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Abstract

We propose a new class of interacting Markov chain Monte Carlo
(MCMC) algorithms designed for increasing the efficiency of a modified
multiple-try Metropolis (MTM) algorithm. The extension with respect
to the existing MCMC literature is twofold. The sampler proposed ex-
tends the basic MTM algorithm by allowing different proposal distri-
butions in the multiple-try generation step. We exploit the structure of
the MTM algorithm with different proposal distributions to naturally
introduce an interacting MTM mechanism (IMTM) that expands the
class of population Monte Carlo methods. We show the validity of the
algorithm and discuss the choice of the selection weights and of the
different proposals. We provide numerical studies which show that the
new algorithm can perform better than the basic MTM algorithm and
that the interaction mechanism allows the IMTM to efficiently explore
the state space.

1 Introduction

Markov chain Monte Carlo (MCMC) algorithms are now essential for the
analysis of complex statistical models. In the MCMC universe, one of the
most widely used class of algorithms is defined by the Metropolis-Hastings
(MH) (Metropolis et al., 1953; Hastings, 1970) and its variants. An impor-
tant generalization of the standard MH formulation is represented by the
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multiple-try Metropolis (MTM) (Liu et al., 2000). While in the MH formu-
lation one accepts or rejects a single proposed move, the MTM is designed
so that the next state of the chain is selected among multiple proposals. The
multiple-proposal setup can be used effectively to explore the sample space of
the target distribution and subsequent developments made use of this added
flexibility. For instance, Craiu and Lemieux (2007) propose to use antithetic
and quasi-Monte Carlo samples to generate the proposals and to improve the
efficiency of the algorithm while Pandolfi et al. (2010b) and Pandolfi et al.
(2010a) apply the multiple-proposal idea to a trans-dimensional setup and
combine Reversible Jump MCMC with MTM.

This work further generalizes the MTM algorithm presented in Liu et al.
(2000) in two directions. First, we show that the original MTM transition
kernel can be modified to allow for different proposal distributions in the
multiple-try generation step while preserving the ergodicity of the chain.
The use of different proposal distributions gives more freedom in designing
MTM algorithms for target distributions that require different proposals
across the sample space. An important challenge remains the choice of the
distributions used to generate the proposals and we propose to address it
by expanding upon methods used within the population Monte Carlo class
of algorithms.

The class of population Monte Carlo procedures (Cappé et al., 2004;
Del Moral and Miclo, 2000; Del Moral, 2004; Jasra et al., 2007) has been
designed to address the inefficiency of classical MCMC samplers in complex
applications involving multimodal and high dimensional target distributions
(Pritchard et al., 2000; Heard et al., 2006). Its formulation relies on a num-
ber of MCMC processes that are run in parallel while learning from one
another about the geography of the target distribution.

A second contribution of the paper is finding reliable generic methods for
constructing the proposal distributions for the MTM algorithm.We propose
an interacting MCMC sampling design for the MTM that preserves the
Markovian property. More specifically, in the proposed interacting MTM
(IMTM) algorithm, we allow the distinct proposal distributions to use in-
formation produced by a population of auxiliary chains. We infer that the
resulting performance of the MTM is tightly connected to the performance
of the chains’ population. In order to maximize the latter, we propose a
number of strategies that can be used to tune the auxiliary chains. We
also adapt previous extensions of the MTM and link the use of stochastic
overrelaxation, random-ray Monte Carlo method (see Liu et al., 2000) and
simulated annealing to IMTM.

In the next section we discuss the IMTM algorithm, propose a number
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of alternative implementations and prove their ergodicity. In Section 3 we
focus on some special cases of the IMTM algorithm and in Section 4 the
performance of the methods proposed is demonstrated with simulations and
real examples. We end the paper with a discussion of future directions for
research.

2 Interacting Monte Carlo Chains for MTM

We begin by describing the MTM and its extension for using different pro-
posal distributions.

2.1 Multiple-Try Metropolis With Different Proposal Dis-

tributions

Suppose that of interest is sampling from a distribution π that has support
in Y ⊂ Rd and is known up to a normalizing constant. Assuming that the
current state of the chain is x, the update defined by the MTM algorithm
of Liu et al. (2000) is described in Algorithm 1.

Algorithm 1. Multiple-try Metropolis Algorithm (MTM)

1. Draw M trial proposals y1, . . . , yM from the proposal distribu-
tion T (·|x). Compute w(yj , x) for each j ∈ {1, . . . ,M}, where
w(y, x) = π(y)T (x|y)λ(y, x), and λ(y, x) is a symmetric func-
tion of x, y.

2. Select y among the M proposals with probability proportional to
w(yj , x), j = 1, . . . ,M .

3. Draw x∗1, . . . , x
∗
M−1 variates from the distribution T (·|y) and let

x∗M = x.

4. Accept y with generalized acceptance probability

ρ = min

{

1,
w(y1, x) + . . .+ w(yM , x)

w(x∗1, y) + . . .+ w(x∗M , y)

}

.

Note that while the MTM uses the same distribution to generate all
the proposals, it is possible to extend this formulation to different proposal
distributions without altering the ergodicity of the associated Markov chain.
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Let Tj(x, ·), with j = 1, . . . ,M , be a set of proposal distributions for
which Tj(x, y) > 0 if and only if Tj(y, x) > 0. Define

wj(x, y) = π(x)Tj(x, y)λj(x, y) j = 1, . . . ,M

where λj(x, y) is a nonnegative symmetric function in x and y that can be
chosen by the user. The only requirement is that λj(x, y) > 0 whenever
T (x, y) > 0. Then the MTM algorithm with different proposal distributions
is given in Algorithm 2.

