
ar
X

iv
:0

91
2.

40
72

v1
 [

m
at

h.
N

A
]

 2
1

D
ec

 2
00

9 Stochastic global optimization as a filtering problem

Panos Stinis

Department of Mathematics

University of Minnesota

Minneapolis, MN 55455

Abstract

We present a reformulation of stochastic global optimization as a fil-
tering problem. The motivation behind this reformulation comes from
the fact that for many optimization problems we cannot evaluate ex-
actly the objective function to be optimized. Similarly, we may not be
able to evaluate exactly the functions involved in iterative optimization
algorithms. For example, we may only have access to noisy measure-
ments of the functions or statistical estimates provided through Monte
Carlo sampling. This makes iterative optimization algorithms behave
like stochastic maps. Naive global optimization amounts to evolving a
collection of realizations of this stochastic map and picking the realiza-
tion with the best properties. This motivates the use of filtering tech-
niques to allow focusing on realizations that are more promising than
others. In particular, we present a filtering reformulation of global op-
timization in terms of a special case of sequential importance sampling
methods called particle filters. The increasing popularity of particle
filters is based on the simplicity of their implementation and their flex-
ibility. For parametric exponential density estimation problems, we
utilize the flexibility of particle filters to construct a stochastic global
optimization algorithm which converges to the optimal solution ap-
preciably faster than naive global optimization. Several examples are
provided to demonstrate the efficiency of the approach.

Introduction

Optimization problems are ubiquitous in science and engineering ranging
from portfolio optimization to space craft trajectory design to DNA stud-
ies and computer science [9, 16, 17]. As a result of the vast number of
optimization applications and their related intricacies, the construction of
optimization algorithms continues to be a subject of intense research. The

1

http://arxiv.org/abs/0912.4072v1

main problem in optimization is to locate, usually through an iterative pro-
cedure, the optimal values (minima or maxima) of an objective function
which depends on a number of parameters. The related problem of estimat-
ing the values of the parameters for which the objective function attains its
optimal value is of equal importance in applications.

For many optimization problems the function to be optimized is a func-
tion of several variables and can have multiple local extrema. Usually, opti-
mization algorithms are guaranteed to find a local extremum when started
from an arbitrary initial condition. In order to reach a global extremum
we should use an optimization algorithm with multiple starting values and
choose the best solution. This is called naive global optimization. In naive
global optimization each solution starting from a different initial condition
evolves independently of the others. Intuitively, we expect that a global
optimization algorithm should benefit from the interaction of the different
solutions. There is a category of global (deterministic and stochastic) opti-
mization algorithms (e.g. branch and bound, tabu methods, genetic algo-
rithms, ant colony optimization, swarm optimization, simulated annealing,
hill climbing) [6, 9, 19] which allow for the different solutions to interact
with the purpose of allocating more resources in areas of the parameter
space which seem more promising in an optimization sense.

In the current work, we propose an algorithm that belongs in this cat-
egory. For many optimization problems we cannot evaluate exactly the
objective function to be optimized. Similarly, we may not be able to evalu-
ate exactly the functions involved in iterative optimization algorithms. For
example, we may only have access to noisy measurements of the functions or
statistical estimates provided through Monte Carlo sampling. This makes
iterative optimization algorithms behave like stochastic maps. The corre-
sponding global optimization problem also becomes stochastic. The algo-
rithm we present here is based on the reformulation of the stochastic global
optimization problem as a filtering problem. In particular, we present a
filtering reformulation of stochastic global optimization in terms of a spe-
cial case of sequential importance sampling methods called particle filters
[8, 15]. In this setting, the desired interaction of the solutions starting from
different initial conditions is effected through the filtering step (see Section
2 for more details).

The increasing popularity of particle filters is based on the simplicity of
their implementation and their flexibility. The generic particle filter refor-
mulation will not necessarily lead to an algorithm that converges faster than
the naive global optimization algorithm. However, we are able to exploit the
flexibility of the particle filter reformulation to construct a modified particle

2

filter algorithm that converges appreciably faster than the naive global opti-
mization algorithm. We provide several examples of parametric exponential
density estimation of varying difficulty to demonstrate the efficiency of the
approach.

The paper is organized as follows. Section 1 discusses local and stochas-
tic global optimization problems. In Section 2 we present the reformulation
of stochastic optimization problem as a filtering problem and in particular a
reformulation which uses particle filters. In Section 3 we apply the particle
filter reformulation to the problem of estimating the parameters of an expo-
nential density. Section 4 contains numerical results for several examples to
illustrate the efficiency of the proposed approach. Finally, in Section 5 we
provide a discussion and some directions for future work.

1 Stochastic local and global optimization

Assume that we are given a scalar objective function H(x) depending on d
parameters x1, . . . , xd. The purpose of the optimization problem is to com-
pute the optimal (maximal or minimal) value of H(x), say op(H(x)), as
well as the optimal parameter vector x̂ = (x̂1, . . . , x̂d) for which H(x̂) =
op(H(x)). For the sake of clarity and without loss of generality, let us as-
sume that we are interested in obtaining the minimum value of the objective
function H(x).

A generic optimization algorithm attempts to locate the optimal param-
eter vector in the following way:

Generic optimization algorithm

1. Pick an initial approximation x(0).

2. For k ≥ 0, compute x(k+1) = f(x(k)), where f(x) = (f1(x), . . . , fd(x))
is a d-dimensional vector-valued function. Different optimization al-
gorithms use a different function f(x).

3. Evaluate H(x(k+1)). If H(x(k+1)) satisfies a stopping criterion or k+1
is equal to a maximum number of iterations kmax, stop. Else, set
k = k + 1 and proceed to Step 2.

For many optimization problems, the function H(x) has multiple local
minima. The generic algorithm described above is, usually, able to locate
one of the local minima, unless we are very lucky or know a lot about the

3

problem at hand to guide the choice of x(0). An obvious global version of
the algorithm given above is as follows:

Naive global optimization algorithm

1. Pick a collection of initial approximations x
(0)
1 , . . . , x

(0)
N .

2. Run, say for M iterations, the generic optimization algorithm for the

different initial conditions x
(0)
1 , . . . , x

(0)
N .

3. Choose x̃ = arg min
i=1...N

H(x
(M)
i).

As stated in the introduction, for many optimization problems we only have
access to a random estimate of the value of the objective function H and
of the optimization algorithm function f. We will denote those as Hs and
fs respectively. The uncertainty can come from noisy measurements. Also,
it can be due to Monte Carlo sampling error for cases where H and/or f
involve expectations with respect to a probability density. Consequently,
the iterative optimization sequence becomes stochastic. To be more precise,
the optimization algorithm is modified as follows:

Stochastic optimization algorithm

1. Pick an initial approximation x(0).

2. For k ≥ 0, compute x(k+1) = fs(x
(k)).

3. Evaluate Hs(x
(k+1)). If the value Hs(x

(k+1)) satisfies a stopping crite-
rion or k + 1 is equal to a maximum number of iterations kmax, stop.
Else, set k = k + 1 and proceed to Step 2.

