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Abstract

In nonlinear state-space models, sequential learning about the hidden state can proceed

by particle filtering when the density of the observation conditional on the state is avail-

able analytically (e.g. Gordon et al. 1993). This condition need not hold in complex

environments, such as the incomplete-information equilibrium models considered in fi-

nancial economics. In this paper, we make two contributions to the learning literature.

First, we introduce a new filtering method, the state-observation sampling (SOS) filter,

for general state-space models with intractable observation densities. Second, we de-

velop an indirect inference-based estimator for a large class of incomplete-information

economies. We demonstrate the good performance of these techniques on an asset

pricing model with investor learning applied to over 80 years of daily equity returns.
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1 Introduction

Sequential learning by economic agents is a powerful mechanism that theoretically explains

key properties of asset returns, aggregate performance and other equilibrium outcomes

(e.g., Pástor and Veronesi, 2009a).1 In order to use these models in practice, for instance

to forecast and price assets, a crucial question arises: How can we track agent beliefs? A

natural possibility is to consider particle filters, a large class of sequential Monte Carlo

methods designed to track a hidden Markov state from a stream of partially revealing

observations (e.g. Gordon, Salmond, and Smith, 1993; Johannes and Polson, 2009; Pitt and

Shephard, 1999). Existing filtering methods, however, are based on the assumption that

the density of the observation conditional on the hidden state (called observation density)

is available in closed form up to a normalizing constant. This assumption is unfortunately

not satisfied in incomplete-information economies. In this paper, we introduce the state-

observation sampling (SOS) filter, a novel sequential Monte Carlo method for general state

space models with intractable observation densities. In addition, we develop an indirect

inference-based estimator (Gouriéroux, Monfort and Renault 1993; Smith, 1993) for the

structural parameters of an incomplete-information economy.

Since their introduction by Gordon, Salmond, and Smith (1993), particle filters have

considerably expanded the range of applications of hidden Markov models and now pervade

fields as diverse as engineering, genetics, statistics (Andrieu and Doucet, 2002; Chopin,

2004; Kuensch, 2005), finance (e.g. Kim, Shephard and Chib, 1998; Johannes, Polson,

and Stroud, 2009), and macroeconomics (Fernández-Villaverde and Rubio-Ramirez, 2007;

Fernandez-Villaverde et al., 2009; Hansen, Polson and Sargent, 2011).2 These methods

provide estimates of the distribution of a hidden Markov state st conditional on a time

1In financial economics, investor learning has been used to explain phenomena as diverse as the level
and volatility of equity prices, return predictability, portfolio choice, mutual fund flows, firm profitability
following initial public offerings, and the performance of venture capital investments. In particular, the
portfolio and pricing implications of learning are investigated in Brennan (1998), Brennan and Xia (2001),
Calvet and Fisher (2007), David (1997), Guidolin and Timmermann (2003), Hansen (2007), Pástor and
Veronesi (2009b), Timmermann (1993, 1996), and Veronesi (1999, 2000). We refer the reader to Pástor and
Veronesi (2009a) for a recent survey of learning in finance.

2Advances in particle filtering methodology include Andrieu, Doucet, and Holenstein (2010), Del Moral
(2004), Fearnhead and Clifford (2003), Gilks and Berzuini (2001), Godsill, Doucet, and West (2004), and
Storvik (2002). Particle filters have received numerous applications in finance, such as model diagnostics
(Chib, Nardari, and Shephard, 2002), simulated likelihood estimation (Pitt, 2005), volatility forecasting
(Calvet, Fisher, and Thompson, 2006), and derivatives pricing (Christoffersen, Jacobs, and Mimouni 2007).
See Cappé, Moulines and Rydén (2005), Doucet and Johansen (2008), and Johannes and Polson (2009) for
recent reviews.
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series of observations Rt = (r1, ..., rt), rt ∈ R
nR, by way of a set of “particles” (s

(1)
t , ..., s

(N)
t ).

In the original sampling and importance resampling algorithm of Gordon, Salmond, and

Smith (1993), the construction of the date-t filter from the date-(t− 1) particles proceeds

in two steps. In the mutation phase, a new set of particles is obtained by drawing a

hidden state s̃
(n)
t from each date-(t − 1) particle s

(n)
t−1 under the transition kernel of the

Markov state. Given a new observation rt, the particles are then resampled using weights

that are proportional to the observation density fR(rt|s̃(n)t , Rt−1). Important refinements

of the algorithm include sampling from an auxiliary model in the mutation phase (Pitt

and Shephard, 1999), or implementing variance-reduction techniques such as stratified

(Kitagawa 1996) and residual (Liu and Chen 1998) resampling.

A common feature of existing filters is the requirement that the observation density

fR(rt|st, Rt−1) be available analytically up to a normalizing constant. This condition need

not hold in economic models in which equilibrium conditions can create complex nonlinear

relationships between observations and the underlying state of the economy. In the special

case when the state st evolves in a Euclidean space RnS and has a continuous distribution, a

possible solution is to estimate each observation density fR(rt|s̃(n)t , Rt−1), n ∈ {1, . . . , N},
by nonparametric methods (Rossi and Vila, 2006, 2009). This approach is numerically

challenging because N conditional densities, and therefore 2N2 kernels, must be evaluated

every period. Furthermore, the rate of convergence decreases both with the dimension of

the state space, nS , and the dimension of the observation space, nR, which indicates that

the algorithm is prone to the curse of dimensionality.

The present paper develops a novel particle filter for general state space models that

does not require the calculation of the observation density. This new method, which we call

the State-Observation Sampling (SOS) filter, consists of simulating a state and a pseudo-

observation (s̃
(n)
t , r̃

(n)
t ) from each date-(t−1) particle. In the resampling stage, we assign to

each particle s̃
(n)
t an importance weight determined by the proximity between the pseudo-

observation r̃
(n)
t and the actual observation rt. We quantify proximity by a kernel of the

type considered in nonparametric statistics:

p
(n)
t ∝ 1

hnR
t

K

(

rt − r̃
(n)
t

ht

)

,

where ht is a bandwidth, and K is a probability density function. The resampling stage

tends to select states associated with pseudo-observations in the neighborhood of the actual
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data. SOS requires the calculation of only N kernels each period and makes no assump-

tions on the characteristics of the state space, which may or may not be Euclidean. We

demonstrate that as the number of particles N goes to infinity, the filter converges to the

target distribution under a wide range of conditions on the bandwidth ht. The root mean

squared error of moments computed using the filter decays at the rate N−2/(nR+4), that is

at the same rate as the kernel density estimator of a random vector on R
nR . The asymp-

totic rate of convergence is thus invariant to the size of the state space, indicating that

SOS overcomes a form of the curse of dimensionality. We also prove that the SOS filter

provides consistent estimates of the likelihood function.

We next develop inference methods for incomplete-information equilibrium models. To

clarify the exposition, we focus on a class of recursive incomplete-information economies

parameterized by θ ∈ Θ, which nests the examples of Brandt, Zeng, and Zhang (2004), Cal-

vet and Fisher (2007), David and Veronesi (2006), Lettau, Ludvigson and Wachter (2008),

Moore and Schaller (1996) and van Nieuwerburgh and Veldkamp (2006). We consider

three levels of information, which correspond to nature, an agent and the econometrician.

Figure 1 illustrates the information structure. At the beginning of every period t, nature

selects a Markov state of nature Mt and a vector of fundamentals or signals xt, whose

distribution is contingent on the state of nature. The agent observes the signal xt, and

computes the conditional probability distribution (“belief”) Πt = Πt(xt,Πt−1), for instance

by using Bayes’ rule. According to her beliefs and signal, the agent also computes a data

point rt = R(xt,Πt,Πt−1; θ), which may for example include asset returns, prices, or pro-

duction decisions. The econometrician observes the data point rt and aims to track the

hidden state st = (Mt,Πt) of the learning economy.