Algorithm 2. MTM with Different Proposal Distributions

1. Draw independently M proposals y1, . . . , yM such that yj ∼
Tj(x, ·). Compute wj(yj, x) for j = 1, . . . ,M .

2. Select Y = y among the trial set {y1, . . . , yM} with probability
proportional to wj(yj, x), j = 1, . . . ,M . Let J be the index of the
selected proposal. Then draw x∗j ∼ Tj(y, ·), j 6= J , j = 1, . . . ,M
and let x∗J = x.

3. Accept y with probability

ρ = min

{

1,
w1(y1, x) + · · ·+ wM (yM , x)

w1(x∗1, y) + · · ·+ wM (x∗M , y)

}

and reject with probability 1− ρ.

It should be noted that Algorithm 2 is a special case of the interacting
MTM presented in the next section and that the proof of ergodicity for
the associated chain follows closely the proof given in Appendix A for the
interacting MTM and is not given here.

In Section 4 we will show, through simulation experiments, that this
algorithm is more efficient then a MTM algorithm with a single proposal
distribution.

2.2 General Construction

Undoubtedly, Algorithm 2 offers additional flexibility in organizing the MTM
sampler. This section introduces generic methods for using a population of
MCMC chains to define the proposal distributions.
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Algorithm 3. Interacting Multiple Try Algorithm (IMTM)

• For i = 1, . . . , N

1. Let x = x
(i)
n , for j = 1, . . . ,Mi draw yj ∼

T
(i)
j (·|x

(1:i−1)
n , x, x

(i+1:N)
n ) independently and compute

w
(i)
j (yj , x) = π(yj)T

(i)
j (yj|x

(1:i−1)
n , x, x(i+1:N)

n )λ
(i)
j (yj , x).

2. Select J ∈ {1, . . . ,Mi} with probability proportional to

w
(i)
j (yj, x), j = 1, . . . ,Mi and set y = yJ .

3. For j = 1, . . . ,Mi and j 6= J draw x∗j ∼

T
(i)
j (·|x

(1:i−1)
n , y, x

(i+1:N)
n ), let x∗J = x

(i)
n and compute

w
(i)
j (x∗j , y) = π(x∗j)T

(i)
j (x∗j |x

(1:i−1)
n , y, x(i+1:N)

n )λ
(i)
j (x∗j , y).

4. Set x
(i)
n+1 = y with probability

ρi = min

{

1,
w

(i)
1 (y1, x) + . . .+ w

(i)
Mi

(yMi
, x)

w
(i)
1 (x∗1, y) + . . .+ w

(i)
Mi

(x∗Mi
, y)

}

and x
(i)
n+1 = x

(i)
n with probability 1− ρi.

Consider a population of N chains, X(i) = {x
(i)
n }n∈N and i = 1, . . . , N .

For full generality we assume that the ith chain has MTM transition kernel

with Mi different proposals {T
(i)
j }1≤j≤Mi

(if we set Mi = 1 we imply that
the chain has a MH transition kernel). The interacting mechanism allows
each proposal distribution to possibly depend on the values of the chains at

the previous step. Formally, if Ξn = {x
(i)
n }Ni=1 is the vector of values taken

at iteration n ∈ N by the population of chains, then we allow each proposal
distribution used in updating the population at iteration n+1 to depend on
Ξn. The mathematical formalization is used in the description of Algorithm
3. One expects that the chains in the population are spread throughout the
sample space and thus the proposals generated are a good representation of
the sample space Y ultimately resulting in better mixing for the chain of
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interest.
In order to give a representation of the IMTM transition density let us

introduce the following notation. Let T
(i)
j (x, y) = T

(i)
j (y|x

(1:i−1)
n , x, x

(i+1:N)
n ),

T (i)(x, y1:Mi
) =

∏Mi

k=1 T
(i)
k (x, yk) and T

(i)
−j (x, y1:Mi

) =
∏Mi

k 6=j T
(i)
k (x, yk) and

define dy1:Mi
=
∏Mi

k=1 dyk and dy−j =
∏Mi

k 6=j dyk.
The transition density associated to the population of chains is then

K(Ξn,Ξn+1) =
N
∏

i=1

Ki(x
(i)
n , x

(i)
n+1) (1)

where

Ki(x, y) =

Mi
∑

j=1

A
(i)
j (x, y)T

(i)
j (x, y) +



1−
Mi
∑

j=1

B
(i)
j (x)



 δx(y) (2)

is the transition kernel associated to the i-th chain of algorithm with

A
(i)
j (x, y) =

∫

Y2(Mi−1)
w̃

(i)
j (y, x)ρ

(i)
j (x, y)T

(i)
−j (y, x

∗
1:Mi

)T
(i)
−j (x, y1:Mi

)dx∗−jdy−j

and

B
(i)
j (x) =

∫

Y2(Mi−1)+1
ρ
(i)
j (x, y)T

(i)
−j (y, dx

∗
1:Mi

)T (i)(x, dy1:Mi
)dx∗−jdy1:Mi

.

In the above equations w̃
(i)
j (yj , x) = w

(i)
j (yj , x)/(w

(i)
j (y, x) + w̄

(i)
−k(y1:Mi

|x)),

with j = 1, . . . ,Mi and w̄
(i)
−j(y1:Mi

|x) =
∑Mi

k 6=j w
(i)
k (yk, x), are the normalized

weights used in the selection step of the IMTM algorithm and

ρ
(i)
j (x, y) = min

{

1,
w

(i)
j (y, x) + w̄

(i)
−j(y1:Mi

|x)

w
(i)
j (x, y) + w̄

(i)
−j(x

∗
1:Mi

|y)

}

is the generalized MH ratio associated to a MTM algorithm.
The validity of Algorithm 3 relies upon the detailed balance condition.

