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Abstract

This article considers the optimal estimation of the state of a dynamic observ-
able using a mobile sensor. The main goal is to compute a sensor trajectory which
minimizes the estimation error over a given time horizon taking into account the un-
certainty in the observable dynamics and its sensing and respecting the constraints of
the workspace. The main contribution is a methodology for handling arbitrary dy-
namics, noise models and environment constraints in a global optimization framework.
It is based on sequential Monte Carlo methods and sampling-based motion planning.
Three variance reduction techniques—utility sampling, shuffling, and pruning—based on
importance sampling, are proposed to speed-up convergence. The developed framework
is applied to two typical scenarios: a simple vehicle operating in a planar polygonal
obstacle environment; a simulated helicopter searching for a moving target in a 3-D
terrain.

1 Introduction

Consider a mobile sensor (a vehicle) estimating the state of an observable (a target)
with uncertain dynamics through noisy measurements. The vehicle and target motions
are constrained due to their natural kinematics and dynamics and due to obstacles
in the environment. The task is to compute an open-loop vehicle trajectory over a
given time horizon resulting in a target state estimate with lowest uncertainty. Such
a capability arises, for instance, in the context for time-critical surveillance or search-
and-rescue missions.

The problem is formally defined through a hidden Markov model (HMM) of a
stochastic process {(Xg, Yx) }o<k<n where X}, denotes the hidden target state and Y}
denotes the observation at the k-th time epoch. The process evolution is studied over
a horizon of N epochs. The respective state and observation realizations are denoted
by xr € X CR" and yr € Y C R", where X and ) are vector spaces. The HMM is
defined according to

Xk+1 = f(ka Qk)7 (1&)
Yi = 9(Xk, Vs i), (1b)
where Q and Vj, are i.i.d. noise terms and p € M denotes the vehicle state L at time k.

The manifold M need not be a vector space. A trajectory of states between two epochs
7 and j, where 0 S 7 < ] S N, is denoted by Li:j, i.e. Lizg = {ZL‘i,l‘i_t,_l, ...,xj_l,mj}.

La state denotes both the configuration and velocity of the vehicle (i.e. “vehicle state”) or the target (i.e.
“target state”); when used simply as “state” its meaning will be clear from the context.



The vehicle trajectory po:n is subject to dynamical constraints, e.g. arising from
discretized Euler-Lagrange equations of motion, expressed through the equality hq :

Mx M — R™
ha(pr, pr+1) =0, for all 0 < k < N. (2)

In addition the vehicle must avoid obstacles and is subject to velocity and actuator
bounds, jointly encoded through the inequality constraints h. : M — R"¢

he(ur) >0, forall 0 <k < N. (3)

A trajectory that satisfies the constraints (2) and (3) is termed feasible.

The functions hg and h. are typically non-convexr and in some cases non-smooth.
On one hand, complicated nonlinear dynamics and obstacles induce multiple homotopy
classes of vehicle trajectories that preclude convexity. On the other, the function (2)
can have singularities (and hence be not everywhere smooth) when the dynamics is
underactuated or nonholonomic (Choset et al., 2005; LaValle, 2006). In addition,
the distance-to-obstacle function (encoded in (3)) might not be differentiable e.g. at
sharp obstacle corners, requiring either ad-hoc smoothing or special non-smooth tech-
niques (Clarke et al., 1998) such as generalized gradients (Choset et al., 2005).

The vehicle computes numerically the target state distribution, also referred to as
the filtering distribution, denoted by g (dz|y1:k; po:k)dx := P(Xy € dx|y1:x; po:k) with
respect to some standard measure dx assuming the vehicle has moved along trajectory
o and obtained a sequence of measurements ..

Objective. The goal is to control the vehicle to obtain a high-quality estimate of
the target state during the future N epochs. Typically, only a subset of the target
coordinates are of interest. An appropriately chosen function ¢ : X — R"/z, where
n, < ng, selects and weighs a combination of these coordinates. For instance, ¢ can
pick out only the position of a moving target and ignore its velocity and heading. The
optimization problem is to compute the optimal future vehicle trajectory pi.x which
minimizes the target estimate uncertainty defined through

HiN = arg min E {|lp(Xn) — /Sﬂ(x)WN(fCIYl:N;Ml:N)diCHQ]a (4)

subject to the dynamics (2) and constraints (3). The expectation in (4) is taken over
all future realization of the states Xo.n and the measurements Y;.n while wn is the
posterior density after filtering these measurements given (1).

The cost function in (4) is equivalent to the trace of the covariance of ¢(Xn).
While it is possible to use other measures such as entropy or covariance determinant,
this metric is chosen since its value can be interpreted in meaningful units (e.g. see Mi-
haylova et al., 2003a). For instance, the special case p(z) = M2z for some weighing
matrix M corresponds to a well-established tolerance-weighted error or L-optimal de-
sign (de Geeter et al., 1998).

Simple Example. These definitions can be illustrated with a simple example of
a target modeled as a unit mass particle moving in the plain. A vehicle with fixed
constant velocity v € R? takes relative position measurements and must avoid a circular
obstacle with center o € R? and radius d. In this situation we have X =) = M = R?
with motion function f(z,w) = x + w, observation function g(z,v;u) = z — p+ v,
and vehicle dynamics and constraints given by hg(pk, fik+1) = pk+1 — pk — v and
he(p) = ||p — o|| — d, respectively. The noise terms w and v are realizations of e.g.
white random processes. Setting ¢(x) = z is then equivalent to minimizing the sum
of the variances of the two planar coordinates. Therefore, if z were measured in m
(meters) then the square root of the right hand side of (4) is also in m which is
convenient for establishing meaningful tolerances.



Related Work. The optimization (4) corresponds to the optimal sensor scheduling
problem (Tremois and Le Cadre, 1999; Singh et al., 2007) which is of central importance
in the target tracking community. It is also highly relevant to the problem of active
sensing studied in robotics (Thrun et al., 2005; Grocholsky et al., 2003; Mihaylova et al.,
2003a) where the vehicle is estimating its own state (Paris and Le Cadre, 2002; He et al.,
2008) and in some cases refining its knowledge about the environment (Stachniss et al.,
2005; Sim and Roy, 2005).

One approach is to solve the problem approximately by discretizing the vehicle and
target state spaces. Such techniques, e.g. based on regular grids (e.g. Chung and
Burdick, 2007) or shaping functions (Lavis et al., 2008), are too restrictive when non-
trivial dynamics and sensing are considered. They are more appropriate for higher-
level decision making. For instance, policy search in information spaces (LaValle,
2006) or Markov decision process (MDP)-based search (e.g. (Bethke et al., 2008)) are
typically based on such representations. We emphasize that our main interest is in high-
dimensional problems dominated by fast nonlinear and underactuated dynamics and
sensing. In this context techniques exploiting convexity (resp. sub-modularity (Krause
and Guestrin, 2007; Hollinger et al., 2009)) are not suitable since such approximations
are either too coarse or will violate the dynamics and result in solutions that the original
system cannot realistically execute.

Most existing techniques, beyond discrete methods, have one or more of the follow-
ing limitations: they are based on models with linear/Gaussian structure; are limited
to myopic one-step optimal decision making; the state space is unconstrained (i.e. no
constraints of the form (3) are considered). Several recent works have addressed some
of these issues but not all. For instance, simulation-based stochastic gradient optimiza-
tion is proposed by (Singh et al., 2007) in order to handle arbitrary motion and sensor
models. The resulting method is provably convergent and exploits problem structure
through control variates to reduce variance. A related approach (Martinez-Cantin
et al., 2009) aimed at on-line active sensing employs Bayesian optimization, i.e. using
Gaussian process cost function approximation to speedup the search. Several recent
works with application to unmanned aerial vehicles (UAVs) also address some of the
listed limitations but are still restricted to either stationary targets (Tisdale et al.,
2009), one-step planning (Cole et al., 2008; Hoffmann and Tomlin, 2009; Bryson and
Sukkarieh, 2009), or unconstrained scenarios (Ryan, 2008; Geyer, 2008).

