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Abstract

While convergence properties of many sampling selection methods can be proven to hold in a
context of approximation of Feynman-Kac solutions using sequential Monte Carlo simulations, there is
one particular sampling selection method introduced by Baker (1987), closely related with “systematic
sampling” in statistics, that has been exclusively treated on an empirical basis. The main motivation
of the paper is to start to study formally its convergence properties, since in practice it is by far
the fastest selection method available. One will show that convergence results for the systematic
sampling selection method are related to properties of peculiar Markov chains.
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1 Introduction

Let (Xk)k≥0 be a non-homogeneous Markov chain on a locally compact metric space E, with transition
kernels (Kn)n≥1 and initial law η0 defined on the Borel σ-field B(E). Further let Bb(E) be the set of
bounded B(E)-measurable functions.

Given a sequence (gn)n≥1 of positive functions in Bb(E), suppose that one wants to calculate recur-
sively the following Feynman-Kac formulæ (ηn)n≥1:

(1) ηn(f) =
γn(f)

γn(1)
, f ∈ Bb(E),

where

(2) γn(f) = E

(

f(Xn)

n−1
∏

k=1

gk(Xk−1)

)

.

Note that most nonlinear filtering problems are particular cases of Feynman-Kac formulæ.
Following Crisan et al. (1999) and Del Moral and Miclo (2000), let M1(E) denotes the set of probability

measures on (E,B(E)). If µ ∈ M1(E) and n ≥ 0, let µKn be the probability measure defined on Bb(E)
by

µKn(f) = µ(Knf) =

∫

E

∫

E

f(z)Kn(x, dz)µ(dx).

In order to understand the relation between the ηns, for any n ≥ 1, let ψn : M1(E) 7→ M1(E) be
defined by

ψn(η)f =
η(gnf)

η(gn)
, η ∈M(E), f ∈ Bb(E),

and let Φn denotes the mapping from M1(E) to M1(E) defined by

Φn(η) = ψn(η)Kn.
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Then it is easy to check that for any n ≥ 1,

(3) ηn = Φn(ηn−1).

Note also that for any n ≥ 1, the mapping Φn can be decomposed into

η̂n = ψn+1(ηn),
ηn+1 = η̂nKn+1,

n ≥ 0, η0 ∈M1(E).(4)

Further remark that the first transformation, ηn 7→ η̂n, is non-linear, while the second one, η̂n 7→ ηn+1,
is linear.

Even if the forward system of equations (3) looks simple, it can rarely be solved analytically, and
even if this is the case, it would require extensive calculations. This is why algorithms for approximating
(ηn)n∈N

, starting from η0, are so important.
One such method, presented in the remarkable surveys Del Moral and Miclo (2000), Crisan and

Doucet (2002) and the book of Del Moral (2004), is to build approximations of measures (ηn)n∈N using
interacting particle systems. The algorithm uses decomposition (4), and by analogy with genetics, the
first step, which is related to a sampling selection method, is often referred to as the selection step, and
the second one is termed the mutation step, while in reality it is a Markovian evolution of the particles.
The speed of the latter cannot be improved in general, so the speed of any algorithm depends on the
rapidity of the sampling selection process.

In this paper, one discusses properties of a particular algorithm that is called “systematic sampling”
selection herein, while in the genetic algorithms literature, it has been strangely called “Stochastic uni-
versal sampling” selection. It seems to have appeared first in Baker (1987). It has been reintroduced in
the filtering literature in Künsch (2005).

In what follows, a description of the general algorithm is given in Section 2, with a few examples
of sampling selection methods, together with some tools for studying its convergence. In Section 3,
one focuses on the systematic sampling selection method, giving some properties, and stating some
convergence results and a conjecture, based on results from Markov chains proved in the appendix.
Finally, in Section 4, numerical comparisons between sampling selection methods are made through a
simple model of nonlinear filtering for noisy black-and-white images.

2 Algorithm and sampling selection methods

The general algorithm for approximating the solution of (3) is first given, following the exposition in
Crisan et al. (1999), Del Moral and Miclo (2000), while particular sampling selection methods are pre-
sented next. Throughout the rest of the paper, it is assumed that for any n ≥ 1, inf

x∈E
gn(x) > 0.

2.1 General algorithm

Let N be a integer, representing the number of particles and for any n ≥ 0, let ξn =
{

ξ1n, · · · , ξN
n

}

denotes
the particles at time n and set

ηN
n =

1

N

N
∑

i=1

δξi
n
.

• At time n = 0, the initial particle system ξ0 =
{

ξ10 , · · · , ξN
0

}

consist of N independent and identically
distributed particles with common law η0.

• For each n ≥ 1, the particle system ξn =
{

ξ1n, · · · , ξN
n

}

consists of N particles, is obtained in the
following way:
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(Sampling/Selection) First calculate the weights vector Wn ∈ (0, 1)N , where

(5) W i
n =

gn(ξi
n−1)

∑N

i=1 gn(ξi
n−1)

, 1 = 1, . . . , N.

Then, select, according to a given sampling selection method, a sample ξ̂n−1 =
{

ξ̂1n−1, . . . , ξ̂
N
n−1

}

of size N from ξn−1.

(Evolution/Mutation) Given ξ̂n−1, the new particle system ξn consists of particles ξi
n chosen

independently from law Kn(ξ̂i
n−1, dx), 1 ≤ i ≤ N . In other words, for any z = (z1, . . . , zN) ∈

EN ,

P
(

ξn ∈ dx|ξ̂n−1 = z
)

=

N
⊗

i=1

Kn(zi, dxi).