Of course, there is an obvious stochastic version of the naive global opti-
mization algorithm:

Naive stochastic global optimization algorithm

1. Pick a collection of initial approximations x
(0)
1 , . . . , x

(0)
N .

2. Run N realizations of the stochastic optimization algorithm, one for

each of the different initial conditions x
(0)
1 , . . . , x

(0)
N , say for M itera-

tions.

3. Choose x̃ = arg min
i=1...N

Hs(x
(M)
i).

4

2 Filtering reformulation of stochastic optimiza-

tion

In the naive stochastic global optimization algorithm each realization of
the stochastic optimization algorithm evolves independently of the other
realizations. As it happens in many optimization problems, most realizations
of a stochastic optimization algorithm will not start from an initial condition
near a local minimum and thus will not contribute much to the exploration
of minima in the space of parameter vectors. We would like to have a way
to allocate more realizations in areas of the parameter vector space which
seem more promising in an optimization sense. We propose to do that by

treating the stochastic global optimization problem as a filtering problem.
The filtering problem consists of the problem of incorporating the infor-

mation from noisy observations of a system (noisy measurements of some
function of the system) to correct the evolution trajectory of a system. The
evolved system is usually stochastic and, in the case of discrete time formula-
tions, a stochastic map. In the stochastic optimization algorithm context, we
can think of: i) the iterative optimization algorithm, i.e. x(k+1) = fs(x

(k)),
as the stochastic map and ii) the evaluation of the objective function, i.e.
Hs(x

(k+1)), as the noisy observation of the system. This allows us to recast
(reformulate) the stochastic optimization problem as a filtering problem.

To make the reformulation more transparent we begin by recalling the
abstract formulation of the filtering problem. Let k be a discrete time in-
dex. Consider the following Markovian model which is motivated by the
stochastic optimization algorithm:

x(k+1) = fs(x
(k)), (1)

y(k+1) = Hs(x
(k+1)) + v(k+1), (2)

where v(k+1) is a random variable with known properties. We have intro-
duced the random variable v(k+1) to facilitate the formulation of the particle
filter (see Section 2.1). Under appropriate regularity assumptions [3], we can
associate with (1) a state evolution density h(x(k+1)|x(k)) and with (2) an
observation density g(y(k+1)|x(k+1)), i.e.

x(k+1) ∼ h(x(k+1)|x(k)), (3)

y(k+1) ∼ g(y(k+1)|x(k+1)). (4)

Before we proceed with the details of the filtering problem we need to ad-
dress the issue of the values of the observation sequence y(k). In filtering

5

problems, the observations are provided by some external measurement of
the system. In the context of the stochastic optimization algorithm, there
is no external measurement of the system. However, because we are dealing
with an optimization problem (in our case minimization), the observation
sequence y(k) is by construction a non-increasing sequence (in k). If we
are looking for a maximum, then the sequence y(k) will be a non-decreasing
sequence.

The filtering problem for the Markovian model (1)-(2) is to compute, for
any time t, the posterior distribution p(x(0:t)|y(1:t)) and/or the marginal dis-
tribution p(x(t)|y(1:t)), where x(0:t) = (x(0), . . . , x(t)) and y(1:t) = (y(1), . . . , y(t)).
With the help of Bayes’ theorem the posterior distribution p(x(0:t)|y(1:t)) can
be written as (see e.g. [5])

p(x(0:t)|y(1:t)) =
p(y(1:t)|x(0:t))p(x(0:t))∫

p(y(1:t)|x(0:t))p(x(0:t))dx(0:t)
.

The posterior distribution can be computed recursively by the formula

p(x(0:t+1)|y(1:t+1)) = p(x(0:t)|y(1:t))
p(y(t+1)|x(t+1))p(x(t+1)|x(t))

p(y(t+1)|y(1:t))
.

The marginal distribution p(x(t)|y(1:t)) satisfies the recursion:

Prediction : p(x(t)|y(1:t−1)) =

∫
p(x(t)|x(t−1))p(x(t−1)|y(1:t−1))dx(t−1),

(5)

Update : p(x(t)|y(1:t)) =
p(y(t)|x(t))p(x(t)|y(1:t−1))∫
p(y(t)|x(t))p(x(t)|y(1:t−1))dx(t)

. (6)

The recursive formulas for the posterior and the marginal distribution can
rarely be computed analytically, since for practical applications they involve
the evaluation of complex high-dimensional integrals. Thus, we need to
compute approximations to these distributions which should converge in
some limit to the exact distributions. Sequential importance sampling (SIS)
methods [15] have emerged as a flexible and powerful framework to construct
such approximations. We should note here that SIS methods constitute
a general framework for importance sampling, which is not restricted to
filtering problems (for a nice presentation of the SIS framework in its full
generality see Ch. 3 in [15]).

We are now in a position to present the filtering reformulation of the
stochastic optimization problem. It consists of solving the filtering problem

6

for

x(k+1) = fs(x
(k)),

y(k+1) = Hs(x
(k+1)) + v(k+1),

where y(k+1) is a non-increasing sequence. We see that the stochastic op-
timization problem corresponds to a special case of the filtering problem
since it includes the additional constraint of the non-increasing sequence of
observations.

2.1 Particle filter reformulation of stochastic global opti-

mization

The approximation we will use to solve the filtering problem described
above is a special case of the SIS formalism known as a particle filter
(or bootstrap filter) [8]. Assume (recall Eqs. (3)-(4)) that we are given
a model for the state evolution density h(x(k+1)|x(k)) and the observa-
tion density g(y(k+1)|x(k+1)). In particular, let x(k+1) ∼ h(x(k+1)|x(k)) and
y(k+1) ∼ g(y(k+1)|x(k+1)). Suppose that at time t we have a collection of

M random samples (particles) (x
(t)
1 , . . . , x

(t)
M) which follow approximately

the current marginal distribution p(x(t)|y(1:t)). The paper [8] suggests the
following updating procedure after y(t+1) is observed:

Particle filter algorithm

1. Draw x
(t+1)
∗j from the state density h(x(t+1)|x(t)

j), for j = 1, . . . ,M.

2. Assign to each draw the weight (also known as likelihood) w∗
j =

g(y(t+1)|x(t+1)
∗j), for j = 1, . . . ,M.

3. Compute the normalized weights wj =
w∗

j
PM

l=1 w∗

l

, for j = 1, . . . ,M.

4. Resample from (x
(t+1)
∗1 , . . . , x

(t+1)
∗M) with probability proportional to

wj, j = 1, . . . ,M to produce new samples (x
(t+1)
1 , . . . , x

(t+1)
M) at time

t+ 1.