Theorem 1. The transition density Ki(x
(i)
n , x

(i)
n+1) associated to the i-th

chain of the IMTM algorithm satisfies the conditional detailed balanced con-
dition.
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Proof See Appendix A.

Since the transition Ki(x
(i)
n , x

(i)
n+1), i = 1, . . . , N has π(x) as stationary

distribution and satisfies the conditional detailed balance condition then the
joint transition K(Ξn,Ξn+1) has π(x)

N as a stationary distribution.
An important issue directly connected to the practical implementation of

the IMTM is the choice of proposal distributions and the choice of λ
(i)
j (x, y).

First it should be noted that at each iteration of the interacting chains
the computational complexity of the algorithm is O(N

∑N
i=1 Mi). When

considering the number of chains and the number of proposals, there are
two possible strategies in designing the interaction mechanism.

The first strategy is to use a small number of chains, say 2 ≤ N ≤ 5,
in order to improve the mixing of each chain and to allow for large jumps
between different regions of the state space. When applying this strategy
to our IMTM algorithms it is possible to set the number of proposals to be
equal to the number of chains, i.e. Mi = N , for all 1 ≤ i ≤ N . In this
way all the chains can interact at each iteration of the algorithm and many
search directions can be included among the proposals.

A second strategy is to use a higher number of chains, e.g. N = 100, in
order to possibly have, at each iteration, a good approximation of the target
or a much higher number of search directions for a good exploration of
the sample space. This algorithm design strategy is common in Population
Monte Carlo or Interacting MCMC methods. Clearly when a high number
of chains is used within IMTM, it is necessary to set Mi < N . In the next
section we discuss a few strategies to built the Mi proposals.

2.3 Parsing the Population of Auxiliary Chains

One of the strategies that revealed to be successful in our applications con-
sists in the random selection of a certain number of chains of the popula-
tion in order to build the proposals. More specifically, we let Mi = M ,
for all i, and when updating the i-th chain of the population we sample
I1, . . . , IM random indexes from the uniform distribution U{1,...,N}, with

N > M , and then set the proposals: T
(i)
j (y, x) = T

(i)
j (·|x, x

(I1)
n , . . . , x

(IM )
n ),

for all j = 1, . . . ,M . On the basis of our simulation experiments we found

that the following choice T
(i)
j (· · · |x

(I1)
n , . . . , x

(IM )
n ) = Tj(·|x

(Ij)
n ) is works well

in improving the mixing of the chains.

Previously suggested forms for the function λ
(i)
j (x, y) (Liu et al., 2000)

are:
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a) λ
(i)
j (x, y) = 1

b) λ
(i)
j (x, y) = 2{T

(i)
j (x, y) + T

(i)
j (y, x)}−1

c) λ
(i)
j (x, y) = {T

(i)
j (x, y)T

(i)
j (y, x)}−α, α > 0.

Here we propose to include in the choice of λ the information provided by the
population of chains. Therefore we suggest to modify the above functions
as follows

a′) λ
(i)
j (x, y) = νj

b′) λ
(i)
j (x, y) = 2νj {T

(i)
j (x, y) + T

(i)
j (y, x)}−1

c′) λ
(i)
j (x, y) = νj {T

(i)
j (x, y)T

(i)
j (y, x)}−α, α > 0

where the factor νj captures the behaviour of the auxiliary chains at the
previous iteration

νj =
1

N

N
∑

i=1

I{j}(J
(i)
n−1), j = 1, . . . ,M

where J
(i)
n−1 is the random index of the selection step at the iteration n−1 for

the i-th chain. The modifications proposed for λ(·, ·) would increase the use
of those proposal distributions favoured by the population of chains at pre-
vious iteration. Since νj depends only on samples generated at the previous
step by the population of chains, the ergodicity of the IMTM chain is pre-
served. An alternative strategy is to sample the random indexes I1, . . . , IM
with probabilities proportional to νj.

2.4 Annealed IMTM

Our belief in IMTM’s improved performance is underpinned by the assump-
tion that the population of Monte Carlo chains is spread throughout the
sample space. This can be partly achieved by initializing the chains using
draws from a distribution overdispersed with respect to π (see also Jennison,
1993; Gelman and Rubin, 1992) and partly by modifying the stationary dis-
tribution for some of the chains in the population. Specifically, we consider
the sequence of annealed distributions πt = πt with t ∈ {ξ1, ξ2, . . . , ξN},
where 1 = ξ1 > ξ2 > . . . > ξn, for instance ξt = 1/t. When t, s are
close temperatures, πt is similar to πs, but π = π1 may be much harder
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to sample from than πξN as has been long recognized in the simulated an-
nealing and simulated tempering literature (see Marinari and Parisi, 1992;
Geyer and Thompson, 1994; Neal, 1994). Therefore, it is likely that some of
the chains designed to sample from π1, . . . , πN have good mixing properties,
making them good candidates for the population of MCMC samplers needed
for the IMTM.

We thus consider the Monte Carlo population made of the N − 1 chains
having {π2, . . . , πN} as stationary distributions. An example of annealed
interacting MTM is given in Algorithm 4. Note that we let the i-th chain to
interact only with the N − i + 1 chains at higher temperature by sampling
I1, . . . , IM from U{1,...,N−i+1}.

