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1 Office National d’Etudes et Recherches Aérospatiales, The French Aerospace Lab, Long-term
Design and System Integration Department (ONERA-DPRS-SSD), BP72, 29 avenue de la
Division Leclerc, FR-92322 Chatillon Cedex, France
2 INRIA Rennes, ASPI Applications of Interacting Particle Systems to Statistics, Campus de
Beaulieu 35042, Rennes, France

E-mail: jerome.morio@onera.fr

Received 8 June 2010, in final form 16 July 2010
Published 31 August 2010
Online at stacks.iop.org/EJP/31/1295

Abstract
Monte Carlo simulations are a classical tool to analyse physical systems. When
unlikely events are to be simulated, the importance sampling technique is often
used instead of Monte Carlo. Importance sampling has some drawbacks when
the problem dimensionality is high or when the optimal importance sampling
density is complex to obtain. In this paper, we focus on a quite novel but
somehow confidential alternative to importance sampling called importance
splitting.

1. Introduction

When one considers a physical black-box model, you have a certain number of input parameters
and a few equations that use those inputs to give a set of outputs. This type of model is usually
deterministic, meaning that you always get the same outputs for a given set of inputs, no
matter how many times you re-calculate. Monte Carlo simulation is a method for iteratively
evaluating a deterministic model using sets of random numbers as inputs. This method is
often used when the model is nonlinear, complex or involves more than just a couple uncertain
parameters. A simulation can typically require over 10 000 evaluations of the black-box
model.

Monte Carlo simulation is categorized as a sampling method because the inputs are
randomly generated from probability distributions to simulate the process of sampling from
an actual population. It is useful in studying systems with a large number of coupled degrees of
freedom, such as fluids, disordered materials, strongly coupled solids and cellular structures.

When unlikely events are to be simulated, the importance sampling (IS) technique is
often used instead of Monte Carlo because of the computation burden involved in Monte
Carlo simulations. In the world of physics (safety, finance, nuclear, defence, spatial, etc),
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estimating rare event probability or low integral with a valuable accuracy has become very
important. Indeed, questions like ‘what is the probability of collision between a satellite and
spatial debris ?’ cannot be answered easily with the Monte Carlo approach. To reduce the
variance on the probability estimator, the most well-known algorithm is IS which consists in
generating random weighted samples from an auxiliary distribution rather than the distribution
of interest. The main difficulty of IS is to determine a valuable auxiliary distribution which is
not trivial in multidimensional cases. This technique has been notably treated in this journal
in [1–3]. A recent alternative to IS is importance splitting (ISp). Instead of estimating one
probability through a very tough simulation, one should consider the estimation of several
conditional probabilities that are easier to evaluate by simulation. We show in this paper the
great potential of this technique in a very general case of probability estimation. This paper is
intended for graduate students and specialists in the field of probability or integral estimation
in physics.

2. Usual methods to estimate a probability

2.1. Monte Carlo methods

Let us consider a d-dimensional random variable X with a probability density function (PDF)
f 0 and estimate the probability that P(φ(X) > S) with φ, a continuous scalar function
φ : Rd → R and S a threshold. A simple way to estimate this probability is to consider Monte
Carlo methods [4–8]. For that purpose, one generates independent and identically distributed
samples X1, . . . , XN from the PDF f 0 and then estimates the probability with

P MC = 1
N

N∑

i=1

1φ(Xi)>S (1)

where 1φ(Xi)>S is equal to 1 if φ(Xi) > S and 0 otherwise. The relative deviation of the
estimator P MC is given by the ratio σP MC

P MC with σP MC , the standard deviation of P MC. Knowing
the true probability P that (φ(X) > S), one has

σP MC

P MC
= 1√

N

√
P − P 2

P
. (2)

Considering rare event probability estimation, that is when P takes low values, one has

lim
P→0

σP MC

P MC
= lim

P→0

1√
NP

= +∞. (3)

The relative deviation of Monte Carlo estimation is very important and thus one can conclude
that Monte Carlo methods are not adapted to rare event probability estimation.