5. Set t = t+ 1 and proceed to Step 1.

The particle filter approximates the marginal distribution p(x(t)|y(1:t)) by the
distribution p̃(x(t)|y(1:t)) = 1

M

∑M
i=1 δx(t)

i

. It can be shown [4], under appro-

priate regularity assumptions on the state evolution density h(x(k+1)|x(k))

7

and the observation density g(y(k+1)|x(k+1)), that lim
M→∞

p̃(x(t)|y(1:t)) = p(x(t)|y(1:t))

almost surely.
The particle filter construction appears as a natural candidate for the

reformulation of the global stochastic optimization problem as a filtering
problem. If one thinks of the particles in the particle filter construction as
different initial conditions for the stochastic global optimization algorithm,
then the particle filter becomes the filter analog of stochastic global opti-
mization. Following the notation of the particle filter algorithm, we can

specify the value of the observation at step k as y(k) = min
j=1,...,M

Hs(x
(k)
∗j).

With this choice for y(k), the particle filter formulation of the stochastic
global optimization problem becomes

Particle filter algorithm for stochastic global optimization

1. Draw samples x
(0)
1 , . . . , x

(0)
M from an initial density µ0(x). Set t = 0.

2. Draw samples x
(t+1)
∗j from the state density h(x

(t+1)
j |x(t)

j), for j =
1, . . . ,M.

3. Compute Hs(x
(t+1)
∗j) for j = 1, . . . ,M.

4. Set y(t+1) = min
j=1,...,M

Hs(x
(t+1)
∗j).

5. Compute the weights w∗
j (x

(t+1)
∗j) = g(y(t+1)|x(t+1)

∗j), for j = 1, . . . ,M.

6. Compute the normalized weights wj(x
(t+1)
∗j) =

w∗

j
PM

l=1 w∗

l

, for j = 1, . . . ,M.

7. Choose the estimate x̃t+1 = arg max
j=1...M

wj(x
(t+1)
∗j). Equivalently, we can

choose x̃t+1 = arg min
j=1,...,M

Hs(x
(t+1)
∗j).

8. If t + 1 is equal to a maximum allowed number of iterations tmax or
y(t+1) satisfies a stopping criterion, terminate the algorithm. Else,
proceed to next step.

9. Resample from (x
(t+1)
∗1 , . . . , x

(t+1)
∗M) with probability proportional to

wj, j = 1, . . . ,M to produce new samples (x
(t+1)
1 , . . . , x

(t+1)
M) at time

t+ 1.

10. Set t = t+ 1 and proceed to Step 2.

8

The algorithm above computes a sequence of estimates x̃t, t = 1, . . . for
the solution of the stochastic global optimization problem. Note that in
Step 7, where we choose the estimate for the solution of the optimization
problem, we provide two equivalent ways of determining the estimate. It
is the same whether one chooses the particle with the smallest value of the
objective function or the largest weight. This duality between minimizing
the objective function and maximizing the weight (likelihood) of the obser-
vation of a filtering problem is not specific to this problem. The equivalence
between least-squares problems and maximum likelihood estimation is well
known in optimization literature (see e.g. [16]). Also, one can associate a
filtering problem to a deterministic (Maslov) optimization process defined
on a performance space (see the appendix by Del Moral in [12]). The duality
between Maslov processes and filtering problems relies on idempotent anal-
ysis and, in particular the Log-Exp transform [12]. The Log-Exp transform
correspondence is present also in our particle filter reformulation of global
optimization if we assume that the random variable v(k+1) in the observation
process is Gaussianly distributed (see Section 3.2).

The particle filter reformulation of global optimization does not suffer
from any convergence drawbacks compared to the naive global optimiza-
tion. To see this, we can assume for a moment that there is no observation
step. Then, the particle filter algorithm reduces to naive global optimiza-
tion. Naive global optimization will converge to a global minimum given
an adequate number of particles. What the particle filter adds to the naive
optimization is to pick, after every iteration, the solution that seems more
promising in an optimization sense. Since we have chosen the value of the ob-
servation to be equal to the minimum of the values of the objective function
over all particles, the sequence of values picked for the objective function
is guaranteed to be non-increasing. At worst, the value of the objective
function will not change between iterations if the particles attempt moves
in the parameter space that increase the value of the objective function.
This can happen, especially for high-dimensional problems, where the local
minima can be located in narrow valleys of the objective function [16]. The
way we have defined the value of the observation ensures convergence to at
least a local minimum. If, in addition, we have enough particles to explore
in detail the parameter space, the particle filter will converge to the global
minimum. However, the particle filter algorithm will not necessarily con-
verge faster than the naive optimization algorithm. Yet, the reason we are
presenting the particle filter reformulation of global optimization is because
of its inherent flexibility. This means that starting from the generic form
of the particle filter prescribed above, we can derive modified particle filters

9

that exploit the specifics of the optimization algorithm used in the pre-
diction step (e.g. Robbins-Monro, Kiefer-Wolfowitz, Levenberg-Marquardt
algorithm etc.). This flexibility is exploited in Section 3.2.1 to construct a
modified particle filter algorithm with faster convergence than the related
naive optimization algorithm.

3 Application to parametric exponential density

estimation

We apply the particle filter reformulation of stochastic global optimization
to the problem of parametric density estimation for exponential densities.
Exponential densities are, partly due to their nice mathematical features,
widely used in the modeling of densities of systems of interacting variables
in different contexts, ranging from Hamiltonian systems to image process-
ing and bioinformatics (see [10] and references therein). As a result, there
is an increased interest in algorithms for estimating and manipulating such
densities numerically. In [18] we presented an algorithm based on maximum
likelihood for the estimation and renormalization (marginalization) of expo-
nential densities. In the next section we present the main ideas of the work
in [18], in particular, how maximum likelihood estimation for exponential
densities leads to an optimization problem.

3.1 Parametric exponential density estimation as an opti-

mization problem

We begin our presentation with a few facts about families of exponential
densities (for more details see e.g. [2, 10]). Let x = (x1, . . . , xn) be an
n-dimensional random vector taking values in Ξn ⊆ Rn. The set Ξn =
Ξ1 × Ξ2 × . . .Ξn, where x1 ∈ Ξ1, . . . , xn ∈ Ξn. Also, let ψk(x), k = 1, . . . , l
be a collection of functions of x. The functions ψk are known as poten-
tials or sufficient statistics. Let ψ = (ψ1, . . . , ψl) be the vector of potential
functions. Associated with the vector ψ is a vector α = (α1, . . . , αl) whose
elements are called canonical or exponential parameters. The exponential
family associated with ψ is the collection of density functions (parametrized
by α) of the form

p(x, α) =
exp(−〈α,ψ(x)〉)

Z(α)
, (7)

10

where 〈α,ψ(x)〉 =
∑l

k=1 αkψk(x) and Z(α) =
∫
Ξn exp(−〈α,ψ(x)〉)dx. The

exponential family is defined only for the set

A = {α ∈ Rl|Z(α) <∞}. (8)