We can apply the SOS filter to estimate the distribution of the state of the learn-

ing economy conditional on the observed data and the structural parameter θ. We pro-

pose an estimation procedure for θ based on indirect inference, a method introduced by

Gouriéroux, Monfort and Renault (1993) and Smith (1993) that imputes the structural

parameters of a model via an auxiliary estimator (e.g. Calzolari, Fiorentini and Sentana

2004; Czellar, Karolyi and Ronchetti 2007; Czellar and Ronchetti 2010; Dridi, Guay and

Renault 2007; Genton and Ronchetti 2003; Heggland and Frigessi 2004). In our context,

the full-information version of the economy, in which the state of nature Mt is directly

observed by the agent, is a natural building block of the auxiliary estimator. When the

state of nature takes finitely many values, the Bayesian filter and the likelihood of the

full-information model are available analytically (e.g. Hamilton, 1989). Similarly, when
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NATURE:
sets the state Mt

signals xt

AGENT:
infers belief Πt about Mt

data rt

ECONOMETRICIAN:
observes rt, infers (Mt,Πt)

Figure 1: Information structure.

the state of nature Mt has an infinite support, a full-information economy with discretized

Mt can be used. Given these properties, we define the auxiliary estimator by expanding

the full-information economy’s maximum likelihood estimator with a set of statistics that

the incomplete-information model is designed to capture.

We demonstrate the good performance of our techniques on a structural model of daily

equity returns. Because the rich dynamics of the return series requires a large state space,

we base our analysis on the multifrequency learning economy of Calvet and Fisher (“CF”

2007). We verify by Monte Carlo simulation that the SOS filter accurately tracks the

state of the learning economy and provides remarkably precise estimates of the likelihood

function. The indirect inference estimator is also shown to perform well in finite samples.

We estimate the structural model on the daily excess returns of the CRSP U.S. value-

weighted index between 1926 and 1999. For the out-of-sample period (2000-2009), the

incomplete-information model provides accurate value-at-risk forecasts, which significantly

outperform the predictions obtained from historical simulations, GARCH(1,1), and the

full-information (FI) model.

The paper is organized as follows. Section 2 defines the SOS filter for general state

space models. In section 3, we develop an indirect inference estimator for recursive learning

economies. Section 4 applies these methods to a multifrequency investor learning model; we

verify the accuracy of our inference methodology by Monte Carlo simulations, and conduct

inference on the daily returns of a U.S. aggregate equity index between 1926 and 2009.
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Section 5 concludes.

2 The State-Observation Sampling (SOS) Filter

2.1 Definition

We consider a discrete-time stochastic system defined on the probability space (Ω,F,P).

Time is discrete and indexed by t = 0, 1, ...,∞. We consider a Markov process st defined

on a measurable space (S,FS). For expositional simplicity, we assume in this subsection

that S = R
nS .

The econometrician receives every period an observation rt ∈ R
nR . LetRt−1 = (r1, ..., rt−1)

denote the vector of observations up to date t− 1. The building block of our model is the

conditional density of (st, rt) given (st−1, Rt−1):

fS,R(st, rt|st−1, Rt−1). (2.1)

Let fS0 denote a prior over the state space. The inference problem consists of estimating

the density of the latent state st conditional on the set of current and past observations:

fS(st|Rt)

at all t ≥ 1.

A large literature proposes estimation by way of a particle filter, that is a finite set of

points (s
(1)
t , ..., s

(N)
t ) that targets fS(st|Rt). The sampling importance resampling method

of Gordon, Salmond, and Smith (1993) is based on Bayes’rule:

fS(st|Rt) =
fR(rt|st, Rt−1) fS(st|Rt−1)

fR(rt|Rt−1)
.

The recursive construction begins by drawing N independent states s
(1)
0 , ..., s

(N)
0 from fS0 .

Given the date−(t − 1) filter (s
(1)
t−1, . . . , s

(N)
t−1), the construction of the date−t filter pro-

ceeds in two steps. First, we sample s̃
(n)
t from s

(n)
t−1 using the transition kernel of the

Markov process. Second, in the resampling step, we sample N particles (s
(1)
t , . . . , s

(N)
t )
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from (s̃
(n)
t , . . . , s̃

(N)
t ) with normalized importance weights

p
(n)
t =

fR(rt|s̃(n)t , Rt−1)
∑N

n′=1 fR(rt|s̃
(n′)
t , Rt−1)

. (2.2)

Under a wide range of conditions, the sample meanN−1
∑N

n=1Φ(s
(n)
t ) converges to E[Φ(st)|Rt]

for any bounded measurable function Φ.3

The sampling and importance resampling algorithm, and its various refinements, as-

sume that the observation density fR(rt|st, Rt−1) is readily available up to a normalizing

constant. This is a restrictive assumption in many applications, such as the incomplete-

information economies considered in later sections.

We propose a solution to this difficulty when it is possible to simulate from (2.1). Our

filter makes no assumption on the tractability of fS,R(·|st−1, Rt−1), and in fact does not

even require that the transitional kernel of the Markov state st be available explicitly. The

principle of our new filter is to simulate from each s
(n)
t−1 a state-observation pair (s̃

(n)
t , r̃

(n)
t ),

and then select particles s̃
(n)
t associated with pseudo-observations r̃

(n)
t that are close to

the actual data point rt. The definition of the importance weights is based on Bayes’ rule

applied to the joint distribution of r̃
(n)
t , s̃

(n)
t , s

(n)
t−1 conditional on Rt:

r̃
(n)
t , s̃

(n)
t , s

(n)
t−1|Rt ∼ δ(rt − r̃

(n)
t ) fS,R(s̃

(n)
t , r̃

(n)
t |s(n)t−1, Rt−1) fS(s

(n)
t−1|Rt−1)

fR(rt|Rt−1)
, (2.3)

where δ denotes the Dirac distribution on R
nR . Since the Dirac distribution produces

degenerate weights, we consider a kernel K with the following properties.

Assumption 1 (Kernel). The function K : RnR → R++ satisfies:

(i)
∫
K(u)du = 1;

(ii)
∫
uK(u)du = 0;

(iii) A(K) =
∫
‖u‖2K(u)du <∞;

(iv) B(K) =
∫
[K(u)]2du <∞.

3See Crisan and Doucet (2002) for an excellent survey on the convergence of particle filters.
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For any r ∈ R
nR , let

Kht(r) =
1

hnR
t

K

(
r

ht

)

denote the corresponding kernel with bandwidth ht at date t. The kernel Kht converges to

the Dirac distribution as ht goes to zero, which we use to approximate (2.3). This suggests

the following algorithm.

Step 1 (State-observation sampling): For every n = 1, . . . , N, we simulate a

state-observation pair (s̃
(n)
t , r̃

(n)
t ) from fS,R(·|s(n)t−1, Rt−1).

Step 2 (Importance weights): We observe the new data point rt and compute

p
(n)
t =

Kht

(

rt − r̃
(n)
t

)

∑N
n′=1Kht

(

rt − r̃
(n′)
t

) , n = 1, . . . , N.

Step 3 (Multinomial resampling): For every n = 1, . . . , N, we draw s
(n)
t from

s̃
(1)
t , . . . , s̃

(N)
t with importance weights p

(1)
t , . . . , p

(N)
t .

SOS filter

The state-observation pairs {(s̃(n)t , r̃
(n)
t )}n=1,...,N constructed in step 1 provide a discrete

approximation to the conditional distribution of (st, rt) given the data Rt−1. In step 2, we

construct a measure of the proximity between the pseudo and the actual data points, and

in Step 3 we select particles for which this measure is large. The variance of multinomial

resampling in step 3 can be reduced and computational speed can be improved by alter-

natives such as residual (Liu and Chen, 1998) or stratified (Kitagawa, 1996) resampling.