Overview of Contributions and Approach. The distinctive feature of this
work is the treatment of the constraints (2)-(3) in the optimization (4). In particular,
gradient-based optimization as in (Paris and Le Cadre, 2002; Mihaylova et al., 2003b;
Singh et al., 2007) is not suitable unless a good starting guess is chosen since the
constraints impose many local minima. In addition, special differentiation (Clarke
et al., 1998) is required to guarantee convergence due to the non-smooth nature of the
constraints.

To overcome these issues we instead employ a methodology based on global explo-
ration of the solution space of vehicle trajectories. This is achieved through a random
tree of feasible trajectories. Such a tree is constructed following ideas from sampling-
based motion planning (LaValle, 2006). The key property of motion planning trees
relevant to this work is that the tree is guaranteed to reach asymptotically close to any
reachable state in the state space as the algorithm iterates. Yet, the problem (4) is
more difficult than a typical motion planning problem because the cost is based on un-
certainty that depends on the whole trajectory. In essence, the problem cannot be cast
as a graph or tree search typically employed in motion planning, i.e. to solve shortest
path problems, because the cost function (4) is not derived from a local metric and is
not additive over separate trajectory segments. Additional tools are necessary. The
solution proposed in this work is to perform stochastic optimization over a solution
space encoded through a dynamically adaptive trajectory tree.

The advantage of using a tree is that it provides a computationally efficient way to



encode multiple solution trajectories and to propagate probability distributions recur-
sively. While a uniformly random tree can asymptotically reach an optimal solution
this might be an infinitely slow process in practice. Therefore, as with most Monte
Carlo methods (Rubenstein and Kroese, 2008) it is essential to exploit problem struc-
ture in order to speed up the search. We employ three variance reduction techniques
to guide and accelerate the optimization:

1) The first, termed biased sampling, chooses tree nodes based on expected utility of
improving the target estimate in order to focus tree exploration into more “promising”
parts of the state space.

2) We then introduce a technique termed shuffling which randomly modifies the tree
structure in an attempt to lower the optimal cost. This is achieved by disconnecting a
subtree from its parent and connecting it to a different part of the tree. The tree parts
to be modified are chosen probabilistically.

3) The third technique introduced in the paper, termed randomized pruning, re-
moves existing nodes probabilistically according to their performance.

While biased sampling has been widely used to speed-up regular (i.e. determin-
istic) motion planning algorithms (Choset et al., 2005), pruning and shuffling have
not been previously employed in the context of sampling-based motion planning under
uncertainty. These proposed methods result in a significant computational speed-up
compared to a random baseline algorithm. Yet, currently, under general regularity
conditions and no additional assumptions about the structure of the HMM (1) and
constraints (2)-(3), formally only asymptotic convergence rates (i.e. as the number of
iterations tends to infinity) are possible. Nevertheless, there is a sound reason why the
combination of these three techniques is effective. A successful optimization method-
ology must address the exploration-exploitation trade-off paradigm (see e.g. Powell,
2007) and do so with computational efficiency by dynamically adjusting the search
space. The proposed optimization algorithm accomplishes that. In particular, the
basic random tree expansion achieves exploration of the state space. The biased sam-
pling and shuffling steps exploit information known a priori and collected during the
algorithm operation to focus the search in more promising parts of the state space.
Pruning is critical for maintaining a balance between the size and quality of the search
space in order to achieve computational efficiency. These properties are summarized
in the following table

l Technique [ Exploration [ Exploitation [ Comp. Efficiency ‘
Tree Ezpansion Vv
Biased Sampling Vv Vv
Shuffling vV Vv
Pruning Vv

and will be developed in detail in the paper.

Links to Evolutionary Computing. The resulting approach has close links
to evolutionary computing. In particular, biased sampling and pruning based on
an importance function correspond to selection from a “fitness” criteria employed in
genetic algorithms. Shuffling is related to cross-over and migration used in genetic
programming (Langdon and Poli, 2001) since a shuffle generates new trajectories by
combining existing segments. A standard genetic algorithm could be used to per-
form the optimization (4) but will have difficulty managing the constraints (2) and
(3) (e.g. see Michalewicz and Schoenauer, 1996). Standard techniques, i.e. penalty
functions or infeasible path rejection, employed in works such as (Xiao et al., 1997;
Vaidyanathan et al., 2001; Hocaoglu and Sanderson, 2001; Erinc and Carpin, 2007)
depend on parametrized paths and on cost function tuning parameters. It is not clear
how their performance scales as the environment becomes more cluttered. In contrast,
sampling-based trees are specifically developed to handle systems with complicated
dynamics and obstacle constraints. Therefore, this work employs a general motion tree
to automatically encode feasible candidate paths and avoid problem-specific parameter



tuning. The stochastic optimization then amounts to dynamically adapting the tree
structure towards converging to an optimal trajectory. While shuffling and pruning
might seem akin to standard genetic operation, there is an important distinction—they
are designed to operate over a “population” encoded as a tree of trajectories rather
than as separate paths as in a standard genetic algorithm. In that sense the pro-
posed techniques are unique and make a bridge between evolutionary algorithms and
randomized motion planning methods.

2 An Example Scenario
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Figure 1: A scenario with a vehicle (depicted as a small helicopter) at state ug € M and a target with
initial distribution o diffusing north. Both target and vehicle avoid obstacles denoted O;. The set of

possible target motions is approximated by L sampled trajectories X(():ZJ)\, for £ = 1,..., L. The figure shows
the sampled states (particles) at the beginning k = 0, at two intermediate times 0 < k1 < k2 < N, and
at the horizon kK = N. We seek to find the vehicle trajectory pug., which minimizes the expected target
state estimate uncertainty. The vehicle sensor typically has a small field-of-view (FOV) relative to the
environment size.

Consider a scenario depicted in Fig. 1. The vehicle and target operate in a workspace
(i.e. an environment) denoted by W, where W = R? or W = R* (Latombe, 1991).
The workspace contains a number of obstacles denoted by Oq, ..., Oy, C W with which
the vehicle must not collide.

The vehicle state is defined as p = (r,v) € C x R™ consisting of its configuration
r € C and velocity v € R™. C is the vehicle configuration space describing e.g. the
position, orientation, and joint angles of the system. Assume that the vehicle occupies
a region A(r) C W and that the function prox(A4;,.42) returns the closest Euclidean
distance between two sets A1 2 C W and is negative if they intersect. One of the
constraints defined in (3) is then to avoid obstacles, generally expressed as

hi((r,v)x) = min prox(A(ry), ©O;), for all 0 < k < N. (5)

The framework developed in the paper will be applied to two types of vehicles. The
first has a simple first order model and operates in a polygonal obstacle environment
(i.e. dim(W)=2)-a setting suitable for measuring the algorithm performance compared
to an idealized scenario. The second scenario is based on a low-flying underactuated
UAV operating in a mountainous terrain in 3-D (i.e. dim()V)=3)). The simpler model
is presented next while the helicopter application will be developed in §7.2.



