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0
Introduction

A brief discussion on stochastic processes
These lectures deal with the foundations and the applications of stochastic processes also
called random processes.

The term "stochastic" comes from the Greek word "stokhastikos" which means a skillful
person capable of guessing and predicting. The first use of this term in probability theory
can be traced back to the Russian economist and statistician Ladislaus Bortkiewicz (1868-
1931). In his paper Die Iterationen published in 1917, he defines the term "stochastik" as
follows: "The investigation of empirical varieties, which is based on probability theory, and,
therefore, on the law of the large numbers, may be denoted as stochastic. But stochastic is
not simply probability theory, but above all probability theory and its applications".

As their name indicates, stochastic processes are dynamic evolution models with random
ingredients. Leaving aside the old well-known dilemma of determinism and freedom [26, 225]
(solved by some old fashion scientific reasoning which cannot accommodate any piece of
random "un-caused causations"), the complex structure of any "concrete" and sophisticated
real life model is always better represented by stochastic mathematical models as a first level
of approximation.

The sources of randomness reflect different sources of model uncertainties, including
unknown initial conditions, model uncertainties such as misspecified kinetic parameters, as
well as the external random effects on the system.

Stochastic modelling techniques are of great importance in many scientific areas, to
name a few:

• Computer and engineering sciences: signal and image processing, filtering and inverse
problems, stochastic control, game theory, mathematical finance, risk analysis and rare
event simulation, operation research and global optimization, artificial intelligence and
evolutionary computing, queueing and communication networks.

• Statistical machine learning: hidden Markov chain models, frequentist and Bayesian
statistical inference.

• Biology and environmental sciences: branching processes, dynamic population models,
genetic and genealogical tree-based evolution.

• Physics and chemistry: turbulent fluid models, disordered and quantum models, sta-
tistical physics and magnetic models, polymers in solvents, molecular dynamics and
Schrödinger equations.

A fairly large body of the literature on stochastic processes is concerned with the prob-
abilistic modelling and the convergence analysis of random style dynamical systems. As
expected these developments are closely related to the theory of dynamical systems, to
partial differential and integro-differential equations, but also to ergodic and chaos theory,

xxi
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differential geometry, as well as the classical linear algebra theory, combinatorics, topology,
operator theory, and spectral analysis.

The theory of stochastic processes has also developed its own sophisticated probabilistic
tools, including diffusion and jump type stochastic differential equations, Doeblin-Itō calcu-
lus, martingale theory, coupling techniques, and advanced stochastic simulation techniques.

One of the objectives of stochastic process theory is to derive explicit analytic type results
for a variety of simplified stochastic processes, including birth and death models, simple
random walks, spatially homogeneous branching processes, and many others. Nevertheless,
most of the more realistic processes of interest in the real world of physics, biology, and
engineering sciences are "unfortunately" highly nonlinear systems evolving in very high
dimensions. As a result, it is generally impossible to come up with any type of closed form
solutions.

In this connection, the theory of stochastic processes is also concerned with the modelling
and with the convergence analysis of a variety of sophisticated stochastic algorithms. These
stochastic processes are designed to solve numerically complex integration problems that
arise in a variety of application areas. Their common feature is to mimic and to use repeated
random samples of a given stochastic process to estimate some averaging type property using
empirical approximations.

We emphasize that all of these stochastic methods are expressed in terms of a partic-
ular stochastic process, or a collection of stochastic processes, depending on the precision
parameter being the time horizon, or the number of samples. The central idea is to approx-
imate the expectation of a given random variable using the empirical averages (in space or
in time) based on a sequence of random samples. In this context, the rigorous analysis of
these complex numerical schemes also relies on advanced stochastic analysis techniques.

The interpretation of the random variables of interest depends on the application. In
some instances, these variables represent the random states of a complex stochastic process,
or some unknown kinetic or statistical parameters. In other situations, the random variables
of interest are specified by a complex target probability measure. Stochastic simulation and
Monte Carlo methods are used to predict the evolution of given random phenomena, as
well as to solve several estimation problems using random searches. To name but a few:
computing complex measures and multidimensional integrals, counting, ranking, and rating
problems, spectral analysis, computation of eigenvalues and eigenvectors, as well as solving
linear and nonlinear integro-differential equations.

This book is almost self-contained. There are no strict prerequisites but it is envisaged
that students would have taken a course in elementary probability and that they have some
knowledge of elementary linear algebra, functional analysis and geometry. It is not possible
to define rigorously stochastic processes without some basic knowledge on measure theory
and differential calculus. Readers who lack such background should instead consult some
introductory textbook on probability and integration, and elementary differential calculus.

The book also contains around 500 exercises with detailed solutions on a variety of
topics, with many explicit computations. Each chapter ends with a section containing a
series of exercises ranging from simple calculations to more advanced technical questions.
This book can serve as a reference book, as well as a textbook. The next section provides
a brief description of the organization of the book.

On page xxxii we propose a series of lectures and research projects which can be devel-
oped using the material presented in this book. The descriptions of these course projects
also provide detailed discussions on the connections between the different topics treated in
this book. Thus, they also provide a reading guide to enter into a given specialized topic.
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Organization of the book
The book is organized in six parts. The synthetic diagram below provides the connections
betweens the parts and indicates the different possible ways of reading the book.

Part I provides an illustrative guide with a series of motivating examples. Each of them
is related to a deep mathematical result on stochastic processes. The examples include
the recurrence and the transience properties of simple random walks, stochastic coupling
techniques and mixing properties of Markov chains, random iterated functional models,
Poisson processes, dynamic population models, Markov chain Monte Carlo methods, and
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the Doeblin-Itō differential calculus. In each situation, we provide a brief discussion on the
mathematical analysis of these models. We also provide precise pointers to the chapters
and sections where these results are discussed in more details.

Part II is concerned with the notion of randomness, and with some techniques to "sim-
ulate perfectly" some traditional random variables (abbreviated r.v.). For a more thorough
discussion on this subject, we refer to the encyclopedic and seminal reference book of Luc
Devroye [92], dedicated to the simulation of nonuniform random variables. Several concrete
applications are provided to illustrate many of the key ideas, as well as the usefulness of
stochastic simulation methods in some scientific disciplines.

The next three parts are dedicated to discrete and continuous time stochastic processes.
The synthetic diagram below provides some inclusion type links between the different classes
of stochastic processes discussed in this book.

 

MONTE CARLO AND 
MCMC METHODS 

MEAN–FIELD 
PARTICLE MODELS 

(discrete time) 

MARKOV CHAINS 

NONLINEAR 
MARKOV CHAINS 

(discrete time) FEYNMAN–KAC 
MODELS  

(discrete time) 

FEYNMAN–KAC 
MODELS  

(continuous time) 

MEAN–FIELD 
PARTICLE MODELS 

(continuous time) 

NONLINEAR JUMP 
DIFFUSIONS 

DIFFUSION 
PROCESSES  
(on manifolds) 

JUMP DIFFUSIONS 

DYNAMIC SYSTEMS 
PIECEWISE 

DETERMINISTIC 
PROCESSES 

PURE JUMP 
PROCESSES 

DIFFUSION 
PROCESSES  

(Euclidean space)  

Part III is concerned with
discrete time stochastic processes,
and more particularly with Markov
chain models.

Firstly, we provide a detailed
discussion on the different descrip-
tions and interpretations of these
stochastic models. We also discuss
nonlinear Markov chain models,
including self-interacting Markov
chains and mean field type particle
models.

Then we present a panorama
of analytical tools to study the
convergence of Markov chain mod-
els when the time parameter tends
to ∞. The first class of math-
ematical techniques includes lin-
ear algebraic tools, spectral and
functional analysis. We also
present some more probabilistic-
type tools such as coupling tech-
niques, strong stationary times,
and martingale limit theorems.

Finally, we review the tradi-
tional and the more recent computation techniques of Markov chain models. These tech-
niques include Markov chain Monte Carlo methodologies, perfect sampling algorithms, and
time inhomogeneous models. We also provide a discussion of the more recent Feynman-Kac
particle methodologies, with a series of application domains.

Part IV of the book is concerned with continuous time stochastic processes and stochas-
tic differential calculus, a pretty vast subject at the core of applied mathematics. Never-
theless, most of the literature on these processes in probability textbooks is dauntingly
mathematical. Here we provide a pedagogical introduction, sacrificing from time to time
some technical mathematical aspects.
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Continuous time stochastic processes can always be thought as a limit of a discrete gen-
eration process defined on some time mesh, as the time step tends to 0. This viewpoint
which is at the foundation of of stochastic calculus and integration is often hidden in purely
theoretical textbooks on stochastic processes. In the reverse angle, more applied presenta-
tions found in textbooks in engineering, economy, statistics and physics are often too far
from recent advances in applied probability so that students are not really prepared to enter
into deeper analysis nor pursue any research level type projects.