Suppose that we are given a collection of N independent samples of an n-
dimensional random vector x. In general, we do not know which density
the samples are drawn from. There are many examples in practical applica-
tions where the random vector comes from a exponential density (see [10]).
However, even if we do not know that the samples are drawn from an expo-
nential density, we can try to fit an exponential density to the samples. This
will become clearer when we formulate the moment-matching problem and
exploit some properties of the exponential densities. The basic idea behind
the algorithm we present here is to estimate the unknown parameter vector
α by maximizing the likelihood function of the samples. For a collection of
N independent samples of the random vector x, the likelihood function L is
defined as (see e.g. [11])

L =
N∏

j=1

p(xj , α), (9)

where p(xj , α) is the unknown exponential density whose parameters α we
wish to determine. We associate a potential function ψk, k = 1, . . . , l with
every parameter αk. Maximization of L with respect to the parameters αk

produces an estimate ᾱ for α. Under suitable regularity conditions, the se-
quence of estimates ᾱ for increasing values of N is asymptotically efficient
and tends, with probability one, to a local maximum in parameter space.
From now on we will use the notation α instead of ᾱ to denote the maxi-
mum likelihood estimate of the parameters keeping in mind that this is only
an estimate of the parameters. In addition, we will be working with the
logarithm of the likelihood logL, since it does not alter the position of the
maximum and also leads to formulas that are more easily manipulated. Dif-
ferentiation of logL with respect to the αk and setting the derivative equal
to zero results in

Eα[ψk(x)] =
1

N

N∑
j=1

ψk(xj), k = 1, . . . , l (10)

where

Eα[ψk(x)] =

∫
Ξn ψk(x) exp(−〈α,ψ(x)〉)dx∫

Ξn exp(−〈α,ψ(x)〉)dx (11)

11

is the expectation value of the function ψk with respect to the density p(x, α).
The right side of (10) is the average (moment) of the function ψk as calcu-
lated from the given samples. The l equations in (10) define the moment-

matching problem. What we want to do is to estimate the parameters α
so that the conditions in (10) are satisfied. The question of whether such a
problem has a solution, and if it does whether it is unique can be addressed
through convex analysis (see [18] for more details).

Now that we have defined the moment-matching problem we have to find
a way to actually estimate the parameter vector α. The equations (10) con-
tain, in general, nonlinear functions of the parameters. Moreover, except for
very special cases, these nonlinear functions are unknown or very difficult to
manipulate analytically. Thus, we have to tackle the problem of estimating
the parameter vector numerically. We can define the l-dimensional vector
f(α) = (f1(α), f2(α), . . . , fl(α)) as

fk(α) = Eα[ψk(x)] − 1

N

N∑
j=1

ψk(xj), k = 1, . . . , l (12)

The moment-matching problem amounts to solving the system of (nonlinear)
equations fk(α) = 0, k = 1, . . . , l.

3.1.1 The Levenberg-Marquardt algorithm

Two popular candidates to solve the system of nonlinear equations fk(α) =
0, k = 1, . . . , l, are the method of steepest descent and Newton’s method.
However, both have their drawbacks. The method of steepest descent con-
verges but can have very slow convergence, while Newton’s method converges
quadratically but it diverges if the initial guess of the solution is not good.
We choose to solve the moment-matching problem as an optimization prob-
lem using the Levenberg-Marquardt (LM) algorithm (see e.g. [16]). This is
a powerful iterative optimization algorithm that combines the advantages
of the method of steepest descent and Newton’s method. First, let us write
the moment-matching problem as an optimization problem. Define the error
function ǫ(α) as

ǫ(α) =
1

2

l∑
k=1

ǫ2k =
1

2

l∑
k=1

f2
k (α), (13)

where ǫk = fk(α). The problem of minimizing ǫ(α) is equivalent to solving
the system of equations fk(α) = 0, k = 1, . . . , l i.e. the zeros of ǫ are solutions
of the system fk(α) = 0, k = 1, . . . , l and vice versa. The LM algorithm

12

uses a positive parameter λ to control convergence and the updates of the
parameters at step m+ 1 are calculated through the formula

[JTJ + λdiag(JT J)](α(m+1) − α(m)) = −JT f(α(m)), (14)

where J = ∂fi

∂αj
|α=α(m) , i, j = 1, . . . , l is the Jacobian of f(α(m)) and JT

its transpose. The matrix diag(JT J) is a diagonal matrix whose diagonal
elements are the diagonal elements of (JTJ). In the literature, the name
Levenberg-Marquardt is also used to denote the algorithm in (14) with
diag(JT J) replaced by the unit matrix I. For the case where we use the
unit matrix I instead of diag(JT J), it is straightforward to see the connec-
tion with the methods of steepest descent and Newton’s. For λ = 0 the
algorithm reduces to Newton’s method, while for very large λ we recover
the steepest descent method. The modification (due to Marquardt) of using
diag(JT J) becomes important in the case where λ is large. In this case if
we only used the unit matrix I almost all information coming from (JTJ) is
lost. On the other hand, since (JTJ) provides information about the curva-
ture of ǫ, use of the matrix diag(JT J) allows us to incorporate information
about the curvature even in cases with large λ.

We have to prescribe a way of computing the Jacobian J(α(m)). The
element Jij of the Jacobian is given by

Jij(α
(m)) = −(Eα(m) [ψi(x)ψj(x)] − Eα(m) [ψi(x)]Eα(m) [ψj(x)]) (15)

for i, j = 1, . . . , l (note that the Jacobian is symmetric) So, all the quanti-
ties involved in equation (14) can be expressed as expectation values with
respect to the m-th step parameter estimate α(m). More details about the
implementation of the LM algorithm can be found in [16].

If one can compute only Monte Carlo estimates of the necessary expec-
tation values appearing in the LM algorithm, the question of convergence of
the algorithm becomes more involved. Starting with the work of Robbins-
Monro and Kiefer-Wolfowitz [13], there has been a vast literature on the
subject of constructing convergent stochastic algorithms to obtain the zeros
of a function for which we only have noisy observations. The optimization
problem we are interested in fits in this category since we are looking for the
zeros of the error function ǫ(α) for which we can only compute Monte Carlo
estimates. It is not generally true that replacing the expectation values ap-
pearing in LM (or Newton’s method) with Monte Carlo estimates will lead
to a stochastic algorithm that converges to the true zero of ǫ(α) (see e.g.
the discussion in [7]). Convergence can be achieved if the number of Monte
Carlo samples is increasing with iterations. In the limit of infinite number

13

of samples, one will recover the deterministic LM algorithm. In particular,
one can conceive of a scheme to increase the number of Monte Carlo samples
whenever the error value becomes of the order of magnitude of the Monte
Carlo error. An alternative scheme to increase the number of Monte Carlo
samples was proposed in [7]. On the other hand, if one can afford to have
a large number of Monte Carlo samples for all iterations, the LM algorithm
will reduce the error down to a value that is for all practical purposes zero
(since the associated Monte Carlo error will be practically zero). We are not
advocating here the use of the stochastic version of the LM algorithm for
general problems. But, given the superiority of the deterministic LM algo-
rithm for problems of moderate dimension like the ones we will be examining
in Section 4 and the fact that we can afford a large number of Monte Carlo
samples for all iterations, makes the stochastic LM algorithm a reasonable
choice. We should also mention that what we refer to as a stochastic LM
algorithm is different from the stochastic LM algorithm proposed by LeCun
[14].