A simple vehicle. Consider a point mass vehicle moving in the plane. Its state
space is M = R? x R? with state u = (r,v) consisting of the position r := (r,,r,) € R?
and velocity v := (vs,vy) € R%. Tt evolves according to the simple dynamics

Tk+1 = Tk + TUk, (6)

which is encoded by the function hq defined in (2). The constant 7 is the time-step, i.e.
the sampling period, measured in seconds. The velocity vx can be directly controlled
but is bounded ||vk|| < vmax. For instance, in the scenario (Fig. 1) a bound of vmax =
8m/s is chosen to create a problem that can be solved optimally only by a particular
type of trajectory known in advance for a time horizon of 30 seconds.

Target dynamics. The target is modeled as a point mass on the ground with
position r = (r4,7y) € R?, velocity v = (vs,v,) € R? forming the state = (r,v) with
X =R*x R

The target dynamics is governed by a general control law including a proportional
term, such as arising from a goal attraction, a damping term in order to constrain
the target speed, and obstacle avoidance forcing. In addition, there is white noise
acceleration component §2 with standard deviations o, and o,. The model is

Tk4+1 = Tk + TUk,

0 —ko/dy
Vk41 = Vg + T (wk + Kp(rg — m) — Kavi + ko /i 0/ k } vk) , (7

wy, ~ Normal(0, diag(o2, 0’3)),

where 7 is the time-step; K, > 0 and K4 > 0 are potential and dissipative matrices,
respectively; k, > 0 is an obstacle steering scalar gain; r, € R? is a constant goal
location; dr = ||gk|| with gk := ro — ri, where 7, is the closest point on the obstacle
set. The model (7) corresponds to the function f defined in (1a).

Such a model is chosen in order to add realism to the target motion as if it were
executing an actual navigation task. The amount of knowledge of this task can be
tuned using the provided parameters. For instance, in the numerical scenarios studied
in the paper we use

K, = diag(0,0.03), Kq = diag(0,0.6), r, = (0,200),
ko =50, if |Bk| < 7/2, else ko =0,

where (i is angle between vy and gr. Assuming the target starts at the origin, the
dynamics would drive it North, avoiding obstacles if too close, diffusing in uncertain
directions to East or West, and finally ending up and staying around the boundary line
Ty = 200.

Sensor Model. The vehicle is equipped with sensors which provide relative range
and bearing to target, hence J) = R%. The target is observed only if its line of sight is
not obstructed by obstacles and if it falls within the sensing distance ds of the vehicle.
This is formally expressed through the target visibility area V(r') C W for given vehicle
position 7’ = (1}, 7,) € R? defined by

V') ={reWw]||r—7'|| <dsand b} ((r' + a(r —7'),)) >0, Ya € [0,1]}.

In order to define the sensor function (1b) for a target with position r = (ry,7y) first
define the perfect sensor function

[l — "Il
arctan((ry — ), (rs — %))

g™ ((r,v); (r',0") = ; (8)



This function is only valid if the target reading originated from its visibility region. In
addition, there is a small probability Py € [0, 1] of a false reading uniformly distributed
over the visibility region. The actual sensor function is then given by

o g*((r,v); (r',0") + %K reV(r')
g((r,v); (', v), V) = 0, TQV('I“I)
g ((rF,0); (7, 0), T ~UW(E)) if up < Py.

if up > Py

(9)

with noise V' := (V4, V) ~ Normal(0, diag(o3, 07)) where o4 and o}, define the range
and bearing standard deviations, respectively, and uy is a uniform sample from [0, 1].

Cost function. Finally, the vehicle is interested in minimizing the uncertainty in
the target position estimate. This is encoded by simply setting

w(x) = (ra,ry) € R?

when performing the optimization (4).

3 Problem Formulation

An alternative way to express the HMM (1) is through the known densities

X() ~ T, (10&)
X~ p(-| Xk-1), k>0 (10b)
Yie ~ q (| Xus pre)s k>0 (10c)

where mo is the initial distribution. Note that the expectation operator E [] used
throughout the paper is applied with respect to these densities, unless noted otherwise.
The filtering density employed in the computation of the cost (4) is then expressed
recursively (e.g. Robert and Casella, 2004) according to

T (e k) q(yx|z; pr) fp(x|xl)ﬁk—1($,|y1:k—1;,u1;k_1)d:v'
k 1:ky H1:k) — .
S alyklzs pe) [ p(@|2)me—1 (2 [y1m—1; pr:p—1)da’dzx

(11)

In addition, the tree optimization algorithm will require the definition of the prediction
density at time k + 4, for ¢ > 0, after receiving measurements only during the first k
epochs. It is denoted 7 and defined by

Thtilk (TY1k; paek) = /p(m|x/)ﬂ'k+i71\k($,‘y1:k;,Ufl:k)dml, (12)

with 7y, = 7. The estimate of ¢(Xn) after collecting a sequence of measurements

y1:% obtained from a vehicle trajectory ji1.x is denoted @y : y’“ x MF — R™ and
defined by

Dk (Yiw; k) = Elo(XN) | Y10 pax] = /Sa(l‘N)WN“g(fkljl;k;/L1;k)d$. (13)

The objective function in (4) or, equivalently, the expected uncertainty cost at time
N given a vehicle trajectory po.x, for k < N is denoted by Jy i : MF — R and defined
according to

Inik(pre) =B [[|o(Xn) = @np(YVieks paere) |1 %]
(14)
= / lp(xn) — ‘I’N\k(ylzk;M1:k)||2p(550:N,yl:k|u1:k)d$0:1vdy1:k-



The expectation over states and measurements in (14) is taken with respect to the
density p(zo:~, Y1:k|11:1) which, for Markov models in the form (10), can be decomposed
(see e.g. (Robert and Casella, 2004)) as

N k
p(@o:n, yrklpaw) = mo(wo) [ [ plwalwi) [ [ a(wilwis ma). (15)
i=1 i=1
The cost of a complete trajectory pi.n is denoted for brevity by J := Jy|n. The
goal (4) is then expressed in short as

pi.y = arg min J(p1n), (16)
H1:N

subject to the dynamics and constraints.

4 Sampling-based Approximation

The filtering densities (11) and (12) generally cannot be computed in closed form since
they are based on nonlinear /non-Gaussian models. Therefore, following (Singh et al.,
2007), we employ particle-based approximation using L delta distributions, placed at
state samples X,ij) € X with positive weight functions w,(j) (VF X MF S Ry e

L

(@Y paw) & Fr(@lyne; pe) == Y w0 (Y k)0 ) (@), (17)
j=1

where §, denotes the Dirac delta mass at point y.

A simple way to construct such a representation is to sample L independent trajec-
tory realizations {Xé:j]z}le using the prior (10a) and target motion model (10b) and
to compute the weights, for given measurements yi.; obtained at vehicle states p1.x,
according to

k
@ (yiws paow) o= [ [ awsl X175 ua), (18)
i=1
—(7)
(4) Wy

w!' = @ (19)

Doy Wy
so that the weights are normalized, i.e. Zle w,(c” = 1. This is equivalent to a sequen-

tial importance sampling (SIS) scheme with importance distribution mo (2o )IIF_1p(axi|z:—1).
Note that while more sophisticated sampling methods have been developed, e.g. that
additionally account for measurements to reduce variance (Doucet et al., 2001; Robert
and Casella, 2004), this work follows the basic choice for simplicity. Fig. 1 depicts a
subset of possible evolutions of such particles in the helicopter search scenario.

