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Abstract—In this paper, we present a method for the temporal tracking of fluid flow velocity fields. The technique we propose is

formalized within a sequential Bayesian filtering framework. The filtering model combines an Itô diffusion process coming from a

stochastic formulation of the vorticity-velocity form of the Navier-Stokes equation and discrete measurements extracted from the image

sequence. In order to handle a state space of reasonable dimension, the motion field is represented as a combination of adapted basis

functions, derived from a discretization of the vorticity map of the fluid flow velocity field. The resulting nonlinear filtering problem is

solved with the particle filter algorithm in continuous time. An adaptive dimensional reduction method is applied to the filtering

technique, relying on dynamical systems theory. The efficiency of the tracking method is demonstrated on synthetic and real-world

sequences.

Index Terms—Motion estimation, tracking, nonlinear stochastic filtering, fluid flows.

Ç

1 INTRODUCTION

THE analysis and understanding of image sequences
involving fluid phenomena has important real-world

applications. Let us cite, for instance, the domain of
geophysical sciences, such as meteorology and oceanogra-
phy, where one wants to track atmospheric systems for
weather forecasting or for surveillance purposes, estimate
ocean streams, or monitor the drift of passive entities such
as icebergs or pollutant sheets. The analysis of geophysical
flows from satellite images is of particular interest in large
regions of the world, such as Africa or the Southern
hemisphere, which face a very sparse network of meteor-
ological stations. A more intensive use of satellite images
might provide these lacking information. Images also have
a finer spatial and temporal resolution than the large-scale
dynamical models used for weather forecasting. Image data
then offers richer information on small motion scales.
However, the analysis of flow quantities is an intricate
issue as the sought quantities are only indirectly observed
on a 2D plan through a luminance function. Because of this
difficulty, satellite images are very poorly used in forecast-
ing models.

The analysis of fluid flow images is also crucial in
experimental fluid mechanics in order to analyze flows
around wing tips or vortex shedding from airfoils or
cylinders. Such an analysis allows us to get dense velocity
measurements by way of nonintrusive sensors. This enables
fluid mechanics in particular to have a better understanding

of some phenomena occurring in complex fluid flows or to
settle specific actions in view of flow control. This last
problem is a major industrial issue for several application
domains and such control is hardly conceivable without
having access to kinematical or dynamical measurements of
the flow. Imaging sensors and motion analysis provide a
convenient way to get these measurements.

For the analysis of complex flows interactions like those
encountered between fluid and structures, in sea-atmosphere
interactions, dispersion of polluting agents in seas and rivers,
or for the study of flows involving complex unknown border
conditions, image data might be a very interesting alternative
to a pure dynamical modeling in order to extract quantitative
flow features of interest. To that end, the knowledge
developed in computer vision for video sequence analysis,
3D reconstruction, machine learning, or visual tracking is
extremely precious and unavoidable. However, the direct
application of such general frameworks are likely to fail in a
fluid context, mainly because of the highly nonlinear nature
of fluid dynamics, which involves a coupling of a broad range
of spatial and temporal scales of the phenomenon. In this
context, it is necessary to invent techniques allowing the
association of a fluid dynamical modeling and image
observations of the flows. The study proposed here is a first
attempt at such an issue.

For all of the aforementioned applications and domains,
it is of major interest to track along time, as accurately as
possible, representative structures of the flow. Such a
temporal tracking may be obtained from deterministic
integration methods, such as the Euler method or the
Runge and Kutta integration technique, from successive
independent motion estimates. These numerical integration
approaches rely on a continuous spatiotemporal vector field
description and, thus, require the use of interpolation
schemes over the whole spatial and temporal domain of
interest. As a consequence, they are quite sensitive to local
errors in measurements or to inaccurate motion estimates.
When the images are noisy or if the flow velocities are of
high magnitude and chaotic as, for instance, in the case of
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turbulent flows, motion estimation tends to be quite
difficult and prone to errors. Another major difficulty in
motion estimation is the temporal consistency between
estimates. This problem is inherent in motion estimation
techniques (see, for instance, [3] for an extended review on
motion estimation techniques). As a matter of fact, most of
the motion estimation approaches use only a small set of
images (usually two consecutive images of a sequence) and
thus may suffer from a temporal inconsistency from frame
to frame. The extension of spatial regularizers to spatio-
temporal regularizers [36] or the introduction of simple
dynamical constraints in motion segmentation techniques
relies mainly on crude dynamic assumptions or are related
to rigid object motion only [19].

Some recent contributions [20], [29], [30], [34] aim at
improving the temporal consistency and the robustness of
the estimations over the whole sequence, introducing a
physical evolution law in the estimation process. The dense
motion estimation methods dedicated to fluid flows, based
on a spatial regularization of the vector fields, have been
extended to integrate temporal constraints related to the
fluid flow evolution [22], [35], [33]. These constraints are
either derived from the vorticity-velocity formulation of the
Navier-Stokes equation [22], [35] or from the Stokes
equation [33]. Recent techniques based on variational
tracking methods rely on similar dynamical models [29],
[30]. In that case, the temporal tracking is based on an
optimal control concept. Successive noisy estimations of the
vector fields are then smoothed and corrected according to
the considered conservation law. One advantage of the
variational tracking method is that the state vector of the
system can be of very high dimension. However, a
restriction is that this approach relies on a Gaussian
assumption, in the same spirit as a Kalman smoother.

We choose here to formulate the temporal tracking as a
stochastic filtering problem. The objective of stochastic
filtering (presented in Section 2) is to estimate the state of a
time-varying system, indirectly observed through noisy
measurements. The target of interest is described by
random vector variables, evolving following a state equa-
tion. The state can evolve in discrete or continuous time.
The typical situation in image analysis is to describe the
evolution of a state with a discrete time model, where the
time step corresponds to the image time step. Autoregres-
sive models or data-driven dynamic models are the most
frequently used when the information about the underlying
dynamical law is poor or is estimated from the images.

If the phenomena of interest are continuous by nature, a
continuous dynamical model is a more realistic approach.
Such continuous dynamics describing the evolution of the
state vector of interest in the image plane may be derived
from physical conservation laws. These laws may be
perfectly reproduced if their expressions are simple, or
approximated up to an uncertainty, modeled as a noise
term. The description of the state model from such a
continuous evolution law is then the better way to
reproduce faithfully the nature of the phenomena. More-
over, abrupt changes can be observed between two distant
observations if the evolution of the state is very nonlinear or
chaotic. A continuous dynamical model may then be more

adapted to take into account a long interval of time between
two measurements. This is the case for fluid flows, as they
are associated to a highly nonlinear and continuous
evolution law by nature. Note that the observation process
may also be considered as continuous if the time step
between observations is small enough. However, for
observations coming from image sequences, the measure-
ments are supposed to be given at discrete time instants. In
addition, the time step between two observations can be
quite long (in meteorological or oceanographic applications
for instance).