2.2. Importance sampling

One possible remedy for Monte Carlo failure is to consider the IS method [1–3, 9–13]. The
objective of IS is to reduce the estimation variance without increasing the number of samples
N. The idea is to generate samples X1, . . . , XN from an auxiliary PDF h and then estimate P
in the following way:

P IS = 1
N

N∑

i=1

φ(xi)1φ(xi )>S

f0(xi)

h(xi)
. (4)

The variance reduction depends on the choice of the auxiliary PDF h. If h is well chosen,
the estimation results are drastically better than Monte Carlo methods. If h is not adapted to
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the problem, IS can lead to worse results than Monte Carlo methods. In theory, an optimal
auxiliary PDF hopt can be obtained, but it is not available in practice. This PDF hopt is
optimal since it enables us to minimize the variance estimation but its computation requires
the knowledge of the probability that has to be estimated. The main issue of IS is thus the
optimization of the auxiliary PDF h to approach this PDF hopt. This optimization is not trivial
and several methods (parametric [12] or not [11], adaptive [11] or not [14]) can be useful but
are not always efficient. The multidimensional case, that is when X follows a multidimensional
PDF, is often problematic because of the curse of dimensionality.

3. Importance splitting

In this paper, we consider a very efficient but not well-known algorithm called ISp [15–18].
ISp is an alternative to Monte Carlo methods and to IS. We first propose to present the principle
of ISp and to apply it on a simple test case.

3.1. Principle

Considering the set A = {x ∈ Rd |φ(x) > S}, the objective of this paper is to determine the
density in this set A since one has P(X ∈ A) = P(φ(X) > S). The principle of ISp is to
iteratively estimate supersets of the set A and then to estimate P(X ∈ A) with conditional
probabilities.

Let us define A0 = Rd ⊃ A1 ⊃ · · · ⊃ An−1 ⊃ An = A, a decreasing sequence of Rd

subsets with smallest element A = An. The probability P(X ∈ A) can then be rewritten in
the following way:

P(X ∈ A) =
n∏

k=1

P(X ∈ Ak|X ∈ Ak−1)

where P(X ∈ Ak|X ∈ Ak−1) is the probability that X ∈ Ak knowing that X ∈ Ak−1. An
optimal choice of the sequence Ak , k = 0, . . . , n, is given when P(X ∈ Ak|X ∈ Ak−1) = p,
where p is a constant, that is when all the conditional probabilities are equal. The variance
of P(X ∈ A) is indeed minimized in this configuration as shown in [19, 20]. Consequently,
if each P(X ∈ Ak|X ∈ Ak−1) is well estimated, then the probability P(X ∈ A) is estimated
more accurately with ISp than with a direct estimation by Monte Carlo.

3.2. Defining the Ak sequence

The subset Ak sequence is easily evaluated in the following way. Indeed, it can be defined with
Ak = {X ∈ Rd |(φ(x)) > Sk} for k = 1, . . . , n with S = Sn > Sn−1 > · · · > Sk > · · · > S1.
Determining the sequence Ak is equivalent to choosing some values for Sk, with k = 1, . . . , n.

If one has sufficient knowledge on the density of φ(X), it is possible to set a priori the
values of Sk for k = 1, . . . , n. Nevertheless, it is in general not the case and this choice of
thresholds is hardly ever optimal.