With this representation it is straightforward to show that (12) is approximated
simply according to

L
Thotilk (T Y1k H1:k) R T (T|Y1ns pa:k) = Zw,(j)(yhk; u1;k)5XI(€_£r)v(r). (20)
=1 '
The estimate (13) is then approximated by
L . .
DNk (Yriks 1) = P Y1k prk) = ZSD(X%))ﬁN\k(XI(\z)‘yI:MMl:k)~ (21)
j=1

Note that updating the cost along a vehicle trajectory has computational complex-
ity O(Lz) per time step. Yet, due to particle independence the computation can be
parallelized using special hardware up to a factor of O(L) and sped up significantly.



As the time N increases the approximation (21) degrades since the probability mass
becomes concentrated in a decreasing number of particles (Robert and Casella, 2004).
A standard remedy is to include a resampling step (Doucet et al., 2001) to redistribute
the samples equalizing the weights. While it is possible to perform sequential im-
portance resampling (SIR) in the proposed framework it is avoided for computational
reasons specific to the tree structure employed for uncertainty propagation. The draw-
back is that the method is limited to small time horizons, e.g. N < 30. The distinct
advantage though is that the simpler SIS scheme permits a computationally efficient
update of the density (17) and estimate (21) during optimization. The idea (described
in detail in the following sections) is that SIS can be implemented as a simple and fast
parallel weights rescaling in a dynamically changing tree of vehicle trajectories that
explores the solution space.

Finally, the error Jyj; is approximated through importance sampling of the inte-

grand in (14), i.e. by drawing (Xé:[])\,, Yl(i)) from p(xo:~, Y1:6|p1:%). It is natural to use

thei.i.d. state particles X é:ej)\, already sampled for the approximation of the density (17).
Measurement sequences Y1(:i> are then sampled by drawing Yi(é) ~ q(-|1X i(é); wi) for all
i =1,...,k. As long as the densities (10) can be directly sampled from, which is valid
for common models used in robotics (e.g. Thrun et al., 2005), then the approximation
simplifies to the Monte Carlo or the stochastic counterpart, i.e.

L
1 N
ST leX) = (Vs ) (22)

=1

Inie(pie) = Inp (pre) o=

]l

with J := J ~|~ denoting the approximate cost of a whole trajectory pi.n. The global
optimization algorithms developed in the paper will be based on the approximate esti-
mate (21) and cost (22), i.e. it will solve

fi5.n = arg min J (. )- (23)
HO:N

In this sense only an approximate solution will be obtained. Yet, by the law of large
numbers (Del Moral, 2004) fig.y will approach the true solution .y by increasing the
number of simulations L.

5 Random Tree Optimization

The nature of the constraints (2) and (3) renders gradient-based methods unsuitable
for solving (23). An alternative is to discretize the vehicle state space M, e.g. using
a grid and generate candidate paths by transitioning between adjacent cells. Such an
approach is generally limited to few dimensions, e.g. dim(M) < 3 and to systems with
very simple dynamics, e.g. an unconstrained point mass in the plane. This is due
to the exponential (both in state dimension and trajectory epochs) size of the search
space, also known as the curse of dimensionality.

In this paper we also employ tree-based search but unlike in standard discrete
search, the nodes of the tree are sampled from the original continuous space M and
the edges correspond to trajectories satisfying any given dynamics (2) and general con-
straints (3). Our approach is based on a recent methodology under active development
in the robotics community known as sampling-based motion planning which includes
the rapidly-exploring random tree (RRT) (LaValle, 2006) and the probabilistic roadmap
(PRM) (Choset et al., 2005). Unlike these motion planning algorithms though the
trees employed in this work are not expanded based on a “distance” metric between
nodes. Instead, the connections are made probabilistically, nodes and edges can be
added, swapped, or deleted during the algorithm operation. This section considers the
basic tree expansion that explores the state space, while §6 introduces the variance
reduction techniques that complete the overall approach.



[ Variable [ Type Element Description

kb integer > 0 time epoch index

ub dim(M)x1 vector | vehicle state at node

we L x L matrix weights Webj = w}(jb)(Yl(i)b;pO”b), for £,j =1...L
Jb scalar > 0 uncertainty cost Jb := JN‘kb(,MO_)b)

pb integer > 0 parent node index

Figure 2: Description of the elements of a node n® = (kb, u?, Wb, cb, Jb, P eT.

5.1 Tree Expansion

The set of nodes is denoted by A := N x M x RYXE x Ry x N . Each node is defined
by the tuple .
n=(k,u,W,J,p) €N,

consisting of: the epoch index 0 < k < N; vehicle state u; particle weights matrix
W providing a convenient way to compute the density 7; target state estimate uncer-
tainty cost J > 0; tree parent index p. Nodes and their sub-elements are indexed by
superscript, i.e. 7 has state u® and its parent node is n”a. The root of the tree that
contains the starting vehicle state is denoted n° = (0, po, W°, jo, -), where the matrix
elements Weoj =1/L for all £,j = 1,...,L. A trajectory between two nodes n® and n°
is denoted p®? and a state at time k along this trajectory is denoted pf~° where
E* < k< K.

A tree T C N is a set of nodes connected by feasible trajectories. The tree structure
guarantees that there is a unique trajectory leading from the root to each node n* € N/
which is denoted 7% . Overview of the elements comprising each node is given in
Fig. 2. Their exact computation is detailed next.

A tree is constructed by assuming that a local controller is available (LaValle, 2006)
that attempts to drive the vehicle between two given nodes n® and 7°. For instance,
if the states u® and p® were close enough and no obstacles between them were present
then a trajectory ,u“ﬁb is produced, otherwise the connection fails. Such a controller
is abstractly represented by the function Connect, i.e.

a—b :
Connect(na,nb) N { p®7?, if path found

0, otherwise. (24)

The tree is constructed by sampling and connecting nodes. Assume that a function
Sample is available which returns a new node, i.e.

nb = Sample(). (25)

The default choice is to sample (state,time) pairs (u, k) uniformly from M x {1,..., N}
and discard samples that violate the constraints (3), e.g. that lie inside obstacles. Next
define the set 7% C T of all existing tree nodes for which a feasible trajectory to the
newly sampled node can be found, i.e.

77" ={n €T | Connect(n,n") # 0}.

One of these nodes denoted n* € T? is selected uniformly at random to become the
parent of nb linked with trajectory u®~?, i.e. pb = a. Fig. 3 illustrates the construction.

After a new node 7° is added to the tree, the target filtering density # (20) is
propagated along the newly added trajectory segment p®~° for all sampled target
paths X ]gi): w» Dy simulating measurements

Y qCIX i), for k= KR (26)

to the resulting weights for each measurement sequence, i.e. W}’j = w](jb) (Yk(;Z ), uo=?),

for all £ = 1...L. A row in the matrix W?, i.e. W¢ for any 1 < £ < L corresponds
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sampled node

a) a tree 7 and a newly sampled node 1" b) connecting 7° to the tree

Figure 3: A tree expansion step implemented by Expand (§5.1): a) a node n® is sampled; b) it is then
connected to a randomly chosen node n® € T

where w,ib is defined in (18). The weights are computed incrementally using the parent

weights W, through

kb
Webj = Wy - Ugs, where Uy; := H q(Yk(Z)|X,(j);uﬁ_'b), (27a)
k=ka
b Wi,
Zj:l WZj

The error (22) of the complete trajectory u°~?, denoted by J®, becomes

L L
T = T (°70) = Mle(X9) = S Whe(x )17 (28)

Jj=1

Note again that Jb represents the uncertainty measure at the end of the time horizon N
but only based on measurements collected along x°~?, i.e. up to time k°. If Jb < J,
where J° is computed using (28) and J* is the current best cost, then the current best
node is reset, i.e. n* = nb. The updated optimal vehicle trajectory can be backtracked
from n® to the root n°.