The choice of a probabilistic approach enables us to cope
with any nonlinearity in the evolution model and to deal
with a nonlinear relation between the state and the
measurements extracted from the images. The general
stochastic filtering problem does not rely on any Gaussian
assumption or linearity of the model. However, the filtering
problem associated to such nonlinear models does not have
any explicit analytical solution and is usually difficult to
implement numerically for a high-dimensional state vector.
As a matter of fact, Monte-Carlo probabilistic tracking
methods as proposed in the literature [17], [23], [31] are
efficient to track objects of reduced dimension such as
points or curves described by several discrete control
points. These techniques are not able to cope with high-
dimensional features such as dense vector fields. In our
work, in order to handle motion fields of reasonable
dimension, we rely on an original parameterization of fluid
flows [15], [13] relying on adequate basis functions. The
used basis functions stem from Biot-Savart integration of a
regularized discretization of the vector field vorticity and
divergence maps [7], [12]. Such a representation enables a
reduced-size representation of a fluid motion. The second
difficulty is related to the continuous nature of the involved
dynamic evolution law. The problem thus consists of the
definition of an appropriate sequential Monte-Carlo ap-
proximation of a stochastic filter which combines a
continuous dynamical law expressed as a stochastic differ-
ential equation and discrete measurements extracted from
the image sequence.

This paper is organized as follows: The stochastic
filtering problem is presented in Section 2. In particular,
the principle of a continuous nonlinear filtering with an
appropriate continuous version of the particle filter algo-
rithm is exposed. The construction of the filtering model we
propose to solve the fluid flow velocity fields tracking
problem is presented in Section 3. We then present in
Section 4 the application of an adaptive dimensional
reduction method to our high-dimensional tracking pro-
blem, relying on dynamical systems theory. The last section
shows tracking results for synthetic and real examples, with
applications in experimental fluid mechanics and meteor-
ology. This paper extends a previous conference paper [14].

2 STOCHASTIC FILTERING PROBLEM

We present in this section the stochastic filtering problem in
continuous time with discrete observations. The particle
filter for the discrete case is recalled and its continuous time
version is presented.
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2.1 Filtering Model

The random vector x describes the state characteristics and

the observations are denoted by z. The state process ðxtÞt�t0
evolves in continuous time according to a stochastic

differential equation. The observations ðztkÞtk�t1 are given at

time instants tk and form a discrete process. At each time tk,

the measurement equation relates the observation ztk to the

state xtk . The corresponding state space model is described by

dxt ¼ fðxtÞdtþ �ðxtÞdBt;
ztk ¼ gðxtkÞ þ vtk ;

�
ð1Þ

where fðxtÞ is the deterministic drift term of the stochastic

differential equation, �ðxtÞ is the diffusion term relative to

the Brownian motion Bt, and vtk is a given noise. The

functions f and g are nonlinear in the general case.

2.2 Optimal Filtering

The optimal filtering solution computes the filtering

distribution pðxtk jzt1:tkÞ at each measurement time tk. This

distribution can be obtained recursively by the Bayesian

filtering equations. Indeed, assuming pðxtk�1
jzt1:tk�1

Þ is

known, the filtering distribution pðxtk jzt1:tkÞ is evaluated in

two steps:

. The prediction step evaluates the predicted filtering
distribution pðxtk jzt1:tk�1

Þ from pðxtk�1
jzt1:tk�1

Þ and the
transition distribution pðxtk jxtk�1

Þ:

pðxtk jzt1:tk�1
Þ ¼

Z
pðxtk jxtk�1

Þpðxtk�1
jzt1:tk�1

Þdxtk�1
: ð2Þ

. The correction step integrates the new observation ztk
through the knowledge of the likelihood pðztk jxtkÞ.
The filtering distribution is then updated in the
following way:

pðxtk jzt1:tkÞ ¼
pðztk jxtkÞpðxtk jzt1:tk�1

ÞR
pðztk jxtkÞpðxtk jzt1:tk�1

Þdxtk
: ð3Þ

Note that the update step is performed at the measure-

ments times tk only. Between two consecutive measure-

ment times tk�1 and tk, the filtering distribution can be

defined by its predicted form pðxtjzt1:tk�1
Þ for tk�1 < t < tk,

where pðxtjzt1:tk�1
Þ ¼

R
pðxtjxtk�1

Þpðxtk�1
jzt1:tk�1

Þdxtk�1
.

2.3 Particle Filter

In the case of a linear state model and a linear and Gaussian

measurement model, the closed-form solution of the

filtering problem is known. The filtering problem is solved

with the Kalman filter. For the nonlinear case, the exact

solution of the optimal filtering equations is not available.

For weak nonlinearities, the filtering distributions can be

approximated by a Gaussian. However, this approximation

is too restrictive for most of the tracking problems in vision.

A better choice is to use a Monte-Carlo approximation of

the filtering density:

pðxtk jzt1:tkÞ �
XN

i¼1

w
ðiÞ
tk
�

x
ðiÞ
tk

ðxtkÞ; ð4Þ

where �
x
ðiÞ
tk

ðxtkÞ denotes the delta measure centered on x
ðiÞ
tk

,

which means that �
x
ðiÞ
tk

ðxtkÞ ¼ 1 if xtk ¼ x
ðiÞ
tk

, else 0. The

weighted set of particles (called trajectories in the rest of this

paper) fxðiÞtk ; w
ðiÞ
tk
gi¼1:N can be updated and reweighted

recursively with the particle filtering method, leading to a

recursive Monte-Carlo approximation of the filtering

density.