An astute reader may have noticed that the use of MTM for each auxil-
iary chain may be redundant since for smaller ξi’s the distribution πi is easy
to sample from. In Algorithm 5 we present an alternative implementation
of the annealed IMTM in which each auxiliary chain is MH with target πi,
1 ≤ i ≤ N − 1.

Algorithm 4. Annealed IMTM Algorithm (AIMTM1)

• For i = 1, . . . , N

1. Let x = x
(i)
n and sample I1, . . . , IM from U{1,...,N−i+1}.

2. For j = 1, . . . ,M draw yj ∼ T
(i)
j (·|x

(Ij )
n ) independently and

compute

w
(i)
j (yj, x) = π(yj)T

(i)
j (yj|x

(Ij)
n )λ

(i)
j (yj , x).

3. Select J ∈ {1, . . . ,M} with probability proportional to

w
(i)
j (yj, x), j = 1, . . . ,M and set y = yJ .

4. For j = 1, . . . ,M and j 6= J draw x∗j ∼

T
(i)
j (·|x

(1:i−1)
n , y, x

(i+1:N)
n ), let x∗J = x

(i)
n and compute

w
(i)
j (x∗j , y) = π(x∗j )T

(i)
j (x∗j |y)λ

(i)
j (x∗j , y).

5. Set x
(i)
n+1 = y with probability ρi, where ρi is the generalized

M.H. ratio of the IMT algorithm and x
(i)
n+1 = x

(i)
n with

probability 1− ρi.
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Algorithm 5. Annealed IMTM Algorithm (AIMTM2)

• For i = 1

1. Let x = x
(i)
n and sample I1, . . . , IM from U{1,...,N}.

2. For j = 1, . . . ,M draw yj ∼ T
(i)
j (·|x

(Ij )
n ) independently and

compute

w
(i)
j (yj, x) = π(yj)T

(i)
j (yj|x

(Ij)
n )λ

(i)
j (yj , x).

3. Select J ∈ {1, . . . ,M} with probability proportional to

w
(i)
j (yj, x), j = 1, . . . ,M and set y = yJ .

4. For j = 1, . . . ,M and j 6= J draw x∗j ∼

T
(i)
j (·|x

(1:i−1)
n , y, x

(i+1:N)
n ), let x∗J = x

(i)
n and compute

w
(i)
j (x∗j , y) = π(x∗j )T

(i)
j (x∗j |y)λ

(i)
j (x∗j , y).

5. Set x
(i)
n+1 = y with probability ρi, where ρi is the generalized

M.H. ratio of the IMT algorithm and x
(i)
n+1 = x

(i)
n with

probability 1− ρi.

• For i = 2, . . . , N

1. Let x = x
(i)
n and update the proposal function T (i)(·|x).

2. Draw y ∼ T (i)(·|x) and compute

ρi = min

{

1,
π(y)ξiT (i)(x|y)

π(x)ξiT (i)(y|x)

}

.

3. Set x
(i)
n+1 = y with probability ρi and x

(i)
n+1 = x

(i)
n with prob-

ability 1− ρi.

The chain of interest, corresponding to ξ = 1, has an MTM transition
kernel with M = N − 1 proposal distributions. At time n the jth proposal

distribution used for the chain ergodic to π is T
(1)
j = T (j), is the same as

the proposal used by the jth auxiliary chain, for all 2 ≤ j ≤ N .
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An additional gain could be obtained if the auxiliary chains’ transition
kernels are modified using adaptive MCMC strategies (see also Chauveau and Vandekerkhove,
2002, for another example of adaption for interacting chains). However, it
should be noted that letting the auxiliary chains adapt indefinitely results in
complex theoretical justifications for the IMTM which go beyond the scope
of this paper and will be presented elsewhere. Our current recommendation
is to use finite adaptation for the auxiliary chains prior to the start of the
IMTM. One could take advantage of multi-processor computing units and
use parallel programming to increase the computational efficiency of this
approach.

The adaptation of λ
(i)
j (·, ·), through the weights νj defined in the previous

section, should be used cautiously in this case. The aim of the annealing
procedure is to allow the higher temperatures chains to explore widely the
sample space and to improve the mixing of the MTM chain. Using νj the
context of annealed IMTM could arbitrarily penalize some of the higher
temperature proposals and reduce the effectiveness of the annealing strategy.

It is possible to have a Monte Carlo approximation of a quantity of
interest by using the output produced by all the chains in the population.
For example let

I =

∫

Y
h(x)π(x)dx

be the quantity of interest where h is a test function. It is possible to
approximate this quantity as follows

INT =
1

T

T
∑

n=1

1

ζ̄

N
∑

j=1

h(x(j)n )ζj(x
(j)
n )

where x
(i)
n , with n = 1, . . . , T and i = 1, . . . , N is the output of a IMTM

chains with target πξi and ζj(x) = π(x)/πξj (x) is a set of importance weights

with normalizing constant ζ̄ =
∑N

j=1 ζj(x
(j)
n ).

2.5 Gibbs within IMTM update

It should be noticed that in the proposed algorithm at the n-th iteration the
N chains are updated simultaneously. In the interacting MCMC literature
a sequential updating scheme (Gibbs-like updating) has been proposed for
example in Mengersen and Robert (2003) and Campillo et al. (2009). In
the following we show that the Gibbs-like updating also apply to our IMTM
context. In the Gibbs-like interacting MTM (GIMTM) algorithm given in
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Algorithm 6 the different proposals functions of the i-th chain, with i =

1, . . . , N , may depend on the current values of the updated chains x
(j)
n+1,

with j = 1, . . . , (i − 1) and on the last values x
(j)
n , with j = (i + 1), . . . , N ,

of the chains which have not yet been updated.