Let s ~ U(S) denote uniform sampling of an element s from a finite set S. The
complete tree expansion algorithm can now be summarized as

Ex%)an
1. n = Sample()
2. Z/I(Tﬂb)
3. Connect(n 1)
4. T=TU{ 77;»
5. Combpute W® and Jb using (27) and (28)
6. if J®< J* then n* =nb.

The expansion is repeated n — 1 times in order to produce a tree with n nodes.
Initially, the tree contains only the root, i.e. T = {n°}, and n* = n".

Computational Saving. It is important to stress that the computation (28) is
accomplished through an incremental propagation of the filtering density weights along
the newly added trajectory p®~? from parent n® to child node n® rather than the
complete trajectory p°?. This signifies the advantage of using a tree rather than a
naive enumeration of vehicle trajectories in order to explore the solution space M*. For
instance, assume that the tree were a complete binary tree with n nodes and, hence,
with depth d = log(n+1) —1. Then it encodes n/2 different trajectories since each leaf
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can be backtracked to generate a unique trajectory po.n. If each edge lasts on average
of N/d time epochs then the density computation (27) must be performed 5N times
for the tree compared to 5N times if the n/2 trajectories were enumerated. In other
words, the tree provides a O(log(n)) savings factor on average.

5.2 Example: simple vehicle

Consider the simple vehicle with dynamics (6). Since there is no bound on accelerations
a trajectory between two nodes is simply a line segment with constant velocity. The
function Connect introduced in §5.1 takes the form

Connect(7%,7")

1. ifk” =o00,
2. K=kt [l
. maw
3 V= i
4. fork=k":k"
5. TR =T1%+ kkb__kka (r" =) wi”t = (k)
6. if hl(ug?) < 0 return @
7. return p®?

It begins by checking whether the trajectory to be computed must have fixed final
time k°. When the final time epoch k® is set to oo (line 1) then any k® such that
k* < k* < N is allowed. This occurs when 7° is a uniform sample ? in which case the
trajectory u®? is generated using maximum permitted velocity vma. and k° is set to

the resulting time (line 2). The constant velocity along the trajectory is computed in
line 3. The points along the trajectory are then linearly interpolated (line 5). If the
trajectory intersects obstacles then the connection fails (line 6).

a) Random Tree (RND) b) Tree with local metric d (RRT) c) Tree with cost-to-come metric d (iPRM)

Figure 4: Three types of search trees used to explore the vehicle trajectory space corresponding to the
scenario in §2. The vehicle has simple dynamics and a circular sensing radius shown as a disk at its
starting state. A subset of the target paths X(():l;VL) are shown diffusing from the bottom right to the top of
the environment. The trees are: a) a random tree (RND) constructed using Expand (§5.1); b) a rapidly-
exploring random tree (RRT) using nearest neighbor metric d (29); ¢) an incremental tree-based probabilistic
roadmap (iPRM) expanded based on cost-to-come distance d (30). Each tree has 500 nodes. While the
optimal (i.e. with minimum target position variance) trajectories of all trees are quite different (shown as
thicker lines), they all yield very similar costs J*. Tt is evident that these solutions are of poor quality since
the square root of the variance is large (i.e. > 52.3 meters) relative to the environment size (200 x 200
meters.).

The optimal estimation algorithm is tested in a polygonal obstacle environment

2a uniform sample is sampled uniformly over the state space; additional sampling choices will be given

in §6.1.
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mimicking the scenario in §2. A tree built after calling Expand 500 times is shown
on Fig. 4(a). It takes a few milliseconds of computation to generate such a tree. In
practice, a tree will contain tens of thousands of vertices. Fig. 5 shows a few frames
of the resulting motion along an optimal trajectory obtained by a denser tree with
10000 nodes which took 5 seconds to compute. More detailed computational studies
are performed in §7.

t = 0 sec. t = 6 sec. t = 12 sec.

t = 18 sec. t = 24 sec. t = 30 sec.

Figure 5: The optimal vehicle path computed using algorithm Expand (§5.1) with L = 100 particles, time
horizon T' = 30 s., and time-step 7 = 250 ms. The consecutive frames show the evolution of the sampled

target trajectories XSINL) and the vehicle trajectory pg. - The computed cost is V/ J* = 43.9m.

5.3 Other Expansion Methods

There are alternative methods to construct an exploration tree. For instance, instead
of connecting nodes at random, a newly sampled node can be connected to an existing
node in the tree based on some deterministic criteria. Classical planning trees such
as an RRT employ nearest neighbor connections. Nearest should be understood with
respect to a predefined pseudo ® -distance metric d : N x N' — R. Typical metrics
include the Euclidean distance d(n®,7n°) = ||u® — 1°|| (assuming M is a vector space)
or the time of travel between nodes

d(n®,n") = k" — k“. (29)

Using such a local cost d has the advantage of quickly exploring the state space.
It also has a major drawback: the cumulative cost of a path (e.g. its length or total
time) can significantly deviate from an existing shortest path. More intuitively, even

3d is not required to be a true distance metric, i.e. does not need to be symmetric or necessary satisfy
the triangle inequality (LaValle, 2006)
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though the tree would reach close to all states in the domain, most of the paths will
be jagged and circuitous. For instance, Fig. 4(b) shows such a tree computed for a
scenario mimicking the setup on Fig. 1.

This can be remedied by considering the cost-to-come ¢ defined by

¢ ="+ dn"n’),

with the cost of the root c® = 0. Nearest neighbor is then chosen according to a
modified distance d defined by

d(n,n") = " +d(n*,n"). (30)

A tree built based on d will contain “straighter” trajectories (Fig. 4(c)) which take
minimum time to reach the reachable points in the state space. Such a tree is termed
incremental probabilistic roadmap (IPRM) to distinguish it from the standard RRT.
These issues are discussed in (Frazzoli et al., 2002) who propose a general motion
planning algorithm based on a combined metric of d and d.

More formally, the nearest existing node n* € T to a sampled node n® is given by

n® =arg min d(n,n"). (31)
neT—b
Such nearest neighbor expansion is achieved by replacing (line 2) in routine Expand
with (31).

While the RRT and iPRM are standard choices for motion planning problems,
as we will show they are not a good option when optimizing uncertainty-based cost
functions, i.e. solving (4). The issue is that the cost J of a path cannot be expressed
as a summation over the costs of its individual edges. In that respect, the random
algorithm RND turns out to be more effective.

5.4 Probabilistic Completeness

Under certain assumptions a random tree can reach asymptotically close to any state
that is reachable. Recall the following lemma adapted to the settings of this work:

Lemma 5.1. (see e.g. Ladd and Kavraki, 2004) After selecting n nodes, the probability
of failing to find a path from the root n° to a uniformly sampled node n* € N reduces
exponentially in n. More formally,

P(Bu""") <41 —¢)",

for some constants £,c € (0,1).

The main assumption in Lemma (5.1) is that each node can be connected to a
sufficiently large number of other nodes using the Connect routine. The collection of
these nodes is called the reachable set and its size depends on the constraints (2) and (3),
e.g. it shrinks if a vehicle is slow or if the number of obstacles in the environment
increases. The intuition behind Lemma (5.1) then is that, as long as every node has
large enough reachable space (the volume of which is proportional to ¢) and, under
the assumption that the path has a finite length (related to the constant ), then
adding more nodes would exponentially increase the probability of finding the path.
The precise technical conditions which render Lemma (5.1) applicable to the scenario
of this paper are developed in (Hsu et al., 2002; Frazzoli et al., 2002).