Note that in order to describe a sampling selection method, it suffices to define how the numbers
M1

n, . . . ,M
N
n ∈ {0, 1, . . . , N} are randomly selected, with M i

n representing the number of times particle
ξi
n−1 is appears in the new sample. Therefore, one can write

η̂N
n−1 =

1

N

N
∑

i=1

δ
ξ̂i

n−1

=
1

N

N
∑

i=1

M i
nδξi

n−1

.

A sampling selection method will be said to be conditionally unbiased, if for any i ∈ {1, . . . , N} and
any k ≥ 1, E(M i

k|ξk−1) = NW i
k.

Remark 2.1. Conditional unbiasedness yields the following property:

(6) E
(

ηN
k f |ξk−1

)

= Φk

(

ηN
k−1

)

(f), f ∈ Bb(E).

For, in that case,

E
(

ηN
n f |ξn−1

)

= E
(

E
(

ηN
n f |ξn−1, ξ̂n−1

)

|ξn−1

)

= E

(

1

N

N
∑

i=1

M i
nKnf(ξi

n−1)

∣

∣

∣

∣

∣

ξn−1

)

=
N
∑

i=1

W i
nKnf(ξi

n−1) = Φn

(

ηN
n−1

)

(f).

The mean square error of a particular sampling selection method can be obtained using the following
useful result, obtained by (Del Moral and Miclo, 2000, Theorem 2.36). Before stating the result, define,
for any measurable η with values in M(E),

‖η‖2
2 = sup

f∈Bb(E), ‖f‖∞≤1

E
(

(ηf)2
)

.

Theorem 2.2. Assume that the sampling selection method is conditionally unbiased and that the following
condition is verified for all 1 ≤ k ≤ n: there exists a constant Ck such that for all N -dimensional vectors
{

q1, · · · , qN
}

∈ RN ,

(7) E





(

1

N

N
∑

i=1

(M i
k −NW i

k)qi

)2
∣

∣

∣

∣

∣

∣

ξk−1



 ≤ 1

N
Ck max

1≤i≤N

∣

∣qi
∣

∣

2
.

Then, for all 1 ≤ k ≤ n, there exists a constant C ′
k such that

‖ηN
k − ηk‖2

2 ≤ C ′
k/N.
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In what follows, only conditionally unbiased sampling selection methods are considered. As shown in
Remark 3.3, one can see that in general, the systematic sampling selection method defined below does
not satisfy condition (7) of the previous theorem, while classical sampling selection methods, like the
ones listed in Section 2.3, do satisfy it. Therefore, weaker conditions must be imposed in order to obtain
mean square convergence. In fact, one has the following result.

Theorem 2.3. Let (aN ) be a sequence such that aN/N → 0, as N → ∞. Assume that the sampling
selection method is conditionally unbiased. Then

lim
N→∞

aN max
1≤k≤n

‖ηN
k − ηk‖2

2 = 0

if and only if, for any f ∈ Bb(E),

(8) lim
N→∞

aN max
1≤k≤n

E





(

1

N

N
∑

i=1

(M i
k −NW i

k)f(ξi
k−1)

)2


 = 0.

Moreover, supN≥1 aN max
1≤k≤n

‖ηN
k − ηk‖2

2 is finite if and only if

sup
N≥1

aN max
1≤k≤n

E





(

1

N

N
∑

i=1

(M i
k −NW i

k)f(ξi
k−1)

)2


 <∞.

Proof. Suppose that aN/N → 0 and let f ∈ Bb(E) be given. First, note that using the unbiasedness
condition, together with (6), one has, for any k ∈ {1, . . . , n},

(9) E
[

(ηN
k f − ηkf)2

]

= E
[

(ηN
k f − Φk(ηN

k−1)f)2
]

+E
[

(Φk(ηN
k−1)f − ηkf)2

]

.

Since gk ≥ ck > 0 by hypothesis, for some positive constant ck, k ≥ 1, it follows that

lim
N→∞

aN max
1≤k≤n

‖ηN
k − ηk‖2

2 = 0

if and only if for any k = 1, . . . , n, lim
N→∞

aNE
[

(ηN
k f − Φk(ηN

k−1)f)2
]

= 0. Next, it can be shown easily

that for any k = 1, . . . , n, E
[

(

ηN
k f − Φn(ηk−1)f

)2
∣

∣

∣
ξk−1

]

can be written as

E





(

1

N

N
∑

i=1

(M i
k −NW i

k)Kkf(ξi
k−1)

)2
∣

∣

∣

∣

∣

∣

ξk−1



+
1

N
Φk(ηN

k−1)(Kkf
2 − (Kkf)2).

Since Kkf ∈ Bb(E), 0 ≤ 1
N

Φk(ηN
k−1)(Kkf

2 − (Kkf)2) ≤ 1
N
‖f‖2

∞, and aN/N → 0, it follows from the
calculations above that

lim
N→∞

aN max
1≤k≤n

E
[

(ηN
k f − Φk(ηN

k−1)f)2
]

= 0

if and only if (8) holds true. The rest of the proof is similar, so it is omitted.

2.2 Systematic sampling

By obvious analogy with systematic sampling in Statistics, the first sampling selection method that
is described is simply called “systematic sampling”. It appears that this method was first proposed by
Baker (1987) under the strange name “Stochastic Universal Sampling”, in a context of unbiased sampling
selection for genetic algorithms. However, nobody formally studied its convergence properties.
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As opposed to the definition of Baker (1987), the sampling selection method can simply be defined
in the following way: For n ≥ 1, let Un a uniform random variable on [0, 1) and note for w ∈ [0, 1],
M(w,Un) := bNw + Unc, where bxc denotes the integer part of x. Then

M1
n := M(W 1

n , Un),

Mk
n := M(W 1

n + · · · +W k
n , Un) −M(W 1

n + · · · +W k−1
n , Un), k = 2, . . . , N.