In section 4, we obtain good results with a combined residual-stratified approach.4 The

convergence proof below applies equally well to these alternatives.

4We select
∑N

n=1⌊Np
(n)
t ⌋ particles deterministically by setting ⌊Np

(n)
t ⌋ particles equal to s̃

(n)
t for every

n ∈ {1, . . . , N}, where ⌊·⌋ denotes the floor of a real number. The remaining Nr,t = N−
∑N

n=1⌊Np
(n)
t ⌋ parti-

cles are selected by the stratified sampling that produces s̃
(n)
t with probability q

(n)
t = (Np

(n)
t −⌊Np

(n)
t ⌋)/Nr,t,

n = 1, . . . , N . That is, for every k ∈ {1, . . . , Nr,t}, we draw Ũk from the uniform distribution on ( k−1
Nr,t

, k
Nr,t

],

and select the particle s̃
(n)
t such that Ũk ∈ (

∑n−1
j=1 q

(j)
t ,

∑n

j=1 q
(j)
t ].
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2.2 Extension and Convergence

The SOS filter easily extends to the case of a general measurable state space S. The building

blocks of the model are the conditional probability measure of (st, rt) given (st−1, Rt−1):

g(·|st−1, Rt−1),

and a prior measure λ0 over the state space. The SOS filter targets the probability measure

of the latent state st conditional on the set of current and past observations, λ(·|Rt).

The SOS filter is defined as in Section 2, where in step 1 we sample (s̃
(n)
t , r̃

(n)
t ) from the

conditional measure g(·|s(n)t−1, Rt−1).

We now specify conditions under which for an arbitrary state space S and a fixed history

RT = (r1, . . . , rT ), T ≤ ∞, the SOS filter converges in mean squared error to the target

λ(·|Rt) as the number of particles N goes to infinity.

Assumption 2 (Conditional Distributions). The observation process satisfies the fol-

lowing hypotheses:

(i) the conditional density fR(r̃t|st−1, Rt−1) exists and

κt = sup{fR(r̃t|st−1, Rt−1); (st−1, r̃t) ∈ S× R
nR} <∞ ;

(ii) the observation density fR(r̃t|st, Rt−1) is well-defined and there exists κ′t ∈ R+ such

that:

|fR(r̃t|st, Rt−1)− fR(rt|st, Rt−1)−
∂fR
∂r′t

(rt|st, Rt−1)(r̃t − rt)| ≤ κ′t‖r̃t − rt‖2

for all (st, r̃t) ∈ S× R
nR and t ≤ T .

Assumption 3 (Bandwidth). The bandwidth is a function of N , ht = ht(N), and

satisfies

(i) limN→∞ ht(N) = 0,

(ii) limN→∞N [ht(N)]nR = +∞,

8



for all t = 1, . . . , T.

We establish the following result in the appendix.

Theorem 4 (Convergence of the SOS Filter). Under assumptions 1 and 2 and for

every t and N ≥ 1, there exists Ut(N) ∈ R+ such that

E







[

1

N

N∑

n=1

Kht(rt − r̃
(n)
t )− fR(rt|Rt−1)

]2





≤ [fR(rt|Rt−1)]

2

4
Ut(N), (2.4)

where the expectation is over all the realizations of the random particle method. Further-

more, for any bounded measurable function, Φ : S → R,

MSEt = E







[

1

N

N∑

n=1

Φ(s
(n)
t )− E[Φ(st)|Rt]

]2





≤ Ut(N)‖Φ‖2, (2.5)

where ‖Φ‖ = sups∈S |Φ(s)|. If assumption 3 also holds, then

lim
N→∞

Ut(N) = 0 ,

and the filter converges in mean squared error. Furthermore, if the bandwidth sequence is

of the form ht(N) = ht(1)N
−1/(nR+4), then Ut(N) decays at rate N−4/(nR+4) and the root

mean squared error MSE
1/2
t at rate N−2/(nR+4) for all t.

By (2.4), the kernel estimator

f̂R(rt|Rt−1) =
1

N

N∑

n=1

Kht(rt − r̃
(n)
t ), (2.6)

converges to the conditional density of rt given past observations. Consequently, we can

estimate the log-likelihood function by
∑T

t=1 ln f̂R(rt|Rt−1), and provide a plug-in band-

width in the online Appendix. We will illustrate in section 4 the finite-sample accuracy of

the SOS filter.
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3 Recursive Learning Economies

We consider a class of discrete-time stochastic economies defined at t = 0, . . . ,∞ on the

probability space (Ω,F,P) and parameterized by θ ∈ Θ ⊆ R
p, p ≥ 1.

3.1 Information Structure

In every period t, we define three levels of information, which respectively correspond to

nature, a Bayesian agent, and the econometrician. Figure 1 illustrates the information

structure.

3.1.1 Nature

A state of nature Mt drives the fundamentals of the economy. We assume that Mt follows

a first-order Markov chain on the set of mutually distinct states {m1(θ), . . . ,md(θ)}. For
every i, j ∈ {1, .., d}, we denote by ai,j(θ) = P(Mt = mj(θ)|Mt−1 = mi(θ); θ) the transition

probability from state i to state j.We assume that the Markov chainMt is irreducible, ape-

riodic, positive recurrent, and therefore ergodic. For notational simplicity, we henceforth

drop the argument θ from the states mj and transition probabilities ai,j.

3.1.2 Agent

At the beginning of every period t, the agent observes a signal vector xt ∈ R
nX , which

is partially revealing on the state of nature Mt. The probability density function of the

signal conditional on the state of nature, fX(xt|Mt; θ), is known to the agent. Let Xt =

(x1, . . . , xt) denote the vector of signals received by the agent up to date t. For tractability

reasons, we make the following hypotheses.

Assumption 5 (Signal). The signal satisfies the following conditions:

(a) P(Mt = mj |Mt−1 = mi,Xt−1; θ) = ai,j for all i, j ;

(b) fX(xt|Mt,Mt−1, . . . ,M0,Xt−1; θ) = fX(xt|Mt; θ).

The agent knows the structural parameter θ, is Bayesian and uses Xt to compute the

conditional probability of the states of nature.

10



Proposition 6 (Agent Belief). The conditional probabilities Πj
t = P(Mt = mj |Xt; θ)

satisfy the recursion:

Πj
t =

ωj(Πt−1, xt; θ)
∑d

i=1 ω
i(Πt−1, xt; θ)

for all j ∈ {1, . . . , d} and t ≥ 1, (3.1)

where Πt−1 = (Π1
t−1, . . . ,Π

d
t−1) and ω

j(Πt−1, xt; θ) = fX(xt|Mt = mj; θ)
∑d

i=1 ai,jΠ
i
t−1.

In applications, the agent values assets or makes financial, production or purchasing de-

cisions as a function of the belief vector Πt. Our methodology easily extends to learning

models with non-Bayesian agents, as in Brandt, Zeng, and Zhang (2004) and Cecchetti

Lam and Mark (2000).

The state of the learning economy at a given date t is the mixed variable st = (Mt,Πt).

The state space is therefore

S = {m1, . . . ,md} ×∆d−1
+ , (3.2)

where ∆d−1
+ = {Π ∈ R

d
+|
∑d

i=1 Πi = 1} denotes the (d− 1)–dimensional unit simplex.

Proposition 7 (State of the Learning Economy). The state of the learning economy,

st = (Mt,Πt), is first-order Markov. It is ergodic if the transition probabilities between

states of nature are strictly positive: ai,j > 0 for all i, j, and the signal’s conditional

probability density functions fX(x|Mt = mj; θ) are strictly positive for all x ∈ R
nX and

j ∈ {1, . . . , d}.