The values of Sk for k = 1, . . . , n can also be obtained in an adaptive manner. Let us
define fk, the density of X restricted to the set Ak and µk , the density of φ(X) when X is
restricted to the set Ak . Generate X

(k)
1 , . . . , X

(k)
Nk

, Nk samples from the density fk. The Monte
Carlo estimator of the µk cumulative distribution function Gµk

is given by

Gµk
(y) = 1

Nk

Nk∑

i=1

1φ(X
(k)
i )!y. (5)
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The Monte Carlo estimator of the α-quantile of the density µk is given by

q(k)
α = inf{y,Gµk

(y) ! α}. (6)

Set Sk+1 = q(k)
α . The subset Ak+1 is then defined with Ak+1 = {X ∈ Rd |(φ(x)) > Sk+1 =

q(k)
α }. Let us then estimate P(X ∈ Ak+1|X ∈ Ak):

E(P (X ∈ Ak+1|X ∈ Ak)) = Eµk
(P (X ∈ Ak+1)) = Eµk

(P (φ(X) > Sk+1)). (7)

By definition of Sk+1, one has then

E (P (X ∈ Ak+1|X ∈ Ak)) = 1 − α. (8)

With this adaptive definition of Sk+1, an optimal sequence of Ak is then determined in the sense
that all the P(X ∈ Ak|X ∈ Ak−1) = 1 −α are a constant [19, 20]. The number n of the subset
depends on the value of P and α since P = (1 − α)n−1 ∗ P(X ∈ An|X ∈ An−1). The term n
is not known at the start of the algorithm. In order to limit the computation time, the quantile
parameter α has to be adjusted to prevent a too large n.

3.3. Generating samples from the density fk

Unfortunately, generating directly independent samples from the fk conditional densities in
most cases is impossible as they are usually unknown [21]. Nevertheless, ISp provides an
iterative way to do it, yet in a dependent fashion. A Markovian kernel can be seen here as
a collection of probability density functions indexed on x : ∀ x ∈ Rd,M(x, ·) is a PDF. It is
assumed that we have an f 0-reversible Markovian kernel M(x, ·) such that the reversibility
equation holds

∀ x ∈ Rd , ∀ y ∈ Rd , f0(x)M(x, y) = f0(y)M(y, x).

This reversibility equation can be seen as a detailed balance statement. Moreover, the above
reversibility equation embeds two results.

(i) If you generate the random variable Y with density M(X, ·), where X ∼ f0, Y is distributed
according to f 0 as well. The demonstration is given in the following. Let us define g as
an integrable function of Rd . The expected value E of g(Y ) is given by

E(g(Y )) =
∫ d

R
f0M(y, .)g(y) dy =

∫ d

R

∫ d

R
f0(x)M(x, y)g(y) dx dy. (9)

Using the reversability equation, one obtains

E(g(Y )) =
∫ d

R

∫ d

R
f0(y)M(y, x)g(y) dx dy =

∫ d

R
f0(y)

(∫ d

R
M(y, x) dx

)
g(y) dy.

(10)

We can finally show that

E (g(Y )) =
∫ d

R
f0(y)g(y) dy =

∫ d

R
f0(x)g(x) dx = E(g(X)). (11)

This equality is true for any integrable function of Rd . The random variables X and Y
follow thus the same PDF.

(ii) If you take (X1, . . . , XN) a sample set such that ∀ i ∈ {1, . . . , N}, Xi ∼ f0 to generate
(Y 1, . . . , YN) such that ∀ i ∈ {1, . . . , N}, Yi ∼ M(Xi, ·), then both sets have the same
statistical properties and it is impossible to know through statistics which one generated
the other.
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With such a kernel and Xk ∼ fk , one can distribute random variable $k according to fk:

$k = $k(Xk) =
{
M(Xk, ·) if M(Xk, ·) ∈ Ak

Xk otherwise
.

This proposal/refusal algorithm enables us to generate any number of samples according to
fk in a relatively simple manner. It also enables us to keep constant the number of samples
to estimate each P(X ∈ Ak+1|X ∈ Ak). This operation has to be applied for each density
fk, k = 1, . . . , n. The generated set holds no independent variables identically distributed
according to fk+1. Up to now, there is no way to do this in a independent fashion. However,
under mild conditions, it can be shown that applying the proposal/refusal method several
times may decrease variance. This process can be repeated iteratively to generate according
to the other conditional densities.