One of the main new points we have adopted here is to make a bridge between appli-
cations and advanced probability analysis. Continuous time stochastic processes, including
nonlinear jump-diffusion processes, are introduced as a limit of a discrete generation process
which can be easily simulated on a computer. In the same vein, any sophisticated formula
in stochastic analysis and differential calculus arises as the limit of a discrete time mathe-
matical model. It is of course not within the scope of this book to quantify precisely and
in a systematic way all of these approximations. Precise reference pointers to articles and
books dealing with these questions are provided in the text.

All approximations treated in this book are developed through a single and systematic
mathematical basis transforming the elementary Markov transitions of practical discrete
generation models into infinitesimal generators of continuous time processes. The stochas-
tic version of the Taylor expansion, also called the Doeblin-Itō formula or simply the Itō
formula, is described in terms of the generator of a Markov process and its corresponding
carré du champ operator.

In this framework, the evolution of the law of the random states of a continuous time
process resumes to a natural weak formulation of linear and nonlinear Fokker-Planck type
equations (a.k.a. Kolmogorov equations). In this interpretation, the random paths of a given
continuous time process provide a natural interpolation and coupling between the solutions
of these integro-differential equations at different times. These path-space probability mea-
sures provide natural probabilistic interpretations of important Cauchy-Dirichlet-Poisson
problems arising in analysis and integro-partial differential equation problems. The limit-
ing behavior of these functional equations is also directly related to the long time behavior
of a stochastic process.

All of these subjects are developed from chapter 10 to chapter 16. The presentation
starts with elementary Poisson and jump type processes, including piecewise deterministic
models, and develops forward to more advanced jump-diffusion processes and nonlinear
Markov processes with their mean field particle interpretations. An abstract and universal
class of continuous time stochastic process is discussed in section 15.5.

The last two chapters, chapter 17 and chapter 18 present respectively a panorama of
analytical tools to study the long time behavior of continuous time stochastic processes,
and path-space probability measures with some application domains.

Part V is dedicated to diffusion processes on manifolds. These stochastic processes arise
when we need to explore state spaces associated with some constraints, such as the sphere,
the torus, or the simplex. The literature on this subject is often geared towards purely
mathematical aspects, with highly complex stochastic differential geometry methodologies.
This book provides a self-contained and pedagogical treatment with a variety of examples
and application domains. Special emphasis is given to the modelling, the stability analysis,
and the numerical simulation of these processes on a computer.

The synthetic diagram below provides some inclusion type links between the different
classes of stochastic computational techniques discussed in this book.
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Part VI is dedicated to some application domains of stochastic processes, including ran-
dom walks, iterated random functions, computational physics, dynamic population models,
gambling and ranking, and mathematical finance.

Chapter 25 is mainly concerned with simple random walks. It starts with the recurrence
or transience properties of these processes on integer lattices depending on their dimensions.
We also discuss random walks on graphs, the exclusion process, as well as random walks
on the circle and hypercubes and their spectral properties. The last part of the chapter is
dedicated to the applications of Markov chains to analyze the behavior of urn type models
such as the Polya and the Ehrenfest processes. We end this chapter with a series of exercises
on these random walk models including diffusion approximation techniques.

Chapter 26 is dedicated to stochastic processes expressed in terms of iterated random
functions. We examine three classes of models. The first one is related to branching pro-
cesses and ancestral tree evolutions. These stochastic processes are expressed in terms of
compositions of one to one mappings between finite sets of indices. The second one is con-
cerned with shuffling cards. In this context, the processes are expressed in terms of random
compositions of permutations. The last class of models are based on random compositions
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of linear transformations on the plane and their limiting fractal image compositions. We
illustrate these models with the random construction of the Cantor’s discontinuum, and
provide some examples of fractal images such as a fractal leaf, a fractal tree, the Sierpinski
carpet, and the Highways dragons. We analyze the stability and the limiting measures asso-
ciated with each class of processes. The chapter ends with a series of exercises related to the
stability properties of these models, including some techniques used to obtain quantitative
estimates.

Chapter 27 explores some selected applications of stochastic processes in computational
and statistical physics.

The first part provides a short introduction to molecular dynamics models and to their
numerical approximations. We connect these deterministic models with Langevin diffusion
processes and their reversible Boltzmann-Gibbs distributions.

The second part of the chapter is dedicated to the spectral analysis of the Schrödinger
wave equation and its description in terms of Feynman-Kac semigroups. We provide an
equivalent description of these models in terms of the Bra-kets and path integral formalisms
commonly used in physics. We present a complete description of the spectral decomposition
of the Schrödinger-Feynman-Kac generator, the classical harmonic oscillator in terms of the
Hermite polynomials introduced in chapter 17. Last but not least we introduce the reader to
the Monte Carlo approximation of these models based on the mean field particle algorithms
presented in the third part of the book.

The third part of the chapter discusses different applications of interacting particle
systems in physics, including the contact model, the voter and the exclusion process. The
chapter ends with a series of exercises on the ground state of Schrödinger operators, quasi-
invariant measures, twisted guiding waves, and variational principles.

Chapter 28 is dedicated to applications of stochastic processes in biology and epidemiol-
ogy. We present several classes of deterministic and stochastic dynamic population models.
We analyse logistic type and Lotka-Volterra processes, as well as branching and genetic
processes. This chapter ends with a series of exercises related to logistic diffusions, bimodal
growth models, facultative mutualism processes, infection and branching processes.

Chapter 29 is concerned with applications of stochastic processes in gambling and rank-
ing. We start with the celebrated Google page rank algorithm. The second part of the
chapter is dedicated to gambling betting systems. We review and analyze some famous
martingales such as the St Petersburg martingale, the grand martingale, the D’Alembert
and the Whittaker martingales. The third part of the chapter is mainly concerned with
stochastic control and optimal stopping strategies. The chapter ends with a series of exer-
cises on the Monty Hall game show, the Parrondo’s game, the bold play strategy, the ballot
and the secretary problems.

The last chapter, chapter 30, is dedicated to applications in mathematical finance. We
discuss the discrete time Cox-Ross-Rubinstein models and the continuous Black-Scholes-
Merton models. The second part of the chapter is concerned with European pricing options.
We provide a discussion on the modelling of self-financing portfolios in terms of controlled
martingales. We also describe a series of pricing and hedging techniques with some nu-
merical illustrations. The chapter ends with a series of exercises related to neutralization
techniques of financial markets, replicating portfolios, Wilkie inflation models, and life func-
tion martingales.

The synthetic diagram below provides some inclusion type links between the stochastic
processes and the different application domains discussed in this book. The black arrows
indicate the estimations and sampling problems arising in different application areas. The
blue arrows indicate the stochastic tools that can be used to solve these problems. The
red arrows emphasize the modelling, the design and the convergence analysis of stochastic
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methods. The green arrows emphasize the class of stochastic models arising in several
scientific disciplines.
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Preview and objectives
This book provides an introduction to the probabilistic modelling of discrete and continuous
time stochastic processes. The emphasis is put on the understanding of the main mathemat-
ical concepts and numerical tools across a range of illustrations presented through models
with increasing complexity.

If you can’t explain it simply, you don’t understand it well enough.
Albert Einstein (1879-1955).

While exploring the analysis of stochastic processes, the reader will also encounter a
variety of mathematical techniques related to matrix theory, spectral analysis, dynamical
systems theory and differential geometry.

We discuss a large class of models ranging from finite space valued Markov chains to
jump diffusion processes, nonlinear Markov processes, self-interacting processes, mean field
particle models, branching and interacting particle systems, as well as diffusions on con-
straint and Riemannian manifolds.

Each of these stochastic processes is illustrated in a variety of applications. Of course,
the detailed description of real-world models requires a deep understanding of the physical
or the biological principles behind the problem at hand. These discussions are out of the
scope of the book. We only discuss academic-type related situations, providing precise
reference pointers for a more detailed discussion. The illustrations we have chosen are very
often at the crossroads of several seemingly disconnected scientific disciplines, including
biology, mathematical finance, gambling, physics, engineering sciences, operations research,
as well as probability, and statistical inference.