The state of the learning economy st preserves the first-order Markov structure of the state

of nature Mt. By Bayes’rule (3.1), the transition kernel of the Markov state st is sparse

when the dimension of the signal, nX , is lower than the number of states of nature: nX < d.

The state st is nonetheless ergodic for all values nX and d under the conditions stated in

Proposition 7, which guarantees that the economy is asymptotically independent of the

initial state s0.

3.1.3 Econometrician

Each period, the econometrician observes a data point rt ∈ R
nR , which is assumed to be

a deterministic function of the agent’s signal and conditional probabilities over states of

11



nature:

rt = R(xt,Πt,Πt−1; θ). (3.3)

We include Πt−1 in this definition to accommodate the possibility that rt is a growth rate

or return. The parameter vector θ ∈ R
p specifies the states of nature m1, . . . ,md, their

transition probabilities (ai,j)1≤i,j≤d, the signal’s conditional density fX(·|Mt, θ), and the

data function R(xt,Πt,Πt−1; θ). In some applications, it may be useful to add measurement

error in (3.3); the estimation procedure of the next section applies equally well to this

extension.

3.2 Estimation

We assume that the data RT = (r1, . . . , rT ) is generated by the incomplete-information

(II) economy with parameter θ∗ described above. Estimation faces several challenges. The

transition kernel of the Markov state st and the log-likelihood function LII(θ|RT ) are not

available analytically. Furthermore, the observation density fR(rt|st, Rt−1) is not available

in closed form either because the signal xt, drives the data point rt = R(xt,Πt,Πt−1; θ) both

directly and indirectly through the belief Πt = Πt(xt,Πt−1), creating a highly nonlinear

relationship between the state and the observation.

The learning model can, however, be conveniently simulated. Given a state st−1 =

(Mt−1,Πt−1), we can: (i) sample Mt from Mt−1 using the transition probabilities ai,j; (ii)

sample the signal xt from fX(·|Mt; θ); (iii) apply Bayes’rule (3.1) to impute the agent’s

belief Πt; and (iv) compute the simulated data point r̃t = R(xt,Πt,Πt−1; θ). Estimation

can therefore proceed by simulation-based methods. Simulated ML based on the SOS filter

is a possible approach. As we will see in section 4, however, an accurate approximation

of the log-likelihood value L̂II(θ|RT ) =
∑T

t=1 ln[N
−1
∑N

n=1Kht(rt − r̃
(n)
t )] may require a

large number of particles. For situations where simulated ML is too computational5, we

now propose an alternative approach based on indirect inference.

For each learning model θ ∈ Θ, we can define an auxiliary full information (FI) model

in which the agent observes both the state of nature Mt and the signal xt. Her condi-

tional probabilities are then Πj
t = P(Mt = mj |Xt,Mt; θ) for all j. The belief vector

reduces to Πt = 1Mt, where 1Mt denotes the vector whose jth component is equal to 1

5For instance in the empirical example considered in section 4, we use an SOS filter of size N = 107 and a
dataset of about 20,000 observations. One evaluation of the likelihood function requires the evaluation 200
billion kernels Kht(·). Since a typical optimization requires about 500 function evaluations, the simulated
ML estimation of the II model would require the evaluation of 100 trillion kernels.
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if Mt = mj and 0 otherwise, and by (3.3) the full information data point is defined by

rt = R(xt,1Mt,1Mt−1 ; θ). The FI model can have less parameters than the II model be-

cause of the simplification in Πt. We therefore consider that the auxiliary FI model is

parameterized by φ ∈ R
q, where 1 ≤ q ≤ p.

Assumption 8 (Auxiliary Full-Information Economies). The probability density

functions fi,j(rt;φ) = fR,FI(rt|Mt = mj ,Mt−1 = mi, φ) are available analytically for all

i, j ∈ {1, . . . , d}.

Proposition 9 (Full-Information Likelihood). Under assumption 8, the log-likelihood

function LFI(φ|RT ) is available analytically.

The ML estimator of the full-information economy

φ̂T = argmax
φ

LFI(φ|RT ) ∈ R
q

can therefore be conveniently computed.

The indirect-inference estimation of the structural learning model proceeds in two steps.

First, we define an auxiliary estimator that includes the full-information MLE. If q < p,

we also consider a set of p − q statistics η̂T that quantify features of the dataset RT that

the learning model is designed to capture. The auxiliary estimator is defined by

µ̂T =

[

φ̂T

η̂T

]

∈ R
p. (3.4)

By construction, µ̂T contains as many parameters as the structural parameter θ.6

Second, for any admissible parameter θ, we can simulate a sample path RST (θ) of

length ST , S ≥ 1, and compute the corresponding pseudo-auxiliary estimator:

µ̂ST (θ) =

[

φ̂ST (θ)

η̂ST (θ)

]

, (3.5)

6We focus on the exactly identified case to simplify the exposition and because earlier evidence indi-
cates that parsimonious auxiliary models tend to provide more accurate inference in finite samples (e.g.
Andersen, Chung, and Sorensen, 1999; Czellar and Ronchetti, 2010). Our approach naturally extends to
the overidentified case, which may be useful in cases where it is economically important to match a larger
set of statistics.
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where φ̂ST (θ) = argmaxφ LFI [φ|RST (θ)]. We define the indirect inference estimator θ̂T

by:

θ̂T = argmin
θ

[
µ̂ST (θ)− µ̂T

]′
Ω
[
µ̂ST (θ)− µ̂T

]
, (3.6)

where Ω is a positive definite weighting matrix. When the calculation of the full-information

MLE is expensive, the numerical implementation can be accelerated by the efficient method

of moments, as is discussed in the appendix.

Our methodology builds on the fact that the full-information economy can be efficiently

estimated by ML and is therefore a natural candidate auxiliary model. Moreover, the

theoretical investigation of a learning model often begins with the characterization of the FI

case, so the estimation method we are proposing follows the natural progression commonly

used in the literature.

We assume that the assumptions 10–12 given in the appendix hold. Gouriéroux et

al. (1993) and Gouriéroux and Monfort (1996) show that under these conditions and

assuming the structural model θ∗, the auxiliary estimator µ̂T converges in probability

to a deterministic function µ(θ∗), called the binding function, and
√
T [µ̂T − µ(θ∗)]

d−→
N(0,W ∗), where W ∗ is defined in the appendix. Furthermore, when S is fixed and T goes

to infinity, the estimator θ̂T is consistent and asymptotically normal:

√
T (θ̂T − θ∗)

d−→ N(0,Σ),

where

Σ =

(

1 +
1

S

)[
∂µ(θ∗)

∂θ′

]−1

W ∗

[
∂µ(θ∗)′

∂θ

]−1

. (3.7)

The appendix further discusses the numerical implementation of this method.

In this section, we have assumed that the state of nature takes finitely many values.

When Mt has an infinite support, we can discretize its distribution and use the corre-

sponding full-information discretized economy as an auxiliary model. The definition and

properties of the indirect inference estimator are otherwise identical.
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4 Inference in an Asset Pricing Model with Investor Learn-

ing

We now apply our methodology to a consumption-based asset pricing model. We adopt

the Lucas tree economy with regime-switching fundamentals of CF (2007), which we use

to specify the dynamics of daily equity returns.