Algorithm 6. Gibbs-like IMTM Algorithm (GIMTM)

• For i = 1, . . . , N

1. For j = 1, . . . ,Mi draw yj ∼ T
(i)
j (·|x

(1:i−1)
n+1 , x

(i)
n , x

(i+1:N)
n ) in-

dependently and compute

w
(i)
j (yj , x) = π(yj)T

(i)
j (yj |x

(1:i−1)
n+1 , x(i)n , x(i+1:N)

n )λ
(i)
j (yj , x

(i)
n ).

2. Select J ∈ {1, . . . ,Mi} with probability proportional to

w
(i)
j (yj , x), j = 1, . . . ,Mi and set y = yJ .

3. For j = 1, . . . ,Mi and j 6= J draw x∗j ∼

T
(i)
j (·|x

(1:i−1)
n+1 , y, x

(i+1:N)
n ), let x∗J = x

(i)
n and compute

w
(i)
j (x∗j , y) = π(x∗j)T

(i)
j (x∗j |x

(1:i−1)
n+1 , y, x(i+1:N)

n )λ
(i)
j (x∗j , y).

4. Set x
(i)
n+1 = y with probability

ρi = min

{

1,
w

(i)
1 (y1, x) + . . .+ w

(i)
Mi

(yMi
, x)

w
(i)
1 (x∗1, y) + . . .+ w

(i)
Mi

(x∗Mi
, y)

}

and x
(i)
n+1 = x

(i)
n with probability 1− ρi.

In the GIMTM algorithm the iteration mechanism between the chains is
not the same as in the IMTM algorithm. The chains are no longer indepen-
dent since the proposals may depend on the current values for some of the
chains in the population. The transition kernel for the whole population is

K(Ξn,Ξn+1) =

N
∏

i=1

Ki(x
(i)
n , x

(i)
n+1|x

(1:i−1)
n+1 , x(i+1:N)

n )

and in this case the validity of the algorithm still relies upon the conditional
detail balance condition given for the IMTM algorithm.
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Finally we remark that the GIMTM algorithm allows us to introduce

further possible choices for the λ
(i)
j (x, y) functions. In particular a repulsive

factor (see Mengersen and Robert (2003)) can be introduced in the selection
weights in order to induce negative dependence between the chains. We let
the study of the GIMTM algorithm and the use of repulsive factors for future
research and focus instead on the properties of the IMTM algorithm.

3 Some generalizations

In the following we will discuss some possible generalization of the IMTM
algorithm. First we show how to use the stochastic overrelaxation method
to possibly have a further gain in the efficiency. Secondly we suggest two
possible strategies to built the different proposal functions of the IMTM.
The first strategy consists in proposing values along different search direc-
tions and represents an extension of the random-ray Monte Carlo algorithm
presented in Liu et al. (2000). The second strategy relies upon a suitable
combination of target tempering and adaptive MCMC chains.

3.1 Stochastic Overrelaxation

Stochastic overrelaxation (SOR) is a Markov chain Monte Carlo technique
developed by Adler (1981) for normal densities and subsequently extended
by Green and Han (1992) for non-normal targets. The idea behind this
approach is to induce negative correlation between consecutive draws of a
single MCMC process.

Within the MTM algorithm we can implement SOR by inducing negative
correlation between the proposals and between the proposals and the current
state of the chain, x. A natural and easy to implement procedure may
be based on the assumption that (y1, . . . , yM−1, x)

T ∼ Nd×M (0, V ) where
V ’s structure is dictated by the desired negative dependence between the
proposals y1, . . . , yn’s and x, specifically

V =









Σ1 Ψ12 . . . Ψ1M

Ψ12 Σ2 . . . Ψ2M

. . . . . . . . . . . .
Ψ1M Ψ2M . . . ΣM









.

For instance, we can set Ψij = 0 whenever i, j 6= M and ΨiM =

Σ
1/2
i RiMΣ

1/2
M where RiM is a correlation matrix which corresponds to ex-

treme negative correlation (see Craiu and Meng, 2005, for a discussion of
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extreme dependence) between any two components (with same index) of yi
and x, for any 1 ≤ i ≤ M − 1. The general construction falls within the
context of dependent proposals as discussed by Craiu and Lemieux (2007)
with the additional bonus of ”pulling” the proposals away from the cur-
rent state due to the imposed negative correlation. This essentially ensures
that no proposals are exceedingly close to the current location of the chain.
Also note that the construction is general enough and can be applied for
Algorithms 2 and 3 as long as the proposal distributions are Gaussian.

3.2 Multiple Random-ray Monte Carlo

We show here that the use of different proposals for the MTM algorithm
allows also to extend the random-ray Monte Carlo method given in Liu et al.
(2000). In particular the proposed algorithm allows to deal with multiple
search directions at each iteration of the chains. At the n-th iteration of the
chain, in order to update the set of chains Ξn, the algorithm performs for

each chain x
(r)
n ∈ Ξn, with r = 1, . . . , N , the following steps:

1. Evaluate the gradient log π(x) at x
(r)
n and find the mode an along

x
(r)
n + run where un = x

(r)
n − x

(r)
n−1.

2. Sample I1, . . . , IM from the uniform U{1,...,r−1,r+1,...,N}.

3. Let en,j = (an − x
(Ij)
n )/||an − x

(Ij)
n || and sample rj from N (0, σ2).

and then use the set of proposals Tj which depends on en,j to perform a
MTM transition with different proposals as in the IMTM algorithm (see
Alg. 1).

