n particles and T annealing runs is O(nT ), where

nT := n · T . (1.16)

While more particles give a better particle approximation of the Feynman-Kac
distribution, the flow becomes more concentrated in the region of global minima
as the number of annealing runs increases. Therefore, finding the optimal values
is a trade-off between the convergence of the flow and the convergence of the
particle approximation provided that nT is fixed.
Another important parameter of the algorithm is the annealing scheme. The
scheme given in Theorem 1 ensures convergence for any energy function V —
even for the worst one in the sense of optimization — as long as osc(V ) < ∞
but is too slow for most applications, as it is the case for simulated annealing.
In our experiments the schemes

βt = ln(t + b) for some b > 1 (logarithmic), (1.17)

βt = (t + 1)b for some b ∈ (0, 1) (polynomial) (1.18)

performed well. Note that in contrast to the time mesh (1.13) the schemes are
not anymore constant on a time interval.
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Even though a complete evaluation of the various parameters is out of the scope
of this introduction, the examples given in the following section demonstrate
settings that perform well, in particular for human motion capturing.

4 Examples

4.1 Global Optimization

Fig. 4. Ackley function. Unique global minimum at (0, 0) with several local minima
around it.

The Ackley function [2, 1]

f(x) = −20 exp


−0.2

√√√√1

d

d∑

i=1

x2
i


− exp

(
1

d

d∑

i=1

cos(2π xi)

)
+ 20 + e

is a widely used multimodal test function for global optimization algorithms. As
one can see from Figure 4, the function has a global minimum at (0, 0) that is
surrounded by several local minima. The problem consists of finding the global
minimum in a bounded subspace E ⊂ R

d with an error less than a given δ > 0
where the initial distribution is the uniform distribution on E.
In our experiments, the maximal number of time steps were limited by 999, and
we set E = [−4, 4] × [−4, 4] and δ = 10−3. The interacting simulated annealing
algorithm was stopped when the Euclidean distance between the global minimum
and its estimate was less than δ or when the limit of time steps was exceeded. All
simulations were repeated 50 times and the average number of time steps needed
by ISA was used for evaluating the performance of the algorithm. Depending
on the chosen selection kernel (1.7), (1.8), and (1.9), we write ISAS1, ISAS2,
and ISAS3, respectively.
Using a polynomial annealing scheme (1.18), we evaluated the average time
steps needed by the ISAS1 with 50 particles to find the global minimum of
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Fig. 5. Average time steps needed to find global minimum with error less than 10−3

with respect to the parameters b and c.

the Ackley function. The results with respect to the parameter of the annealing
scheme, b ∈ [0.1, 0.999], and the parameter of the dynamic variance scheme,
c ∈ [0.1, 3], are given in Figure 5. The algorithm performed best with a fast
increasing annealing scheme, i.e. b > 0.9, and with c in the range 0.5− 1.0. The
plots in Figure 5 also reveal that the annealing scheme has greater impact on
the performance than the factor c. When the annealing scheme increases slowly,
i.e. b < 0.2, the global minimum was actually not located within the given limit
for all 50 simulations.

Ackley Ackley with noise

ISAS1 ISAS2 ISAS3 ISAS1 ISAS2 ISAS3

b 0.993 0.987 0.984 0.25 0.35 0.27

c 0.8 0.7 0.7 0.7 0.7 0.9

t 14.34 15.14 14.58 7.36 7.54 7.5

Table 1. Parameters b and c with lowest average time t for different selection kernels.

The best results with parameters b and c for ISAS1, ISAS2, and ISAS3 are
listed in Table 1. The optimal parameters for the three selection kernels are
quite similar and the differences of the average time steps are marginal.

In a second experiment, we fixed the parameters b and c, where we used the
values from Table 1, and varied the number of particles in the range 4 − 200
with step size 2. The results for ISAS1 are shown in Figure 6. While the average
of time steps declines rapidly for n ≤ 20, it is hardly reduced for n ≥ 40. Hence,
nt and thus the computation cost are lowest in the range 20 − 40. This shows
that a minimum number of particles are required to achieve a success rate of
100%, i.e., the limit was not exceeded for all simulations. In this example, the
success rate was 100% for n ≥ 10. Furthermore, it indicates that the average of
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Fig. 6. Left: Average time steps needed to find global minimum with respect to number
of particles. Right: Computation cost.

time steps is significantly higher for n less than the optimal number of particles.
The results for ISAS1, ISAS2, and ISAS3 are quite similar. The best results
are listed in Table 2.