6 Variance Reduction Techniques
The advantage of constructing the exploration tree described in §5 is that it asymp-

totically reaches arbitrary close to any state in the state space M assuming that it is
bounded. To guarantee that formally (as described in §5.4) the tree is constructed using
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uniform node sampling and random connection of new nodes. Note that the expansion
is agnostic to the uncertainty cost J along trajectories that we actually seek to mini-
mize. This is problematic because it might take infinitely long to explore a reasonable
fraction of trajectories with low J. Therefore, in the spirit of Monte Carlo optimiza-
tion based on importance sampling (Rubenstein and Kroese, 2008) as well as genetic
computation, we propose three techniques which retain the probabilistic completeness
of random trees but at the same time drastically speedup the optimization.

6.1 Utility Sampling of Nodes

The difficulty of optimization in a complicated high-dimensional landscape can in prac-
tice be alleviated by incorporating problem-specific knowledge. For instance, the set of
nodes considered during randomized motion planning can be chosen in a biased way,
e.g. proportional to some utility function known to reduce the trajectory cost (see
e.g. Burns and Brock, 2005).

This paper employs a similar approach dictated by the fact that an optimal vehicle
trajectory pg.n, i-e. with lowest uncertainty cost J, is likely to pass close to states with

high observation likelihood. Thus, a sample p*™P' is chosen so that
piP = arg max g (V| X; ), (32)

where (X,ie), Yk([)) is a single particle selected by sampling ¢ uniformly from {1, ..., L}.
The optimal state p in (32) is usually straightforward to compute. For instance, the
optimal vehicle position in the example scenario from §2 will coincide (on average) with
the target position at X so according to (32) one can simply set uiample = Xi.

It is also possible to sample p by minimizing the joint likelihood over all particles.
Since this results in a complex multimodal optimization subject to sensor visibility
constraints (such as (9)) we choose to use the simplest form (32) as it does not add
extra complexity to the overall algorithm.

The function Sample introduced in §5.1 is specified as follows. It samples a state
u in two ways: 1) based on the utility (32); 2) uniformly in the space M. It selects
the former with probability Py, otherwise it selects the latter at every tree expansion.
The routine is summarized as

Sample

repeat Sample if he(p) < 0
return n = (k, g, ...)

1. With probability Py,

2. k~U{O0,...N}); L~U{T,...,L});

3. p=argmax, q(Yi|Xp;p'), where Yy ~ q(-|Xj; 1)
4. otherwise

5. k=00

6. w~UM)

7.

8.

A sampled node is accepted as long as it satisfies the constraints (line 7). A utility
node is sampled by choosing its time epoch k (line 2) while a uniform node has time
k = oo (line 5). This is related to the way the function Connect(n®,n") links two
nodes n® and n°. Whenever k® = oo, Connect is allowed to produce a trajectory u®~°
with any final time k* < N that it chooses. In such case Connect is typically designed
to compute a time-optimal trajectory so that k° is minimized. In contrast, when k° is
set to a specific value (line 2) then Connect produces a trajectory which arrives at u®
at time epoch k° exactly.

6.2 Tree Shuffling

Shuffling is the process of probabilistically selecting a branch of the tree, detaching
it from its parent and attaching it to another branch. The first step is to choose a
node n* at random. Then n, other existing nodes are selected from the tree according
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to a “fitness” function. Each of these nodes, denoted n° € T\{n® U 7"}, are then

disconnected from their current parents npb and connected to n® instead, as long as
this switch lowers the resulting uncertainty cost of the subtree attached at nb (see
Fig. 7).
The fitness density over a given set T is denoted g7 : T — [0, 1] and defined by
Jjb

QT(Ub) = L"Zb)7 where qT(nb) = e_ Jihax , (33)
ZneT ar(n)

where Jj.. is a constant denoting the upper bound of an acceptable optimal cost
that the algorithm is expected to yield. Sampling from the fitness function biases the
selection of more capable nodes but without completely disregarding nodes with lower
performance. This achieved by a distribution with a fat tail as shown on Fig. 6.

Importance Functions

_ J
%
J77Lll/.'lf

0 1000 2000 . 3000 4000 5000

Figure 6: Two importance density functions g7 used to sample nodes during shuffling (with J;%,, = 400).
The function with “fatter” tail (defined in (33)) is the proper choice in order to guarantee exploration of

the state space.

Let the subtree rooted at nb be denoted 7% C 7. Define the combined trajectory
connecting node n® to node n° and node 7 to node 7¢, denoted p*~*7¢, by

a—b—c a—b

= U ,ub_m.

More precisely, a shuffle, i.e. parent switch p® = a, occurs in two cases (see also
Fig. 7). The obvious case is when the current optimal uncertainty cost J* can be
improved by a trajectory p°~2*~¢ in the modified tree. The second case is heuristic:
a switch occurs only if the cost can be lowered on average across all nodes in the
subtree. These conditions are expressed as

minnCETb lekC(MO%a%b%c) < j*
if or then p” = a. (34)
R b R
Lpeett (Jchc(uo_’a_> ) - Jc) <0

Note that J¢ in (34) should be understood as the present cost in the unmodified tree,

Oapbab%c)

ie. J¢:= jN|k:“(N/

Computational Savings. The step (34) requires the computation of the uncer-

b
0—a—b—c 0—p”—b—c by

tainty cost of all trajectories u
pbﬂb

obtained from the original p
replacing the segment g with u®~?. Since all trajectories in the subtree at n° are
affected this could be an expensive operation. In addition, it seemingly requires that
the densities (27) at node n® be re-propagated along the complete and potentially long
new trajectory segment p®~°7¢. In the SIS framework though it is not necessary to
perform the whole propagation. In particular, only the incremental weight update Uj;
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w w

b
a) current tree showing a path p0—*b—¢ b) shuffled tree by deleting uP Y and adding pu 0

Figure 7: A tree shuffling iteration: a) a node n® € T has been chosen at random; another node nb € T is
then selected with chance inversely proportional to its current uncertainty cost J?; b) n® is disconnected from

b
its parent n” and connected to n® after checking that the uncertainty cost of the newly formed trajectory
pu0—a=b=¢ gither improves the global optimum J* or on average improves the costs in the subtree 7 (see

(34)).

along the new segment 1*~® must be computed (using (27)) and then the weights at
all subtree nodes n° € T° are updated directly through the simple weight rescaling

formula
_ we
Wiy (7 707) = Wil Ui, (35)
ij

where the weights W} are the existing weights at node n*, resp. b and c. After comput-
ing the unnormalized weights (35) the cost JAN‘kc (u079787¢) used in the shuffling (34)
is computed through (27b) and (28).

In summary, a shuffling step computes the incremental weights update along /ﬂ%b
and simply rescales the existing weights at all affected child nodes 7. It is summarized

according to

Shuffle
choose n® from T at random
fori=1:n,
sample n° ~ g7 ()
execute (34)
if J°<J* then n* =n°.

i o=

The number of nodes to be tried for a parent switch, n,, during the shuffling step,
can be constant but it is more reasonable to increase it as the tree becomes denser.
Hence, the default choice used is n, = log(dim(7)).

6.3 Randomized Pruning

Shuffling §6.2 dynamically rebuilds the tree by removing and adding edges. A com-
plementary operation can be considered, which dynamically adds and removes nodes
based on their accumulated performance.

Denote the set of leaf nodes in tree by L+ C T, i.e.

Lr={n"eT| Abst. p"=a}.