4 Simulation Results

4.1 Single-chain results

In this section we carry out, through some examples, a comparison between
the single-chain multiple try algorithms MTM-DP with different proposals
and the algorithm in Liu et al. (2000). In the MTM-DP algorithm we
consider four Gaussian random-walk proposals yj ∼ Nn(x,Λj) with Λ1 =
0.1Idn, Λ2 = 5Idn, Λ3 = 50Idn and Λ4 = 100Idn, where Idn denotes the
n-order identity matrix. In the MTM selection weights we set λj(x,y) =
2αj/(Tj(x,y) + Tj(y,x)), where αj = 0.25, for j = 1, . . . , 4.
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In order to compare the MTM algorithm with different proposals and
the Multiple Try algorithm of Liu et al. (2000) we consider 20,000 iterations
and use four trials yj generated by the following proposal

Tj(x,yj) =
4
∑

j=1

αjNn(x,Λj) (3)

where Λj , j = 1, . . . , 4, have been defined above. In the weighs of the
selection step we set λ(x,y) = 2/(Tj(x,y) + Tj(y,x)).

4.1.1 Bivariate Mixture with two components

We consider the following bivariate mixture of two normals

1

3
N2(µ1,Σ1) +

2

3
N2(µ2,Σ2) (4)

with µ1 = (0, 0)′, µ2 = (10, 10)′, Σ1 = diag(0.1, 0.5) and Σ2 = diag(0.5, 0.1).
In Fig. 1 the ACF with 30 lags for the first component of the bivari-

ate MH chain. The autocorrelation is lower for the MTM algorithm with
different proposals.

4.1.2 Multivariate Normal Mixture

We compare the algorithms for high-dimensional targets. We consider the
following multivariate mixture of two normals with a sparse variance-covariance
structure

1

3
N20(µ1,Σ1) +

2

3
N20(µ2,Σ2) (5)

with µ1 = (3, . . . , 3)′, µ2 = (10, . . . , 10)′ and Σj, with j = 1, 2, generated
independently from a Wishart distribution Σj ∼ W20(ν, Id20) where ν is the
degrees of freedom parameter of the Wishart. In the experiments we set
ν = 21.

The autocorrelation function of the chain for one of the experiment is
given in Fig. 2. The ACF has been evaluated for each components of the
20-dimensional chain. The values of the ACF of the MTM-DP (black lines
in Fig. 2) are less than those of the original MTM (gray lines of the same
figure) in all the directions of the support space. We conclude that the MTM
algorithm with different proposals (Algorithm 3) outperforms the Liu et al.
(2000) MTM algorithm.
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Figure 1: Autocorrelation function of the Liu’s MTM (gray line) and MTM
with different proposals (black line).
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Figure 2: Autocorrelation function (ACF) of the 20 components of the mul-
tivariate MH chain for the Liu’s MTM (gray lines) and MTM with different
proposals (black lines).
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4.2 Multiple-chains results

In this section we show real and simulated data results of the general inter-
acting multiple try algorithm in Alg. 1.

4.2.1 Bivariate Mixture with two components

The target distribution is the following bivariate mixture of two normals

1

3
N2(µ1,Σ1) +

2

3
N2(µ2,Σ2) (6)

with µ1 = (0, 0)′, µ2 = (10, 10)′, Σ1 = diag(0.1, 0.5) and Σ2 = diag(0.5, 0.1).
We consider a population of N = 50 chains with M = 50 proposals and

1,000 iterations of the IMTM algorithm. For each chain we consider the

case T
(i)
j (y|x

(1:i−1)
n+1 ,x

(i)
n ,x

(i+1:N)
n ) = T (j)(y,x

(j)
n ) and draw

yj ∼ N2(x
(j)
n ,Λj) (7)

where Λj = (0.1 + 5j)Id2. In this specification of the IMTM algorithm
each chain has M independent proposals with conditional mean given by
the previous values of the chains in the population.

In this experiment we consider two kind of weights. First we set λ
(i)
j (x, y) =

(T
(i)
j (x, y)T

(i)
j (y, x))−1, that corresponds to use importance sampling selec-

tion weights, secondly we consider λ
(i)
j (x, y) = 2(T

(i)
j (x, y) + T

(i)
j (y, x))−1,

which implies a symmetric MTM algorithm. We denote with IMTM-IS and
IMTM-TA respectively the resulting algorithms.

Fig. 3 show the results of the IMTM-IS and IMTM-TA algorithms at
the last iteration of the population of chains (black dots). In both of the
algorithms the population is visiting the two modes of the distribution in
the right proportion. Moreover each chain is able to jump from one mode
to the other. (the light-gray line represents the sample path of one of the
chain).

4.2.2 Beta-Binomial Model

We consider here the problem of the genetic instability of esophageal can-
cers. During a neoplastic progression the cancer cells undergo a number of
genetic changes and possibly lose entire chromosome sections. The loss of
a chromosome section containing one allele by abnormal cells is called Loss
of Heterozygosity (LOH). The LOH can be detected using laboratory assays
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Figure 3: Log-target level sets (solid lines), the MH chains (red dots) at the
last iteration of the IMTM algorithms and the path of one of the chain of
the set (gray line). Up: output of the IMTM-IS with importance sampling
selection weights. Bottom: ouput of the IMTM-TA with symmetric lambda
as in (c). 18



on patients with two different alleles for a particular gene. Chromosome re-
gions containing genes which regulate cell behavior, are hypothesized to have
a high rates of LOH. Consequently the loss of these chromosome sections
disables important cellular controls.