4.1 Specification

4.1.1 Dynamics of the State of Nature

The rich dynamics of daily returns requires a large state space. For this reason, we consider

that the state is a vector containing k components:

Mt = (M1,t, . . . ,Mk,t)
′ ∈ R

k
+,

which follows a binomial Markov Switching Multifractal (CF 2001, 2004, 2008). The

components are mutually independent across k. Let M denote a Bernoulli distribution

that takes either a high value m0 or a low value 2 −m0 with equal probability. Given a

value Mk,t for the k
th component at date t, the next-period multiplier Mk,t+1 is either:







drawn from the distribution M with probability γk,

equal to its current value Mk,t with probability 1− γk.

Since each component of the state vector can take two possible values, the state space

contains d = 2k elements m1, . . . ,md. The transition probabilities γk are parameterized by

γk = 1− (1− γk)
bk−k

, k = 1, . . . , k,

where b > 1. Thus, γk controls the persistence of the highest-frequency component and b

determines the spacing between frequencies.

4.1.2 Bayesian Agent

The agent receives an exogenous consumption stream {Ct} and prices the stock, which is

a claim on an exogenous dividend stream {Dt}. Every period, the agent observes a signal

15



xt ∈ R
k+2 consisting of dividend growth:

x1,t = ln(Dt/Dt−1) = gD − σ2D(Mt)

2
+ σD(Mt)εD,t, (4.1)

consumption growth:

x2,t = ln(Ct/Ct−1) = gC + σCεC,t, (4.2)

and a noisy version of the state:

xi+2,t =Mi,t + σδzi,t, i = 1, . . . , k . (4.3)

The noise parameter σδ ∈ R+ controls information quality. The stochastic volatility of

dividends is given by:

σD(Mt) = σD





k∏

k=1

Mk,t





1/2

, (4.4)

where σD ∈ R+. The innovations εC,t, εD,t, and zt are jointly normal and have zero means

and unit variances. We assume that εC,t and εD,t have correlation ρC,D, and that all the

other correlation coefficients are zero.

Learning about the volatility state Mt is an asymmetric process. For expositional

simplicity, assume that the noise parameter σδ is large, so that investors learn about

Mt primarily through the dividend growth. Because large realizations of dividend are

implausible in a low-volatility regime, learning about a volatility increase tends to be

abrupt. Conversely, when volatility switches from a high to a low state, the agent learns

only gradually that volatility has gone down because realizations of dividend growth near

the mean are likely outcomes under any Mt.

The agent has isoelastic expected utility, U0 = E0
∑∞

t=0 δ
tC1−α

t /(1 − α), where δ is

the discount rate and α is the coefficient of relative risk aversion. In equilibrium, the log

interest rate is constant. The stock’s price-dividend ratio is negatively related to volatility

and linear in the belief vector:

Q(Πt) =

d∑

j=1

Q(mj)Πj
t . (4.5)
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Figure 2: Learning Model Simulation. This figure illustrates a sample path simulated
from the multifrequency learning model. Each panel corresponds to a different level of
information. Nature’s price-dividend ratio Q(Mt) is plotted in the top panel, the agent’s
price-dividend ratio Q(Πt) in the middle panel, and the return rt (computed by the agent
and observed by the econometrician) in the bottom panel.

where the linear coefficients Q(mj) are available analytically.7
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4.1.3 Econometric Specification of Stock Returns

The econometrician observes the log excess return process:

rt = ln

[
1 +Q(Πt)

Q(Πt−1)

]

+ x1,t − rf . (4.6)

Since learning about volatility is asymmetric, the stock price falls abruptly following a

volatility increase (bad news), but will increase only gradually after a volatility decrease

(good news). The noise parameter σδ therefore controls the skewness of stock returns.

4.2 Accuracy of the SOS filter

We now present the results of Monte Carlo simulations of the SOS particle filter. To simplify

the exposition, we consider one-dimensional aggregates of Mt and Πt, which summarize

economically meaningful information. Specifically, if the agent knew the true state of

nature, she would set the price-dividend ratio equal to Q(Mt) = Q(mj) if Mt = mj, as

implied by (4.5); we therefore call Q(Mt) nature’s P/D ratio. By contrast, the market

Q(Πt) aggregates the agent’s beliefs in the incomplete-information model; for this reason,

we refer to it as the agent’s price-dividend ratio.

We generate a sample of size T = 20, 000 periods from the learning model (4.6) with

k = 3 volatility components and fixed parameter values.8 Figure 2 illustrates the last 1,000

periods of the simulated sample. We report nature’s price-dividend ratio in the top panel,

the agent’s price-dividend ratio in the middle panel, and the return (computed by the agent

and observed by the econometrician) in the bottom panel.

7The price-dividend ratio is given by

∞
∑

n=1

δnE

[

(

Ct+n

Ct

)−α
Dt+n

Dt

∣

∣

∣

∣

∣

Xt

]

=
∞
∑

n=1

E

[

n
∏

h=1

egD−rf−αρC,DσCσD(Mt+h)

∣

∣

∣

∣

∣

Xt

]

,

where rf = − ln(δ) + αgC − α2σ2
C/2 is the log interest rate. Since volatility is persistent, a high level of

volatility at date t implies high forecasts of future volatility, and therefore a low period−t price-dividend
ratio. The linear coefficients are given by

(

Q(m1), . . . , Q(md)
)′

= (I − B)−1ι − ι , where B = (bij)1≤i,j≤d

is the matrix with components bij = ai,j exp
[

gD − rf − αρC,D σC σD(mj)
]

and ι = (1, . . . , 1)′.
8Specifically, we set m0 = 1.7, γk = 0.06, b = 2 and σδ = 1, the consumption drift to gC = 0.75 basis

point (bp) (or 1.18% per year), log interest rate to rf = 0.42 bp per day (1% per year), excess dividend
growth equal to gD − rf = 0.5 bp per day (about 1.2% per year), consumption volatility to σC = 0.189%
(or 2.93% per year), and dividend volatility σD = 0.70% per day (about 11% per year). The correlation
coefficient is set equal to ρC,D = 0.6, and α is chosen such that the mean of the linear coefficients in (4.5)
satisfy Q = d−1 ∑d

i=1 Q(mi) = 6000 in daily units (25 in yearly units).
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Figure 3: Accuracy of the SOS Filter. This figure illustrates the estimated log-likelihood
function (left panel) and the efficiency measures R2

Q(Π) and R
2
Q(M) (right panel) as a func-

tion of the filter size N .
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We apply to the entire simulated sample the SOS filter with the quasi-Cauchy kernel

and bandwidth derived in the online Appendix. The left panel of Figure 3 illustrates the

estimated log-likelihood as a function of the filter size N. In the right panel, we report the

pseudo R2:

R2
Q(Π) = 1−

∑T
t=1

[
Q̂(Πt)−Q(Πt)

]2

∑T
t=1

[
Q̂(Πt)− Q̄(Π)

]2 ,

where Q̂(Πt) =
∑N

n=1Q(Π
(n)
t )/N and Q̄(Π) =

∑T
t=1Q(Πt)/T . We similarly compute

R2
Q(M) for nature’s price-dividend ratios using {Q(M

(n)
t )}. The figure shows that both the

estimated log-likelihood and the coefficients of determination increase with the filter size

N and settle down for N ≥ 106. The coefficient of determination reaches 67.6% for Q(M)

and 71.5% for Q(Π). Thus, the agent’s P/D ratio is better estimated than nature’s P/D

ratio, as the information structure in Figure 1 suggests.

The true value of the likelihood function is unknown for the example considered in

Figure 3. For this reason, we now consider the full-information version of the model, which,

by Proposition 9, has a closed-form likelihood. We generate from the full-information

model a sample of T = 20, 000 periods. The analytical expression of the log-likelihood

implies that LFI = 79, 691.5. In the right column of Table 2, we report the sample

mean and the root mean squared error of fifty log-likelihood estimates computed using

SOS. The relative estimation error RMSE/LFI is 0.024%, 0.006% and 0.002% when using,

respectively, N = 105, 106 and 107 particles. The estimates of the FI log-likelihood obtained

using SOS are therefore remarkably precise.