3.2 Reformulation of the density estimation optimization prob-

lem as a filtering problem

For most cases, the expectation values involved in maximum likelihood esti-
mation can only be computed through Monte Carlo sampling. This renders
random both the update equation (14) for the coefficients and the equation
(13) for the error. In addition, as mentioned above, maximum likelihood esti-
mation is guaranteed to yield a local maximum in parameter space. Finding
a global maximum likelihood estimate is equivalent to finding a global min-
imum, zero in this case, for the error function ǫ(α). This requires running
the LM algorithm with different initial conditions and picking the best so-
lution, i.e. the solution with the minimum value for the error function ǫ(α).
The combination of randomness in the update and error equations and the
need to find a global maximum of the likelihood (in the parameter space),
means that the problem of global maximum likelihood estimation is equiva-
lent to a stochastic global optimization problem. We will apply the filtering
reformulation of the previous section in order to solve this stochastic global
optimization problem.

In order to reformulate the stochastic global optimization problem as a
particle filter (see reformulation at the end of Section 2.1) we need to specify

the state density h(x
(t+1)
j |x(t)

j), the objective function Hs(x
(t+1)
∗j), as well as

the observation density g(y(t+1)|x(t+1)
∗j), where j = 1, . . . ,M. To conform

14

with the notation used above for exponential densities, this means that we

need to specify h(α
(t+1)
j |α(t)

j), Hs(α
(t+1)
∗j) and g(y(t+1)|α(t+1)

∗j).

The state density h(α
(t+1)
j |α(t)

j) is defined implicitly through the update
equation (14). Since the expectation values appearing in (14) are estimated
through Monte Carlo sampling, Eq.(14) becomes random. In particular, the

Jacobian Jj(α
(t)
j) for the j-th particle at iteration t is replaced by its Monte

Carlo estimate, say withNE samples, J̃j(α
(t)
j). Similarly, the moment match-

ing (error) vector f(α
(t)
j) is replaced by its Monte Carlo estimate f̃(α

(t)
j). For

both Monte Carlo estimates the associated sampling error is O(1/
√
NE) [15].

For the objective functionHs(α
(t+1)
∗j) we defineHs(α

(t+1)
∗j) = (

2∗ǫ̃(α
(t+1)
∗j)

l)1/2,

where ǫ̃(α
(t+1)
∗j) is the Monte Carlo estimate of the error ǫ(α

(t+1)
∗j) of the j-th

particle. The quantity (
2∗ǫ̃(α

(t+1)
∗j)

l)1/2 is the average error per moment for

the j-th particle. The sampling error for (
2∗ǫ̃(α

(t+1)
∗j)

l)1/2 is also O(1/
√
NE).

We have to specify also the observation density g(y(t+1)|α(t+1)
∗j). Recall

that we have defined the observation process y(k+1) as y(k+1) = Hs(α
(k+1)
∗)+

v(k+1), where α
(k+1)
∗ is the predicted state before the observation. We pick

the random variable v(k+1) to be distributed as a Gaussian variable of mean
zero and variance O(1/NE). This means that we can write the conditional
observation density value for the j-th particle as

g(y(t+1)|α(t+1)
∗j) =

1√
2πσ2

exp(−
(y(t+1) −Hs(α

(t+1)
∗j))2

2 ∗ σ2
),

where σ2 = 1
NE
. Also, as discussed at the end of Section 2.1, we pick the

value of the observation y(t+1) = min
j=1,...,M

Hs(α
(t+1)
∗j).

With the above choices, the particle filter algorithm becomes:

Particle filter algorithm for stochastic global optimization with

the LM method

1. Draw samples (particles) α
(0)
1 , . . . , α

(0)
M from an initial density µ0(x).

Set λ(0) = λ0 and t = 0.

2. Use [J̃j
T
J̃j +λ

(t)
j diag(J̃j

T
J̃j)](α

(t+1)
∗j −α(t)

j) = −J̃j
T
f̃(α

(t)
j) to compute

samples α
(t+1)
∗j for j = 1, . . . ,M.

15

3. Compute Hs(α
(t+1)
∗j) = (

2∗ǫ̃(α
(t+1)
∗j)

l)1/2 for j = 1, . . . ,M. Determine

λ
(t+1)
j .

4. Set y(t+1) = min
j=1,...,M

Hs(α
(t+1)
∗j).

5. Compute the weights w∗
j (α

(t+1)
∗j) = 1√

2πσ2
exp(− (y(t+1)−Hs(α

(t+1)
∗j))2

2∗σ2),

where σ2 = 1
NE

for j = 1, . . . ,M.

6. Compute the normalized weights wj(α
(t+1)
∗j) =

w∗

j
PM

l=1 w∗

l

, for j = 1, . . . ,M.

7. Choose the estimate x̃t+1 = arg max
j=1...M

wj(α
(t+1)
∗j). Equivalently, we can

choose x̃t+1 = arg min
j=1,...,M

Hs(α
(t+1)
∗j).

8. If t + 1 is equal to a maximum allowed number of iterations tmax or
y(t+1) satisfies a stopping criterion, terminate the algorithm. Else,
proceed to next step.

9. Resample from (α
(t+1)
∗1 , . . . , α

(t+1)
∗M) with probability proportional to

wj, j = 1, . . . ,M to produce new samples (α
(t+1)
1 , . . . , α

(t+1)
M) at time

t+ 1.

10. Set t = t+ 1 and proceed to Step 2.

The algorithm described above allows one to allocate more particles in
areas of the parameter space which seem promising in an optimization sense.
A more careful inspection of the way the algorithm works reveals that there
are two issues that can prevent the algorithm above to improve on the naive
algorithm.

First, the particle filter algorithm can converge fast to a local minimum
that is not the best minimum that the optimization algorithm could have
reached starting from a set of initial conditions. This phenomenon, called
premature convergence, is well-known in the stochastic optimization litera-
ture, especially in the context of genetic algorithms [6]. To be more precise,
it is possible that early on in the iteration process one particle can domi-
nate in the resampling step, because it appears to perform better initially.
However, there may be other particles that would have performed better if
we allowed them to evolve for more iterations. Such particles can vanish
during the first few resampling steps because they have low weights. One

16

way to avoid premature convergence in the context of the particle filter is to
allow a few iterations without enforcing the filtering and resampling step so
that the different particles can realize their potential to reach a minimum.
After those iterations, the filtering and resampling steps can allocate more
particles in the areas of the parameter space which are more promising.

Second, in the particle filter algorithm above, all the offspring particles
are assigned the value of the LM parameter λ of their parent. This means
that all the offspring particles will evolve to the same new parameter vector.
The only difference between the offspring particles will be with regards to
their error value at the next step. This difference comes from the randomness
in the Monte Carlo sampling. This may not be enough to give the particle
filter an appreciable advantage as far as the convergence speed is concerned.