Ackley Ackley with noise

ISAS1 ISAS2 ISAS3 ISAS1 ISAS2 ISAS3

n 30 30 28 50 50 26

t 22.4 20.3 21.54 7.36 7.54 12.54

nt 672 609 603.12 368 377 326.04

Table 2. Number of particles with lowest average computation cost for different selec-
tion kernels.

The ability of dealing with noisy energy functions is one of the strength of ISA
as we will demonstrate. This property is very usefull for applications where the
measurement of the energy of a particle is distorted by noise. On the left hand
side of Figure 7, the Ackley function is distorted by Gaussian noise with standard
deviation 0.5, i.e.,

fW (x) := max {0, f(x) + W} , W ∼ N(0, 0.52).

As one can see, the noise deforms the shape of the function and changes the
region of global minima. In our experiments, the ISA was stopped when the
true global minimum at (0, 0) was found with an accuracy of δ = 0.01.
For evaluating the parameters b and c, we set n = 50. As shown on the right
hand side of Figure 7, the best results were obtained by annealing schemes
with b ∈ [0.22, 0.26] and c ∈ [0.6, 0.9]. In contrast to the undistorted Ackley
function, annealing schemes that increase slowly performed better than the fast
one. Indeed, the success rate dropped below 100% for b ≥ 0.5. The reason is
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obvious from the left hand side of Figure 7. Due to the noise, the particles are
more easily distracted and a fast annealing scheme diminishes the possibility
of escaping from the local minima. The optimal parameters for the dynamic
variance scheme are hardly affected by the noise.

Fig. 7. Left: Ackley function distorted by Gaussian noise with standard deviation 0.5.
Right: Average time steps needed to find global minimum with error less than 10−2

with respect to the parameters b and c.

The best parameters for ISAS1, ISAS2, and ISAS3 are listed in the Tables 1
and 2. Except for ISAS3, the optimal number of particles is higher than it is
the case for the simulations without noise. The minimal number of particles to
achieve a success rate of 100% also increased, e.g. 28 for ISAS1. We remark that
ISAS3 required the least number of particles for a complete success rate, namely
4 for the undistorted energy function and 22 in the noisy case.
We finish this section by illustrating two examples of energy function where
the dynamic variance schemes might not be suitable. On the left hand side
of Figure 8, an energy function with shape similar to the Ackley function is
drawn. The dynamic variance schemes perform well for this type of function
with an unique global minimum with several local minima around it. Due to the
scheme, the search focuses on the region near the global minimum after some
time steps. The second function, see Figure 8(b), has several, widely separated
global minima yielding a high variance of the particles even in the case that the
particles are near to the global minima. Moreover, when the region of global
minima is regarded as a sum of Dirac measures, the mean is not essentially a
global minimum. In the last example shown on the right hand side of Figure 8,
the global minimum is a small peak far away from a broad basin with a local
minimum. When all particles fall into the basin, the dynamic variance schemes
focus the search on the region near the local minimum and it takes a long time
to discover the global minimum.
In most optimization problems arising in the field of computer vision, however,
the first case occurs where the dynamic variance schemes perform well. One
application is human motion capturing which we will discuss in the next section.
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(a) (b) (c)

Fig. 8. Different cases of energy functions. (a) Optimal for dynamic variance schemes.
An unique global minimum with several local minima around it. (b) Several global
minima that are widely separated. This yields a high variance even in the case that the
particles are near to the global minima. (c) The global minimum is a small peak far
away from a broad basin. When all particles fall into the basin, the dynamic variance
schemes focus the search on the basin.

4.2 Human Motion Capture

Fig. 9. From left to right: (a) Original image. (b) Silhouette. (c) Estimated pose.
(d) 3D model.

In our second experiment, we apply the interacting simulated annealing algo-
rithm to model-based 3D tracking of the lower part of a human body, see Fig-
ure 9(a). This means that the 3D rigid body motion (RBM) and the joint angles,
also called the pose, are estimated by exploiting the known 3D model of the
tracked object. The mesh model illustrated in Figure 9(d) has 18 degrees of free-
dom (DoF), namely 6 for the rigid body motion and 12 for the joint angles of the
hip, knees, and feet. Although a marker-less motion capture system is discussed,
markers are also sticked to the target object in order to provide a quantitative
comparison with a commercial marker based system.