2.3.1 Discrete Time Particle Filter

We briefly recall the particle filter algorithm [17], [23] for

the particular case of a fully discrete state space model of

the form

xk ¼ fðxk�1Þ þwk�1;
zk ¼ gðxkÞ þ vk;

�
ð5Þ

with wk�1 and vk denoting independent noises. During the

prediction step, each trajectory is sampled from an

approximation of the unknown posterior distribution called

the importance distribution. The correction step consists of

a recursive evaluation of each weight, using the measure-

ment likelihood:

. Prediction step (sampling w.r.t. the importance
distribution)

x
ðiÞ
k � � xkjxðiÞ0:k�1; z1:k

� �
i ¼ 1 : N: ð6Þ

. Correction step and normalization (taking into
account the measurement likelihood)

w
ðiÞ
k /w

ðiÞ
k�1

p zkjxðiÞk
� �

p x
ðiÞ
k jx

ðiÞ
k�1

� �
� x

ðiÞ
k jx

ðiÞ
0:k�1; z1:k

� � and

ewðiÞk ¼ w
ðiÞ
kPN

j¼1 w
ðjÞ
k

i ¼ 1 : N:

ð7Þ

Note that a resampling step is usually added in order to

avoid the degeneracy problem of the set of trajectories. This

resampling procedure aims at removing trajectories with

small weights and duplicating trajectories with stronger

weights. The two steps (6) and (7) together with the

resampling of the trajectories form the particle filter. The

performance of the algorithm then depends on the choice of

the importance distribution �ðxkjxðiÞ0:k�1; z1:kÞ. The optimal

importance function in terms of variance of the weights is

�ðxkjxðiÞ0:k�1; z1:kÞ ¼ pðxkjxðiÞk�1; zkÞ [17]. This optimal function

is unfortunately only available for a linear measure

equation with Gaussian or mixture of Gaussian likelihood

[1]. When such an optimal importance function is not

available, the importance function is often simply set to the

prediction density [23]: �ðxkjxðiÞ0:k�1; z1:kÞ ¼ pðxkjxðiÞk�1Þ. In

that case, the recursive formulation of the weights w
ðiÞ
k

simplifies as

w
ðiÞ
k / w

ðiÞ
k�1p zkjxðiÞk

� �
: ð8Þ
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2.3.2 Continuous-Discrete Time Particle Filter

The particle filter algorithm can be extended to a general

continuous model [16]. Indeed, the importance distribution

can be fixed to the transition density pðxtk jx
ðiÞ
tk�1
Þ between

two observation times tk�1 and tk (as for the bootstrap

particle filter [23]). For a general continuous model of the

form (1), the prediction and correction steps of the

algorithm are then:

. Prediction step

x
ðiÞ
tk
� p xtk jx

ðiÞ
tk�1

� �
i ¼ 1 : N: ð9Þ

. Correction step and normalization

w
ðiÞ
tk
/wðiÞtk�1

pðztk jx
ðiÞ
tk
Þ and

ewðiÞtk ¼ w
ðiÞ
tkPN

j¼1 w
ðjÞ
tk

i ¼ 1 : N:
ð10Þ

The prediction step consists of sampling trajectories fxðiÞt :

tk�1 � t � tkgi¼1:N from the stochastic differential equation
describing the continuous evolution of the state:

dx
ðiÞ
t ¼ fðx

ðiÞ
t Þdtþ ��ðx

ðiÞ
t ÞdB

ðiÞ
t ; ð11Þ

from the initial conditions fxðiÞtk�1
gi¼1:N, where fBðiÞt gi¼1:N are

independent Brownian motions. The simulation from the
SDE (11) can be done with the Euler scheme or other
numerical simulation methods of stochastic differential
equations [24]. The Euler scheme has the following form:

x
ðiÞ
tþ�t ¼ x

ðiÞ
t þ f x

ðiÞ
t

� �
�tþ �� x

ðiÞ
t

� �
B
ðiÞ
tþ�t �B

ðiÞ
t

� �
; ð12Þ

where the increments B
ðiÞ
tþ�t �B

ðiÞ
t are independent Gaus-

sian noises with zero mean and variance �t. Note that the
discretization step of the simulation is much smaller than
the time step tk � tk�1 between two observations.

The correction step of the filter and the resampling
procedure are similar to the discrete case.

3 CONSTRUCTION OF THE FILTERING MODEL

This section describes the filtering model of type (1) we have
settled for the fluid flow velocity fields tracking problem.
Considering a dense representation for motion fields con-
stitutes a state space of too high dimension for the particle
filtering. As a matter of fact, sampling a probability
distribution over such a state space is infeasible in practice.
The first task to implement such a filtering approach is to
define an appropriate low-dimensional representation of the
flow to reduce the complexity of the problem to solve. We
describe, in Section 3.1, the low-order representation of fluid
flow velocity fields on which we rely in this work. Then, in
Section 3.2, the dynamical evolution law associated to this
reduced representation of fluid flows is presented. The
complete state model we propose for this tracking problem
is then defined in Section 3.3. The presentation of the
associated measurement model is described in Section 3.4.

The global filtering model and the associated continuous
particle filter are detailed in Section 3.5.

3.1 Low-Dimensional Representation of Fluid Flows

3.1.1 Two-Dimensional Vector Fields Reminder

A 2D vector field w is an IR2-valued map defined on a

bounded set � of IR2. We denote it wðxÞ ¼ ðuðxÞ; vðxÞÞT ,

where x ¼ ðx; yÞ and x and y are the spatial coordinates. The

vorticity is defined by �ðxÞ ¼ curl wðxÞ ¼ @v
@x� @u

@y and the

divergence is defined by �ðxÞ ¼ div wðxÞ ¼ @u
@xþ @v

@y . The

vorticity accounts for the presence of a rotating motion, while

the divergence is related to the presence of sinks or sources in

the flow. A vector field that vanishes at infinity can be

decomposed into a sum of an irrotational component with null

vorticity and a solenoidal component with null divergence.

This is called the Helmholtz Decomposition [11], [38]. Let us

remark that such a decomposition for a dense motion field can

be computed in the Fourier domain [11] or directly specified

as a motion estimation problem [37], [38] from the image

sequence. When the null border condition cannot be imposed,

a transportation component, with null vorticity and null

divergence, must be included. This component can be

approximated using the Horn and Schunck estimator with a

strong regularization coefficient [10].
Let us note that the tracking method we propose is

adapted to the solenoidal component of vector fields. In the

rest of this paper, the vector field w will then denote the
solenoidal part of the flow. The divergent motions, if any,

are not tracked and have to be estimated from successive
pairs of images. Moreover, we assume that the transporta-
tion component is known over the whole sequence.

It is known [11] that wðxÞ ¼ rr? ðxÞ, where  is a

potential function and rr? ¼ ð @@y ;� @
@xÞ. The potential func-

tion  is solution of a Poisson equation: � ðxÞ ¼ �ðxÞ,
where � denotes the Laplacian operator. Let G be the

Green’s function associated to the Laplacian operator in 2D:

GðxÞ ¼ 1
2� lnðkxkÞ [9]. The solution  is then obtained by

convolution

 ðxÞ ¼ G � �ðxÞ ¼
Z

IR2
Gðx� uÞ curl wðuÞdu:

Finally, wðxÞ ¼ K � �ðxÞ, where KðxÞ ¼ rr?GðxÞ ¼ x?