In our numerical studies, which will be presented in Section 4, we did
not encounter the problem of premature convergence. However, as will be
shown, the particle filter in its generic form did not achieve consistently
a speedup of the convergence compared to the naive global optimization
algorithm. Recall that the main advantage of the particle filter algorithm
is the flexibility provided by the filtering and resampling steps. We exploit
this flexibility to construct a modified particle filter algorithm which can
increase appreciably the speed of convergence. In some cases, the modified
particle filter also achieved a smaller value of the error (compared to the
naive algorithm) for a fixed maximum number of iterations.

3.2.1 Modified particle filter algorithm

To motivate the modified particle filter algorithm we have to examine more
carefully the way that the LM algorithm works. As mentioned in Section
3.1.1, the LM algorithm is a hybrid of the steepest descent method and
Newton’s method. In particular, depending on the value of the parameter
λ, the LM algorithm can be brought closer to steepest descent or Newton’s
method. For large values of λ it is close to the steepest descent method, while
for λ = 0 it reduces to Newton’s method (assuming that the Jacobian is not
singular). While the steepest descent method has guaranteed convergence
the rate of convergence can be slow. On the other hand, Newton’s method
has a higher speed of convergence but whether it will converge or not is
sensitive on the choice of initial conditions.

The resampling step of the particle filter produces more copies (offspring)
of a good, in an optimization sense, particle. The offspring particles inherit
all the properties of the parent particle and, in particular, the same value
for the parameter λ, say λP . However, nothing prevents us from assigning

17

different values of λ to the different offspring of the same particle. After
all, λ is an adaptive parameter of the algorithm which should be chosen
so as to accelerate convergence. The resampling step of the particle filter
allows us to batch the offspring of a particle according to their ancestry.
Then, we can assign different values to the offspring within a batch. Let

(α
(t+1)
1 , . . . , α

(t+1)
B) be the batch of offspring of a good particle. We can

assign to the i-th element of this batch value λ
(t+1)
i , where i = 1, . . . , B.

A value λ
(t+1)
i > λP means that the LM algorithm for the i-th offspring

particle will behave closer to the steepest descent method than the parent

particle. Similarly, a value λ
(t+1)
i < λP means that the LM algorithm for

the i-th offspring particle will behave closer to Newton’s method than the
parent particle. Since our goal is to accelerate convergence, i.e. bring the
LM algorithm closer to Newton’s method, we chose to assign the values of λ

to the offspring within a batch in the following manner: λ
(t+1)
i = λP /γ

i−1,

with γ > 1. This means that λ
(t+1)
1 = λP and λ

(t+1)
B = λP /γ

B−1. For batches
containing many offspring (large B), this procedure allows us to explore
fast the neighborhood of a good particle. Note that such an exploration is
impossible in the context of the naive global optimization algorithm without
increasing tremendously the cost of the algorithm. On the other hand, the
cost of this exploration is negligible in the particle filter framework. A
good choice for γ can be found based on knowledge of how the parameter λ
influences the behavior of the LM algorithm, in particular the determinant

and condition number of the matrix J̃j
T
J̃j + λ

(t)
j diag(J̃j

T
J̃j). The quality

of the results appears to be pretty robust to the value of γ. Also, it is
encouraging that for all the numerical examples we could use the same value
of γ and obtain equally good results.

4 Numerical results

We have applied the particle filter algorithm (both in its generic and mod-
ified forms) to four examples of varying difficulty. The first two examples
involve the estimation of the parameters of a known exponential density.
The last two involve the estimation of the parameters of an exponential
density so as to match certain moments of an unknown density.

For all four examples the exponential density whose parameters are to
be estimated is given by

p(x, α) =
exp(−〈α,ψ(x)〉)

Z(α)
,

18

where α = (α1, . . . , α24) and x = (x1, . . . , x4). The potential function vector
ψ(x) is defined as

ψ1−4(x) =xi, for i = 1, . . . , 4

ψ5−14(x) =xixj, for i, j = 1, . . . , 4 and j ≥ i

ψ15−24(x) =x2
ix

2
j , for i, j = 1, . . . , 4 and j ≥ i

(16)

In addition, to ensure the integrability of p(x, α), we enforce α5, α9, α12, α14

and α15, . . . , α24 to be nonnegative.

4.1 Independent variables with known density

For the first example, we chose α5 = α9 = α12 = α14 = 0.5, α15 = α19 =
α22 = α24 = 1 and the rest of coefficients were set equal to zero. With this
choice p(x) =

∏4
i=1 exp(−0.5x2

i −x4
i)/Z where Z =

∏4
i=1

∫ ∞

−∞
exp(−0.5x2

i −
x4

i)dxi is the normalization constant. We used N = 106 samples of this
density to compute the moments Ti = 1

N

∑N
j=1 ψk(xj) for k = 1, . . . , 24.

Before computing the moments, we normalized the samples by their em-
pirical mean µi, i = 1, . . . , 4, and standard deviation, σi, i = 1, . . . , 4, i.e.
xij → (xij − µi)/σi, for j = 1, . . . , N. The goal was to estimate the pa-
rameters of an exponential density so that they reproduced the moments
Ti. For the naive global optimization, the generic particle filter optimization
algorithm and the modified particle filter optimization algorithm we used
NE = 104 samples to estimate all the necessary expectation values. The
number of particles was set to M = 100. The initial condition for the j-th
particle (j = 1, . . . ,M) was chosen as

α
(0)
j5 = .5(1 − ηj1), α

(0)
j9 = .5(1 − ηj2),

α
(0)
j12 = .5(1 − ηj3), α

(0)
j14 = .5(1 − ηj4),

α
(0)
j15 = 1 − .5ηj5, α

(0)
j19 = 1 − .5ηj6,

α
(0)
j22 = 1 − .5ηj7, α

(0)
j24 = 1 − .5ηj8,

where ηj1, . . . , ηj8 are independent random variables uniformly distributed
in [0, 1). The rest of the components of α are set initially to zero.

For the modified particle filter algorithm, we set the parameter γ, which
determines the value of λ for the different particles in a batch, to the value
γ = 1.1 (see discussion at the end of Section 3.2.1). We note that the same
value of the parameter γ was used for all four examples with equal success.
The choice for γ was not optimized, i.e., it was not found by trial and error.

19

0 5 10 15 20
Iterations

0

0.2

0.4

0.6

0.8

1

E
rr

or

No PF
PF
PFB gamma=1.1

Figure 1: First example: Independent variables with known density (see text
for details). Evolution of the average error per moment as a function of LM
iterations. No PF corresponds to the naive global optimization algorithm,
PF corresponds to the generic particle filter optimization algorithm and PFB
to the modified particle filter optimization algorithm.

As stated before, it can be chosen based on knowledge of how the parameter
λ influences the behavior of the LM algorithm, in particular the determinant

and condition number of the matrix J̃j
T
J̃j + λ

(t)
j diag(J̃j

T
J̃j).