Chromosome regions with high rates of LOH are hypothesized to contain
Tumor Suppressor Genes (TSGs), whose deactivation contributes to the
development of esophageal cancer. Moreover the neoplastic progression is
thought to produce a high level of background LOH in all chromosome
regions.

In order to discriminate between ”background” and TSGs LOH, the
Seattle Barrett’s Esophagus research project (Barrett et al. (1996)) has col-
lected LOH rates from esophageal cancers for 40 regions, each on a distinct
chromosome arm. The labeling of the two groups is unknown so Desai (2000)
suggest to consider a mixture model for the frequency of LOH in both the
”background” and TSG groups.

We consider the hierarchical Beta-Binomial mixture model proposed in
Warnes (2001)

f(x, n|η, π1, π2, γ) = η

(

n

x

)

πx
1 (1− π1)

n−x + (8)

(1− η)

(

n

x

)

Γ(1/ω2)

Γ(π2/ω2)Γ((1 − π2)/ω2)

Γ(x+ π2/ω2)Γ(n− x+ (1− π2)/ω2)

Γ(n+ 1/ω2)

with x number of LOH sections, n the number of examined sections, ω2 =
exp{γ}/(2(1 + exp{γ})). Let x = (x1, . . . , xm) and n = (n1, . . . , nm) be a
set of observations from f(x, n|η, π1, π2, γ) and let us assume the following
priors

η ∼ U[0,1], π1 ∼ U[0,1], π2 ∼ U[0,1] and γ ∼ U[−30,30] (9)

with U the uniform distribution on [a, b]. Then the posterior distribution is

π(η, π1, π2, γ|x,n) ∝
m
∏

j=1

f(xj , nj|η, π1, π2, γ) (10)

The parametric space is of dimension four: (η, π1, π2, γ) ∈ [0, 1]3 × [−30, 30]
and the posterior distribution has two well-separated modes making it dif-
ficult to sample using generic methods.

We apply the IMTM algorithm with 100 iterations, M = 4 proposal
functions randomly selected between a population of N = 100 chains. For
each chain we consider importance sampling weights in the selection step,
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Figure 4: Values of the population of chains (dots) at the last iteration on
the subspace (π1,π2). The interaction is given by M = 4 proposal functions
randomly selected between the population of N = 100 chains.

i.e. we set λ
(i)
j (x, y) = (T

(i)
j (x, y)T

(i)
j (y, x))−1 with j = 1, . . . , 4 and i =

1, . . . , 100. The values of the population of chains (dots) at the last iteration
on the subspace (π1,π2) is given in Fig. 4.2.2. The IMTM is able to visit
both regions of the parameter space confirming the analysis of Craiu et al.
(2009) and Warnes (2001).

4.2.3 Stochastic Volatility

The estimation of the stochastic volatility (SV) model due to Taylor (1994)
still represents a challenging issue in both off-line (Celeux et al. (2006)) and
sequential (Casarin and Marin (2009)) inference contexts. One of the main
difficulties is due to the high dimension of the sampling space which hinders
the use of the data-augmentation and prevents a reliable joint estimation
of the parameters and the latent variables. As highlighted in Casarin et al.
(2009) using multiple chains with a chain interaction mechanism could lead
to a substantial improvement in the MCMC method for this kind of model.
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We consider the SV model given in Celeux et al. (2006)

yt|ht ∼ N
(

0, eht

)

ht|ht−1,θ ∼ N
(

α+ φht−1, σ
2
)

h0|θ ∼ N
(

0, σ2/(1− φ2)
)

with t = 1, . . . , T and θ = (α, φ, σ2). For the parameters we assume the
noninformative prior (see Celeux et al., 2006)

π(θ) ∝ 1/(σβ)I(−1,1)(φ)

where β2 = exp(α). In order to simulate from the posterior we consider
the full conditional distributions and apply a Gibbs algorithm. If we define
y = (y1, . . . , yT ) and h = (h0, . . . , hT ) then the full conditionals for β and φ
are the inverse gamma distributions

β2|h,y ∼ IG

(

T
∑

t=1

y2t exp(−ht)/2, (T − 1)/2

)

σ2|φ,h,y ∼ IG

(

T
∑

t=2

(ht − φht−1)
2/2 + h21(1− φ2), (T − 1)/2

)

and φ and the latent variables have non-standard full conditionals

π(φ|σ2,h,y) ∝ (1− φ2)1/2 exp

(

−
φ2

2σ2

T−1
∑

t=2

h2t −
φ

σ2

T
∑

t=2

htht−1

)

I(−1,+1)(φ)

π(ht|α, φ, σ
2,h,y) ∝ exp

(

−
1

2σ2

(

(ht − α− φht−1)
2−

(ht+1 − α− φht)
2
)

−
1

2

(

ht + y2t exp(−ht)
)

)

.

In order to sample from the posterior we use an IMTM within Gibbs algo-
rithm. A detailed description of the proposal distributions for φ and ht can
be found in Celeux et al. (2006).