Nodes are removed sequentially from the “bottom” of the tree, i.e. starting with leaf
nodes. The procedure is summarized according to

Prune
1. fori=1,...,n

- ''p
2. £ = Lr\{n*,n"}
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3. n~1—qu()

4. T =T\{n}

Nodes to be pruned are selected inversely proportional to their fitness density (line 3).
Empirically, as shown in §7, pruning turns out be an effective strategy (again in the
spirit of importance (re)sampling) for obtaining improved solutions quicker. Yet, the
optimal choice for a number of nodes to be pruned n, at every iteration is difficult to
determine. In our tests we prune a small fraction of the total nodes n, i.e. n, =n/5.

6.4 Rate of Convergence

The success of the proposed algorithm depends on two key issues—whether it converges
to an optimum and the rate at which it converges. A basic requirement is to obtain
asymptotic convergence, i.e. to reach the optimal as the number of algorithm iterations
tends to infinity.

The random expansion algorithm (RND) (§5.1) samples points and connects them
uniformly at random. This is equivalent to generating random trajectories covering the
search space. The motion planning approach ensures that the tree trajectories satisfy
the dynamics and constraints. In principle, the algorithm will find a trajectory close
to the optimal as the number of iterations increases. Yet, this might be an infinitely
slow process in practice, a fact also confirmed by simulations in the next section §7.

Utility-based importance sampling (§6.1) can provide a good solution quicker by
biasing trajectories to pass through more promising parts of the state space. Further
work is necessary to establish non-asymptotic convergence rates by assuming certain
problem structure and regularity conditions. Currently, the advantage of this proposed
technique is observed empirically for specific problems.

The idea of shuffling (§6.2) is to reach close to an optimum not by generating
completely new trajectories (as RND does) but instead to perform local modifications
to the existing tree structure. Assume that the optimal trajectory which the algorithm
seeks to compute consists of m+1 nodes 7°, 7', ...7™. As the number of sampled nodes
in the tree T increases there will be m nodes 7' € T approaching asymptotically close
to each of the unknown optimal nodes 7*, i = 1,...,m. The problem is that there is a
very small probability that all #* will in fact be connected by a physical path contained
in the tree, i.e. a path which itself is approaching the optimal path. The purpose of
shuffling is then to remove and add edges in an attempt to discover this path.

Shuffling becomes less effective as the number of nodes increases since the number
of pairs of old and new subtree parents to be tested for shuffling grows quadratically.
The purpose of pruning (§6.3) is then to remove less promising nodes in order to reduce
the search space. In essence, the size of the solutions space depends on the number of
nodes and on the edges connecting these nodes. Shuffling allows control over the set
of edges while sampling and pruning dynamically control the set of nodes. Empirical
studies of the convergence rates are studied next.

7 Numerical Tests

Numerical studies based on the simple vehicle are presented first followed by a more
complex helicopter search example.

7.1 Simple Vehicle

The methods are tested through multiple simulation runs in the simulated scenario
defined in §2 with tree node connection defined in §5.2. Four algorithms are developed
and analyzed in a sequence in order to compare the proposed baseline algorithm and
variance reduction techniques. The algorithms are abbreviated according to:

e RND: baseline random expansion algorithm (§5.1)
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Figure 8: Comparison of several tree search algorithms. A standard RRT algorithm is not suitable for
optimal planning since it quickly converges to and remains at a low quality solution. The algorithm RND
converges asymptotically but the rate decreases with computation time. Utility-based sampling (UTIL)
speeds up convergence but not drastically. The final complete algorithm including shuffling and pruning
provides the best performance providing an acceptable error below 25 meters (i.e. the y-axis plots the square

root of the total variance V' J* which can be interpreted as a combined error in the two position coordinates)

e RND+UTIL: RND augmented with utility-based sampling (§6.1)
e RND+UTIL+SHUFFLE: with the addition of a shuffling step (§6.2)
e RND+UTIL+SHUFFLE+PRUNE: the final algorithm including pruning (§6.3)

Fig. 8 shows the resulting averaged results of the performance of each algorithm,
including a comparison with a standard RRT expansion. For completeness, more de-
tailed plots are also given in Fig. 10. The simulations shows that a random search
tree (RND) is more suitable than a standard motion planning tree for obtaining con-
vergence to an optimal trajectory. Yet the convergence is very slow. This is remedied
by the combination of the proposed variance reduction techniques. The complete al-
gorithm RND+UTIL+SHUFFLE4+PRUNE computes a solution with an acceptable
performance within the allotted computation time of 60 seconds. Several snapshots
of the dynamic tree and the resulting optimal trajectory as the algorithm progresses
are shows on Fig. 9. Note that all reported results are based on a global open-loop
optimization with simulated future measurements rather than in a receding horizon
fashion.

comp-time=100 ms. comp-time=200 ms. Cothime:GOO ms. comp-time=1000 ms.

Figure 9: Several frames showing the current tree and optimal trajectory computed by algorithm
RND+UTIL4+SHUFFLE+PRUNE.

Finally, it should be noted that the complete algorithm requires several parameters
which must be selected in advance. They are listed in the following table:
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Figure 10: Monte Carlo analysis of the the proposed techniques applied to the scenario in §2. The

performance metrics are the resulting optimal uncertainty cost Vv Jx (which can be regarded roughly as the

standard deviation of the distance to the true value) and the corresponding number of tree nodes. These
two metrics are expressed in terms of the required computational time (shown on z-axis). The left plots

show all 100 Monte Carlo runs while the right shows the averaged results.
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| Param. | Description | Default |

n; # of nodes to be added at iteration ¢ (i.e. dim(7) = > n;) 10

Py utility-sampling probability )

nr # of nodes checked for shuffling at iteration 4 log(dim(7))
Ny # of nodes to be pruned at iteration i dim(7)/5

The optimal values of these parameters are difficult to determine and might vary as the
optimization runs. This is a problem that requires further study. The recommended
default values are chosen to provide a balance between the baseline random tree that
explores the state space and the variance reduction steps to focus and speed-up the
search.

7.2 A Helicopter Search Scenario

Consider a small autonomous helicopter depicted in Fig. 11 operating in a 3-D terrain.
The vehicle is modeled as a single underactuated rigid body with position r € R®
and orientation R € SO(3) where SO(3) denotes the space of right-handed coordinate
frames described by three orthogonal vectors (i.e. by a 3x3 orthogonal matrix with
positive determinant). Its body-fized angular and linear velocities are denoted by w € R3
and v € R3, respectively. The vehicle has mass m and principal moments of rotational
inertia J1, J2, J3 forming the inertia tensor J = diag(Ji, J2, J3).

Figure 11: Simplified helicopter model used in our tests (a). An example of a computed sequence of four
maneuvers and three trim primitives is shown (b), connecting two zero-velocity states in the corners of the
workspace and avoiding an obstacle in the center. The trim velocities satisfy invariance conditions defined
in §B.1 while the maneuvers are computed as outlined in §B.2.

The vehicle is controlled through a collective u. (lift produced by the main rotor)
and a yaw uy (force produced by the rear rotor), while the direction of the lift is
controlled by tilting the main blades forward or backward through a pitch v, and
sideways through a roll .. The four control inputs then consist of the two forces
u = (uc, uy) and the two shape variables v = (7p,7-). The state space of the vehicle
is M = SO(3) x R* x R® x R? with u = ((R,p), (w,v),7).