We now verify that the SOS filter defeats the curse of dimensionality with respect to

the size of the state space. Table 1 reports the topological dimension of the state space,

dim S, under incomplete and full information. By construction, the log-likelihood function

satisfies the continuity property: limσδ→0LII(m0, γk, b, σδ |RT ) = LFI(m0, γk, b|RT ) . The

first three columns in Table 2 report summary statistics of log-likelihood estimates of LII

obtained for σδ ∈ {1, 0.1, 0.01}. The accuracy of SOS is nearly identical for the full-

information model and for the learning model with σδ = 0.01. With N = 107 particles, the

RMSE of the SOS filter is even slightly smaller for the II specification σδ = 0.01 than for

the full-information model, even though II has a much larger state space. These findings

confirm the result of Theorem 4 that the convergence rate of SOS is independent of the

dimension of the state space.
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Table 1: Dimension of the state spacea

Incomplete Information Full Information

State space S {m1, . . . ,md} ×∆d−1
+ {m1, . . . ,md}

Dimension dim S d− 1 0

aThis table reports the topological dimension of the state space under full
and incomplete information. In the multifrequency volatility case, we know that

d = 2k, where k̄ denote the number of volatility frequencies.

Table 2: Precision of the SOS log-likelihood estimatesa

II (dim S = 7) FI (dim S = 0)

σδ = 1 σδ = 0.1 σδ = 0.01

Mean, N = 105 79,514.1 79,674.0 79,673.1 79,673.4

Mean, N = 106 79,523.2 79,686.3 79,687.4 79,687.3
Mean, N = 107 79,525.1 79,690.8 79,690.9 79,690.4

RMSE, N = 105 177.6 18.3 19.5 18.9

RMSE, N = 106 168.4 6.3 5.2 4.9
RMSE, N = 107 166.4 1.1 1.3 1.7

aWe report summary statistics for 50 simulated log-likelihoods estimated on a fixed
sample path of T = 20, 000 periods from the FI model. The true log-likelihood is LFI =
79, 691.5. The simulated log-likelihoods are based on an SOS filter and a learning model
with σδ ∈ {0.01, 0.1, 1}.
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4.3 Indirect Inference Estimator

We now develop an estimator for the vector of structural parameters:

θ = (m0, γk, b, σδ)
′ ∈ [1, 2] × (0, 1] × [1,∞) × R+,

where m0 controls the variability of dividend volatility, γk̄ the transition probability of the

most transitory volatility component, b the spacing of the transition probabilities, and σδ

the precision of the signal received by the representative agent. As is traditional in the

asset pricing literature, we calibrate all the other parameters on aggregate consumption

data and constrain the mean price-dividend ratio to a plausible long-run value

E[Q(Πt)] = Q, (4.7)

where Q is set equal to 25 in yearly units.9

The learning economy is specified by p = 4 parameters, θ = (m0, γk̄, b, σδ)
′, while the FI

economy is specified by q = 3 parameters, φ = (m0, γk̄, b)
′. For this reason, the definition of

the auxiliary estimator requires an additional statistic η̂T ∈ R. Since the noise parameter

σδ controls the skewness of excess returns, the third moment seems like a natural choice.

We are concerned, however, that the third moment may be too noisy to produce an efficient

estimator of θ. For this reason, we consider an alternative based on the observation that

by restriction (4.7), the mean return is nearly independent of the structural parameter:

E(rt) ≈ ln(1 + 1/Q) + gD − rf − σ2D, (4.8)

as is verified in the online appendix. Since the mean is fixed, the median can be used

as a robust measure of skewness. The auxiliary estimator µ̂T = (φ̂T , η̂T )
′ is defined by

expanding the ML estimator of the full-information economy, φ̂T , with either the third

moment (η̂T = T−1
∑T

t=1 r
3
t ) or median (η̂T = median{rt}) of returns.

In Figure 4, we illustrate the relation between the median-based auxiliary estimator µ̂T

and the structural parameter θ on a long simulated sample of length ST = 107. The graphs

9The calibrated parameters are the same as in the previous subsection. An alternative approach would
be to estimate all the parameters of the learning economy on aggregate excess return data. In the 2005
NBER version of their paper, CF applied this method to the FI model and obtained broadly similar results
to the ones reported in the published version. This alternative approach has the disadvantage of not taking
into account the economic constraints imposed by the model, and we do not pursue it here.
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Figure 4: Auxiliary Estimator. This figure illustrates the relation between the median-
based auxiliary estimator and the structural parameter θ. In each column, one structural
parameter is allowed to vary while the other three parameters are set to their reference
values. The auxiliary estimate reported for every θ is obtained from a simulated sample of
length 107 generated under the learning model θ with k = 3 volatility components.
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can be viewed as cuts of the binding function µ(θ). The top three rows show that for all

i ∈ {1, 2, 3}, the auxiliary parameter µ̂T,i increases monotonically with the corresponding

parameters θi of the learning economy, and is much less sensitive to the other parameters θj,

j 6= i (including σδ). Moreover, we note that the auxiliary estimator of b, based on FI ML,

is a biased estimator of the parameter b of the incomplete-information economy; this finding

illustrates the pitfalls of employing quasi-maximum likelihood estimation in this setting.

The bottom row shows that as the noise parameter σδ increases, the median return increases

monotonically, consistent with the fact that returns become more negatively skewed. In the

online appendix, we verify that the third moment is decreasing monotonically with σδ. The

structural parameter θ is thus well identified by our two candidate auxiliary estimators.

As a benchmark, we also construct a simulated method of moments (SMM) estimator.

In the online appendix, we illustrate the impact of the structural parameter θ on the

expected values of rnt , n ∈ {1, . . . , 4}, the leverage coefficient rt−1r
2
t , and the volatility

autocorrelation measure r2t−1r
2
t . The leverage measure and the second, third and fourth

moments appear to be the most sensitive to the structural parameter θ, and are therefore

selected for the definition of the SMM estimator.

In Figure 5, we report boxplots of SMM, third moment-based and median-based II

estimates of θ obtained from 100 simulated sample paths of length T = 20, 000 from the

learning model with k̄ = 3 volatility components. For all three estimators, we set the

simulation size to S = 500, so that each simulated path contains ST = 107 simulated data

points. The indirect inference procedures provide more accurate and less biased estimates of

the structural parameters of the learning economy than SMM. The median-based estimator

provides substantially more accurate estimates of the parameter σδ that controls the agent’s

information quality. The median-based estimator thus strongly dominates the other two

candidate estimators, and we now use it empirically. Overall, the Monte Carlo simulations

confirm the excellent properties of the filtering and estimation techniques proposed in the

paper.

4.4 Empirical Estimates and Value at Risk Forecasts

We apply our estimation methodology to the daily log excess returns on the U.S. CRSP

value-weighted equity index from 2 January 1926 to 31 December 2009. The dataset

contains 22,276 observations, which are illustrated in Figure 6. We partition the dataset

into an in-sample period, which runs until 31 Dec 1999, and an out-of-sample period, which
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Figure 6: U.S. Equity Return Data. This figure illustrates the daily log excess returns
on the CRSP U.S. value-weighted equity index between 2 January 1926 and 31 December
2009. The dashed line separates the in-sample and out-of-sample periods.

covers the remaining ten years.

