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Abstract The paper is devoted on computer simulation of rare event probability, which is a 
critical issue in areas such as reliabilities, telecommunications, aircraft management, etc. This 
means that it is necessary to evaluate probabilityties less than 10-9, which is unreasonable to be 
simulated with standard Monte Carlo approach. M/M/1/N queuing system and tandem queuing 
system are under investigation where the overflow probabilities are estimated with rare event 
simulation. For queuing systems performance were used discrete-time Markov chains models. 
An algorithm with RESTART approach and Limited Relative Error was developed to speed-up 
the rare event simulation. This algorithm has been successfully applied to M/M/1/N queuing 
system and tandem queuing system. Simulation results for two servers tandem queuing system 
with Poisson arrival and service rates are shown.  

Keywords: Queuing System, Rare Event Simulation, Importance Splitting, Limited Relative 
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1. INTRODUCTION 
Estimating the probability of a rare event has several applications in reliability, tele-

communications, insurance, and several other areas. This means that such events ap-
pear very rare but if appear they can completely destroy complex systems. In this case 
it is necessary to evaluate probabilities less than 10-9, which is unreasonable to be done 
via standard Monte Carlo simulation [1]. For complex models, when it is necessary to 
evaluate not very low probabilities of appearance of certain events in principle this can 
be done by Monte Carlo simulation. When the event of interest is really rare, straight-
forward simulation would usually require an excessive number of runs for reaching rare 
event to happen enough frequently so that the estimator is meaningful [2]. 

RESTART (Repetitive Simulation Trials After Reaching Thresholds) is an acceler-
ated simulation method, which belongs to the so-called importance splitting methods, is 
used to the speed-up the rare event simulation [3]. 

The Limited Relative Error (LRE) measures the complementary distribution function 
of the queue occupancy distribution and performs the Run Time Control (RTC) of the 
simulation. The LRE performs the Run Time Control with two conditions: first the Large 
Sample Conditions and second the Relative Error Condition. The first condition assures 
that the queuing system has reached the steady state. The second one - Relative Error 
Condition, represents a measure to estimate the relative error at the current state of the 
simulation [4]. 

Queuing systems and Markov chains are very often used for describing the proc-
esses in communication systems and their simulation. In such models under investiga-
tion are all inter-arrival times and service times and their distribution, and the quantity of 
interest is, for example, an overflow probability. Some other performance measures, like 
delays, cannot be obtained from the discrete-time Markov chain description [5]. 
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2. QUEUEING SYSTEM 
2.1. Queueing system M/M/1/N  

A basic reference model for rare event simulation is the single server queuing system 
M/M/1/N - FIFO with a finite buffer size N. 

The arrival rate is λ and the service rate is μ. We are interested in the probability that the 
buffer content reaches a high level k during one busy period (i.e., the time interval between two 
successive periods in which the buffer is empty). The maximum occupancy is L=N+1, and the 
traffic load is ρ=λ/μ. The discrete random variable is describe with stationary complementary 
distribution function (c.d.f.) G(x)=1- F(x), for the loss probability PB and the local correlation co-
efficient Cori for the interval i-1≤x<i, i=1,…,k [3]. 

2.2. Overflow probability of tandem queues 
Consider the overflow probability of the total population in a network consisting of 

two queues in tandem. 
In this example customers arrive at the first queue according to a Poisson-process 

with rateλ. Both servers have exponentially-distributed service times. 
The purpose is to receive an estimation of the overflow probabilities in simple Jack-

son networks with rates μ1 and μ2. The state of the system at any time is given by the 
two integer values n1 and n2, which are the number of customers in the first and second 
queues, as is shown on Fig. 1. 

The difficulty of applying accelerated simulation techniques arises when the first 
queue is the bottleneck and the rare set definition is related to the value of n2. If splitting 
or RESTART is applied, a more careful choice of the importance function has to be 
made in this case. 

The importance splitting methods allow the evaluation of extremely low probabilities, 
e.g., 10-10 or 10-40, by simulation. This type of rare event simulation was developed for 
evaluation of different processes in telecommunication systems with very low probabili-
ties [2,4]. 