Using the extracted silhouette as shown in Figure 9(b), one can define an energy
function V which describes the difference between the silhouette and an esti-
mated pose. The pose that fits the silhouette best takes the global minimum of
the energy function, which is searched by the ISA. The estimated pose projected
onto the image plane is displayed in Figure 9(c).
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Pose representation There are several ways to represent the pose of an object,
e.g. Euler angles, quaternions [16], twists [20], or the axis-angle representation.
The ISA requires from the representation that primarily the mean but also the
variance can be at least well approximated. For this purpose, we have chosen
the axis-angle representation of the absolute rigid body motion M given by the
6D vector (θω, t) with

ω = (ω1, ω2, ω3), ‖ω‖2 = 1 and t = (t1, t2, t3).

Using the exponential, M is expressed by

M =

(
exp (θω̂) t

0 1

)
, ω̂ =




0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0


 . (1.19)

While t is the absolute position in the world coordinate system, the rotation
vector θω describes a rotation by an angle θ ∈ R about the rotation axis ω. The
function exp (θω̂) can be efficiently computed by the Rodriguez formula [20].
Given a rigid body motion defined by a rotation matrix R ∈ SO(3) and a
translation vector t ∈ R

3, the rotation vector is constructed according to [20] as
follows: When R is the identity matrix, θ is set to 0. For the other case, θ and
the rotation axis ω are given by

θ = cos−1

(
trace(R) − 1

2

)
, ω =

1

2 sin(θ)




r32 − r23

r13 − r31

r21 − r12


 . (1.20)

We write log(R) for the inverse mapping of the exponential.

The mean of a set of rotations ri in the axis-angle representation can be com-
puted by using the exponential and the logarithm as described in [22, 23]. The
idea is to find a geodesic on the Riemannian manifold determined by the set of
3D rotations. When the geodesic starting from the mean rotation in the manifold
is mapped by the logarithm onto the tangent space at the mean, it is a straight
line starting at the origin. The tangent space is called exponential chart .

Hence, using the notations

r2 ? r1 = log (exp(r2) · exp(r1)) , r−1
1 = log

(
exp(r1)

T
)

for the rotation vectors r1 and r2, the mean rotation r̄ satisfies

∑

i

(
r̄−1 ? ri

)
= 0. (1.21)

Weighting each rotation with πi, yields the least squares problem:

1

2

∑

i

πi

∥∥r̄−1 ? ri

∥∥2

2
→ min. (1.22)
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The weighted mean can thus be estimated by

r̂t+1 = r̂t ?

(∑
i πi

(
r̂−1
t ? ri

)
∑

i πi

)
. (1.23)

The gradient descent method takes about 5 iterations until it converges.
The variance and the normal density on a Riemannian manifold can also be
approximated, cf. [24]. Since, however, the variance is only used for diffusing the
particles, a very accurate approximation is not needed. Hence, the variance of a
set of rotations ri is calculated in the Euclidean space R

3.
The twist representation used in [7, 26] and in Chapters RosenhahnetAl,BroxetAl

is quite similar. Instead of a separation between the translation t and the rota-
tion r, it describes a screw motion where the motion velocity θ also affects the
translation. A twist ξ̂ ∈ se(3)3 is represented by

θξ̂ = θ

(
ω̂ v
0 0

)
, (1.24)

where exp(θξ̂) is a rigid body motion.
The logarithm of a rigid body motion M ∈ SE(3) is the following transformation:

θω = log(R), v = A−1t, (1.25)

where

A = (I − exp(θω̂))ω̂ + ωωT θ (1.26)

is obtained from the Rodriguez formula. This follows from the fact, that the two
matrices which comprise A have mutually orthogonal null spaces when θ 6= 0.
Hence, Av = 0 ⇔ v = 0.
We remark that the two representations are identical for the joints where only a
rotation around a known axis is performed. Furthermore, a linearization is not
needed for the ISA in contrast to the pose estimation as described in Chap-
ters RosenhahnetAl and BroxetAl.