Since M(1, Un) = N , one gets that
∑N

i=1M
i
n = N . Therefore the number of particles is always N .

Properties of that sampling selection method are examined in Section 3.

2.3 Other sampling methods

One can grossly classify the various sampling selection methods into two categories, according as the
number of particles is constant or random. The following list is by no means exhaustive. For the first
two methods, N is constant, while Nn fluctuates in the last two methods. For other sampling selection
methods, one may consult Crisan et al. (1999), Del Moral and Miclo (2000), Del Moral (2004) and
references therein. Note that the last two methods are particular cases of what is known as “Branching
selection methods” in the filtering literature.

2.3.1 Simple random sampling

This selection method is based on simple random sampling without rejection. It follows that
(

M1
n, · · · ,MN

n

)

∼ Multinomial
(

N,W 1
n , · · · ,WN

n

)

,

where
(

W i
n

)

1≤i≤N
are given by (5). This sampling selection method is computationally demanding,

but it has many interesting properties that have been studied mainly by Del Moral and co-authors, e.g.
see Del Moral (2004). In particular, conditions (i)–(ii) of Theorem 2.2 are met; also one can prove a
Central Limit Theorem and Large Deviations Properties.

2.3.2 The remainder stochastic sampling

This algorithm was first introduced by Brindle (1980) in a context of unbiased sampling selection for
genetic algorithms; see also Baker (1985, 1987) for comparisons between sampling selection methods in
the latter context. It is also defined as “Residual sampling” by Liu and Chen (1998). It is much faster to
implement than the simple random sampling selection method, it satisfies conditions (i)–(ii) of Theorem
2.2, and recently, Douc and Moulines (2005) investigated some of its convergence properties. See also
Del Moral and Miclo (2000) and the references therein. To describe the selection method, first define

Ñ = N −∑N
i=1bW i

nc =
∑N

i=1

{

NW i
n

}

, where {x} stands for the fractional part of x, i.e. {x} = x− bxc.
Next, allocate the (possibly) remaining Ñ particles via simple random sampling, i.e.

(

M1
n − bW 1

nc, · · · ,MN
n − bWN

n c
)

∼ Multinomial
(

Ñ , W̃ 1
n , · · · , W̃N

n

)

,

with W̃ i
n =

{

NW i
n

}

/
∑N

j=1

{

NW j
n

}

, 1 ≤ i ≤ N .

2.3.3 Binomial sampling

As stated before, for this sampling selection method and the next one, the number of particles at time n
is random and it is denoted by Nn, n ≥ 0. Of course, N0 is fixed. For n ≥ 1, and given ξn−1 and Nn−1,

M1
n, . . . ,M

Nn−1

n are independent and M i
n ∼ Bin(Nn−1,W

i
n), for 1 = 1, . . . , Nn−1. It follows that

Nn =

Nn−1
∑

i=1

M i
n.

This sampling selection method is a little bit faster than the simple random sampling selection method,
but a major drawback is that there is no control on the number of particles. Moreover, P (Nn = 0) > 0.
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2.3.4 Bernoulli sampling

The Bernoulli sampling selection selection method was introduced in Crisan et al. (1998). See also
Crisan and Lyons (1999), Crisan (2003) for additional properties of the sampling selection selection. It
is worth noting that M i

n takes the same values as in the systematic sampling selection method, provided

Nn−1 = N . In fact, for n ≥ 1, and given ξn−1 and Nn−1, M1
n, . . . ,M

Nn−1

n are independent, where M i
n is

defined by
M i

n = bNn−1W
i
nc + εi

n, εi
n ∼ Ber(

{

NnW
i
n

}

), 1 ≤ i ≤ Nn−1.

Note that Nn ≥ 1 and that the following alternative representation also holds:

M i
n = bN(W 1

n + · · · +W i
n) + U i

nc − bN(W 1
n + · · · +W i−1

n ) + U i
nc,

where U1
n, . . . , U

Nn−1

n are independent and U i
n ∼ Unif([0, 1)), given ξn−1, Nn−1.

3 Some properties and results for systematic sampling selection

Throughout the rest of paper, the selection method is the one defined in Section 2.2. Let’s start first
with some elementary properties of systematic sampling selection.

Lemma 3.1. Suppose that Un is uniformly distributed over [0, 1). Then, conditionally on ξn−1, one has,
for any i ∈ {1, · · · , N},
(10) M i

n − bNW i
nc ∼ Ber(

{

NW i
n

}

).

In particular, for any i ∈ {1, · · · , N}, E
(

M i
n|ξn−1

)

= NW i
n.

Proof. It suffices to show that whenever U ∼ Unif([0, 1)) and x, y ≥ 0, then bU + x+ yc− bU + xc− byc
is a Bernoulli random variable with parameter p = {y}. To this end, first note that V = {U + x} is also
uniformly distributed on [0, 1). Next,

bU + x+ yc − bU + xc − byc = b{U + x} + {y}c = bV + {y}c ∼ Ber({y}).

Hence the result.

Remark 3.2. Using the same proof as in Lemma 3.1, then, conditionally on ξn−1, one obtains M i
n +

· · · + M j
n − bN(W i

n + · · · +W j
n)c ∼ Ber

({

N(W i
n + · · · +W j

n)
})

, for any i ≤ j ∈ {1, · · · , N}. Note also
that since the sampling selection method is unbiased, i.e. condition (i) of Theorem 2.2 is satisfied, then
for any n ≥ 1, one has

E
(

ηN
n f |ξn−1

)

= Φn

(

ηN
n−1

)

(f), f ∈ Bb(E).