 
 

Fig. 1 The state space of two queues in tandem network 
 
Let consider the two-queue tandem network presented as reference model for the 

following three definitions of the rare set A: The numbers of retrials were chosen to have 
values of ni as close as possible to those given by (1). 



International Scientific Conference Computer Science’2008 

 310 

(1)  
L)n,Min(n

L,n
L,n n

21

2

2 1

≥
≥

≥+

  

2.2.1. Rare State Defined as n1 + n2≥L 
For this definition of the rare set, the most natural importance function is Ф= n1 + n2. 

The possible states at event Bi are (0,n1+n2) or (0,(n1+n2-1)). The importance of these 
states is different. The higher the value of n1 (for n1+n2), the higher the importance of 
the state, given that customer at n1 has to be served by both servers before leaving the 
system, while a customer at n2 has to be served only at the second one. Here the bot-
tleneck is the first queue, so the states with high value n1 and low value of n2 have the 
highest probability. 

2.2.2.  Rare State Defined as n1≥L 
For this definition of the rare set n1≥L, the most natural importance function is not 

Ф= n2. To obtain states with closer importance, it seems that weight, albeit smaller than 
the weight given to n2, must be given to n1, so the most natural importance function is 
not Ф= an1 + n2, with 0≤a≤1. 

2.2.3.  Rare State Defined as Min(n1 ,n2)≥L 
For n1≤L and n2≤L, the definition of Ф is Ф= aФ1 + Ф2. The definition of the impor-

tance function Фi is (2). 
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The values of coefficient a are smaller than 1.  

3. ALGORITHM WITH RESTART 
The RESTART and Limited Relative Error are described in [3,4]: 
Step 1 Initialization 
Specification of the rare event L, number of levels m, the values of the thresholds 

L0,…,Lm-1, and the maximal relative error REmax ; 
Specification of β the values for βmax and βmin; 
Further parameter for arrival and service process; 
Calculate max step error REmax i from REmax; 
Generate model objects (traffic sources, queues, network nodes); 
Choose: 
For M/M/1/N system N or  
For Tandem queue: 
Case 1: Rare State Defined as n1 + n2≥L 
Case 2: Rare State Defined as n2≥L 
Case 3: Rare State Defined as Min(n1 + n2)≥L 
Definition of the rare set of the model: 
Initialization of number of runs n:=0;the time of simulation s:=1; 
Set scaling factor U:=1; 
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Start simulation; 
Step 2 Outer loop 
If (n≥103 AND (li, di) ≥102 AND (ai, li-ai, di-a) ≥10) 
Step 3 For i=0 
 While not (error< REmax for L0-1 to L0)  
  Simulation continues generating data: new value of β examples with exponential 

distribution. And if the value of β is estimated: β is in the left part as L0-1 and in the right 
part as L0;  

  New value of β is accepted if it is in the right part: 
Evaluation Counter=Counter+1, 
Then store state for RESTART; 
End; 
Step 4 Inner loop 
For i=1 to m 
Set the thresholds L0,…,Lm for the rare event  L; 
  While not (error< REmax for L i-1 to L i)  
Restore one random state from Li-1 ; 
Calculation Relative Error for Complementary Cumulative Distribution Function for 

11 −− ≥ ii LLG β  to 1−≥ iLLG β . If the RE>REmax the simulation stop and new random state is re-
stored; 

Simulation continues generating data: new value of β examples with exponential dis-
tribution. And if the value of β is estimated: β is in the left part as L0-1 and in the right 
part as L0 ; 

  New value of β is accepted if it is in the right part: 
Evaluation Counter=Counter+1; 
Then store state for RESTAR; 
Continue simulation until the last value of n; 
End; 
Multiplication of G-values with U for Li-1,…, Li; 

  Set scaling factor U:= 1−≥ iLLG β ; 
Step 5 Output results 
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Estimation the probability of rare events. 
END. 