Pose prediction The ISA can be combined with a pose prediction in two ways.
When the dynamics are modelled by a Markov process for example, the particles
of the current frame can be stored and predicted for the next frame according
to the process as done in [12]. In this case, the ISA is already initialized by
the predicted particles. But when the prediction is time consuming or when the
history of previous poses is needed, only the estimate is predicted. The ISA
is then initialized by diffusing the particles around the predicted estimate. The
reinitialization of the particles is necessary for example when the prediction is
based on local descriptors [13] or optical flow as discussed in Chapter BroxetAl

and [5].

3 se(3) is the Lie algebra that corresponds to the Lie group SE(3).
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In our example, the pose is predicted by an autoregression that takes the global
rigid body motions Pi of the last N frames into account [13]. For this purpose,
we use a set of twists ξi = log(PiP

−1
i−1) representing the relative motions. By

expressing the local rigid body motion as a screw action, the spatial velocity can
be represented by the twist of the screw, see [20] for details.

M

P P

P3

M

ξ

ξ’

O
1

ξ
1

2
2

1

1 2 ξ2
’

M3

Fig. 10. Transformation of rigid body motions from prior data Pi in a current world
coordinate system M1. A proper scaling of the twists results in a proper damping.

In order to generate a suited rigid body motion from the motion history, a screw
motion needs to be represented with respect to another coordinate system. Let
ξ̂ ∈ se(3) be a twist given in a coordinate frame A. Then for any G ∈ SE(3),

which transforms a coordinate frame A to B, is Gξ̂G−1 a twist with the twist
coordinates given in the coordinate frame B, see [20] for details. The mapping

ξ̂ 7−→ Gξ̂G−1 is called the adjoint transformation associated with G.
Let ξ1 = log(P2P

−1
1 ) be the twist representing the relative motion from P1 to P2.

This transformation can be expressed as local transformation in the current co-
ordinate system M1 by the adjoint transformation associated with G = M1P

−1
1 .

The new twist is then given by ξ̂′1 = Gξ̂1G
−1. The advantage of the twist rep-

resentation is now, that the twists can be scaled by a factor 0 ≤ λi ≤ 1 to
damp the local rigid body motion, i.e. ξ̂′i = Gλiξ̂iG

−1. For given λi such that∑
i λi = 1, the predicted pose is obtained by the rigid body transformation

exp(ξ̂′N ) exp(ξ̂′N−1) . . . exp(ξ̂′1). (1.27)

Energy function The energy function V of a particle x, which is used for
our example, depends on the extracted silhouette and on some learned prior
knowledge as in [12], but it is defined in a different way.
Silhouette: First of all, the silhouette is extracted from an image by a level set
based segmentation as in [8, 27]. We state the energy functional E for conve-
nience only and refer the reader to Chapter BroxetAl where the segmentation
is described in detail. Let Ωi be the image domain of view i and let Φi

0(x̂ ) be
the contour of the predicted pose in Ωi. In order to obtain the silhouettes for all
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r views, the energy functional E(x̂, Φ1, . . . , Φr) =
∑r

i=1 E(x̂, Φi) is minimzed,
where

E(x̂, Φi) = −
∫

H(Φi) ln pi
1 + (1 − H(Φi)) ln pi

2 dx

+ ν

∫

Ωi

∣∣∇H(Φi)
∣∣ dx + λ

∫

Ωi

(
Φi − Φi

0(x̂ )
)2

dx. (1.28)

In our experiments, we weighted the smoothness term with ν = 4 and the shape
prior with λ = 0.04.
After the segmentation, 3D-2D correspondences between the 3D model (Xi) and
a 2D image (xi) are established by the projected vertices of the 3D mesh that
are part of the model contour and their closest points of the extracted contour
that are determined by a combination of an iterated closest point algorithm [4]
and an optic flow based shape registration [25]. More details about the shape
matching are given in Chapter RosenhahnetAl. We write each correspondence
as pair (Xi, xi) of homogeneous coordinates.
Each image point xi defines a projection ray that can be represented as Plücker
line [20] determined by a unique vector ni and a moment mi such that x× ni −
mi = 0 for all x on the 3D line. Furthermore,

‖x × ni − mi‖2 (1.29)

is the norm of the perpendicular error vector between the line and a point x ∈ R
3.