2�kxk2 .

Note that this relation between the solenoidal

component w and the scalar vorticity � is known as

the Biot-Savart integral [9].

3.1.2 Vorticity Approximation with Vortex Particles

The idea of vortex particles methods [7], [25] consists of
representing the vorticity distribution of a field by a set of

discrete amounts of vorticity. A discretization of the
vorticity into a limited number of elements enables to
evaluate the velocity field directly from the Biot-Savart

integral. The vorticity is represented by a sum of smoothed
Dirac measures, in order to remove the singularities

induced by the Green kernel gradient K. The smoothing
function is called cut-off or blob function and is generally a

radially symmetric function scaled by a parameter �:
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f�ðxÞ ¼ 1
�2 fðx�Þ. A vortex particle representation of the

vorticity map then reads

�ðxÞ �
Xq
j¼1

�jf�jðx� xjÞ; ð13Þ

where xj denotes the center of each basis function f�j , the

coefficient �j is the strength associated to the particle, and �j
represents its influence domain. These parameters are free to

vary from a function to another. Replacing the vorticity by its

approximation (13) into the Biot-Savart integral leads to

wðxÞ �
Xq
j¼1

�jK�jðx� xjÞ; ð14Þ

where K�j is the smoothed kernel K�j ¼ K � f�j . For some

well-chosen cut-off functions, an analytical expression for w

may be obtained [12], [13]. With a Gaussian function for

instance, the motion field writes

wsolðxÞ �
Xq
j¼1

�j
ðx� xjÞ?

2�kx� xjk2
1� exp �kx� xjk2

�j2

 ! !
:

ð15Þ

Note that a similar orthogonal expression can be obtained

for the irrotational component, with source particles [13].
Let us note that, in the context of fluid flows, other

approaches can be considered to reduce the number of state

variables describing the model. For instance, it is possible to

rely on the global knowledge of the flow in order to

construct a reduced representation of it. The flow can then

be described by its spectral modes [6] or by spatial basis

functions in case of the proper orthogonal decomposition

(POD [4]). These methods are widely used for the

simulation of fluid flows. For flows exhibiting a repetitive

behavior, the POD offers a very efficient representation.

Such a decomposition is computed from a series of

experimental measures and a singular value decomposition

of the autocorrelation function. The reduced dynamical

model is then obtained by a Galerkin projection of the most

energetic modes on the Navier-Stokes equation. However,

such a representation is dedicated to given experimental

configuration and cannot be used in a different context. For

geophysical applications (meteorology, oceanography, and

glaciology), it is difficult to obtain such a basis of

realizations of the same phenomenon. These methods are

thus not adapted. At the opposite end, the vortex particles

allow us to construct a reduced representation of the flow

without any a priori knowledge on the flow. Note that, in

the same spirit, a wavelet decomposition can also be

proposed [18]. However, one advantage of the vortex

particles is that the flow dynamics is described by a set of

elements, a direct physical interpretation. The approxima-

tion is indeed based on the vortices of the flow. Finally, the

temporal evolution of the flow can be described on the basis

of these elements, from the Navier-Stokes equation. This

will be detailed in the next section.

3.2 Vortex Particles Dynamics

The temporal evolution of an incompressible fluid flow
(with null divergence) is described in 2D by the Navier-
Stokes equation:

@w

@t
þ ðw � rrÞw ¼ � 1

	
rrpþ 
�w; ð16Þ

where p is the pressure, 	 is the fluid density, and 
 is the
viscosity coefficient of the fluid. The equivalent velocity-
vorticity formulation writes

@�

@t
þ ðw � rÞ� ¼ 
4�: ð17Þ

In this last formulation, the evolution of the flow is
described through the variation of the vorticity, without
pressure term. The vorticity is transported by the velocity w
and diffuses according to the viscosity coefficient. This
equation can be solved numerically in two distinct steps:
the transport and the diffusion steps [7]. The transportation
of the vorticity without the diffusion effects is first
described by

@�

@t
þ ðw � rrÞ�� ¼ 0; ð18Þ

then the vorticity diffusion (related to the viscosity of the
fluid) is described by the heat equation

@�

@t
¼ 
��: ð19Þ

3.2.1 Vorticity Transportation

This step is implicitly solved by the Lagrangian nature of
the vortex particles. Indeed, the center xl of each vortex
particle is simply moved by its own velocity wðxlÞ. The
displacement of one center xl is described by

dxl
dt
¼ wðxlÞ; ð20Þ

where wðxlÞ is evaluated from all of the other positions
following (14):

wðxlÞ ¼
Xq
j¼1

�jK�jðxl � xjÞ: ð21Þ

In practice, a Gaussian smoothing function is used to
compute the kernel K�j , as written in (15).

We recall that, when the null border conditions for the
velocity field cannot be imposed, it is necessary to take the
global transportation component (denoted wtra) into ac-
count. This component is supposed to be known and can be
added to the displacement (21):

wðxlÞ ¼
Xq
j¼1

�jK�jðxl � xjÞ þwtraðxlÞ: ð22Þ

3.2.2 Vorticity Diffusion

The diffusion part can be solved by Chorin’s random walk
method [7]. This method is stochastic and relies on the relation
between diffusion and Brownian motion. There is indeed a
correspondence between the distribution of particles
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undergoing a random walk and the solution of the heat
equation [9]. The method then consists of applying a
Gaussian perturbation to each vortex particle’s center. For
a time step �t, the perturbation has zero mean and variance
2
�t. This random displacement is added to the transporta-
tion (22).

Note that the diffusion can be simulated by other
deterministic methods [12]. However, one advantage of the
stochastic approach is that it allows a complete probabilistic
interpretation of the 2D incompressible Navier-Stokes equa-
tion. In fact, the vorticity-velocity formulation of the Navier-
Stokes equation belongs to the class of MacKean-Vlasov
equations. It has then a rigorous interpretation in terms of
stochastic interacting particles systems [5], [26], [27].

3.2.3 Interacting Particles System

The evolution of the q vortex particles is finally described by
the following system:

dxl;t ¼
Xq
j¼1

�jK�jðxl;t � xj;tÞdtþ
ffiffiffiffiffi
2

p

dBl;t; 1 � l � q; ð23Þ

where Bl;t is a Brownian motion of dimension 2. The system
can be rewritten in a compact form, defining x ¼
ðx1; . . . ;xqÞT and wðxÞ ¼ ðwðx1Þ; . . . ;wðxqÞÞT :

dxt ¼ wðxtÞdtþ
ffiffiffiffiffi
2

p

dBt; ð24Þ

where Bt is a standard Brownian motion of dimension 2q
with independent components. Note that, in this model,
contrary to the general model defined in (1), the diffusion
part does not depend on the state xt but is only related to
the viscosity 
 of the fluid.