The book also provides an introduction to stochastic analysis and stochastic differential
calculus, including the analysis of probability measures on path spaces and the analysis of
Feynman-Kac semigroups. We present a series of powerful tools to analyze the long time be-
havior of discrete and continuous time stochastic processes, including coupling, contraction
inequalities, spectral decompositions, Lyapunov techniques, and martingale theory.

The book also provides a series of probabilistic interpretations of integro-partial differ-
ential equations, including stochastic partial differential equations (such as the nonlinear
filtering equation), Fokker-Planck equations and Hamilton-Jacobi-Bellman equations, as
well as Cauchy-Dirichlet-Poisson equations with boundary conditions.

Last but not least, the book also provides a rather detailed description of some tradi-
tional and more advanced computational techniques based on stochastic processes. These
techniques include Markov chain Monte Carlo methods, coupling from the past techniques,
as well as more advanced particle methods. Here again, each of these numerical techniques
is illustrated in a variety of applications.

Having said that, let us explain some other important subjects which are not treated in
this book. We provide some precise reference pointers to supplement this book on some of
these subjects.

As any lecture on deterministic dynamical systems does not really need to start with
a fully developed Lebesgue, or Riemann-Stieltjes integration theory, nor with a special-
ized course on differential calculus, we believe that a full and detailed description of
stochastic integrals is not really needed to start a lecture on stochastic processes.

For instance, Markov chains are simply defined as a sequence of random variables indexed
by integers. Thus, the mathematical foundations of Markov chain theory only rely on rather
elementary algebra or Lebesgue integration theory.
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It is always assumed implicitly that these (infinite) sequences of random variables are
defined on a common probability space; otherwise it would be impossible to quantify, nor
to define properly limiting events and objects. From a pure mathematical point of view,
this innocent technical question is not so obvious even for sequences of independent random
variables. The construction of these probability spaces relies on abstract projective lim-
its, the well known Carathéodory extension theorem and the Kolmogorov extension
theorem. The Ionescu-Tulcea theorem also provides a natural probabilistic solution on gen-
eral measurable spaces. It is clearly not within the scope of this book to enter into these
rather well known and sophisticated constructions.

As dynamical systems, continuous time stochastic processes can be defined as the limit
of a discrete generation Markov process on some time mesh when the time step tends
to 0. For the same reasons as above, these limiting objects are defined on a probability
space constructed using projective limit techniques and extension type theorems to define
in a unique way infinite dimensional distributions from finite dimensional ones defined on
cylindrical type sets.

In addition, the weak convergence of any discrete time approximation process to the
desired continuous time limiting process requires us to analyze the convergence of the finite
dimensional distributions on any finite sequence of times. We will discuss these finite
dimensional approximations in some details for jump as well as for diffusion processes.

Nevertheless, the weak convergence at the level of the random trajectories requires us to
ensure that the laws of the random paths of the approximating processes are relatively
compact in the sense that any sequence admits a convergent subsequence. For complete
separable metric spaces, this condition is equivalent to a tightness condition that ensures
that these sequences of probability measures are almost concentrated on a compact subset
in the whole set of trajectories.

Therefore to check this compactness condition we first need to characterize the compact
subsets of the set of continuous trajectories, or of the set of right continuous trajectories
with left hand limits. By the Arzelà-Ascoli theorem, these compact sets are described in
terms of equicontinuous trajectories. Besides the fact that the most of stochastic processes
encountered in practice satisfy this tightness property, the proof of this condition relies on
sophisticated probabilistic tools. A very useful and commonly used to check this tightness
property is the Aldous criterion introduced by D. Aldous in his PhD dissertation and
published in the Annals of Probability in 1978.

Here again, entering in some details into these rather well known and well developed
subjects would cause digression. More details on these subjects can be found in the books

• R. Bass. Stochastic Processes. CUP (2011).

• S. Ethier,T. Kurtz.Markov Processes: Characterization and Convergence. Wiley (1986).

• J. Jacod, A. Shiryaev, Limit Theorems for Stochastic Processes, Springer (1987).

The seminal book by J. Jacod and A. N. Shiryaev is highly technical and presents diffi-
cult material but it contains almost all the limiting convergence theorems encountered in the
theory of stochastic processes. This reference is dedicated to researchers in pure and applied
probability. The book by S.N. Ethier and T. G. Kurtz is in spirit closer to our approach
based on the description of general stochastic processes in terms of their generators. This
book is recommended to anyone interested into the precise mathematical definition of gen-
erators and their regularity properties. The book of R. Bass is more accessible and presents
a detailed mathematical construction of stochastic integrals and stochastic calculus.

The integral representations of these limiting stochastic differential equations (abbrevi-
ated SDE) are expressed in terms of stochastic integrals. These limiting mathematical
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models coincide with the definition of the stochastic integral. The convergence can be made
precise in a variety of well known senses, such as in probability, almost sure, or w.r.t. some
Lp-norms.

Recall that integral description of any deterministic dynamical system is based on the
so-called fundamental theorem of calculus. In the same vein, the integral description
of stochastic processes is now based on the fundamental Doeblin-Itō differential
calculus. This stochastic differential calculus can be interpreted as the natural exten-
sion of Taylor differential calculus to random dynamical systems, such as diffusions
and random jump type processes. Here again the Doeblin-Itō differential calculus
can also be expressed in terms of natural Taylor type expansions associated with a discrete
time approximation of a given continuous type stochastic process.

In the further development of this book, we have chosen to describe in full details these
stochastic expansions for the most fundamental classes of stochastic processes including
jump diffusions and more abstract stochastic models in general state spaces, as well as
stochastic processes on manifolds.

Precise reference pointers to textbooks dedicated to deeper mathematical foundations of
stochastic integrals and the Doeblin-Itō differential calculus are given in the
text.

This choice of presentation has many advantages.
Firstly, the time discretization of continuous time processes provides a natural way to

simulate these processes on a computer.
In addition, any of these simulation techniques also improves the physical and the prob-

abilistic understanding of the nature and the long time behavior of the limiting stochastic
process.

Furthermore, this pedagogical presentation does not really require a strong background
in sophisticated stochastic analysis techniques, as it is based only on discrete time ap-
proximation schemes. As stochastic integrals and the Doeblin-Itō differential
calculus are themselves defined in terms of limiting formulae associated with a discrete
generation process, our approach provides a way to introduce these somehow sophisticated
mathematical objects in a simple form.

In this connection, most of the limiting objects as well as quantitative estimates are gen-
erally obtained by using standard technical tools such as the monotone or the dominated
convergence theorems, Cauchy-Schwartz, Hölder or Minskowski inequalities. Some of
these results are provided in the text and in the exercises. Further mathematical details
can also be found in the textbooks cited in the text.

Last, but not least, this choice of presentation also lays a great foundation for research,
as most of the research questions in probability are asymptotic in nature. In order to
understand these questions, the basic non-asymptotic manipulations need to be clearly
understood.

Rather than pepper the text with repeated citations, we mention here (in alphabetical
order) some other classical and supplemental texts on the full mathematical construction of
stochastic integrals, the characterization and the convergence of continuous time stochastic
processes:

• R. Durrett, Stochastic Calculus. CRC Press (1996).

• I. Gikhman, A. Skorokhod. Stochastic Differential Equations. Springer (1972).

• F.C Klebaner. Introduction to Stochastic Calculus with Applications. World Scientific
Publishing (2012).

• P. Protter. Stochastic Integration and Differential Equations. Springer (2004).
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More specialized books on Brownian motion, martingales with continuous paths, diffu-
sions processes and their discrete time approximations are:

• N. Ikeda, S. Watanabe. Stochastic Differential Equations and Diffusion Processes.
North-Holland Publishing Co. (1989).

• I. Karatzas, S. E. Shreve. Brownian Motion and Stochastic Calculus. Springer (2004).

• P. E. Kloeden, E. Platen. Numerical Solution of Stochastic Differential Equations.
Springer (2011).

• B. Øksendal. Stochastic Differential Equations: An Introduction with Applications.
Springer (2005).

• L. C. G. Rogers, D. Williams. Diffusions, Markov Processes, and Martingales. CUP
(2000).

The seminal book by P. E. Kloeden and E. Platen provides an extensive discussion on the
convergence properties of discrete time approximations of stochastic differential equations.

Other specialized mathematical textbooks and lecture notes which can be useful for
supplemental reading on stochastic processes and analysis on manifolds are:

• K.D. Elworthy. Stochastic Differential Equations on Manifolds. CUP(1982).

• M. Emery. Stochastic Calculus on Manifolds. Springer (1989).

• E.P. Hsu. Stochastic analysis on manifolds. Providence AMS (2002).