To obtain L2 convergence of the algorithm based on the systematic sampling selection method, one
would like to apply Theorem 2.2 of Del Moral and Miclo (2000). All sampling selections presented in
Section 2.3 satisfies property (8). If the Nn is random, there is an similiar condition to (8). But as shown
next, systematic sampling behaves differently.

Remark 3.3. Inequality (7) is not verified in general for the systematic sampling selection method.
Here is an illustration. Suppose that N = 2m and let, for any i ∈ {1, · · · , N/2}, W 2i

n = 1/(2N), and
W 2i−1

n = 3/(2N). Then one can check that for any 1 ≤ i ≤ N/2,

M2i−1
n = 1 if Un ∈ [0, 1/2), M2i−1

n = 2 if Un ∈ [1/2, 1),
M2i

n = 1 if Un ∈ [0, 1/2), M2i
n = 0 if Un ∈ [1/2, 1).

Next, if 1 ≤ i ≤ N/2, set q2i = 1 and q2i−1 = −1. It follows that

E





(

1

N

N
∑

i=1

(M i
k −NW i

k)qi

)2
∣

∣

∣

∣

∣

∣

ξk−1



 =
1

4
,

showing that inequality (7) is false.
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However one believes that the following holds true.

Conjecture 3.4. Suppose that η0 and (Kn)n≥1 are absolutely continuous laws and consider that M 1
n, . . . ,M

N
n

are obtained using the the systematic sampling selection method. Then, for all f ∈ Bb(E) and n ≥ 1, (8)
holds with aN ≡ 1, i.e.

(11) lim
N→∞

E





(

1

N

N
∑

i=1

(M i
n −NW i

n)f(ξi
n−1)

)2


 = 0.

Note that it follows from Theorem 2.3 that the above conjecture is equivalent to ‖ηN
n − ηn‖2 → 0, as

N → ∞, for any n ≥ 0. In what follows, one tries to motivate why Conjecture 3.4 might be true. To this
end, first note that any 1 ≤ k ≤ N ,

Mk
n −NW k

n =
{

N(W 1
n + · · · +W k−1

n ) + Un

}

−
{

N(W 1
n + · · · +W k

n ) + Un

}

.

Now, set F 0
n = 0 and F k

n =

k
∑

j=1

gn(ξj
n−1), 1 ≤ k ≤ N . For any α > 0 and any f ∈ Bb(E), further define

ZN
n (f, α) =

1√
N

N
∑

k=1

f
(

ξk
n−1

)

({

F k−1
n

α
+ Un

}

−
{

F k
n

α
+ Un

})

=
1√
N

N
∑

k=1

f
(

ξk
n−1

)({

Sk−1
n

}

−
{

Sk
n

})

,

where Sk
n = F k

n/α+Un and S0
n = Un. Then, setting ḡn =

1

N

N
∑

k=1

gn(ξk
n) and defining Y N

n (f) = ZN
n (f, ḡn),

one has Y N
n (f) =

1√
N

N
∑

i=1

(M i
n −NW i

n)f(ξi
n−1), so one can rewrite (11) in the form

lim
N→∞

1

N
E
[

(

Y N
n (f)

)2
]

= 0.

Unfortunately, working with Y N
n appears to be impossibly difficult, so one could work instead with a

more tractable quantity, namely ZN
n . In the case n = 1, one has a least the following result, which is a

first step in proving Conjecture 3.4. Before stating it, recall that D([0, 1]) is the space of càdlàg functions
with Skorohod’s topology.

Theorem 3.5. Assume that the law of
{

g1(ξ10)
}

is absolutely continuous. Then, for any α > 0 and any
f ∈ Bb(E), the sequence of processes BN ∈ D([0, 1]) defined by

BN
f,α(t) = Z

bNtc
1 (f, α), t ∈ [0, 1],

converges in D([0, 1]) to σBf,α, where Bf,α is a Brownian motion and

lim
N→∞

E
[

(

ZN
1 (f, α)

)2
]

= σ2.

The proof on Theorem 3.5 is an easy consequence of Theorem A.3 applied with Xk = f(ξk
0 ), Yk =

{

g1(ξk
0 )
}

and f(x, y, s) = x(y− s). In addition, there is an “explicit” expression for σ2. More details can
be found in Appendix A.
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Remark 3.6. Theorem 3.5 does not prove Conjecture 3.4 in the case n = 1. However, if one is willing
to deal with a random number of particles at step n = 1, one obtains the following interesting result: Set
N1 = bU1 +

∑N

j=1 g1(ξk
0 )/αc, and define

η̂N1

0 =
1

N1

N
∑

k=1

Mk
1 δξk

0

.

Then, as N → ∞, N1/N tends to η0(g1)/α and lim sup
N→∞

N‖ηN1

1 − η1‖2
2 <∞.

To prove convergence for higher orders, i.e n > 1, one would need results from non-homogeneous
Markov chains. The approach will be examined in a near future, using for example the results of Sethu-
raman and Varadhan (2005).

Remark 3.7. In order to keep N1 fixed, one could try to control the term ZN
1 (g1) − ZN

1 (α). Since√
N(g1 − α) 

√

η0(g2
1)Z, where Z ∼ N (0, 1), it follows that

√
N

[

1

g1

− 1

α

]

= −
√

η0(g2
1)

η2
0(g1)

Z + oP (1).

If one could differentiate term by term, one would then obtain

(

ZN
1 (g1) − ZN

1 (α)
)

 η0(K1fg1)

√

η0(g2
1)

η0(g1)2
Z = η1(f)

√

η0(g2
1)

η0(g1)
Z ,

so one could guess that YN  η1(f)

√

η0(g2
1)

η0(g1)
Z + Bf,α(1). On the other hand, if the sequence ZN

1 (α)

was tight for α in a closed interval not containing zero, then one would get ZN
1 (g1) − ZN

1 (α) → 0 in
probability. There is no indication so far in favor of one of these two approaches.