3.3 State Model for the Filtering Approach

In our filtering model, the state vector x ¼ ðx1; . . . ;xqÞT is
composed of the q centers of vortex particles used to
represent the flow. We also recall that the random part of
the model (24) expresses the vorticity diffusion. This
describes a physical phenomenon but does not include the
model uncertainties. These uncertainties may come from
various sources: 1) nonadequacy of the 2D model to the
image sequence (because we observe 3D phenomena
through apparent velocities in the image plane), 2) error
in the approximation of the vorticity by a weak number of
vortex particles (smoothing of some scales), and 3) bad
knowledge of model parameters (strengths and influence
domains of vortex particles). In order to include these noise
factors into the filtering model, we add an artificial random
term � to the state model:

dxt ¼ wðxtÞdtþ �sdBt; where �s ¼
ffiffiffiffiffi
2

p

þ �: ð25Þ

3.4 Measurement Model

We recall first that the dense velocity field wt can be
reconstructed at each time t from the knowledge of the
vector xt ¼ ðx1;t; . . . ;xq;tÞT and the model parameters. The
displacement is given by

wtðxÞ ¼
Xq
j¼1

�jK�jðx� xj;tÞ 8x 2 �: ð26Þ

A region Rj is fixed around each center xj, corresponding to

the influence domain of the basis function and character-

ized by the parameter �j. Denoting R ¼ [qj¼1Rj, the

observation vector is then defined at time tk by

ztk ¼ ItkðxÞð Þx2R; ð27Þ

where ItkðxÞ is the intensity of the point x in the image

observed at time tk. The measurement model is based on a

brightness consistency assumption

ItkðxÞ ¼ Itkþ1
xþwtkðxÞð Þ þ utk ; ð28Þ

defined up to a Gaussian noiseutk � Nð0; �2
mÞ. The parameter

�m controls the uncertainty in the measurement model. This

term traduces the uncertainty in the observations if the

quality of observed images is bad for instance. Besides, this

uncertainty term allows dealing with an eventual nonvalidity

of the brightness consistency assumption. Let us note that this

general brightness consistency model can be adapted to

specific situations [2], [20], [22], [21].
Assuming that ItkðxÞ and Itkðx0Þ are independent con-

ditionally to xtk 8ðx;x0Þ 2 R, the likelihood of the vector of

observations ztk reads

pðztk jxtkÞ ¼
Y
x2R

p ItkðxÞjxtkð Þ ð29Þ

and, consequently,

pðztk jxtkÞ / exp �
Z
R

ItkðxÞ � Itkþ1
xþwtkðxÞð Þ

� �2

2�2
m

dx

 !
:

ð30Þ

Note that the construction of the likelihood at time tk relies

on the assumption that the image Itkþ1
is available. The

dependence graph of our filtering model is then described

by Fig. 1.

3.5 Filtering Scheme for Velocity Fields Tracking

The complete filtering model is finally defined by the state

model (25) and the likelihood (30)

dxt ¼ wðxtÞdtþ �sdBt;
pðztk jxtkÞ:

�
ð31Þ

As both the evolution model and the measurement model

are nonlinear, a nonlinear filtering technique must be used

to solve the filtering problem. The particle filter for a

continuous-discrete model, as presented in Section 2.3, is

adapted to such a highly nonlinear problem. The overall

velocity fields tracking method is finally composed of the

following steps:
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Fig. 1. Dependence graph of the filtering model.
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. tk ¼ t0: Initialization of the state vector xt0 ¼
ðx1;t0 ; . . . ;xq;t0Þ

T composed of q vortex particles
positions and their associated strength and influence
parameters f�j; �jgj¼1:q. Note that the influence
parameters are initialized so that vortex particles
overlap. The initial vorticity distribution is then
estimated from the first pair of images. The
corresponding parameters estimation problem is
constructed from the representation (15), incorpo-
rated within a spatiotemporal variation model of the
luminance function. This estimation method has
been described in previous papers [15], [13].

. tk ¼ t1; t2; . . . :

- Prediction of vortex particles trajectories:

Simulation of N trajectories fxðiÞt : tk�1 < t �
tkgi¼1:N from the initial conditions fxðiÞtk�1

gi¼1:N

with the Euler scheme:

x
ðiÞ
tþ�t ¼ x

ðiÞ
t þw x

ðiÞ
t

� �
�tþ �s

ffiffiffiffiffiffi
�t
p

�
ðiÞ
t ;

where �
ðiÞ
t � Nð0; II2qÞ:

ð32Þ

- Correction and normalization of trajectories
weights:

w
ðiÞ
tk
/ wðiÞtk�1

p ztk jx
ðiÞ
tk

� �
and

ewðiÞtk ¼ w
ðiÞ
tkPN

j¼1 w
ðjÞ
tk

i ¼ 1 : N:
ð33Þ

- Estimation:

* Estimated filtering distribution:

p̂ðxtk jzt1:tkÞ ¼
XN

i¼1

ewðiÞtk �x
ðiÞ
tk

ðxtkÞ: ð34Þ

* Estimated state:

x̂tk ¼ ðx̂1;tk ; . . . ; x̂q;tkÞ
T ¼

XN

i¼1

ewðiÞtk x
ðiÞ
tk
: ð35Þ

* Estimated velocity field:

ŵtkðxÞ ¼
Xq
j¼1

�jK�jðx� x̂j;tkÞ 8x 2 �: ð36Þ

Note that the filtering distribution p̂ðxtk jzt1:tkÞ is estimated at

observations times tk only. However, it can be defined

between two measurement times tk�1 and tk by its predicted

form

pðxtjzt1:tk�1
Þ for tk�1 < t < tk: ð37Þ

This distribution can be approximated on the set of

trajectories fxðiÞt gi¼1:N, simulated according to the scheme

(32) and weighted by the weights evaluated at tk�1:

p̂ðxtjzt1:tk�1
Þ ¼

XN

i¼1

ewðiÞtk�1
�

x
ðiÞ
t

ðxtÞ; ð38Þ

leading to

x̂t ¼ ðx̂1;t; . . . ; x̂q;tÞT ¼
XN

i¼1

ewðiÞtk�1
x
ðiÞ
t : ð39Þ

The velocity fields can then be estimated for all t between
two instants of measurements:

ŵtðxÞ ¼
Xq
j¼1

�jK�jðx� x̂j;tÞ 8x 2 �: ð40Þ

4 DIMENSIONAL REDUCTION OF THE FILTERING

PROBLEM

When the dimension of the state space is high, the
implementation of filtering techniques is problematic. The
difficulty is related to the handling of estimated error
covariance matrices for the Kalman filter and its extensions
and to the number of sampled trajectories for Monte-Carlo
filtering techniques. A first way to reduce the size of the
problem is to construct a reduced representation of the
state. The vortex particle decomposition is such a reduced
size representation for the dense velocity fields tracking
problem. However, when the phenomenon is too complex,
the size of this representation remains high. A second
approach consists of relying on the analysis of stable and
unstable directions of a dynamical system. This idea has
been used for the Kalman filtering techniques in order to
approximate the estimated covariance matrix by a reduced
rank one [28], [32]. For the continuous-discrete particle
filter, a method has been proposed by Chorin and Krause
[8]. The idea is to concentrate the sampling effort over
unstable directions of the dynamics, defined adaptively
along the sequential estimation process.

Following Chorin and Krause’s paper, we present in
this section a way to characterize the stable and unstable
directions of a dynamical system. The reduced version of
the continuous-discrete particle filter is then applied to
our model.

4.1 Stable and Unstable Directions of a Dynamical
System

4.1.1 General Case

We consider the following differential equation, describing
the evolution of a system without noise:

dxt
dt
¼ fðxtÞ: ð41Þ

Let ½tj�1; tj	 be a time interval of finite length. Let xtj�1
be the

state vector of the system at time tj�1 and xtj�1
þ �xtj�1

a
small perturbation of xtj�1

. The temporal evolution of �xðtÞ
can be approximated by the linear equation

d�xt
dt
¼ JðtÞ�xt; ð42Þ

where JðtÞ ¼ @f
@x ðxðtÞÞ is the Jacobian matrix of f , evaluated at

xðtÞ. The solution of this linear system is given at time tj by

1284 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 31, NO. 7, JULY 2009

Authorized licensed use limited to: UR Rennes. Downloaded on July 13, 2009 at 09:52 from IEEE Xplore.  Restrictions apply.



�xðtjÞ ¼Mtj�1;tj �xðtj�1Þ; ð43Þ

where Mtj�1;tj is called the resolvant matrix of the system,
defined through matrix exponential as

Mtj�1;tj ¼ exp

Ztj
tj�1

JðsÞds

0B@
1CA: ð44Þ

Observing that

< �xðtjÞ; �xðtjÞ > ¼ < Mtj�1;tj �xðtj�1Þ;Mtj�1;tj �xðtj�1Þ >
ð45Þ

¼ < �xðtj�1Þ;MT
tj�1;tj

Mtj�1;tj �xðtj�1Þ >; ð46Þ

where <;> denotes the euclidean scalar product, it follows
that the directions of the highest growth of the perturbation
over an interval ½tj�1; tj	 can be characterized by the
eigenvectors of the matrix MT

tj�1;tj
Mtj�1;tj . The eigenvectors

associated to the eigenvalues greater than 1 correspond to
the unstable directions, while the remaining eigenvectors
correspond to the stable ones.

4.1.2 Vortex Particles Model

The state evolution model of the vortex particles (25)
without the noise component is given by

dxt
dt
¼ wðxtÞ; ð47Þ

where we recall that x ¼ ðx1; . . . ;xqÞT and wðxÞ ¼
ðwðx1Þ; . . . ;wðxqÞÞT : The Jacobian matrix JðtÞ ¼ @w

@x ðxðtÞÞ
of size ð2q; 2qÞ is first constructed from the velocity
expression (15). The resolvant matrix is then computed
from (44).

4.2 Reduced Continuous-Discrete Particle Filter

Let us first note that if the time interval ½tk�1; tk	 between

two observations is long, the interval is first divided as

follows: ½tk�1; tk	 ¼ [j½tj�1; tj	. The stable and unstable

directions are then computed with more precision over

successive subintervals. Over a given subinterval ½tj�1; tj	,
the stable and unstable directions of the system (47) are

specified from a deterministic test trajectory denoted exðtÞ.
This trajectory is obtained by propagation of the estimated

state x̂tj�1
from time tj�1 to time tj, integrating the model

(47) with a standard Euler scheme of time step �t:

xtþ�t ¼ xt þwðxtÞ�t: ð48Þ

The matrix Mtj�1;tj is evaluated along the test trajectory
using (44). We denote by Q the matrix composed of the
eigenvectors of MT

tj�1;tj
Mtj�1;tj . The change of variables y ¼

Qx leads to the following reformulation of our state
evolution model (25):

dyt ¼ QwðQTytÞdtþQ�sdBt; where �s ¼ �sII2q: ð49Þ

The continuous-discrete particle filter is then modified as
follows:

. tk ¼ t1; t2; . . . :

- Adaptive prediction of trajectories:
Over all subintervals ½tj�1; tj	 such that

[j½tj�1; tj	 ¼ ½tk�1; tk	:

* Characterization of the m unstable and 2q �
m stable components of the system (see
Section 4.1).

* Simulation of N trajectories fyðiÞt : tj�1 <

t � tjgi¼1:N from the initial conditions

fyðiÞtj�1
gi¼1:N, handling differently the un-

stable and stable components.

� Unstable components: Simulated from
the model (49).

� Stable components: Replaced by the
corresponding components of the test
trajectory ey ¼ Qex.

- Correction and estimation: After change of
variable x ¼ QTy, use of (33) to (36).

The dimensional reduction acts over the prediction step of
the filtering algorithm. For each trajectory, the m unstable
components are randomly sampled, while the 2q �m stable
components are fixed to the deterministic test trajectory
components. The sampling problem associated to the
prediction step is then reduced to a state space of size m.

5 EXPERIMENTAL VALIDATION

This section shows a set of experiments designed to validate
the tracking method we propose. The nonlinear filtering
technique is first tested on synthetic image sequences. The
first sequence has been synthesized from a reduced model
of vortex particles. The second sequence comes from a
numerical simulation of a bidimensional turbulent flow.
Results on real-world sequences are then presented. The
first sequence is related to experimental fluid mechanics,
whereas the second one is an infrared meteorological
sequence.