Some lecture projects
The material in this book can serve as a basis for different types of advanced undergraduate
and graduate level courses as well as master-level and post-doctoral level courses on stochas-
tic processes and their application domains. As we mentioned above, the book also contains
around 500 exercises with detailed solutions. Each chapter ends with a section containing
a series of exercises ranging from simple calculations to more advanced technical questions.
These exercises can serve for training the students through tutorials or homework.

Running overtime is the one unforgivable error a lecturer can make.
After fifty minutes (one microcentury as von Neumann used to say)
everybody’s attention will turn elsewhere. Gian Carlo Rota (1932-1999).

Introduction to stochastic processes (with applications)
This first type of a lecture course would be a pedagogical introduction to elementary stochas-
tic processes based on the detailed illustrations provided in the first three chapters, chap-
ter 1, chapter 2, and chapter 3. The lectures can be completed with the simulation tech-
niques presented in chapter 4, the Monte Carlo methods discussed in chapter 5, and the
illustrations provided in chapter 6.

The lecture presents discrete as well as continuous time stochastic processes through
a variety of motivating illustrations including dynamic population models, fractals, card
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shuffling, signal processing, Bayesian statistical inference, finance, gambling, ranking, and
stochastic search, reinforcement learning and sampling techniques.

Through a variety of applications, the lecture provides a brief introduction to Markov
chains, including the recurrence properties of simple random walks, Markov chains on per-
mutation groups, and iterated random functions. This course also covers Poisson processes,
and provides an introduction to Brownian motion, as well as piecewise deterministic Markov
processes, diffusions and jump processes.

This lecture course also covers computational aspects with an introduction of Markov
chain Monte Carlo methodologies and the celebrated Metropolis-Hastings algorithm. The
text also provides a brief introduction to more advanced and sophisticated nonlinear stochas-
tic techniques such as self-interacting processes particle filters, and mean field particle sam-
pling methodologies.

The theoretical topics also include an accessible introduction to stochastic differential
calculus. The lecture provides a natural and unified treatment of stochastic processes based
on infinitesimal generators and their carré du champ operators.

This book is also designed to stimulate the development of research projects that offer
the opportunity to apply the theory of stochastic processes discussed during the lectures to
an application domain selected among the ones discussed in this introductory course: card
shuffling, fractal images, ancestral evolutions, molecular dynamics, branching and interact-
ing processes, genetic models, gambling betting systems, financial option pricing, advanced
signal processing, stochastic optimization, Bayesian statistical inference, and many others.

These research projects provide opportunity to the lecturer to immerse the student in
a favorite application area. They also require the student to do a background study and
perform personal research by exploring one of the chapters in the last part of the book
dedicated to application domains. The diagrams provided on page xxiii and on page xxviii
guide the students on the reading order to enter into a specific application domain and
explore the different links and inclusions between the stochastic models discussed during
the lectures.

More theoretical research projects can also be covered. For instance, the recurrence
questions of random walks discussed in the first section of chapter 1 can be further devel-
oped by using the topological aspects of Markov chains presented in section 8.5. Another
research project based on the martingale theory developed in section 8.4 will complement
the discussion on gambling and ruin processes discussed in chapter 2. The discussion on sig-
nal processing and particle filters presented in chapter 3 can be complemented by research
projects on Kalman filters (section 9.9.6), mean field particle methodologies (section 7.10.2),
and Feynman-Kac particle models (section 9.5 and section 9.6).

Other textbooks and lecture notes which can be useful for supplemental reading in
probability and applications during this lecture are:

• P. Billingsley. Convergence of Probability Measures, Wiley (1999).

• L. Devroye. Non-Uniform Random Variate Generation, Springer (1986).

• W. Feller. An Introduction to Probability Theory, Wiley (1971).

• G.R. Grimmett, D.R. Stirzaker, One Thousand Exercises in Probability, OUP (2001).

• A. Shiryaev. Probability, Graduate Texts in Mathematics, Springer (2013).

• P. Del Moral, B. Remillard, S. Rubenthaler. Introduction aux Probabilités. Ellipses
Edition [in French] (2006).
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We also refer to some online resources such as the review of probability theory by
T. Tao, the Wikipedia article on Brownian Motion, and a Java applet simulating
Brownian motion.

Of course it normally takes more than an year to cover the full scope of this course with
fully rigorous mathematical details. This course is designed for advanced undergraduate
to master-level audiences with different educational backgrounds ranging from engineering
sciences, economics, business, mathematical finance, physics, statistics to applied mathe-
matics.

Giving a course for such a diverse audience with different backgrounds poses a signif-
icant challenge to the lecturer. To make the material accessible to all groups, the course
begins with the series of illustrations in the first three chapters. This fairly gentle intro-
duction is designed to cover a variety of subjects in a single semester course of around 40
hours, at a somehow more superficial mathematical level from the pure and applied math-
ematician perspective. These introductory chapters contain precise pointers to specialized
chapters with more advanced mathematical material. Students with deep backgrounds in
applied mathematics are invited to explore deeper into the book, while students with lim-
ited mathematical backgrounds will concentrate on the more elementary material discussed
in chapter 1, chapter 2, and chapter 3.

Discrete time stochastic processes

The second type of lecture course is a pedagogical introduction to discrete time processes
and Markov chain theory, a rather vast subject at the core of applied probability and many
other scientific disciplines that use stochastic models. This more theoretical type course
is geared towards discrete time stochastic processes and their stability analysis. It would
essentially cover chapter 7 and chapter 8.

As in the previous lecture course, this would start with some selected motivating il-
lustrations provided in chapter 1 and chapter 2, as well as from the material provided in
section 3.1, chapter 5 and chapter 6 dedicated to Markov chain Monte Carlo methodologies.

The second part of this course will center around some selected material presented in
the third part of the book dedicated to discrete time stochastic processes. Chapter 7 offers
a description of the main classes of Markov chain models including nonlinear Markov chain
models and their mean field particle interpretations.

After this exploration of discrete generation random processes, at least two possible
different directions can be taken.

The first one is based on chapter 8 with an emphasis on the topological aspects and
the stability properties of Markov chains. This type of course presents a panorama of
analytical tools to study the convergence of Markov chain models when the time parameter
tends to ∞. These mathematical techniques include matrix theory, spectral and functional
analysis, as well as contraction inequalities, geometric drift conditions, coupling techniques
and martingale limit theorems.

The second one, based on chapter 9, will emphasize computational aspects ranging
from traditional Markov chain Monte Carlo methods and perfect sampling techniques to
more advanced Feynman-Kac particle methodologies. This part or the course will cover
Metropolis-Hastings algorithms, Gibbs-Glauber dynamics, as well as the Propp and Wilson
coupling from the past sampler. The lecture would also offer a brief introduction to more
advanced particle methods and related particle Markov chain Monte Carlo methodologies.

The course could be complemented with some selected application domains described in
chapter 25, such as random walks on lattices and graphs, or urn type random walks. Another
strategy would be to illustrate the theory of Markov chains with chapter 26 dedicated to
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iterated random functions and their applications in biology, card shuffling or fractal imaging,
or with the discrete time birth and death branching processes presented in chapter 28.

Several research projects could be based on previous topics as well as on the gambling
betting systems and discrete time stochastic control problems discussed in chapter 29, or
on the applications in mathematical finance discussed in chapter 30.

This course is designed for master-level audiences in engineering, physics, statistics and
applied probability.

Other textbooks and lecture notes which can be useful for supplemental reading in
Markov chains and their applications during this lecture are:

• D. Aldous, J. Fill. Reversible Markov Chains and Random Walks on Graphs (1999).

• S. Meyn, R. Tweedie. Markov Chains and Stochastic Stability, Springer (1993).

• J. Norris. Markov Chains. CUP (1998).

• S.I. Resnick. Adventures in Stochastic Processes. Springer Birkhauser (1992).

We also refer to some online resources such as the Wikipedia article on Markov chains,
and to the Markov Chains chapter in American Mathematical Society’s introductory prob-
ability book, the article by D. Saupe Algorithms for random fractals, and the seminal and
very clear article by P. Diaconis titled The Markov Chain Monte Carlo Revolution.

Continuous time stochastic processes
This semester-long course is dedicated to continuous time stochastic processes and stochastic
differential calculus. The lecture notes would essentially cover the series of chapters 10 to 18.
The detailed description of this course follows essentially the presentation of the fourth part
of the book provided on page xxiv. This course is designed for master-level audiences
in engineering, mathematics and physics with some background in probability theory and
elementary Markov chain theory.