As we already mentioned, a joint j is represented by the rotation angle θj .
Hence, we write M(ω, t) for the rigid body motion and M(θj) for the joints.
Furthermore, we have to consider the kinematic chain of articulated objects. Let
Xi be a point on the limb ki whose position is influenced by si joints in a certain
order. The inverse order of these joints is then given by the mapping ιki

, e.g.,
a point on the left shank is influenced by the left knee joint ιki

(4) and by the
three joints of the left hip ιki

(3), ιki
(2), and ιki

(1).
Hence, the pose estimation consists of finding a pose x such that the error

errS(x, i) :=

∥∥∥∥
(
M(ω, t)M(θιki

(1)) . . . M(θιki
(si))Xi

)
3×1

× ni − mi

∥∥∥∥
2

(1.30)

is minimal for all pairs, where (·)3×1 denotes the transformation from homoge-
neous coordinates back to non-homogeneous coordinates.
Prior Knowledge: Using prior knowledge about the probability of a certain
pose can stabilize the pose estimation as shown in [12] and [6]. The prior ensures
that particles representing a familiar pose are favored in problematic situations,
e.g., when the observed object is partially occluded. As discussed in Chapter
BroxetAl, the probability of the various poses is learned from N training sam-
ples, where the density is estimated by a Parzen-Rosenblatt estimator [21, 29]
with a Gaussian kernel

ppose(x) =
1

(2 π σ2)d/2 N

N∑

i=1

exp

(
−‖xi − x‖2

2

2 σ2

)
. (1.31)
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In our experiments, we chose the window size σ as the maximum second nearest
neighbor distance between all training samples as in [12].
Incorporating the learned probability of the poses in the energy function has
additional advantages. First, it already incorporates correlations between the
parameters of a pose – and thus of a particle – yielding an energy function that
is closer to the model and the observed object. Moreover, it can be regarded as a
soft constraint that includes anatomical constraints, e.g. by the limited freedom
of joints movement, and that prevents the estimates from self-intersections since
unrealistic and impossible poses cannot be contained in the training data.
Altogether, the energy function V of a particle x is defined by

V (x) :=
1

l

l∑

i=1

errS(x, i)2 − η ln(ppose(x)), (1.32)

where l is the number of correspondences. In our experiments, we set η = 8.

Fig. 11. Left: Results for a walking sequence captured by four cameras (200 frames).
Right: The joint angles of the right and left knee in comparison with a marker based
system.

Results In our experiments, we tracked the lower part of a human body using
four calibrated and synchronized cameras. The walking sequence was simultane-
ously captured by a commercial marker based system4 allowing a quantitative
error analysis. The training data used for learning ppose consisted of 480 sam-
ples that were obtained from walking sequences. The data was captured by the
commercial system before recording the test sequence that was not contained in
the training data.
The ISA performed well for the sequence consisting of 200 frames using a poly-
nomial annealing scheme with b = 0.7, a dynamic variance scheme with c = 0.3,
and the selection kernel (1.8). Results are given in Figure 11 where the diagram

4 Motion Analysis system with 8 Falcon cameras.
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Fig. 12. Weighted particles at t = 0, 1, 2, 4, 8, and 14 of ISA. Particles with a higher
weight are brighter, particles with a lower weight are darker. The particles converge to
the pose with the lowest energy as t increases.

shows a comparison of the estimated knee-joint angles with the marker based
system.

The convergence of the particles towards the pose with the lowest energy is
illustrated for one frame in Figure 12. Moreover, it shows that variance of the
particles decreases with an increasing number of annealing steps. This can also
be seen from Figure 13 where the standard deviations for four parameters, which
are scaled by c, are plotted. While the variances of the hip-joint and of the knee-
joint decline rapidly, the variance of the ankle increases for the first steps before
it decreases. This behavior results from the kinematic chain of the legs. Since
the ankle is the last joint in the chain, the energy for a correct ankle is only low
when also the previous joints of the chain are well estimated.

(a) Z-coordinate. (b) Hip. (c) Knee. (d) Foot.

Fig. 13. Variance of the particles during ISA. The scaled standard deviations for the
z-coordinate of the position and for three joint angles are given. The variances decrease
with an increasing number of annealing steps.
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Fig. 14. Left: Energy of estimate for walking sequence (200 frames). Right: Error of
estimate (left and right knee).