In Table 3, we report the II estimates of θ.We let ST = 107 and report standard errors

in parentheses. The estimate of σδ is significant and declines with k̄.10 This finding is

consistent with the intuition that as k increases, the effect of learning becomes increasingly

powerful, and a lower σδ better matches the negatively skewed excess return series. We

also report the log-likelihood of each specification, which is estimated by an SOS filter

with N = 107 particles every period. The likelihood function of the II model increases

steadily with k̄. We report in parentheses the t−ratios of a HAC-adjusted Vuong (1989)

10When k̄ = 1, the auxiliary parameter is nearly invariant to σδ in the relevant region of the parameter
space. The Jacobian of the binding function is almost singular, and by (3.7), the estimator of σδ has a very
large asymptotic variance. The specification with k̄ = 1 cannot match the median of historical returns and
is therefore severely misspecified. These findings illustrate the empirical importance of using higher values
of k̄.
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Table 3: Empirical estimatesa

k Parameter Estimates Estimated

m0 γk b σδ Likelihood
(in logs)

1 1.732
(0.0091)

0.063
(0.0033)

- 93.807
(61,616.8)

65, 680.1
(−10.4948)

2 1.714
(0.0061)

0.054
(0.0036)

21.104
(10.5573)

4.001
(1.1036)

67, 104.9
(−8.0477)

3 1.690
(0.0055)

0.071
(0.0055)

16.471
(9.9115)

2.401
(1.5599)

67, 534.7
(−8.6697)

4 1.587
(0.0059)

0.047
(0.0049)

5.089
(0.5387)

1.411
(0.1714)

68, 167.8

aWe report empirical estimates of the learning model (with
standard errors in parentheses) based on the daily excess returns
of the CRSP index between 2 January 1926 and 31 December
1999. The log-likelihood estimates are based on an SOS filter
containing N = 107 particles. HAC-adjusted Vuong tests com-
paring k ≤ 3 specifications to k = 4 are reported in parentheses
below the log-likelihood estimates.

test, that is the rescaled differences between the log-likelihoods of the lower-dimensional

(k̄ ∈ {1, 2, 3}) and the highest-dimensional (k̄ = 4) specifications. The four-component

model has a significantly higher likelihood than the other specifications and is therefore

selected for the out-of-sample analysis.

We now turn to the out-of-sample implications of the incomplete-information model.

The value at risk V aRp
t+1 constructed on day t is such that the return on day t + 1 will

be lower than −V aRp
t+1 with probability p. The failure rate is specified as the fraction

of observations where the actual return exceeds the value at risk. In a well specified VaR

model, the failure rate is on average equal to p.We use as a benchmark historical simulations

(e.g. Christoffersen 2009) and Student GARCH(1,1), which are widely used in practice.

The historical VaR estimates are based on a window of 60 days, which corresponds to

a calendar period of about three months. In Table 4, we report the failure rates of the

V aRp
t+1 forecasts for p = 1%, 5%, 10%, at horizons of 1 and 5 days produced by: historical

simulations, GARCH, the full-information model and the learning model with k̄ = 4.

Standard deviations are reported in parentheses. A failure rate is in bold characters if it

differs from its theoretical value at the 1% significance level.
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Table 4: Failure rates of value-at-risk forecastsa

Models One Day Five Days
1% 5% 10% 1% 5% 10%

Historical VaR − 0.069
(0.0051)

0.119
(0.0065)

− 0.066
(0.0111)

0.129
(0.0150)

GARCH 0.081
(0.0054)

0.154
(0.0072)

0.197
(0.0079)

0.048
(0.0095)

0.123
(0.0147)

0.165
(0.0166)

FI, k = 4 0.016
(0.0025)

0.070
(0.0051)

0.132
(0.0067)

0.012
(0.0048)

0.068
(0.0112)

0.143
(0.0156)

II, k = 4 0.008
(0.0018)

0.047
(0.0042)

0.094
(0.0058)

0.014
(0.0052)

0.060
(0.0106)

0.135
(0.0153)

aThis table reports the failure rates of the 1-day and 5-day value at risk forecasts
produced by various methods in the out-of-sample period (2000-2009). The historical
VaR is based on a rolling window of 60 days. The GARCH, FI and II forecasts are
computed using in-sample parameter estimates. II forecasts are based on an SOS
filter with N = 107 elements. The significance level is 1%.

Historical simulations provide inaccurate VaR forecasts at the 1-day horizon. The fail-

ure rates are significantly higher than their theoretical values, which suggests that historical

simulations provide overly optimistic estimates of value at risk. GARCH VaR estimates

are significantly higher in all cases, while the FI model’s VaR predictions are rejected in

three out of six cases. On the other hand, the VaR predictions from the learning model

are all consistent with the data. Our empirical findings suggest that the learning model

captures well the dynamics of daily stock returns, and outperforms out of sample some

of the best reduced-form specifications. We note that this is an excellent result for a

consumption-based asset pricing model.

5 Conclusion

In this paper, we have developed powerful filtering and estimation methods for a wide

class of learning environments. The new SOS algorithm applies to general state space

models in which state-observation pairs can be conveniently simulated. Our method makes

no assumption on the availability of the observation density and therefore expands the

scope of sequential Monte Carlo methods. The rate of convergence does not depend on

the size of the state space, which shows that our filter defeats a form of the curse of
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dimensionality. Among many possible applications, SOS is useful to estimate the likelihood

function, conduct likelihood-based specification tests, and generate forecasts.

The new filter naturally applies to nonlinear economies with agent learning of the type

often considered in financial economics. In this context, SOS permits to track in real

time both fundamentals and agent beliefs about fundamentals. Estimation can proceed

by simulated ML, but this approach can be computationally costly, as in the example of

section 4. For this reason, we have defined an indirect inference estimator by expanding

the full-information MLE with a set of statistics that agent learning is designed to capture.

These methods have been applied to a consumption-based asset pricing model with

investor learning about multifrequency volatility. We have verified by Monte Carlo simula-

tions the accuracy of our SOS filter and indirect inference estimators, and have implemented

these techniques on a long series of daily excess stock returns. We have estimated the pa-

rameters driving fundamentals and the quality of the signals received by investors, tracked

fundamentals and investor beliefs over time, and verified that the inferred specification

provides good value-at-risk forecasts out of sample.

The paper opens multiple directions for future research. SOS can be used to price

complex instruments, such as derivatives contracts, which crucially depend on the distri-

bution of the hidden state. We can expand the role of learning in the analysis, for instance

by letting the agent learn the parameter of the economy over time, or by conducting the

joint online estimation of the structural parameter θ and the state of the economy st, as

in Polson, Stroud, and Mueller (2008) and Storvik (2002). Further extensions could in-

clude inference for equilibrium models with asymmetric information (e.g. Biais, Bossaerts,

and Spatt, 2010), and the development of value-at-risk models that incorporate the cross-

sectional dispersion of investor beliefs.
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A Convergence of the SOS Filter (Section 2)

A.1 A Preliminary Result

In this appendix, we show the convergence of the SOS particle filter defined in section 2

as the number of particles N goes to infinity. Since the path RT is fixed, our focus is on

simulation noise, and expectations in this section are over all the realizations of the random

particle method. We begin by establishing the following result for a given N ≥ 1 and t ≥ 1.

Lemma A1. Assume that there exists Ut−1(N) such that for every bounded measurable

function Φ : S → R,

E







[

1

N

N∑

n=1

Φ(s
(n)
t−1)− E[Φ(st−1)|Rt−1]

]2





≤ Ut−1(N)‖Φ‖2. (A.1)

Let U∗
t (N) = 2κ′2t A(K)2h4t +B(K)κt/(Nh

nR
t ) + 2Ut−1(N)κ2t . Then, the inequality

E







[

1

N

N∑

n=1

Φ(s̃
(n)
t )Kht(rt − r̃

(n)
t )− fR(rt|Rt−1)E [Φ(st)|Rt]

]2





≤ U∗

t (N)‖Φ‖2

holds for every bounded measurable function Φ.