To motivate the lectures, this course would start with some selected topics presented in
the first three chapters, such as the Poisson’s typos discussed in section 1.7 (Poisson pro-
cesses), the pinging hacker story presented in section 2.5 (piecewise deterministic stochastic
processes), the lost equation discussed in section 3.3 (Brownian motion), the formal stochas-
tic calculus derivations discussed in section 3.4 (Doeblin-Itō differential calculus), and the
theory of speculation presented in section 3.5 (backward equations and financial mathemat-
ics).

The second part of the lecture would cover elementary Poisson processes, Markov chain
continuous time embedding techniques, pure jump processes and piecewise deterministic
models. It would also cover diffusion processes and more general jump-diffusion processes,
with detailed and systematic descriptions of the infinitesimal generators, the Doeblin-Itō
differential formula and the natural derivation of the corresponding Fokker-Planck equa-
tions.

The third part could be dedicated to jump diffusion processes with killing and their use
to solve Cauchy problems with terminal conditions, as well as Dirichlet-Poisson problems.
The course can also provide an introduction to nonlinear stochastic processes and their
mean field particle interpretations, with illustrations in the context of risk analysis, fluid
mechanics and particle physics.

The last part of the course would cover path-space probability measures including Gir-
sanov’s type change of probability measures and exponential type martingales, with illus-
trations in the analysis of nonlinear filtering processes, in financial mathematics and in rare
event analysis, including in quantum Monte Carlo methodologies.
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Three different applications could be discussed, depending on the background and the
scientific interests of the audience (or of the lecturer):

• Computational and statistical physics (chapter 27):
The material on interacting particle systems presented in section 27.3 only requires some
basic knowledge on generators of pure jump processes. This topic can also be used to
illustrate pure jump processes before entering into the descriptions of diffusion type
processes.
The material on molecular dynamics simulation discussed in section 27.1 only requires
some knowledge on pure diffusion processes and their invariant measures. We recom-
mend studying chapter 17 before entering into these topics.
Section 27.2 dedicated to the Schrödinger equation is based on more advanced stochastic
models such as the Feynman-Kac formulae, jump diffusion processes and exponential
changes of probability measures. We recommend studying chapter 15 and chapter 18
(and more particularly section 18.1.3) before entering into this more advanced appli-
cation area. Section 28.4.3 also provides a detailed discussion on branching particle
interpretations of Feynman-Kac formulae.

• Dynamic population models (chapter 28):
All the material discussed in this chapter can be used to illustrate jump and diffusion
stochastic processes. Section 28.4.3 requires some basic knowledge on Feynman-Kac
semigroups. It is recommended to study chapter 15 before entering into this topic.

• Stochastic optimal control (section 29.3.3 and section 29.4.3):
The material discussed in this chapter can also be used to illustrate jump and diffusion
stochastic processes. It is recommended to start with discrete time stochastic control
theory (section 29.3.1, section 29.3.2 and section 29.4.2) before entering into more so-
phisticated continuous time problems.

• Mathematical finance (chapter 30):
The sections 30.2.4 to 30.2.7 are essentially dedicated to the Black-Scholes stochastic
model. This topic can be covered with only some basic knowledge on diffusion processes
and more particularly on geometric Brownian motion.

Depending on the selected application domains to illustrate the course, we also recom-
mend for supplemental reading the following references:

• K.B. Athreya, P.E. Ney. Branching Processes. Springer (1972).

• D. P. Bertsekas. Dynamic Programming and Optimal Control, Athena Scientific (2012).

• M. Caffarel, R. Assaraf. A pedagogical introduction to quantum Monte Carlo. In
Mathematical Models and Methods for Ab Initio Quantum Chemistry. Lecture Notes in
Chemistry, eds. M. Defranceschi and C. Le Bris, Springer (2000).

• P. Del Moral. Mean Field Simulation for Monte Carlo Integration. Chapman &
Hall/CRC Press (2013).

• P. Glasserman. Monte Carlo methods in financial engineering. Springer (2004).

• T. Harris. The Theory of Branching Processes, R-381, Report US Air Force (1964) and
Dover Publication (2002).
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• H. J. Kushner. Introduction to Stochastic Control, New York: Holt, Reinhart, and
Winston (1971).

• J.M. Steele. Stochastic Calculus and Financial Applications. Springer (2001).

• A. Lasota, M.C. Mackey. Chaos, Fractals, and Noise: Stochastic Aspects of Dynamics.
Springer (1994).

Stochastic processes on manifolds

This advanced theoretical style course covers the fifth part of the book on stochastic diffu-
sions on (differentiable) manifolds. It essentially covers the chapters 19 to 23. This
course is intended for master-level students as well as post-doctoral audiences with some
background in differential calculus and stochastic processes. The purpose of these series
of lectures is to introduce the students to the basic concepts of stochastic processes on
manifolds. The course is illustrated with a series of concrete applications.

In the first part of the course we review some basics tools of differential geometry,
including orthogonal projection techniques, and the related first and second order cova-
riant derivatives (19). The lectures offer a pedagogical introduction to the main math-
ematical models used in differential geometry such as the notions of divergence, mean
curvature vector, Lie brackets between vector fields, Laplacian operators, and
the Ricci curvature on a manifold. One of the main objectives is to help the students
understand the basic concepts of deterministic and stochastic differential calculus that are
relevant to the theory of stochastic processes on manifolds. The other objective is to show
how these mathematical techniques apply to designing and to analyzing random explorations
on constraint manifolds.

One could end this part of the course with the detailed proof of the Bochner-Lich-
nerowicz formula. This formula is pivotal in the stability analysis of diffusion processes
on manifolds. It connects the second order properties of the generator of these processes in
terms of the Hessian operator and the Ricci curvature of the state space.

The second part of the lecture course could be dedicated to stochastic calculus on em-
bedded manifolds (chapter 20) and the notion of charts (a.k.a. atlases) and paramtrization
spaces (chapter 21):

In a first series of lectures we introduce the Brownian motion on a manifold defined in
terms of the level sets of a smooth and regular constraint function. Then, we analyze the
infinitesimal generator of these models and we present the corresponding Doeblin-Itō dif-
ferential calculus. We illustrate these models with the detailed description of the Brownian
motion on the two-dimensional sphere and on the cylinder. These stochastic processes do
not really differ from the ones discussed in chapter 14. The only difference is that they
evolve in constraint manifolds embedded in the ambient space.

In another series of lectures we describe how the geometry of the constraint manifold
is lifted to the parameter space (a.k.a. chart space). The corresponding geometry on
the parameter space is equipped with a Riemannian scalar product. This main objective
is to explore the ways to link the differential operators on the manifold in the ambient
space to the Riemannian parameter space manifold. We provide some tools to compute the
Ricci curvature in local coordinates and we describe the expression of Bochner-Lichnerowicz
formula in Riemannian manifolds.

Several detailed examples are provided in chapter 22 which is dedicated to stochastic
calculus in chart spaces. We define Brownian motion and general diffusions on Riemannian
manifolds. We illustrate these stochastic models with a detailed description of the Brownian
motion on the circle, the two-dimensional sphere and on the torus. Chapter 24 also offers a
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series of illustrations, starting with a detailed discussion of prototype manifolds such as the
circle, the sphere and the torus. In each situation, we describe the Riemannian metric, the
corresponding Laplacian, as well as the geodesics, the Christoffel symbols and the Ricci
curvature. In the second part of the chapter we present applications in information theory.
We start with a discussion on distribution and Bayesian statistical manifolds and we analyze
the corresponding Fisher information metric and the Cramer-Rao lower bounds. We also
discuss the Riemannian metric associated with Bolzmann-Gibbs models and multivariate
normal distributions.

The course could end with the presentation of material in chapter 23 dedicated to some
important analytical aspects, including the construction of geodesics and the integration
on a manifold. We illustrate the impact of these mathematical objects with the design of
gradient type diffusions with a Boltzmann-Gibbs invariant measure on a constraint manifold.
The time discretization of these models is also presented using Metropolis-adjusted Langevin
algorithms (a.k.a. MALA in engineering sciences and information theory).

This chapter also presents some analytical tools for analyzing the stability of stochastic
processes on a manifold in terms of the second order properties of their generators. The
gradient estimates of the Markov semigroups are mainly based on the Bochner-Lichnerowicz
formula presented in chapter 19 and chapter 21. The series of exercises at the end of this
chapter also provide illustrations of the stability analysis of Langevin models including
projected and Riemannian Langevin processes.

Other specialized mathematical textbooks and lecture notes which can be useful for
supplemental reading during this course in stochastic processes and analysis on manifolds
are presented on page xxxii.