4 Numerical comparisons

The numerical comparions will be done through a simple model of filtering for tracking a moving target
using noisy black-and-white images, where the exact filter can be calculated explicitly, that is ηn is known
for any n ≥ 1, e.g. Gentil et al. (2005).

4.1 Description of the model

One will assume that the target moves on Z2 according to a Markov chain. Observations consist in black-
and-white noisy images of a finite fixed region R ⊂ Z2. More precisely, let (Xn)n≥0 be a homogeneous
Markovian chain with values in X = {ω ∈ {0, 1}Z :

∑

x∈Z
ω(x) = 1}. Of course, the position of the target

at step n is x0 if and only if Xn(x0) = 1. Set

(12) M(a, b) = P {Xn+1(a) = 1|Xn(b) = 1} , a, b ∈ Z2.

Note that M describes exactly the movement of the target.
The model for observations Yk ∈ {0, 1}R, k = 1, . . . , n is the following: Given X0, . . . , Xn, assume

that {Yn(x)}x∈R are independent and for any x ∈ R,

(13) P (Yn(x) = 0|Xn(x) = 0) = p0, P (Yn(x) = 1|Xn(x) = 1) = p1,

where 0 < p0, p1 < 1. One wants to compute the distribution of Xk conditionally to Yn, where Yn

is the sigma-algebra generated by observations Y1, . . . , Yn, and Y0 is the trivial sigma-algebra. As in
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Section 2 of Gentil et al. (2005), note that for any (ω, ω′) ∈ {0, 1}R ⊗ X, the conditional probability
P (Yk = ω|Xk = ω′) = Λ(ω, ω′) satisfies

Λ(ω, ω′) = p
|R|−1
0 (1 − p1)

(

1 − p0

p0

)<ω>(
p0p1

(1 − p0)(1 − p1)

)<ωω′>

,

where < ω >=
∑

x∈R ω(x) and < ωω′ >=
∑

x∈R ω(x)ω′(x).
Let P be the joint law of the Markovian targets with initial distribution ν, and the observations, and

let Q be the joint law of the Markovian targets with initial distribution ν, and independent Bernoulli
observations with mean 1/2. Further let Gn be the sigma-algebra generated by Y1, . . . , Yn, X0, . . . , Xn.

Then it is easy to check that with respect to Gn, P is equivalent to Q and
dP

dQ

∣

∣

∣

∣

Gn

=

n
∏

j=1

2|R|Λ(Yj , Xj).

Further define Ln =

n
∏

j=1

Λ(Yj , Xj). Denoting by EP (resp. EQ) expectation with respect to P (resp. Q),

observe that for any f ∈ Bb(X), one has

(14) η̂n(f) = EP (f(Xn)|Yn) =
EQ (f(Xn)Ln|Yn)

EQ (Ln|Yn)
.

This formula is a consequence of the properties of conditional expectations, and in the context of filtering,
(14) is known as the Kallianpur-Stribel formula, e.g. Kallianpur and Striebel (1968).

Denote by K the Markov kernel associated with the Markov chain (Xn)n≥0 defined by M , as in (12).
One can check that ηn and η̂n satisfy (4) with gn(x) = Λ(yn, x) and Kn = K. Note also that in that case,
gn takes only two values which can be assumed to belong to Q because of rounding errors. It follows
from Remark A.4 that

sup
N0≥1

E
[

N1‖ηN1

1 − η1‖2
]

<∞.

The results proved in Section 2 of Gentil et al. (2005) provide an algorithm for computing recursively
the exact filter, i.e. the law of Xn given Yn. In the next section, one will compare the results from
the exact filter with those obtained by the Monte Carlo algorithm described in Section 2 with various
sampling methods.

4.2 Simulation results

In what follows, R is chosen to be the window of size 100 × 100 defined by R = {0, . . . 99}2. To makes
things simple, the target starts at (50, 50) and it moves according to a simple symmetric random walk,
i.e its goes up, down, right or left to the nearest neighbor with probability 1/4. The estimation of the
position of the target is taken to be the mean of the various measures. The simulations were performed
with p0 = 0.9 and p1 = 0.9, that there are 10% of errors in pixels.

In order to compare the efficiency of the optimal filter (OF) and the samplings methods described in
section 2, i.e. simple random sampling (SRS), remainder stochastic sampling (RSS), systematic sampling
(SyS), binomial sampling (BiS), and Bernoulli sampling (BeS), the mean absolute error between the
estimated position and the true one was calculated over several time intervals, namely [2, 100], [10, 100]
and [30, 100].

The number of particles N0 takes values 1000, 10000, 30000 and 50000. The results are reported in
the Table 1.