The equations of motion are

[R]:{gﬂ (36)
H@f)] - |:m'u x w+JJI~zuTJF(Xo$, —9.81m) + F(7)u, (37)

where the map ~: R® — s0(3) is defined by

0 —wd WP
W= w3 0 —wt |,
—w? Wl 0



while the control matrix is defined as

dy sin ~y, 0

d¢ sinyp cos 7y, 0
0 dr

sin 7y, cos 7y, 0
—sin vy, —1

COS 7Yp COS Yr 0

F(y) =

Figure 12: The algorithm applied to the helicopter example described in §7.2 showing a) the optimal
helicopter trajectory; b) the constructed roadmap and sensor footprint along a path; ¢) close-up view along
an edge of the roadmap.

The local motion planning method corresponding to Connect is based on sequenc-
ing of precomputed motion primitives which satisfy the dynamics (36)—(37). This is
accomplished using a maneuver automaton described in §B. In essence, the set of prim-
itives abstracts away the complex dynamics and reduces the edge creation problem to
an optimization in the discrete set of primitives and the space of translations and pla-
nar rotations — SE(2) x R*. A trajectory consisting of a given sequence of minimum
number of primitives can then be computed instantly in closed form through inverse
kinematics. Fig. 11 shows an example of such a sequence of primitives connected in
order to exactly solve the boundary value problem. The terrain is represented using a
digital elevation map loaded from a file. Collision checking and avoidance is performed
using the Proximity Query Package (PQP) (Gottschalk et al., 1996) that compute clos-
est distance between arbitrary polyhedra and is used to implement the function prox
defined in (5).

The algorithm is tested in scenario similar to §2 extended to 3-D. The helicopter is
not permitted to fly above obstacles. Fig. 12 shows the resulting helicopter trajectory
(see also video in Extension 1 ( §A)), a view of the constructed roadmap, and a close-up
along the optimal path within the roadmap.

8 Conclusion

This work deals with optimal estimation for systems with nonlinear dynamics subject to
nonconvex constraints. The approach is based on a random enumeration of trajectories
generated from a tree which compactly approximates the reachable space and efficiently
propagates probability distributions through recursion. The randomly sampled tree
nodes approach any reachable state with exponentially (in the number iterations) high
probability and therefore encode a versatile roadmap of solution trajectories. Yet,
without assuming any special structure known a-priori, random search alone does not
result in an efficient algorithm due to the high-dimensionality of the problem. This
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issue is alleviated through variance reduction techniques similar to importance sampling
for stochastic optimization and to cross-over in evolutionary algorithms. While these
methods show a marked improvement in solution quality and run-time efficiency, no
formal non-asymptotic convergence rates have been established. A possible future
direction is to address this issue by assuming certain regularity conditions on the models
involved. A related direction is to combine the proposed approach with the cross-
entropy (CE) optimization method (Rubinstein and Kroese, 2004; Celeste et al., 2007)
which is designed to explicitly identify structure in the solution space by maintaining
and optimally adapting an importance sampling distribution. Guiding the random
tree expansion through a CE-type method would provide a consistent exploration—
exploitation approach (for initial developments see (Kobilarov, 2011)) that optimally
accounts for the sampled data during optimization. Finally, even though formally fast
convergence rates are absent in our general setting, this work provided a simple particle-
based algorithm applicable to general types of dynamics and uncertainty models which
is easy to implement and performs well in practice.
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Appendix

A Index to Multimedia Extensions

The multimedia extensions to this article are at: http://www.ijrr.org.
Extension Type Description
1 Video Helicopter Search Scenario

B Helicopter Primitives

The local motion planning method is based on computing a sequence of motion primi-
tives that exactly satisfy the boundary conditions, i.e., exactly reaches a sampled node.
The symmetry in the system dynamics allows us to employ a maneuver automaton to
produce sequences of continuously parametrizable motions (trim primitives) connected
with maneuvers. This general framework developed in (Frazzoli et al., 2005) is suit-
able to systems such as UAVs or ground robots if one ignores pose-dependent external
forces, such as varying wind or changing ground friction as function of position.

Let the vehicle rotation be described by its roll ¢, pitch 6, and yaw 1. Denote the
linear velocity by v = (vs, vy,v;) € R?, and the angular velocity by w = (wy,wy,w,) €
R3. Denote the whole configuration by g € SE(3), the whole velocity by & € se(3),
where SE(3) and se(3) denote the Euclidean group (translations and rotations) and
its set of body-fixed velocities, respectively. The elements are defined by

m[85) e=[35)

By defining the map I = diag(Ji, Jo, J3, m, m, m) the dynamics can be expressed
in more general form as

1€, = adf, 1& + fu + Ad}) feat,

where f, is the control force, corresponding to F(v)u in (37), while fez: = (0,0,0,0,0,—9.81m) €
s5¢(3)" is the gravity force. Since gravity is the only configuration-dependent term in the
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dynamics and is invariant to translations and rotations the z-axis, then the dynamics
symmetry group can be set as G = SE(2) x R.

The motion planning problem is solved in closed form through inverse kinematics of
a minimal number of primitives. A total of five is employed when moving between non-
equilibrium states and an extra maneuver is added to connect from/to an equilibrium
(zero velocity) state. Our particular design of the trims and maneuvers used is described
next. An example sequence is shown of Fig. 11.

B.1 Trim Primitives

Denote the transformation corresponding to roll and pitch only by g(¢,0) € SE(3)\G.
The G-symmetry corresponds to velocity & € se(2) x R, that corresponds to velocity
vector (0,0,w, vz, vy, vs), for which & = Ady4 ¢)-1 & is a relative equilibrium for the
whole system on SE(3), i.e., & = 0 and g(t) = g(0) exp(t&). This velocity is obtained
by satisfying this invariance condition, or equivalently

ade Hfb + fu + Ad;(¢79) fezt = O (39)

since feqt is G-invariant.

The conditions (39) can be simplified if one assumes that the moments of rotational
inertia around the y and z axis are identical. In this case the invariance conditions
simplify to:

0:01 uyZOa 717:07 7T:07
¢ = arctan(—w,v;/9.81), (40)

e = m(cos @ 9.81 — w,v, sin @).

In order to design trim primitives, one can pick desired velocities (w;, vz, vy, v-) and
use (40) to compute the required constant roll, pitch, and control inputs for motion
along that trim. Since control inputs and shape variables have bounds, the equa-
tions (40) can also be inverted to compute the maximum sustainable trim velocities.

B.2 Maneuvers

Maneuvers are computed to connect two trim motions. The parameters of a trim
primitive are its roll, pitch, velocities, and shape variables. Let the map 7 : X — X\G
subtract out the invariant coordinates from a given state. Then given two trims, the
first one ending with state 1 and the second one starting with state x2, we compute
a maneuver trajectory x using the following optimization procedure:

Compute: T; 2:[0,7T] = X; w:[0,T] = U
T
minimizing: J(z,u,T) = / 14 Mu(t)|]? dt
0
subject to: m(x(0)) = z1, m(x(T)) = x2,

dynamics eq. (36),(37) for all ¢ € [0,T].

The parameter A controls the importance of minimizing the control effort. An alter-
native strategy is to fix T in the above formulation and to search for the minimal 7'
yielding a feasible control-effort optimal problem. We perform this using binary search
for T over the real line by solving a fixed-T" optimal control problem in each iteration.

The continuous optimal control formulation is computationally solved through the
discrete mechanics methodology (Marsden and West, 2001) which is particularly suit-
able for systems with nonlinear state spaces and symmetries. A geometric structure
preserving optimizer developed in (Kobilarov, 2008, Sec.§2.7) is used to perform the
computations. The computations are performed offline with the resulting optimal ma-
neuvers assembled in a library offering instant lookup during run-time.
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