We also refer to some online resources in differential geometry such as the Wikipedia
article on Riemannian manifolds, the very useful list of formulae in Riemannian
geometry, and the book by M. Spivak titled A Comprehensive Introduction to Differential
Geometry (1999). Other online resources in stochastic geometry are:

The pioneering articles by K. Itō Stochastic Differential Equations in a Differentiable
Manifold. [Nagoya Math. J. Volume 1, pp.35–47 (1950)], and The Brownian Motion and
Tensor Fields on Riemannian Manifolds [Proc. Int. Congr. Math., Stockholm (1962)],
and the very nice article by T. Lelièvre, G. Ciccotti, E. Vanden-Eijnden. . Projection of
diffusions on submanifolds: Application to mean force computation. [Communi. Pure Appl.
Math., 61(3), 371-408, (2008)].

Stochastic analysis and computational techniques

There is enough material in the book to support more specialized courses on stochastic
analysis and computational methodologies. A synthetic description of some of these course
projects is provided below.

Stability of stochastic processes

As its name indicates, this course is concerned with the long time behavior of stochastic
processes. This course is designed for master-level audiences in mathematics and physics
with some background in Markov chains theory and/or in continuous time jump diffusion
processes, depending on whether the lectures are dedicated to discrete generation and/or
continuous time models.

Here again the lectures could start with some selected topics presented in the first three
chapters, such as the stabilization of population subject discussed in section 2.1 (coupling
techniques), the pinging hackers subject presented in section 2.5 (long time behavior of
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piecewise deterministic processes), and the discussion on Markov chain Monte Carlo meth-
ods (a.k.a. MCMC algorithms) provided in section 3.1.

To illustrate the lectures on discrete generation stochastic processes, the course would
also benefit from the material provided in chapter 5 and chapter 6 dedicated to Markov
chain Monte Carlo methodologies. Another series of illustrations based on shuffling cards
problems and fractals can be found in chapter 26.

We also recommend presenting the formal stochastic calculus derivations discussed in
section 3.4 (Doeblin-Itō differential calculus) if the course is dedicated to continuous time
processes.

The second part of the course could be centered around the analysis toolboxes presented
in chapter 8 (discrete time models) and chapter 17 (continuous time models). The objec-
tive is to introduce the students to a class of traditional approaches to analyze the long
time behavior of Markov chains, including coupling, spectral analysis, Lyapunov techniques,
and contraction inequalities. The coupling techniques can be illustrated using the discrete
generation birth and death process discussed in section 28.1. The stability of continuous
time birth and death models (with linear rates) can also be discussed using the explicit
calculations developed in section 28.4.1.

The lectures could be illustrated by the Hamiltonian and Lagrangian molecular dynamics
simulation techniques discussed in section 27.1.

The last part of the course could focus on the stability of stochastic processes on mani-
folds if the audience has some background on manifold-valued stochastic processes. It would
essentially cover the sections 23.4 to 23.7. Otherwise, this final part of the course offers a
pedagogical introduction on these models based on the material provided in chapter 19, in-
cluding the detailed proof of the Bochner-Lichnerowicz formula and followed by gradient
estimates discussed in section 23.7.

Other lecture notes and articles which can be useful for supplemental reading on Markov
chains and their applications during this course are:

• S. Meyn, R. Tweedie. Markov Chains and Stochastic Stability, Springer (1993).

• P. Diaconis. Something we’ve learned (about the Metropolis-Hasting algorithm), Bernoulli
(2013).

• R. Douc, E. Moulines, D. Stoffer. Nonlinear Time Series Analysis: Theory, Methods
and Applications with R Examples, Chapman & Hall/CRC Press (2014).

• M. Hairer. Convergence of Markov Processes. Lecture notes, Warwick University (2010).

• A. Katok, B. Hasselblatt. Introduction to the Modern Theory of Dynamical Systems.
CUP (1997).

• L. Saloff-Costes. Lectures on Finite Markov Chains. Springer (1997).

• P. Del Moral, M. Ledoux, L. Miclo. Contraction properties of Markov kernels. Proba-
bility Theory and Related Fields, vol. 126, pp. 395–420 (2003).

• F. Wang. Functional Inequalities, Markov Semigroups and Spectral Theory. Elsevier
(2006).

Stochastic processes and partial differential equations

A one-quarter or one-semester course could be dedicated to probabilistic interpretations of
integro-differential equations. This course is designed for master-level audiences in applied
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probability and mathematical physics, with some background in continuous time stochastic
processes and elementary integro-partial differential equation theory.

The course could start with a review of continuous time processes, the description of
the notion of generators, the Doeblin-Itō differential formula and the natural derivation
of the corresponding Fokker-Planck equations. This part of the lecture could follow the
formal stochastic calculus derivations discussed in section 3.4 (Doeblin-Itō differential cal-
culus) and and the material presented in chapter 15 with an emphasis on the probabilistic
interpretations of Cauchy problems with terminal conditions, as well as Dirichlet-Poisson
problems (section 15.6).

The second part of the course could cover chapter 16 dedicated to nonlinear jump diffu-
sions and the mean field particle interpretation of a class of nonlinear integro-partial differ-
ential equations (section 16.2), including Burger’s equation, nonlinear Langevin diffusions,
McKean-Vlasov models and Feynman-Kac semigroups.

The third part of the course could be dedicated to some selected application domains.
The lectures could cover the Duncan-Zakai and the Kushner-Stratonovitch stochastic par-
tial differential equations arising in nonlinear filtering theory (section 18.5), the Feynman-
Kac description of the Schrödinger equation discussed in section 27.2, and the branching
particle interpretations of the Kolmogorov-Petrovskii-Piskunov equations presented in sec-
tion 28.4.3.4.

The last part of the lecture could cover the Hamilton-Jacobi-Bellman equations arising
in stochastic control theory and presented in section 29.3.3.

Other textbooks and lecture notes (in alphabetical order) which can be useful for sup-
plemental reading during this course are:

• M. Bossy, N. Champagnat. Markov processes and parabolic partial differential equations.
Book section in R. Cont. Encyclopedia of Quantitative Finance, pp.1142-1159, John
Wiley & Sons (2010).

• P. Del Moral. Mean field simulation for Monte Carlo integration. Chapman and
Hall/CRC Press (2013).

• E.B. Dynkin. Diffusions, Superdiffusions and PDEs. AMS (2002).

• M.I. Freidlin. Markov Processes and Differential Equations. Springer (1996).

• H.M. Soner. Stochastic representations for nonlinear parabolic PDEs. In Handbook of
differential equations. Evolutionary Equations, volume 3. Edited by C.M. Dafermos
and E. Feireisl. Elsevier (2007).

• N. Touzi. Optimal Stochastic Control, Stochastic Target Problems and Backward Stochas-
tic Differential Equations. Springer (2010).

Advanced Monte Carlo methodologies

A more applied course geared toward numerical probability and computational aspects
would cover chapter 8 and the Monte Carlo techniques and the more advanced particle
methodologies developed in chapter 9. Depending on the mathematical background of the
audience, the course could also offer a review on the stability of Markov processes, following
the description provided on page xxxviii.

Some application-oriented courses and research projects

There is also enough material in the book to support more applied courses on one or two
selected application domains of stochastic processes. These lectures could cover random
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walk type models and urn processes (chapter 25), iterated random functions including
shuffling cards, fractal models, and ancestral processes (chapter 26), computational physics
and interacting particle systems (chapter 27), dynamic population models and branching
processes (chapter 28), ranking and gambling betting martingale systems (chapter 29), and
mathematical finance (chapter 30).

The detailed description of these course projects follows essentially the presentation
of the sixth part of the book provided on page xxvi. The application domains discussed
above can also be used to stimulate the development of research projects. The background
requirements to enter into these topics are also discussed on page xxxvi.

We would like to thank John Kimmel for his editorial assistance, as well as for his
immense support and encouragement during these last three years.

Some basic notation
We end this introduction with some probabilistic notation of current use in these lectures.

We could, of course, use any notation we want; do not laugh at notations;
invent them, they are powerful. In fact, mathematics is, to a large extent,
invention of better notations. Richard P. Feynman (1918-1988).

We will use the symbol a := b to define a mathematical object a in terms of b, or vice
versa. We often use the letters m,n, p, q, k, l to denote integers and r, s, t, u to denote real
numbers. We also use the capital letters U, V,WX, Y, Z to denote random variables, and
the letters u, v, w, x, y, z denote their possible outcomes.