According to these results, one may conclude that the algorithm based on the systematic sampling
selection method performs quite well, provided the number of particles is large enough. Surprisingly,
the Monte Carlo based approximate filters seem to perform better than the optimal filter. However the
difference may not be statistically significant. Next, based on the results of Table 1 for the time interval
[30, 100], note that when the target is precisely detected, the error seems to stabilize near zero, indicating
that of ηN

n to ηn might be uniform on n. Finally, other simulations performed with several moving targets
seem to indicate that the algorithm based on systematic sampling also give impressive results.
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Table 1: Mean absolute error for one target performing a simple symmetric random walk in images of
size 100 × 100 with 10% of errors.

t [2, 100] [10, 100] [30, 100]

OF 2.1 1.7 1.4

N0 = 1000 SRS 57.4 60.3 56.2
RSS 51.8 53.6 43.8
SyS 42.7 43.7 36.9
BiS 54.0 56.5 45.5
BeS 13.8 12.1 6.9

N0 = 10000 SRS 76.0 81.0 64.1
RSS 1.9 0.8 0.5
SyS 2.4 0.7 0.5
BiS 6.4 6.7 0.5
BeS 77.5 82.5 85.4

N0 = 30000 SRS 8.7 3.0 0.5
RSS 2.4 0.6 0.4
SyS 3.9 1.5 0.4
BiS 4.0 2.1 0.5
BeS 8.1 6.2 0.4

N0 = 50000 SRS 3.9 3.4 0.9
RSS 10.2 5.2 0.7
SyS 5.0 2.5 0.6
BiS 4.8 2.1 0.8
BeS 3.6 1.5 0.3
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A Convergence results for a Markov chain

Suppose that (Xi, Yi)i≥1 are independent observations of (X,Y ) ∈ Z := R× [0, 1) of law P , with marginal
distributions PX and PY respectively. Further let λ denotes Lebesgue’s measure on [0, 1). Given Z0 =
(X0, S0) ∈ R × [0, 1), set Zi = (Xi, {Si}), where Si = Si−1 + Yi, i ≥ 1.

For n ∈ Z, set en(s) = e2πins, s ∈ [0, 2), and let ζn = E (en(Y )). Further set N = {n ∈ Z; ζn = 1}.
Recall that (en)∈Z is a complete orthonormal basis of the Hilbert space H = L2([0, 1), λ) with scalar

product (f, g) =
∫ 1

0 f(s)ḡ(s)ds and norm ‖f‖2 =
√

(f, f).
It is easy to check that (Zi)i≥0 is a Markov chain on Z with kernel K defined by

(15) Kf(x, s) :=

∫

Z

f(x′, {s+ y})P (dx′, dy), f ∈ Bb(Z),

and stationary distribution µ = PX ⊗ λ. Note that for any f ∈ L2(µ), by Tonelli’s theorem, Kf is well
defined, it depends only on s ∈ [0, 1), and it belongs to H since

‖Kf‖2
2 ≤

∫ 1

0

∫

Z

f2(x, {s+ y})P (dx, dy)ds =

∫

Z

∫ 1

0

f2(x, u)duP (dx, dy)

=

∫

Z

f2(z)µ(dz) = ‖f‖2
L2(µ).

Finally, let L and A be the linear bounded operators from L2(µ) to H defined by

Lf(s) =
∑

n∈N

(Kf, en)en(s), Af(s) =

∫

R

f(x, s)PX (dx), s ∈ [0, 1).

Theorem A.1. Let f ∈ L2(µ) be given and set WN =
1

N

N
∑

k=1

f(Zk). Then:

(i) If the initial distribution of Z0 = (X0, S0) is µ, then WN converges almost surely and in mean
square to W given by

(16) W = Lf(S0) =
∑

n∈N

(Kf, en)en(S0).

If, in addition,

(17)
∑

n∈Z\N

|(Kf, en)| |(Af, en)|
|1 − ζn|

<∞,

then NE
[

(WN −W)
2
]

converges, as N → ∞, to

(18) ‖f‖2
L2(µ) − ‖Lf‖2

2 + 2
∑

n∈Z\N

(Kf, en)(Af, en)

1 − ζn
.

(ii) If the initial distribution of Z0 = (X0, S0) is µ, if N = {0} and

(19)
∑

n∈Z\{0}

|(Kf, en)|2
|1 − ζn|2

<∞,

then the sequence of processes BN , defined by BN (t) =
√
N
(

WbNtc − µ(f)
)

, t ∈ [0, 1], converges in
D([0, 1]) to σB, where B is a Brownian motion and σ2 is given by (18).
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(iii) If PY admits a square integrable density h, then the Markov chain is geometrically ergodic, that is,
there exists ρ ∈ (0, 1) such that for any f ∈ L2(µ),

|Knf(Z0) − µ(f)| ≤ ‖h‖2ρ
n−2‖f‖L2(µ), n ≥ 2.

Proof. For simplicity, set ψ = Kf ∈ H . To prove (i), start the Markov chain from µ and denote the law of
the chain by Q. Then the sequence (Zn)n≥0 is stationary, and Birkhoff’s ergodic theorem, e.g. (Durrett,
1996, Section 6.2), can be invoked to claim that WN converges almost surely and in mean square to some
random variable W . To show that W is indeed given by (22), it suffices to show that E

[

(WN −W)2
]

tends to 0, as N → ∞. First, note that E(W2) = ‖Lf‖2
2 =

∑

n∈N

|(ψ, en)|2. Next, set ϕ(s) = Af(s). If

n ∈ N , then en(Y ) = 1 P-a.s., and it follows, by Fubini’s theorem, that

(ψ, en) =

∫ 1

0

∫

Z

f(x, {s+ y})en(s)P (dx, dy)ds

=

∫ 1

0

∫

Z

f(x, u)en(u)P (dx, dy)du = (ϕ, en).

As a result, E(W2) =
∑

n∈N

|(ϕ, en)|2. Next, using the fact that for any k ∈ Z, and any s, y ∈ [0, 1), one

has ek({s+ y}) = ek(s+ y) = ek(s)ek(y), and it follows that

Kek(s) =

∫

Z

ek({s+ y})P (dx, dy) =

∫

[0,1)

ek({s+ y})PY (dy) = ζkek(s), s ∈ [0, 1).

Hence, for any k ≥ 1 and any n ∈ Z, one obtains

(20) Kken = ζk
nen.