The most severe test for the particle filter and modified particle filter
algorithms is to compare their error to the error of the naive global op-
timization algorithm when all three algorithms are started from identical
initial conditions for the particles. In addition, to eliminate possible dis-
crepancies in the algorithms’ behavior due only to the variability inherent
in Monte Carlo sampling we performed for each algorithm 10 different ex-
periments, each one with 100 particles, with identical initial conditions and
averaged the results over the 10 experiments. Figure 1 presents the evolution
of the average error per moment (2∗ǫ̃(α)

24)1/2 as a function of LM iterations
for the three algorithms. The error bars denote the standard deviation of
the average over the 10 experiments. It is obvious from the error bars that
there is not much variability between the different experiments. After a few
iterations the standard deviation becomes an order of magnitude smaller
than the average.

While all three algorithms converge to approximately the same value for
the error, which is practically equal to the Monte Carlo error, the speed at
which they do so is very different. The naive algorithm converges faster than
the generic particle filter algorithm. As we discussed before (end of Section

20

3.2), this can happen. The modified particle filter algorithm significantly
outperforms both the naive algorithm and the generic particle filter. In
particular, the modified algorithm has practically converged by iteration 5
while the other two algorithms need about 15 iterations to reduce the error
to the same value. This is an increase in the convergence speed by more
than 60%.

It is important to discuss the computational cost at which this conver-
gence speedup is achieved. The difference between both versions of the
particle filter algorithm and the naive algorithm is the addition of the filter-
ing and resampling steps. However, this cost is negligible compared to the
Monte Carlo sampling computational cost which is needed to setup the LM
algorithm and compute the error at each step. For all the examples studied
here, the computational cost to perform a fixed number of iterations with
the modified particle filter algorithm is about 2% more than the cost of the
naive algorithm. Given the increase of the convergence speed this extra cost
is well worthwhile. In particular, the extra cost of the modified particle fil-
ter algorithm is less than the cost of adding 2% more particles in the naive
algorithm. For this example this would mean adding 2 more particles to the
naive algorithm.

4.2 Dependent variables with known density

For the second example, we chose α5 = α9 = α12 = α14 = 0.5, α15 =
. . . = α24 = 1 and the rest of coefficients were set equal to zero. Thus, the
random variables x1, . . . , x4 are dependent. Figure 2 presents the evolution
of the average error per moment (2∗ǫ̃(α)

24)1/2 as a function of LM iterations
for the three algorithms. The naive algorithm and the generic particle filter
have comparable behavior while the modified particle algorithm outperforms
both of them significantly. As in the first example, the error for the modified
particle algorithm has practically converged by iteration 5 to a value com-
parable to the Monte Carlo sampling error while the other two algorithms
need almost 20 iterations to do so. Thus, the convergence speedup of the
modified particle algorithm is more than 70%.

4.3 Sinusoidal signal with additive noise

For the third and fourth examples we used the algorithms to estimate an ex-
ponential density that reproduces the moments Ti = 1

N

∑N
j=1 ψk(xj) for k =

1, . . . , 24 of an unknown density. The examples are motivated by training
neural networks to represent time series [1]. We will examine two cases

21

0 5 10 15 20
Iterations

0.2

0.4

0.6

0.8

1

E
rr

or

No PF
PF
PFB gamma=1.1

Figure 2: Second example: Dependent variables with known density (see
text for details). Evolution of the average error per moment as a function
of LM iterations. No PF corresponds to the naive global optimization algo-
rithm, PF corresponds to the generic particle filter optimization algorithm
and PFB to the modified particle filter optimization algorithm.

of a signal corrupted by noise. In the third example we suppose that we
have samples from a signal u(t) = sin(2πt) + ηt where ηt is Gaussian white
noise. At any instant t, the noise ηt ∼ N(0, 1). In the fourth example we
suppose that we have samples from a signal u(t) = sin(2π(t + η)) where
η ∼ N(0, 0.1), i.e. a signal with a random phase. For both cases we assume
that the signal is given for t ∈ [−1, 1]. We expand the signal in Legendre
polynomials (which are orthogonal in [-1,1]) and keep only the first 4 terms
in the expansion. Since the signal is random, the coefficients of the expan-
sion are random. The random variables x1, . . . , x4 are the coefficients of
the first 4 Legendre polynomials. Exactly because the signal is a random
function, we do not expect the expansion in Legendre polynomials to be
an accurate one. The coefficients of the expansion are expected to fluctu-
ate considerably from sample to sample. However, our purpose is to see
how well an exponential density can represent the unknown density of the
Legendre expansion coefficients.

The parameters in the implementation of all three algorithms are the
same as in the first two examples, except for the initial conditions. The

22

0 5 10 15 20
Iterations

0.05

0.1

0.15

0.2

E
rr

or

No PF
PF
PFB gamma=1.1

Figure 3: Third example: Sinusoidal signal with additive noise (see text for
details). Evolution of the average error per moment as a function of LM
iterations. No PF corresponds to the naive global optimization algorithm,
PF corresponds to the generic particle filter optimization algorithm and PFB
to the modified particle filter optimization algorithm.

initial condition for the j-th particle (j = 1, . . . ,M) was chosen as

α
(0)
j5 = 1 − ηj1, α

(0)
j9 = 1 − ηj2,

α
(0)
j12 = 1 − ηj3, α

(0)
j14 = 1 − ηj4,

α
(0)
j15 = 1 − ηj5, α

(0)
j19 = 1 − ηj6,

α
(0)
j22 = 1 − ηj7, α

(0)
j24 = 1 − ηj8,

where ηj1, . . . , ηj8 are independent random variables uniformly distributed
in [0, 1). The rest of the components of α are set initially to zero.

Figure 3 presents the evolution of the average error per moment (2∗ǫ̃(α)
24)1/2

as a function of LM iterations for the three algorithms. We see that the naive
algorithm and the generic particle filter algorithm have comparable behav-
ior. However, after 20 iterations, both of them have reduced the error to a
value that is still about 30% larger than the error of the modified particle
filter algorithm. The modified particle filter algorithm reduces the error to
about 1.5 times the Monte Carlo error.

4.4 Sinusoidal signal with random phase

As mentioned in the preceding section, we suppose that we have samples
from a random phase signal u(t) = sin(2π(t+ η)) where η ∼ N(0, 0.1), with

23

0 5 10 15 20
Iterations

0.1

0.2

0.3

0.4

E
rr

or

No PF
PF
PFB gamma=1.1

Figure 4: Fourth example: Sinusoidal signal with random phase (see text
for details). Evolution of the average error per moment as a function of LM
iterations. No PF corresponds to the naive global optimization algorithm,
PF corresponds to the generic particle filter optimization algorithm and PFB
to the modified particle filter optimization algorithm.

t ∈ [−1, 1]. As before, we expand the signal in Legendre polynomials and
keep only the first 4 terms in the expansion. Since the signal is random, the
coefficients of the expansion are random. The random variables x1, . . . , x4

are the coefficients of the first 4 Legendre polynomials. The initial conditions
for the particles are assigned in the same manner as in the third example.