4. SIMULATION AND RESULTS 
All the simulation examples were executed on Personal computer with properties: 

Pentium 2, 1.4 GHz, 312Mb RAM, operating system Windows XP Professional. 
In order to be able to compare our measures with known results, we study the 

model of tandem queue and queuing system with finite buffers. The distribution of the 
relative error of several simulations runs is shown in respect to the prescribed error. We 
observed that the prescribed error limit was exceeded several times by the RE-
START/LRE.  
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The algorithm with RESTART was implemented for single server queuing system 
M/M/1/220 FIFO and for two servers’ tandem queuing system (Fig. 2) as a part of simu-
lation system. RESTART simulation runs were performed and checked against theoreti-
cal results.  

 
Figure 2 Program realization 

The algorithm with RESTART was implemented for one server queuing system. The 
buffer space at each queue is assumed to be finite. Consider example with ρ=0.8 and 
ρ=0.7. The prescribed error is in the range of 5% and 10%. The number of simulation 
samples is n=10 000, number of restarts are 2, 3 and 5. The analytical and simulation 
results are shown in Tab.1. 

 
Tab. 1: М/М/1/220 system: Comparison of Simulated and Theoretical Values for ds=5% and ds=10%, 
n=10 000, R- number restarts..“. 
λ µ L Analytical  

GL 
GL Тime,ms R 

0.6 0.9 200 3.756785x10-36 4.111528e-
036 

57.397 15 

0.6 0.9 210 6.464279x10-38 2.37e-038 67.712 13 

0.7 0.8 200 5.927943x10-13 7.334912e-
013 

9.561  5 

0.7 0.8 210 1.553475x10-13 7.318969e-
013 

20.686  4 

 
The algorithm was implemented for two servers tandem queuing system. Customers 

with Poisson arrival enter the first queue and, after being served, enter the second one. 
The load at each queue is ρi = λ/μi (i = 1,2) The analytical and simulation results are 
shown in Table 2. 

The buffer space at each queue is assumed to be finite. Consider example with dif-
ferent arrival rates λ=0.6, λ=0.7, λ=0.8 and λ=0.9, μ1=0.7 μ1=0.8 and μ2=0.9. The num-
ber of simulation samples is n=100 000. Assume that values for are n1=9 and n2=3. 
Then the possible states at event B are (0,26),(1,26), (2,26), (26,6), (26,1) and (26,0). 
The importance of each of these states is different. The threshold was chosen as L=0.8. 
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TABLE 2 Results for two-queue tandem network with n=100 000 simulation samples, relative error 10%. 
λ GL theoretical GL Time, ms Number re-

starts 
0.6 8,38139158e-7 9.292000e-5 2.836 2 

0.7 2,01795417e-5 8.912656e-5 0.314 2 

0.8 4,16646409e-6 8.849558e-6 2.349 2 

0.9 1,78426699e-4 2.380952e-4 0.159  10 

5. CONCLUSIONS 
Modeling and simulation of M/M/1/N queuing system and tandem queuing system 

were investigated where the overflow probabilities were estimated with rare event simu-
lation. An algorithm with RESTART approach and Limited Relative Error was developed 
to speed-up the rare event simulation. This algorithm has been successfully applied to 
M/M/1/N queuing system and tandem queuing system with Poisson arrival and service 
rates. 

6. ACKNOWLEDGEMENTS 
This work is a part of the research project ВУ-ТН-105/2005 of Bulgarian Science 

Fund at Ministry of Education and Science. 

7. REFERENCES 
[1] Cerou, F. Del Moral, P. Le Gland, F., Lezaud, P. Genetic genealogical models in 

rare event analysis. Latin American Journal of Probability and Mathematical Sta-
tistics, 1, 2006, pp.28-36. 

[2] Cerou, F., Guyader, A. Adaptive multilevel splitting for rare event analysis. Rap-
port de Recherché 5710, INRIA, October 2005, pp.32-40. 

[3] Görg, C. Schreiber, F. The RESTART/LRE method for rare event simulation. 
Winter Simulation Conference, Coronado, California, USA, 1999, pp. 390-397, 

[4] Radev, D. Rare Event Simulation of Stochastic Markov Processes. Journal of 
Union of Scientists Rousse, 2007, vol. 6, book 1, 9-15. 

[5] Radev, D. Modeling of Rare events in broadband digital networks. Sofia, 2006, 
p.343. 