5.1 Synthetic Image Sequence of Vortex Particles

We present in this section the tracking results on a synthetic
image sequence simulated from a reduced model of vortex
particles. The model has been constructed from five vortex
particles. Their initial positions fxj;t0gj¼1:5 and associated
parameters f�j; �jgj¼1:5 have been fixed. The state of the
model is defined as the set of the positions of the five
particles, and its evolution is characterized by the model
(25). Vortex particle trajectories can be simulated from the
state model, with a discretization scheme of Euler type. We
show, in Fig. 2, an example of two realizations, obtained
from the same initial conditions. The temporal evolution of
each coordinate of the state vector can be seen in Fig. 2 for
100 time steps. It can be noticed that the trajectories
simulated from the stochastic differential equation can
differ a lot.

In order to test the tracking method, we have first
selected one of the trajectories simulated from the model as
a reference. The realization we have chosen is the one
plotted in black in Fig. 2. From this reference trajectory, a
sequence of velocity fields has been obtained using
expression (15). A sequence of synthetic images has then
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been constructed by warping. A pair ðItk ; Itkþ1
Þ of synthetic

images is then available at each observation time tk. The
motion described by this pair corresponds to the displace-
ment at time tk of the ground truth. The images we have
used to create the synthetic sequence correspond to images
of small particles transported by the flow, similar to the
ones used by Particle Image Velocimetry (PIV) techniques
(see Fig. 6 for an illustration of such images).

We have tested the tracking method on this synthetic
image sequence, with N ¼ 500 trajectories. The result is
presented in Fig. 3. In order to evaluate the robustness of
the particle filtering method against its stochasticity, we
have represented a mean result over 50 filterings and the
dispersion around this result. The results show that the
method is able to recover the test trajectory. The estimated
trajectories of the five vortex particles coincide with the
trajectories associated to the ground truth (see Fig. 3). The
dispersion around the estimation of each coordinate of the
state vector is very weak, highlighting the robustness of the
tracking method.

In order to demonstrate the interest of a continuous
modeling of our filtering problem, the tracking method has
been tested on the same image sequence, but for a state

space model in discrete time. In that case, the discretization
step of the evolution model corresponds to the time step
between two images. The evolution equation then writes as
follows:

xtkþ1
¼ xtk þwðxtkÞ þ vtk ; ð50Þ

where vtk is a Gaussian noise. The corresponding filtering
result is presented in Fig. 4. The result corresponds to a
mean over 50 filterings. We can notice that the estimated
trajectories of the vortices do not recover the true
trajectories. Moreover, Fig. 4 shows that the dispersion
around the estimates is quite high. This experiment high-
lights the importance of a continuous modeling in case of a
vorticity-velocity dynamics.

The last experiment on this synthetic sequence concerns
the dimensional reduction presented in Section 4. The
tracking result obtained with the reduced particle filter has
been compared to the result we have presented in Fig. 3, for
the same number of trajectories ðN ¼ 500Þ. The comparison
has been done in terms of mean absolute vorticity
estimation error at each time. The result is presented in
Fig. 5. The number m of unstable components is equal to 5
so that the reduction we have obtained is of factor 2.
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Fig. 2. Example of two realizations obtained by simulation of the model constructed from five vortex particles. Temporal trajectories of the

10 coordinates of the five vortex particles (the realization corresponding to the ground truth is plotted in black).

Fig. 3. Tracking result obtained with the nonlinear filtering method we propose averaged over 50 filterings. Temporal trajectories of the

10 coordinates of the five vortex particles (the ground truth is plotted in black, the mean result of the tracking in dark gray, and the dispersion of the

estimations around their means in light gray).
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Surprisingly, this factor 2 is repeated over the whole

sequence. For a reduction of factor 2, note that the gain in

computational cost was negligible due to the computational

cost associated with the determination of the eigenvalues.

However, it can be observed in Fig. 5 that the tracking

results obtained with or without dimensional reduction are

close. This shows that the random sampling can be done in

a space of reduced size without loss of quality if this

reduced space is defined properly.

5.2 Synthetic Image Sequence of 2D Turbulence

We present a second synthetic example showing the

temporal evolution of a 2D turbulent flow. This image

sequence of 100 frames has been obtained by simulation of

the 2D incompressible Navier-Stokes equation with a DNS

method.1 The sequence is partly reproduced in Fig. 6.
A sequence of vorticity maps corresponding to the

simulation of the flow is represented in Fig. 7. The filtering

model has been initialized on the first pair of images with

the estimation method proposed in [13]. The state vector is

composed of 100 vortex particles. It is then of size 200,
leading to a more difficult problem than the previous
example. However, as we are limited in practice by the
computational resources, we have restricted the number of
sampled trajectories to N ¼ 1;000. Fig. 7 displays the
temporal evolution of the vorticity maps corresponding to
the numerical simulation and the evolution of the maps
estimated by the tracking method. The estimated initial
vorticity distribution can be compared to the true initial
vorticity in Fig. 7, at time tk ¼ 0. We can observe that the
reduced model allows to recover the large scales of
vorticity, while the smaller scales of the flow tend to be
smoothed. For that reason, the filtering method is not able
to track the fine structures of vorticity. However, we can
notice that the main vortices of the flow are tracked
correctly. For instance, the temporal evolution of the vortex
located in the bottom right corner of the image at time tk ¼
0 can be observed. Its trajectory is well tracked over the
whole sequence. The corresponding motion fields can be
compared in Fig. 8.

A quantitative analysis of the tracking result is presented
in Fig. 9. This figure displays the temporal evolution of the
absolute vorticity error between the true vorticity and the
estimated vorticity, averaged over the image. This error can
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Fig. 5. Comparison of the tracking results by filtering with and without dimensional reduction. The mean vorticity estimation error associated to the

dimensional reduction is plotted in dark gray and the error associated to the result presented in Fig. 3 is plotted in light gray. The black curve

represents the difference.

1. The image sequence has been provided by the CEMAGREF Rennes
within the framework of the European FLUID project “Fluid Image
Analysis and Description” http://fluid.irisa.fr.

Fig. 4. Tracking result obtained with a discrete model, averaged over 50 filterings. Temporal trajectories of the 10 coordinates of the five vortex

particles (the ground truth is plotted in black, the mean result of the tracking in dark gray, and the dispersion of the estimations around their means in

light gray).

Authorized licensed use limited to: UR Rennes. Downloaded on July 13, 2009 at 09:52 from IEEE Xplore.  Restrictions apply.



be compared to the temporal evolution of the error obtained

with a simple propagation in time of the model. Let us note

that the mean absolute error of the tracking method is not

negligible in comparison with the mean absolute vorticity

over this sequence. However, we can note that the tracking

leads to a significant improvement in comparison with a

simple prediction of the model.