We consider the two parameter settings (α, φ,σ2) = (0, 0.99, 0.01) and
(α,φ,σ2) = (0, 0.9, 0.1) which correspond, in a financial stock market con-
text, to daily and weekly frequency data respectively. Note that as reported
in Casarin and Marin (2009) inference in the daily example is more difficult.
We compare the performance of MH within Gibbs and IMTM within Gibbs
algorithms in terms of Mean Square Error (MSE) for the parameters and
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of cumulative RMSE for the latent variables. We carry out the compari-
son in statistical terms and estimate the MSE and RMSE by running the
algorithms on 20 independent simulated datasets of 200 observations. In
the comparison we take into account the computational cost and for the
IMTM within Gibbs we use N = 20 interacting chains, 1,000 iterations and
M = 5 proposal functions. This setting corresponds to 100,000 random
draws and is equivalent to the 100,000 iterations of the MH within Gibbs
algorithm used in the comparison. Note that the proposal step of the IMTM
selects at random the proposal functions between the other chains and the

selection step uses λ
(i)
j (x, y) = (T

(i)
j (x, y)T

(i)
j (y, x))−1, with h = 1, . . . , 5 and

i = 1, . . . , 20.
The results for the parameter estimation when applying IMTM are pre-

sented in Table 1 and show an effective improvement in the estimates, both
for weekly and daily data, when compared to the results of a MH algorithm
with an equivalent computational load.

Daily Data Weekly Data

θ Value MSE θ Value MSE
IMTM MH IMTM MH

α 0 0.04698 0.09517 α 0 0.00146 0.00849
(0.00612) (0.00194) (0.00139) (0.00105)

φ 0.99 0.20109 0.34825 φ 0.9 0.01328 0.10746
(0.02414) (0.05187) (0.04014) (0.03629)

σ2 0.01 0.00718 0.02380 σ2 0.1 0.00136 0.09175
(0.00173) (0.00202) (0.00141) (0.00358)

Table 1: Mean square error (MSE) and its standard deviation (in paren-
thesis) for the parameter estimation with IMTM and MH within Gibbs
algorithms. Left panel: daily datasets. Right panel: weekly dataset.

A typical output of the IMTM for some chains of the population and
for the latent variables h is given in Fig. 4.2.3. Each chart shows for a
given chain the estimated latent variables (dotted black line), the posterior
quantiles (gray lines) and the true value of h (solid black line).

Figures 4.2.3 and 4.2.3 exhibit the HPD region at the 90% (gray areas)
and the mean (black lines) of the cumulative RMSE of each algorithm for
the weekly and daily data, respectively. The statistics have been estimated
from 20 independent experiments. The average RMSE shows that, in both
parameter settings considered here, the IMTM (dashed black line) is more
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efficient than the standard MH algorithm (solid black line).

5 Conclusions

In this paper we propose a new class of interacting Metropolis algorithm,
with Multiple Try transition. These algorithms extend the existing literature
in two directions. First we show a natural and not straightforward way to
include the chains interaction in a multiple try transition. Secondly the
multiple try transition has been extended in order to account for the use
of different proposal functions. We give a proof of validity of the algorithm
and show on real and simulated examples the effective improvement in the
mixing property and exploration ability of the resulting interacting chains.

Appendix A

Proof

Without loss of generality, we drop the chain index i and the iteration index

n, set Mi = N , ∀i and x
(i)
n = x and denote with Tj(y, x) = Tj(y|x

(1:i−1)
n+1 , x

(i)
n , x

(i+1:N)
n )

λ
(i)
j (yj , x

(i)
n ) the j proposal of the i-th chain at the iteration n conditional on

the past and current values, x
(1:i−1)
n+1 and x

(i+1:N)
n respectively, of the other

chains.
Let us define the following quantities

w̄(y1:N |x) =
N
∑

j=1

wj(yj , x), w̄−k(y1:N |x) =
N
∑

j 6=k

wj(yj , x)

and

SN (J) =
1

w̄(y1:N |x)

N
∑

j=1

δj(J)wj(yj, x)

with J ∈ J = {1, . . . , N} the empirical measure generated by different pro-
posals and by the normalized selection weights.

Let T (x, dy1:N ) =
⊗N

j=1 Tj(x, dyj) : (Y × B(YN )) 7→ [0, 1] the joint pro-

posal for the multiple try and define T−k(x, dy1:N ) =
⊗N

j 6=k Tj(x, dyj). Let
A(x, y) be the actual transition probability for moving from x to y in the
IMT2 algorithm. Suppose that x 6= y, then the transition is a results two
steps. The first step is a selection step which can be written as y = yJ
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Figure 5: Typical output of the population of chains for a weekly dataset.
For each chain the estimated latent variable (dotted black line), the 2.5%
and 97.5% quantiles (gray lines) and the true value of h (solid black line).
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and x∗J = x with the random index J sampled from the empirical measure
SN (J). The second step is a accept/reject step based on the generalized MH
ratio which involves the generation of the auxiliary values x∗j for j 6= J .
Then

π(x)A(x, y) =

= π(x)

∫

YN

T (x, dy1:N )

∫

J
SN (dJ)

∫

YN−1×Y2

T−J(y, dx
∗
1:N )×

×δx(dx
∗
J )δyJ (dy)min

{

1,
w̄(y1:N |x)

w̄(x∗1:N |y)

}

= π(x)
N
∑

j=1

∫

YN−1

T−j(x, dy1:N )Tj(x, y)

∫

YN−1

T−j(y, dx
∗
1:N )×

×
wj(y, x)

wj(y, x) + w̄−j(y1:N |x)
min

{

1,
wj(y, x) + w̄−j(y1:N |x)

wj(x, y) + w̄−j(x
∗
1:N |y)

}

=

N
∑

j=1

wj(x, y)wj(y, x)

λj(y, x)

∫

Y2(N−1)
T−j(x, dy1:N )×

×T−j(y, dx
∗
1:N )min

{

1

wj(y, x) + w̄−j(y1:N |x)
,

1

wj(x, y) + w̄−j(x∗1:N |y)

}

which is symmetric in x and y.
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