On the right hand side of Figure 14, the energy of the estimate during tracking
is plotted. We also plotted the root-mean-square error of the estimated knee-
angles for comparison where we used the results from the marker based system as
ground truth with an accuracy of 3 degrees. For n = 250 and T = 15, we achieved
an overall root-mean-square error of 2.74 degrees. The error was still below 3
degrees with 375 particles and T = 7, i.e. nT = 2625. With this setting, the ISA
took 7−8 seconds for approximately 3900 correspondences that were established
in the 4 images of one frame. The whole system including segmentation, took 61
seconds for one frame. For comparison, the iterative method as used in Chapter
RosenhahnetAl took 59 seconds with an error of 2.4 degrees. However, we
have to remark that for this sequence the iterative method performed very well.
This becomes clear from the fact that no additional random starting points
were needed. Nevertheless, it demonstrates that the ISA can keep up even in
situations that are perfect for iterative methods.

Fig. 15. Left: Random pixel noise. Right: Occlusions by random rectangles.
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Figures 16 and 17 show the robustness in the presence of noise and occlusions.
For the first sequence, each frame was independently distorted by 70% pixel
noise, i.e., each pixel value was replaced with probability 0.7 by a value uni-
formly sampled from the interval [0, 255]. The second sequence was distorted by
occluding rectangles of random size, position, and gray value, where the edge
lengths were in the range from 1 to 40. The knee angles are plotted in Figure 15.
The root mean-square errors were 2.97 degrees, 4.51 degrees, and 5.21 degrees
for 50% noise, 70% noise, and 35 occluding rectangles, respectively.

Fig. 16. Estimates for a sequence distorted by 70% random pixel noise. One view of
frames 35, 65, 95, 125, 155, and 185 is shown.

5 Discussion

We introduced a novel approach for global optimization, termed interacting sim-
ulated annealing (ISA), that converges to the global optimum. It is based on
an interacting particle system where the particles are weighted according to
Boltzmann-Gibbs measures determined by an energy function and an increasing
annealing scheme.
The variance of the particles provides a good measure of the confidence in the
estimate. If the particles are all near the global optimum, the variance is low
and only a low diffusion of the particles is required. The estimate, in contrast, is
unreliable for particles with an high variance. This knowledge is integrated via
dynamic variance schemes that focus the search on regions of interest depending
on the confidence in the current estimate. The performance and the potential of
ISA was demonstrated by means of two applications.
The first example showed that our approach can deal with local optima and
solves the optimization problem well even for noisy measurements. However, we
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Fig. 17. Estimates for a sequence with occlusions by 35 rectangles with random size,
color, and position. One view of frames 35, 65, 95, 125, 155, and 185 is shown.

also provided some limitations of the dynamic variance schemes where standard
global optimization methods might perform better. Since a comparison with
other global optimization algorithm is out of the scope of this introduction, this
will be done in future.

The application to multi-view human motion capturing, demonstrated the em-
bedding of ISA into a complex system. The tracking system included silhouette
extraction by a level-set method, a pose prediction by an auto-regression, and
prior knowledge learned from training data. Providing an error analysis, we
demonstrated the accuracy and the robustness of the system in the presence of
noise and occlusions. Even though we considered only a relative simple walking
sequence for demonstration, it already indicates the potential of ISA for human
motion capturing. Indeed, a comparison with an iterative approach revealed that
on the one hand global optimization methods cannot perform better than local
optimization methods when local optima are not problematic as it is the case
for the walking sequence, but on the other hand it also showed that the ISA can
keep up with the iterative method. We expect therefore that the ISA performs
better for faster movements, more complex motion patterns, and human models
with higher degrees of freedom. In addition, the introduced implementation of
the tracking system with ISA has one essential drawback for the performance.
While the pose estimation is performed by a global optimization method, the
segmentation is still susceptible to local minima since the energy function (1.28)
is minimized by a local optimization approach.

As part of future work, we will integrate ISA into the segmentation process
to overcome the local optima problem in the whole system. Furthermore, an
evaluation and a comparison with an iterative method needs to be done with
sequences of different kinds of human motions and also when the segmentation
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is independent of the pose estimation, e.g., as it is the case for background
subtraction. Another improvement might be achieved by considering correlations
between the parameters of the particles for the dynamic variance schemes, where
an optimal trade-off between additional computation cost and increased accuracy
needs to be found.
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