5.3 Experimental Fluid Mechanics Application

The tracking method has been tested on a real image

sequence coming from an application in experimental fluid

mechanics. The sequence shows the evolution of a vortex

generated at the tip of an airplane wing.2 The sequence,

composed of 160 frames, is partly reproduced in Fig. 10.
The initialization of the model has been obtained from

the first pair of images of the sequence. The initial vorticity

distribution is described by a set of 15 vortex particles. This

vorticity map and the corresponding displacement field can

be seen in Fig. 11 for tk ¼ 0. Fig. 11 illustrates the results
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Fig. 7. Result for 2D turbulence tracking: comparison of the vorticity maps. The ground truth is presented in the first line and the tracking result in the

second line.

2. The sequence has been provided by the Office National d’�Etudes et de
Recherches Aérospatiales (ONERA).

Fig. 6. Image sequence obtained by Direct Numerical Simulation of the 2D incompressible Navier-Stokes equation.
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obtained by a simple propagation of the model. We can

observe that a simple simulation of the dynamical model does

not enable to track the vortex over the whole sequence.

Indeed, from time tk ¼ 20, the shape of the vortex is not well

reconstructed. The predicted displacement fields deviate

significantly from the center of the vortex. Later in the

sequence, the predicted displacement fields present defor-

mations that do not correspond to the observed phenomenon.

In the final part of the sequence, the trajectory of the
vortex is completely lost.

Fig. 12 shows the solution obtained by the tracking
method, for N ¼ 1;000 trajectories in the filtering algorithm.
The motion of the vortex is well reconstructed at each time
and its trajectory is well tracked until the end of the
sequence. In particular, we can observe that the diffusion of
the vortex in the second half of the sequence is well
represented by the displacement fields. The deformation of
the estimated rotating motion follows the photometric
contours of the image. Secondary counter-vortices rotating
around the principal vortex are well represented. The
evolution of the associated vorticity maps shows a spatial
diffusion of the positions of the vortex particles. The
diffusion of the vortex is described by the fact that the
associated vorticity area becomes less concentrated in space.

For these real examples, the actual displacement fields
are not known. However, an indication about the quality of
the results can be given by the mean reconstruction error
over the image domain, from the estimated displacement
fields. This error is defined at each observation time tk by
jItkþ1
ðxþ ŵtkðxÞÞ � ItkðxÞj 8x 2 �. The mean error evolu-

tion is represented in Fig. 13. An indication about the
quality of the result given by the prediction can be
compared to the result of the tracking method we have
proposed. The algorithm has been run 20 times in order to
test the robustness of the method. The mean result and the
dispersion of the estimations around this mean are
displayed at each time in the figure. We can observe that
the reconstruction error related to the prediction is highly
decreased by the introduction of the observations in the
filtering model. This remark confirms the qualitative
comparison we have done from Figs. 11 and 12.

5.4 Meteorology Application

We present in this section a result obtained on a sequence of
images provided by the infrared channel of Meteosat.3 The
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Fig. 8. Result for 2D turbulence tracking: Comparison of the displace-

ment fields. The ground truth is presented in the first column and the

tracking result in the second column.

Fig. 9. Temporal evolution of the absolute vorticity error, averaged over
the image domain. The estimation error caused by a simple propagation
of the evolution model is plotted in light gray and the estimation error of
the tracking method is plotted in black. The mean absolute vorticity
corresponding to the ground truth is plotted in dark gray.

3. The sequence has been provided by the Laboratoire de Météorologie
Dynamique (LMD) within the framework of the European FLUID project
“Fluid Image Analysis and Description” http://fluid.irisa.fr.
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sequence displays the trajectory of a cyclone over the Indian

Ocean. The sequence is partly represented in Fig. 14.
The tracking result with the filtering method is presented

in Fig. 15. The initialization is described by the displace-

ment field and the vorticity distribution estimated at time

tk ¼ 0 from the first pair of images, with a set of 15 vortex

particles. The rotating motion described by the cyclone is

well reconstructed and its trajectory is well tracked until the

end of the sequence. The temporal evolution of the mean

reconstruction error is plotted in Fig. 16.
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Fig. 10. Image sequence showing the evolution of a vortex generated at the tip of an airplane wing.

Fig. 11. Vortex tracking result on the ONERA sequence by simple propagation of the evolution model.
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6 CONCLUSION

In this paper, we have proposed a nonlinear stochastic filter

for the tracking of fluid flow velocity fields from image

sequences. In order to improve the robustness and the

temporal consistency of the successive estimates, a physical

knowledge about the fluid evolution law has been

introduced into the filtering model. The evolution law of

the filtering model is based on the vorticity-velocity form of

the Navier-Stokes equation. The discretization of the

vorticity over a set of basis functions (called vortex

particles) allows us to describe the dynamical model by a

stochastic differential equation. This equation is constructed

from a reduced number of vortex particles; consequently, it

is only an approximation of the Navier-Stokes equation.

However, this continuous evolution model brings very

useful a priori information about the fluid flow evolution,

which is then corrected by the discrete observations

extracted from the image sequence. A continuous form of

the particle filter algorithm has been applied to solve the
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Fig. 12. Vortex tracking result on the ONERA sequence with the proposed method.

Fig. 13. Temporal evolution of the mean reconstruction error on the
ONERA sequence. The error associated to a simple prediction of the
model is plotted in black, the mean error corresponding to the filtering
method is plotted in dark gray and the dispersion around the mean in
light gray.
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nonlinear filtering problem. Because the particle filter is not

adapted to state spaces of high dimension, a dimensional

reduction method has been used, based on the study of the

instabilities of the system. The results show that the

tracking method gives good results on synthetic and real-

world sequences, when the flow can be described by a

reduced number of vortex particles. For complex flows,

results are promising since the evolution of the large-scale

components of the flow can be recovered. Finally, let us

note that a necessary extension of this work is to focus on

the parameter estimation problem in the filtering model. As

a matter of fact, the vortex particle parameters (strength and

size) are fixed in our model, but a better approach would be

to let them evolve in time. The associated filtering problem

would then consist of solving the joint estimation of the

state and parameters of the model at each time step.
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Fig. 14. Image sequence displaying the evolution of a cyclone in the Indian Ocean.

Fig. 15. Cyclone tracking result with the proposed method.

Fig. 16. Temporal evolution of the mean reconstruction error for the
cyclone sequence. The error associated to a simple prediction of the
model is plotted in black, the mean error corresponding to the filtering
method is plotted in dark gray, and the dispersion around this mean is
plotted in light gray.
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[20] P. Héas and E. Mémin, “3D Motion Estimation of Atmospheric
Layers from Image Sequences,” IEEE Trans. Geoscience and Remote
Sensing, 2007.
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