Unless otherwise stated, S stands for some general state space model. These general
state spaces and all the functions on S are assumed to be measurable; that is, they are
equipped with some sigma field S so that the Lebesgue integral is well defined with respect
to (w.r.t.) these functions (for instance S = Rd equipped with the sigma field generated
by the open sets, as well as Nd, Zd or any other countable state space equipped with the
discrete sigma field).

We also often use the letters f, g, h or F,G,H to denote functions on some state space,
and µ, ν, η or µ(dx), ν(dx), η(dx) for measures on some state space.

We let M(S) be the set of signed measures on some state space S, P(S) ⊂M(S) the
subset of probability measures on the same state space S, and B(S) the set of bounded
functions f : x ∈ S %→ f(x) ∈ R.

We use the notation dx(= dx1 × . . . × dxk) to denote the Lebesgue measure on some
Euclidian space Rk, of some k ≥ 1. For finite or countable state spaces, measures are
identified to functions and we write µ(x), ν(x), η(x) instead of µ(dx), ν(dx), η(dx). The
oscillations of a given bounded function f on some state space S are defined by osc(f) =
supx,y∈S |f(x)− f(y)|.

We also use the proportionality sign f ∝ g between functions to state that f = λg for
some λ ∈ R.

Given a measure η on a state space S and a function f from S into R we set

η(f) =

∫
η(dx)f(x).

For multidimensional functions f : x ∈ S %→ f(x) = (f1(x), . . . , fr(x)) ∈ Rr, for some
r ≥ 1, we also set

η(f) = (η(f1), . . . , η(fr)) and η(fT ) = (η(f1), . . . , η(fr))
T
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where aT stands for the transpose of a vector a ∈ Rr. For indicator functions f = 1A,
sometimes we slightly abuse notation and we set η(A) instead of η(1A):

η(1A) =

∫
η(dx)1A(x) =

∫

A
η(dx) = η(A).

We also consider the partial order relation between functions f1, f2 and measures µ1, µ2

given by
f1 ≤ f2 ⇐⇒ ∀x ∈ S f1(x) ≤ f2(x)

and
µ1 ≤ µ2 ⇐⇒ ∀A ∈ S µ1(A) ≤ µ2(A).

The Dirac measure δa at some point a ∈ S is defined by

δa(f) =

∫
f(x)δa(dx) = f(a).

When η is the distribution of some random variable X taking values in S, we have

η(dx) = P(X ∈ dx) and η(f) = E(f(X)).

For instance, the measure on R given by

η(dx) =
1

2

(
1√
2π

e−x
2/2 dx

)
+

1

2

(
1

2
δ0(dx) +

1

2
δ1(dx)

)

represents the distribution of the random variable

X := ε Y + (1− ε)Z

where (ε, Y, Z) are independent random variables with distribution

P(ε = 1) = 1− P(ε = 0) = 1/2

P(Z = 1) = 1− P(Z = 0) = 1/2 and P(Y ∈ dy) =
1√
2π

e−y
2/2 dy.

For finite spaces of the form S = {e1, . . . , ed} ⊂ Rd, measures are defined by the weighted
Dirac measures

η =
∑

1≤i≤d
wi δei with wi = η({ei}) := η(ei)

so that
η(f) =

∫
η(dx)f(x) =

∑

1≤i≤d
η(ei)f(ei).

Thus, if we identify measures and functions by the line and column vectors

η = [η(e1), . . . , η(ed)] and f =




f(e1)

...
f(ed)



 (0.1)

we have

ηf = [η(e1), . . . , η(ed)]




f(e1)

...
f(ed)



 =
∑

1≤i≤d
η(ei)f(ei) = η(f).
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The Dirac measure δei is simply given by the line vector

δei =



0, . . . , 0, 1︸︷︷︸
i−th

, 0, . . . , 0



 .

In this notation, probability measures on S can be interpreted as points (η(ei))1≤i≤d in
the (d− 1)-dimensional simplex ∆d−1 ⊂ [0, 1]d defined by

∆d−1 =




(p1, . . . , pd) ∈ [0, 1]d :
∑

1≤i≤d
pi = 1




 . (0.2)

We consider a couple of random variables (X1, X2) on a state space (S1 × S2), with
marginal distributions

η1(dx1) = P(X1 ∈ dx1) and η2(dx2) = P(X2 ∈ dx2)

and conditional distribution

M(x1, dx2) = P(X2 ∈ dx2 | X1 = x1).

For finite spaces of the form S1 = {a1, . . . , ad1} and S2 := {b1, . . . , bd2} ⊂ E = Rd, the
above conditional distribution can be represented by a matrix





M(a1, b1) M(a1, b2) . . . M(a1, bd2)
M(a2, b1) M(a2, b2) . . . M(a2, bd2)

...
...

...
...

M(ad1 , b1) M(a2, b2) . . . M(ad2 , bd2)




.

By construction, we have

P(X2 ∈ dx2)︸ ︷︷ ︸
=η2(dx2)

=

∫

S1

P(X1 ∈ dx1)︸ ︷︷ ︸
η1(dx1)

×P(X2 ∈ dx2 | X1 = x1)︸ ︷︷ ︸
M(x1,dx2)

.

In other words, we have

η2(dx2) =

∫

S1

η1(dx1) M(x1, dx2) := (η1M) (dx2)

or in a more synthetic form η2 = η1M .
Notice that for the finite state space model discussed above we have the matrix formu-

lation

η2 = [η2(b1), . . . , η2(bd2)]

= [η1(a1), . . . , η1(ad1)]





M(a1, b1) M(a1, b2) . . . M(a1, bd2)
M(a2, b1) M(a2, b2) . . . M(a2, bd2)

...
...

...
...

M(ad1 , b1) M(a2, b2) . . . M(ad2 , bd2)





= η1M.

In this context, a matrix M with positive entries whose rows sum to 1 is also called a
stochastic matrix.



xliv Stochastic Processes

Given a function f on S2, we consider the function M(f) on S1 defined by

M(f)(x1) =

∫

S2

M(x1, dx2) f(x2) = E (f(X2) | X1 = x1) .

For functions f : x ∈ S2 %→ f(x) = (f1(x), . . . , fr(x)) ∈ Rr we also set

M(f)(x1) =

∫

S2

M(x1, dx2) f(x2) = E (f(X2) | X1 = x1) = (M(fr)(x1), . . . ,M(fr)(x1))

or M(fT )(x1) = (M(fr)(x1), . . . ,M(fr)(x1))
T for multidimensional functions defined in

terms of column vectors.
Here again, for the finite state space model discussed above, these definitions resume to

matrix operations

M(f) =




M(f)(a1)

...
M(f)(ad1)





=





M(a1, b1) M(a1, b2) . . . M(a1, bd2)
M(a2, b1) M(a2, b2) . . . M(a2, bd2)

...
...

...
...

M(ad1 , b1) M(a2, b2) . . . M(ad2 , bd2)








f(b1)

...
f(bd2)



 .

By construction,

η1(M(f)) = (η1M) (f) = η2(f)⇐⇒ E (E(f(X2)|X1)) = E(f(X2)).

Given some matrices M , M1 and M2, we denote by M1M2 the composition of the
matrices M1 and M2, and by Mn = Mn−1M = MMn−1 the n iterates of M . For n = 0,
we use the convention M0 = Id, the identity matrix on S.

We use the same integral operations for any bounded integral operator. For instance, if
Q(x1, dx2) := G1(x1)M(x1, dx2)G2(x2) for some bounded functions G1 and G2 on S1 and
S2 we set

(ηQ) (dx2) =

∫

S1

η1(dx1) Q(x1, dx2) and Q(f)(x1) =

∫

S2

Q(x1, dx2) f(x2)

for any measure η on S1 and any function f on S2.
When (S, d) is equipped with a metric d, we denote by Lip(S) the set of Lipschitz

functions f such that

lip(f) := sup
x $=y

|f(x)− f(y)|
d(x, y)

<∞

and BLip(S) = Lip(S)∩B(S) the subset of bounded Lipschitz functions equipped with the
norm

blip(f) := ‖f‖+ lip(f).