Now, using the Markov property of the chain together with (20), one has

E(WNW) = E(WNW)=
1

N

N
∑

k=1

∑

n∈N

(ψ, en)E
[

f(Zk)en(S0)
]

=
1

N

N
∑

k=1

∑

n∈N

(ψ, en)E
[

Kkf(S0)en(S0)
]

=
1

N

N
∑

k=1

∑

n∈N

(ψ, en)
(

Kk−1ψ, en

)

=
1

N

∑

j∈Z

N
∑

k=1

∑

n∈N

(ψ, ej)(ψ, en)
(

Kk−1ej , en

)

=
1

N

∑

j∈Z

N
∑

k=1

∑

n∈N

(ψ, ej)(ψ, en)ζk−1
j (ej , en)

=
1

N

N
∑

k=1

∑

n∈N

|(ψ, en)|2ζk−1
n =E(W2),

since, by definition, ζn = 1, for any n ∈ N .
Next, using stationarity, the Markov property, (20), and also using identity

2

N2

N−1
∑

k=1

k
∑

j=1

zj−1 =
N − 1

1 − z
− z − zN

(1 − z)2
, z ∈ C, z 6= 1,
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it follows that

E(W 2
N ) =

1

N
E
[

f2(Z0)
]

+
2

N2

N−1
∑

k=1

k
∑

j=1

E
[

Kj−1ψ(S0)f(Z0)
]

=
1

N
‖f‖2

L2(µ) +
2

N2

N−1
∑

k=1

k
∑

j=1

(

Kj−1ψ, ϕ
)

=
1

N
‖f‖2

L2(µ) +
∑

n∈Z

(ψ, en)(ϕ, en)





2

N2

N−1
∑

k=1

k
∑

j=1

ζj−1
n





=
1

N
‖f‖2

L2(µ) +
N − 1

N

∑

n∈N

(ψ, en)(ϕ, en)

+
2

N2

∑

n∈Z\N

(ψ, en)(ϕ, en)

[

N − 1

1 − ζn
− ζn − ζN

n

(1 − ζn)2

]

=
1

N
‖f‖2

L2(µ) +
N − 1

N
E(W2)

+
2

N2

∑

n∈Z\N

(ψ, en)(ϕ, en)

[

N − 1

1 − ζn
− ζn − ζN

n

(1 − ζn)2

]

.

Collecting the expressions obtained for E(W 2
N ) and E(WNW), one gets

E
[

(WN −W)2
]

=
1

N
‖f‖2

L2(µ) −
1

N
E(W2)(21)

+
2

N2

∑

n∈Z\N

(ψ, en)(ϕ, en)

[

N − 1

1 − ζn
− ζn − ζN

n

(1 − ζn)2

]

.

Since
∑

n∈Z\N |(ψ, en)||(ϕ, en)| is finite,

sup
nZ\N

∣

∣

∣

∣

N − 1

1 − ζn
− ζn − ζN

n

(1 − ζn)2

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

N−1
∑

k=1

k
∑

j=1

ζj−1
n

∣

∣

∣

∣

∣

∣

≤ N2

2
,

it follows from (21) and the Dominated Convergence Theorem that

lim
N→∞

E
[

(WN −W)2
]

= 0

and under the additional condition (17), one also obtains

lim
N→∞

NE
[

(WN −W)2
]

= ‖f‖2
L2(µ) −E(W2) + 2

∑

n∈Z\N

(ψ, en)(ϕ, en)

1 − ζn
,

completing the proof of (i).

The proof of (ii) is inspired by Durrett (1996). First, note that since N = {0}, Lf = µ(f) for any

f ∈ L2(µ) and it follows from (i) that 1
N

∑N
k=1 f(Zk) converges almost surely and in Lp to µ(f), for any

1 ≤ p ≤ 2. Moreover given any f ∈ L1(µ), one can find fn ∈ L2(µ) such that ‖f − fn‖L1(µ) <
1
n

. It
follows that for any n ≥ 1,

lim sup
N→∞

E

[
∣

∣

∣

∣

∣

1

N

N
∑

k=1

f(Zk) − µ(f)

∣

∣

∣

∣

∣

]

≤ 2

n
+ lim sup

N→∞
E

[
∣

∣

∣

∣

∣

1

N

N
∑

k=1

fn(Zk) − µ(fn)

∣

∣

∣

∣

∣

]

=
2

n
.
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Since the latter is true for any n ≥ 1, one may conclude that 1
N

∑N
k=1 f(Zk) converges in L1 to µ(f). By

Birkhoff’s ergodic theorem, 1
N

∑N

k=1 f(Zk) converges almost surely to µ(f). Next, let D be the subset of
H defined by

D =







h ∈ H ;
∑

n∈Z\{0}

|(h, en)|2
|1 − ζn|2

<∞







,

and let Ξ be the operator from D to H that satisfies

Ξh =
∑

n∈Z\{0}

(h, en)

1 − ζn
en.

Note that since (I−K)Ξh = (I−L)h, then Ξ = (I−K)−1(I−L) on D. Let D be the set of all f ∈ L2(µ)
such that f satisfies (19), i.e. Kf ∈ D. Then Ξ can be extended to a mapping from D to  L2(µ) viz.
Ξf = (I − L)f + ΞKf . Using KL = LK = L, one obtains that Ξ = (I −K)−1(I − L) on D. Next, if
f ∈ D, set g = Ξf . Since Lf = µ(f), it follows that

√
N(WN − µ(f)) =

1√
N

N
∑

k=1

[g(Zk) −Kg({Sk−1)}] +
1√
N

Kg(S0) − 1√
N

Kg({SN}).