The fourth example is quite more challenging than the third example.
In particular, dependencies among the coefficients of the expansion, i.e. the
random variables x1, . . . , x4, render the Jacobian J singular. This means
that the optimization problem admits nonzero solutions for the error vector
fk(α) = Eα[ψk(x)] − 1

N

∑N
j=1 ψk(xj), k = 1, . . . , 24. Even though the ma-

trix J̃j
T
J̃j +λ

(t)
j diag(J̃j

T
J̃j) used in the calculation of the parameter vector

increment is regularized, the best one can hope for is to keep reducing the
error until the Jacobian becomes zero to within the arithmetic precision used
(10−16 in our case).

Figure 4 presents the evolution of the average error per moment (2∗ǫ̃(α)
24)1/2

as a function of LM iterations for the three algorithms. The modified par-
ticle filter algorithm has practically converged by the 12th iteration with
an error value that is about 30% less than the error value achieved by the
naive algorithm and the generic particle filter. However, the error value of
the modified particle filter is still about 8 times larger than the Monte Carlo

24

error. This is because, as we mentioned in the previous paragraph, this op-
timization problem admits nonzero solutions for the error vector f(α). Still,
the convergence speedup of the modified particle filter algorithm for this
example is about 40%.

5 Discussion

We have presented a reformulation of stochastic global optimization as a
filtering problem. In particular we have reformulated stochastic global op-
timization using a particle filter. This choice was based on the simplicity
of implementation and flexibility of particle filters. We have exploited this
flexibility to construct a modified particle filter filter that converges faster
than naive global optimization. We have demonstrated the efficiency of the
approach with several examples of varying difficulty.

The flexibility allowed by the particle filter can be used to construct ad-
ditional modified particle filters. For example, we can use ranking selection
[6] in the resampling step instead of proportionate selection. The advantage
of ranking selection compared to proportionate selection is that it establishes
a constant pressure of selecting the particle with the largest weight. This
can be helpful when there exist several particles with almost equally large
weights. In this case, proportionate selection may not be able (for a finite
number of particles) to sample the particle with the largest weight. Another
possible modification of the particle filter to enhance the exploration of the
parameter space can come from the use of recombination procedures between
particles after the resampling step has been performed. The motivation for
such a procedure comes from genetic algorithms [6], where recombination
constitutes probably the most important feature of such algorithms. How-
ever, there is no unique way to perform recombination and this can also be
the weak point of genetic algorithms. Another modification of the parti-
cle filter that we have already mentioned is to allow the particles to evolve
for a few iterations without enforcing the observation and resampling steps.
This allows the particles to exhibit their potential as far as locating a local
minimum is concerned. After the first few iterations we can start enforcing
the observation and resampling steps to allocate more particles in the more
promising areas of the parameter space. Such a modification can help avoid
the potential problem of premature convergence (see also the discussion in
Section 3.2). Finally, we note that the particle filter algorithm can be used
also to randomize a deterministic global optimization algorithm [20].

We hope that the algorithm proposed in this work will help in tackling

25

the multitude of optimization problems originating from real-world applica-
tions.

Acknowledgements

I am grateful to Dr. V. Maroulas and Dr. J. Weare for many helpful
discussions and comments and to M. Sendak for inspiration.

References

[1] Bishop C., Neural Networks for Pattern Recognition, Oxford University
Press, 1995.

[2] Brown L., Fundamentals of statistical exponential families, Institute of
Mathematical Statistics, Hayward, CA, 1986.

[3] Del Moral P., Feynman-Kac Formulae - Genealogical and Interacting
Particle Systems with Applications, Springer NY, 2004.

[4] Crisan D. and Doucet A. A survey of convergence results on particle
filter methods for practitioners, IEEE Trans. Sign. Proc. 50(3) (2002),
pp. 736-746.

[5] Doucet A., de Freitas N. and Gordon N. (eds.) , Sequential Monte Carlo
Methods in Practice, Springer NY, 2001.

[6] Eiben A.E. and Smith J.E., Introduction to Evolutionary Computing,
Springer-Verlag, 2003.

[7] Gelman A., Method of moments using Monte Carlo simulation, J.
Comp. Graph. Stat. 4(1) (1995) pp. 36-54.

[8] Gordon N.J., Salmond D.J. and Smith A.F.M., Novel approach to
nonlinear/non-Gaussian Bayesian state estimation, Proc. Inst. Elect.
Eng. F 140(2) (1993) pp. 107-113.

[9] Horst R., Pardalos P.M. and Thoai N.V., Introduction to Global Opti-
mization, Second Edition, Kluwer Academic Publishers, 2000.

[10] Wainwright M.J. and Jordan M.I., Graphical Models, Exponential Fam-
ilies, and Variational Inference, Found. Trend. Mach. Learn, 1(12)
(2008) pp 1-305.

26

[11] Lehmann E.L., Theory of Point Estimation, Wiley, NY, 1983.

[12] Kolokoltsov V.N. and Maslov V.P., Idempotent Analysis and its appli-
cations, Kluwer Academic Publishers, 1997.

[13] Kushner H.J and Yin G.G., Stochastic Approximation and Recursive
Algorithms and Applications, Second Edition, Springer NY, 2003.

[14] LeCun Y., Bottou L., Orr G. and Muller K., Efficient BackProp, in
Orr, G. and Muller K. (Eds), Neural Networks: Tricks of the trade,
Springer, 1998.

[15] Liu J.S., Monte Carlo Strategies in Scientific Computing, Springer NY,
2001.

[16] Nocedal J. and Wright S.J., Numerical Optimization, Second Edition,
Springer NY, 2006.

[17] Papadimitriou C.H. and Steiglitz K., Combinatorial Optimization: Al-
gorithms and Complexity, Prentice Hall, Englewood Cliffs, NJ, 1982.

[18] Stinis P., A maximum likelihood algorithm for the estimation and renor-
malization of exponential densities, J. Comp. Phys. 208 (2005) pp. 691-
703.

[19] Zhigljavsky A. and Žilinskas A., Stochastic Global Optimization,
Springer NY, 2008.

[20] Zhou E., Fu M.C. and Marcus S.I. , A particle filtering framework for
randomized optimization algorithms, S. J. Mason, R. R. Hill, L. Mönch,
O. Rose, T. Jefferson, J. W. Fowler eds., IEEE Proceedings of the 2008
Winter Simulation Conference pp. 647-654.

27

	Stochastic local and global optimization
	Filtering reformulation of stochastic optimization
	Particle filter reformulation of stochastic global optimization

	Application to parametric exponential density estimation
	Parametric exponential density estimation as an optimization problem
	The Levenberg-Marquardt algorithm

	Reformulation of the density estimation optimization problem as a filtering problem
	Modified particle filter algorithm

	Numerical results
	Independent variables with known density
	Dependent variables with known density
	Sinusoidal signal with additive noise
	Sinusoidal signal with random phase

	Discussion