In Leibniz notation, the partial derivative of a smooth function f on a product space
S = Rr w.r.t. the i-th coordinate is denoted by

y %→ ∂f

∂xi
(y) = lim

ε↓0
ε−1 [f(y1, . . . , yi−1, yi + ε, yi+1, . . . , yr)− f(y1, . . . , yi−1, yi, yi+1, . . . , yr)]
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with 1 ≤ i ≤ r. We also denote by ∂2f
∂xi∂xj

the second order derivatives defined as above by
replacing f by the function ∂f

∂xj
, with 1 ≤ i, j ≤ r. High order derivatives ∂nf

∂xi1 ...∂xin
are

defined in the same way. We also often use the following synthetic notation

∂xif :=
∂f

∂xi
∂xi,xjf :=

∂2f

∂xi∂xj
and ∂xi1 ,...,xin

f :=
∂nf

∂xi1 . . . ∂xin

as well as ∂2xi
= ∂xi,xi , and ∂3xi

= ∂xi,xi,xi , and so on for any 1 ≤ i ≤ r. When there is no
confusion w.r.t. the coordinate system, we also use the shorthand

∂i = ∂xi ∂i,j := ∂xi,xj ∂2i := ∂xi,xi and ∂i1,...,in = ∂xi1 ,...,xin
.

When r = 1 we often use the Lagrange notation

f ′ =
∂f

∂x
f ′′ =

∂2f

∂2x
and f (n) =

∂nf

∂nx

for any n ≥ 0. For n = 0, we use the convention f (0) = f . All of the above partial
derivatives can be interpreted as operators on functional spaces mapping a smooth function
f into another function with less regularity, for instance, if f is three times differentiable f ′

is only twice differentiable, and so on.
We also use integro-differential operators L defined by

L(f)(x) =
∑

1≤i≤r
ai(x) ∂if(x)+

1

2

∑

1≤i,j≤r
bi,j(x) ∂i,jf(x)+λ(x)

∫
(f(y)− f(x)) M(x, dy)

for some functions a(x) = (ai(x))1≤i≤r, b(x) = (bi,j(x))1≤i,j≤r, λ(x) and some Markov
transition M .

The operator L maps functions which are at least twice differentiable into functions with
less regularity. For instance, L maps the set of twice continuously differentiable functions
into the set of continuous functions, as soon as the functions a, b,λ are continuous. Notice
that L also maps the set of infinitely differentiable functions into itself, as soon as the
functions a, b,λ are infinitely differentiable functions. When a = 0 = b, the operator L
resumes to an integral operator and it maps the set of bounded integrable functions into
itself, as soon as the functions a, b,λ are bounded. To avoid repetition, these operators are
assumed to be defined on sufficiently smooth functions. We often use the terms "sufficiently
smooth" or "sufficiently regular" functions to avoid entering into unnecessary discussions
on the domain of definition of these operators.

In theoretical and computational quantum physics, the inner product and more generally
dual operators on vector spaces are often represented using a bra-ket formalism introduced
at the end of the 1930s by P. Dirac [108] to avoid too sophisticated matrix operations (not
so developed and of current use in the beginning of the 20th century).

For finite d-dimensional Euclidian vector spaces Rd, the bras ≺ α | and the kets | β 2
are simply given for any α = (αi)1≤i≤d ∈ Rd and β = (βi)1≤i≤d ∈ Rd row and column

≺ α | := [α1, . . . ,αd] and | β 2:=




β1
...
βd



 ⇒≺ α || β 2:=≺ α | β 2:=
∑

1≤i≤d
αiβi.
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In much the same way, the product of bra ≺ α | with a linear (matrix) operator Q corre-
sponds to the product of the row vector by the matrix

≺ α | Q := [α1, . . . ,αd]





Q(1, 1) Q(1, 2) . . . Q(1, d)
Q(2, 1) Q(2, 2) . . . Q(2, d)

...
... . . .

...
Q(d, 1) Q(d, 2) . . . Q(d, d)




.

Likewise, the product of a linear (matrix) operator Q with a ket | β 2 corresponds to the
product of the matrix by the column vector

Q| β 2:=





Q(1, 1) Q(1, 2) . . . Q(1, d)
Q(2, 1) Q(2, 2) . . . Q(2, d)

...
... . . .

...
Q(d, 1) Q(d, 2) . . . Q(d, d)









β1
β2
...
βd




.

Combining these operations, we find that

≺ α |Q| β 2= [α1, . . . ,αd]





Q(1, 1) Q(1, 2) . . . Q(1, d)
Q(2, 1) Q(2, 2) . . . Q(2, d)

...
... . . .

...
Q(d, 1) Q(d, 2) . . . Q(d, d)









β1
β2
...
βd




.

Using the vector representation (0.1) of functions f and measures η on finite state spaces
S = {e1, . . . , ed}, the duality formula between functions and measures takes the following
form

≺ η | f 2= ηf =
∑

1≤i≤d
η(ei)f(ei) := η(f).

Likewise, for any Markov transition M from E1 = {a1, . . . , ad1} into E2 := {b1, . . . , bd2},
and function f on E2 and any measure η1 on E1, we have

≺ η1 | M | f 2=≺ η1 | Mf 2= η1(Mf) = (η1M) f =≺ η1M | f 2 .

The bra-ket formalism is extended to differential operations by setting

≺ g | L | f 2=
∫

g(x) L(f)(x) dx := 〈g, L(f)〉.

Given a positive and bounded function G on some state space S, we denote by ΨG the
Boltzmann-Gibbs mapping from P(S) into itself, defined for any µ ∈ P(S) by

ΨG(µ)(dx) =
1

µ(G)
G(x) µ(dx). (0.3)

In other words, for any bounded function f on S we have

ΨG(µ)(f) =

∫
ΨG(µ)(dx)f(x) =

µ(Gf)

µ(G)
.

We let µ = Law(X) be the distribution of a random variable X and G = 1A the indicator
function of some subset A ⊂ S. In this situation, we have

ΨG(µ)(f) =
µ(Gf)

µ(G)
=

E(f(X)1A(X))

E(1A(X))
= E (f(X) | X ∈ A) .
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In other words, we have
Ψ1A(µ) = Law(X | X ∈ A).

Let (X,Y ) be a couple of r.v. with probability density p(x, y) on Rd+d′
. With a slight

abuse of notation, we recall that the conditional density p(x|y) of X given Y is given by
the Bayes’ formula

p(x|y) = 1

p(y)
p(y|x) p(x) p(y) =

∫
p(y|x) p(x) dx.

In other words,

µ(dx) := p(x)dx and Gy(x) := p(y|x)⇒ ΨGy (µ)(dx) = p(x|y) dx.

Given a random matrix A = (Ai,j)i,j , we denote by E(A) = (E(Ai,j))i,j the matrix of
the mean values of its entries. We slightly abuse notation and we denote by 0 the null real
number and the null matrix. Given some Rd-valued random variables X,Y we denote by
Cov(X,Y ) the covariance matrix

Cov(X,Y ) = E ((X − E(X))(Y − E(Y ))′) .

Sometimes, we will also use the conditional covariance w.r.t. some auxiliary random
variable Z given by

Cov((X,Y ) | Z) = E ((X − E(X))(Y − E(Y ))′ | Z) .

For one-dimensional random variables, the variance of a random variable is given by Var(X) =
Cov(X,X), and

Var(X | Z) = Cov((X,X) | Z) =
1

2
E((X −X ′)2 | Z), (0.4)

where X,X ′ are two independent copies of X given Z. We also use the notation σ(X) to
denote the σ-algebra generated by some possibly multi-dimensional r.v. X on some state
space S. In this case, for any real valued random variable Y , we recall that

E(Y | σ(X)) = E(Y | X)

which has to be distinguished from the conditional expectations w.r.t. some event, say
X ∈ A, for some subset A ∈ σ(X)

E(Y | X ∈ A) = E(Y 1A(X))/E(1A(X)).

We also write X ⊥ Y when a random variable X is independent of Y

X independent of Y =⇒def. X ⊥ Y.

The maximum and minimum operations are denoted respectively by

a ∨ b := max {a, b} a ∧ b := min {a, b} as well as a+ := a ∨ 0 and a− := −(a ∧ 0)

so that a = a+ − a− and |a| = a+ + a−. We also denote by 8a9 and {a} = a − 8a9 the
integer part, and respectively the fractional part, of some real number a.

We also use the Bachmann-Landau notation

f(ε) = g(ε) + O(ε)⇐⇒ lim sup
ε→0

1

ε
|f(ε)− g(ε)| <∞
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and
f(ε) = g(ε) + o(ε)⇐⇒ lim sup

ε→0

1

ε
|f(ε)− g(ε)| = 0.

When there is no confusion, sometimes we write o(1) for a function that tends to 0 when
the parameter ε→ 0. We also denote by OP (ε) some possibly random function such that

E (|OP (ε)|) = O(ε).

We also use the traditional conventions
∏

∅

= 1
∑

∅

= 0 inf
∅

=∞ and sup
∅

= −∞.
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