Now, setting Fk = σ{Zj ; j ≤ k}, the terms ξk = g(Zk) − Kg({Sk−1)} are square integrable martingale
differences with respect to (Fj)j≥0, i.e. E(ξk |Fk−1) = 0, and because g2 and (Kg)2 both belong to L1(µ),
it follows from (i), as shown above, that

1

N

N
∑

k=1

E
[

ξ2k|Fk−1

]

=
1

N

N
∑

k=1

[

Kg2({Sk−1}) − (Kg)
2

({Sk−1})
]

converges almost surely to µ(g2) − µ((Kg)2). Note that since Kg = ΞKf , one has (Kg,Lf) = 0 and
expression (18) can be written as

σ2 = ‖(I −L)f‖2
L2(µ) + 2(ΞKf,Af) = ‖(I −K)g‖2

L2(µ) + 2(Kg,Af)

= ‖(I −K)g‖2
L2(µ) + 2(Kg,A(I −L)f) = ‖(I −K)g‖2

L2(µ) + 2(Kg,A(I −K)g)

= µ(g2 − 2gKg + (Kg)2) + 2µ(gKg) − 2µ((Kg)2) = µ(g2) − µ((Kg)2).

Finally, because of the stationarity of (ξk)k≥1, it follows that for any ε > 0,

1

N

N
∑

k=1

E
[

ξ2kI(|ξk | > ε
√
N)
]

= E
[

ξ21I(|ξ1| > ε
√
N)
]

→ 0,

as N → ∞. The conditions of Theorem 7.4 in Durrett (1996) are all met, so one may safely conclude
that defining the process BN (t) =

√
N
(

WbNtc − µ(f)
)

, t ∈ [0, 1], then BN converges in D[0, 1] to σB,
where B is a Brownian motion.

To prove part (iii), note first that since the density h of Y is square integrable, then N = {0},

supn≥1 |ζn| = ρ < 1, ζn = (en, h), and ‖h‖2
2 =

∑

n∈Z

|ζn|2. Therefore, for any g ∈ H ,
∑

n∈Z

|(g, en)| |ζn| ≤

‖g‖2‖h‖2 <∞. It follows that for any k ≥ 2,

Kkf = Kk−1ψ =
∑

n∈Z

(ψ, en)ζk−1
n en,

the latter series converging absolutely. Thus

sup
z0∈Z

∣

∣Kkf(s) − µ(f)
∣

∣ = sup
s∈[0,1)

∣

∣Kk−1ψ(s) − λ(ψ)
∣

∣ ≤
∑

n∈Z\{0}

|(ψ, en)||ζn|ρk−2

≤ ‖h‖2‖f‖L2(µ)ρ
k−2.

This completes the proof of the theorem.
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Remark A.2. Note that if ζn = 1 for some n > 0, then k 7→ ζk is n-periodic, so {ζk;n ∈ Z \ N} is
finite. Therefore supk∈Z\N |ζk | = ρ < 1 and condition (17) is satisfied. Also, if PY has a non degenerate
absolutely continuous part, then N = {0} and supn≥1 |ζn| = ρ < 1, so condition (17) holds true.

The next result is a straightforward extension of the previous theorem. Before stating it, denote by
ν the joint law of (Z1, S0), where S0 ∼ Unif([0, 1)).

Theorem A.3. Suppose that f ∈ L2(ν) and set WN =
1

N

N
∑

k=1

f(Zk, {Sk−1}). Then:

(i) If the initial distribution of Z0 = (X0, S0) is µ, then WN converges almost surely and in mean
square to W given by

(22) W = Lf(S0) =
∑

n∈N

(Kf, en)en(S0),

where

Kf(s) =

∫

Z

f(x, {s+ y}, s)P (dx, dy).

If Af(s) =
∫

Z
f(x, s, {s− y})P (dx, dy), s ∈ [0, 1) and if in addition,

(23)
∑

n∈Z\N

|(Kf, en)| |(Af, en)|
|1 − ζn|

<∞,

then NE
[

(WN −W)2
]

converges, as N → ∞, to

(24) ‖f‖2
L2(ν) − ‖Lf‖2

2 + 2
∑

n∈Z\N

(Kf, en)(Af, en)

1 − ζn
.

(ii) If N = {0}, if the initial distribution of Z0 is µ and

(25)
∑

n∈Z\{0}

|(Kf, en)|2
|1 − ζn|2

<∞,

then the sequence of processes BN , defined by BN (t) =
√
N
(

WbNtc − µ(f)
)

, t ∈ [0, 1], converges in
D([0, 1]) to σB, where B is a Brownian motion and σ2 is given by (24).

(iii) If PY admits a square integrable density h, then the Markov chain is geometrically ergodic, that is,
there exists ρ ∈ (0, 1) such that for any f ∈ L2(µ),

|Knf(Z1, S0) − µ(f)| ≤ ‖h‖2ρ
n−2‖f‖L2(µ), n ≥ 2.

Remark A.4. For example, suppose that Xk is bounded and set f(x, y, s) = x(y− s). Then it is easy to
check that for any n ∈ N ,

(Kf, en) =

∫

Z×[0,1)

x({y + s} − s)P (dx, dy)en(s)ds

=

∫

Z×[0,1)

xu(en(y) − 1)en(u)P (dx, dy)du = 0,

since P (en(Y ) = 1) = 1. It follows from Theorem A.3 that

WN =
1

N

N
∑

k=1

Xk({Sk} − {Sk−1})
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converges to 0 almost surely and in mean square.
Furthermore, if card(N ) > 1 then condition (23) holds and sup

N≥1
NE(W 2

N ) < ∞, while if PY is

absolutely continuous, then condition (25) holds true and
√
NTN converges in law to a centered Gaussian

random variable with variance σ2 given by (24).
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