The fundamental question is therefore how to define such a kernel for a density X. The
most general and arduous way is to solve the reversibility equation but this is in general
not possible. For that purpose, the Metropolis–Hastings algorithm enables us to simulate a
Markovian reversible kernel in the general case [21]. Nevertheless, some results exist when
the density X is a Gaussian multivariate PDF. Indeed, if X is a centred Gaussian, a Markovian
reversible kernel is

X ∼ N (0d , Id) and M(X, ·) ∼ X + cN (0d , Id)√
1 + c2

.

It is a valuable theoretical reversible kernel for the Gaussian distribution. The choice of an
appropriate value for the kernel parameter c is not obvious and is still an open question. In
some advanced algorithm, c is determined in an adaptive manner.

All the required steps for ISp have been defined in the previous sections. Let us apply
this technique on general cases to compare the results of the techniques with Monte Carlo
simulations.

3.4. Implementation

We propose to analyse the different stages of the algorithm ISp to estimate P(φ(X) > S) =
P(X ∈ A).

(1) Set k = 0.
(2) Generate Nk samples X

(k)
1 , . . . , X

(k)
Nk

from fk(X).

(3) Estimate the α-quantile q(k)
α of the samples X

(k)
1 , . . . , X

(k)
Nk

.

(4) Determine the subset Ak+1 with Ak+1 =
{
X ∈ Rd |(φ(x)) > q(k)

α

}
and the conditional

density fk.
(5) If q(k)

α < S, set k = k + 1 and go back to stage (2) of the algorithm. Otherwise, set
k = k + 1 and estimate the probability with

P ISp = (1 − α)k × 1
Nk

Nk∑

i=1

1φ(X
(k)
i )>S.

4. Application of importance splitting

In this section, we propose to evaluate the performance of the ISp algorithm on different test
cases.
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Figure 1. Matlab code of importance splitting.

(This figure is in colour only in the electronic version)

Table 1. Estimation results P(Y > S) with ISp for α = 0.5.

Relative Theoretical
N S P ISp(Y > S) error (%) probability P(Y > S)

100 000 3 1.34 × 10−3 5 1.350 × 10−3

160 000 4 3.17 × 10−5 9.9 3.16 × 10−5

220 000 5 2.91 × 10−7 14.9 2.87 × 10−7

310 000 6 1.40 × 10−9 45 9.87 × 10−10

4.1. Simple Gaussian case

We first consider a simple case where X is a one-dimensional Gaussian PDF, that is, N (0, 1)

and φ is equal to I1, that is Y = φ(X) = X. Let us estimate the probability that P(Y > S)

for different values of S. For that purpose, we use the ISp code proposed in figure 1. The
number of samples Nk is set to 10 000 and the kernel parameter c is arbitrarily chosen equal
to 1. The results obtained with this code are given in table 1 for α = 0.5 and figure 2 presents
the iterative evolution of the parameters q(i)

α and of the conditional densities fi. In tables 2, the
corresponding Monte Carlo results are also presented and can be compared to those obtained
with ISp. In tables 3 and 4, the ISp estimation results are given for different values of α. ISp
accurately estimates the probability since the relative error is lower than with Monte Carlo and
the probability estimate is closer to the theoretical probability. The proposed results show the
ISp ability to be a valuable rare event probability estimation method.

4.2. Multidimensional test case

In this last section, we consider the case where X = (x1, x2, . . . , x5) follows a
multidimensional Gaussian PDF with mean (0, 0, 0, 0, 0, 0) and a covariance matrix equal
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Figure 2. Evolution of the parameters q
(i)
α and of the conditional densities fi estimated with a

kernel density estimator on the simple Gaussian case for i = 1, . . . , 6.

Table 2. Estimation results P(Y > S) with the Monte Carlo method.

Relative Theoretical
N S P MC(Y > S) error (%) probability P(Y > S)

100 000 3 1.36 × 10−3 9 1.350 × 10−3

160 000 4 2.95 × 10−5 47 3.16 × 10−5

220 000 5 4.54 × 10−7 333 2.87 × 10−7

310 000 6 0 ? 9.87 × 10−10

Table 3. Estimation results P(Y > S) with ISp for α = 0.2.

Relative Theoretical
N S P ISp(Y > S) error (%) probability P(Y > S)

300 000 3 1.35 × 10−3 3.8 1.350 × 10−3

460 000 4 3.21 × 10−5 6.8 3.16 × 10−5

670 000 5 3.00 × 10−7 12.1 2.87 × 10−7

940 000 6 1.32 × 10−9 21.7 9.87 × 10−10

to I5, the identity matrix of R5. The function φ is given by the following function, called the
Ackley function:

Y = φ(X) = −20 exp



−0.2

√√√√ 1
d

d∑

i=1

x2
i



 − exp

(
1
d

d∑

i=1

cos(2πxi)

)

+ 20 + e. (12)

The Ackley function is a well-known scalar function with multidimensional inputs which is
often used as a test function for the global optimization algorithm. This case is interesting to
deal with since multidimensional sampling is often tricky. It is indeed one of the limitations
of IS since the IS optimal auxiliary distribution is expensive computationally.
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Table 4. Estimation results P(Y > S) with ISp for α = 0.8.

Relative Theoretical
N S P ISp(Y > S) error (%) probability P(Y > S)

40 000 3 1.36 × 10−3 7.6 1.350 × 10−3

60 000 4 3.26 × 10−5 13.8 3.16 × 10−5

90 000 5 3.14 × 10−7 30.3 2.87 × 10−7

120 000 6 1.28 × 10−9 68.4 9.87 × 10−10

Table 5. Estimation results P(φ(X) > S) with ISp for α = 0.5.

N S P ISp(Y > S) Relative error (%)

70 000 8 3.97 × 10−3 4.5
120 000 9 1.58 × 10−4 9.7
180 000 10 2.31 × 10−6 22
250 000 11 1.75 × 10−8 60
320 000 12 1.89 × 10−10 200

Table 6. Estimation results P(φ(X) > S) with Monte Carlo.

N S P MC(Y > S) Relative error (%)

70 000 8 3.93 × 10−3 5.3
120 000 9 1.54 × 10−4 24
180 000 10 2.55 × 10−6 149
250 000 11 0 ?
320 000 12 0 ?

Table 7. Estimation results P(φ(X) > S) with ISp for α = 0.2.

N S P ISp(Y > S) Relative error (%)

240 000 8 3.99 × 10−3 4.8
390 000 9 1.60 × 10−4 6.9
580 000 10 2.35 × 10−6 14.9
790 000 11 2.02 × 10−8 45.2

1 020 000 12 5.10 × 10−10 80.5

We apply the ISp algorithm on this test case with the same parameters as in the previous
section. The probability estimation results with ISp are given in table 5. For comparison
purpose, we have estimated with the Monte Carlo method these probabilities in table 6. The
same number of evaluations of the function φ is made with both methods. ISp shows great
improvement for rare event simulation and estimation since the relative error of probability
estimation is reduced when compared to Monte Carlo. In tables 7 and 8, the ISp estimation
results are given for different values of α.
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Table 8. Estimation results P(φ(X) > S) with ISp for α = 0.8.

N S P ISp(Y > S) Relative error (%)

30 000 8 3.99 × 10−3 6.8
50 000 9 1.54 × 10−4 15.2
70 000 10 2.27 × 10−6 35.0

120 000 11 1.67 × 10−8 110
140 000 12 1.25 × 10−10 265

5. Conclusion

In this paper, we present a quite novel approach to estimate rare events called ISp. This
algorithm is an alternative to the well-known IS and we showed on simple cases that it is well
adapted to the estimation of rare events. An example of the ISp Matlab code is provided in this
paper. We show that it can be used with simplicity although a field of expertise is necessary
to optimize the different parameters of the algorithm.
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