Proof of Lemma A1. We consider the function

at−1(st−1) =

∫

Φ(s̃t)Kht(rt − r̃t)g(ds̃t, dr̃t|st−1, Rt−1).

We note that

|at−1(st−1)| ≤ ‖Φ‖
∫

Kht(rt − r̃t)g(ds̃t, dr̃t|st−1, Rt−1)

= ‖Φ‖
∫

Kht(rt − r̃t)fR(r̃t|st−1, Rt−1)dr̃t.

The function at−1 is therefore bounded above by κt ‖Φ‖.
The difference Z = N−1

∑N
n=1 Φ(s̃

(n)
t )Kht(rt − r̃

(n)
t ) − fR(rt|Rt−1)E [Φ(st)|Rt] is the
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sum of the following three terms:

Z1 =
1

N

N∑

n=1

[

Φ(s̃
(n)
t )Kht(rt − r̃

(n)
t )− at−1(s

(n)
t−1)

]

,

Z2 =
1

N

N∑

n=1

at−1(s
(n)
t−1)−

∫

at−1(st−1)λ(dst−1|Rt−1),

Z3 =

∫

at−1(st−1)λ(dst−1|Rt−1)− fR(rt|Rt−1)E [Φ(st)|Rt] .

Let S
(N)
t−1 = (s

(1)
t−1, . . . , s

(N)
t−1) denote the vector of period−(t− 1) particles. Conditional on

S
(N)
t−1, Z1 has a zero mean, while Z2 and Z3 are deterministic. Hence:

E(Z2) = E(Z2
1 ) + E[(Z2 + Z3)

2] ≤ E(Z2
1 ) + 2E(Z2

2 ) + 2E(Z2
3 ).

Conditional on S
(N)
t−1, the state-observation pairs {(s̃(n)t , r̃

(n)
t )}Nn=1 are independent, and each

(s̃
(n)
t , r̃

(n)
t ) is drawn from g(·|s(n)t−1, Rt−1); the addends of Φ(s̃

(n)
t )Kht(rt − r̃

(n)
t )− at−1(s

(n)
t−1)

are thus independent and have mean zero. We infer that the conditional expectation of Z2
1

is bounded above by:

1

N2

N∑

n=1

∫

Φ(s̃t)
2Kht(rt − r̃t)

2g(ds̃t, dr̃t|s(n)t−1, Rt−1) ≤
κt‖Φ‖2
N

∫

Kht(rt − r̃t)
2dr̃t.

We apply the change of variable u = (rt − r̃t)/ht:

∫

Kht(rt − r̃t)
2dr̃t =

B(K)

hnR
t

,

and infer that E(Z2
1 ) ≤ ‖Φ‖2B(K)κt/(Nh

nR
t ).

Since the function at−1(st−1) is bounded above by κt ‖Φ‖, we infer from (A.1) that:

E(Z2
2 ) ≤ Ut−1(N)κ2t ‖Φ‖2.
Finally, we observe that fR(rt|Rt−1)E [Φ(st)|Rt] =

∫
Φ(st)fR(rt|st, Rt−1)λ(dst|Rt−1),

and therefore

Z3 =

∫

Φ(st)

{∫

Kht(rt − r̃t)[fR(r̃t|st, Rt−1)− fR(rt|st, Rt−1)]dr̃t

}

λ(dst|Rt−1)

=

∫

Φ(st)

{∫

K(u)[fR(rt − htu|st, Rt−1)− fR(rt|st, Rt−1)]du

}

λ(dst|Rt−1).
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Note that
∣
∣
∫
K(u)[fR(rt − htu|st, Rt−1)− fR(rt|st, Rt−1)]du

∣
∣ ≤ κ′tA(K)h2t . Hence |Z3| ≤

κ′tA(K)h2t ‖Φ‖ and therefore E(Z2
3 ) ≤ κ′2t A(K)2h4t ‖Φ‖2.We conclude that the lemma holds.

Q.E.D.

A.2 Proof of Theorem 4

The proof of (2.5) proceeds by induction. When t = 0, the particles are drawn from the

prior λ0, and the conditional expectation is computed under the same prior. Hence the

property (2.5) holds with U0(N) = 1/N.

We now assume that the property (2.5) holds at date t − 1. The estimation error

X = N−1
∑N

n=1Φ(s
(n)
t )− E[Φ(st)|Rt] is the sum of:

X1 =
1

N

N∑

n=1

Φ(s
(n)
t )−

N∑

n=1

p
(n)
t Φ(s̃

(n)
t ).

X2 =

[
N∑

n=1

p
(n)
t Φ(s̃

(n)
t )

][

fR(rt|Rt−1)−N−1
∑N

n′=1Kht(rt − r̃
(n′)
t )

fR(rt|Rt−1)

]

,

X3 =
1

NfR(rt|Rt−1)

N∑

n=1

Φ(s̃
(n)
t )Kht(rt − r̃

(n)
t )− E[Φ(st)|Rt].

The first term, X1, corresponds to step 3 resampling, the second term to the normalization

of the resampling weights, and the third term to the error in the estimation of Φ using the

nonnormalized weights.

Conditional on {(s̃(n)t , r̃
(n)
t )}Nn=1, the particles s

(n)
t are independent and identically dis-

tributed, and X1 has mean zero. We infer that E[X2
1 |{s̃

(n)
t , r̃

(n)
t }Nn=1] ≤ ‖Φ‖2/N, and there-

fore E(X2
1 ) ≤ ‖Φ‖2/N. Note that when we use stratified, residual or combined stratified-

residual resampling in step 3, the inequality E(X2
1 ) ≤ ‖Φ‖2/N remains valid, and smaller

upper bounds can also be derived.11

Conditional on {(s̃(n)t , r̃
(n)
t )}Nn=1, X2 and X3 are deterministic variables. The mean

squared error satisfies:

E(X2) = E(X2
1 ) + E[(X2 +X3)

2] ≤ E(X2
1 ) + 2E(X2

2 ) + 2E(X2
3 ).

We note that |X2| ≤ ‖Φ‖[fR(rt|Rt−1)]
−1
∣
∣
∣fR(rt|Rt−1)−

∑N
n′=1Kht(rt − r̃

(n′)
t )/N

∣
∣
∣ . Us-

11See Cappé, O., Moulines, E., and T. Rydén (2005, ch. 7) for a detailed discussion of sampling variance.
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ing the induction hypothesis at date t − 1, we apply Lemma A1 with Φ ≡ 1 and obtain

that E(X2
2 ) is bounded above by:

U∗
t (N)‖Φ‖2

[fR(rt|Rt−1)]2
. (A.2)

Lemma A1 implies that E(X2
3 ) is also bounded above by (A.2). We conclude that E(X2) ≤

Ut(N)‖Φ‖2, where Ut(N) = 4U∗
t (N)[fR(rt|Rt−1)]

−2 +N−1, or equivalently

Ut(N) =
4

[fR(rt|Rt−1)]2

[

2κ′2t A(K)2h4t +
B(K)κt
NhnR

t

+ 2Ut−1(N)κ2t

]

+
1

N
. (A.3)

This establishes part (2.5) of the theorem. From (2.5) and Lemma A1 with Φ ≡ 1, (2.4)

follows.

Assume now that the bandwidth is a function of N , and that assumption 3 holds.

A simple recursion implies that limN→∞Ut(N) = 0 for all t. The mean squared error

converges to zero for any bounded measurable function Φ.

We now characterize the rate of convergence. Given Ut−1(N), we know that the coeffi-

cient Ut(N) defined by (A.3) is minimal if

ht = N−1/(nR+4)

[
κtnRB(K)

8κ′2t A(K)2

]1/(nR+4)

. (A.4)

More generally, if the bandwidth sequence is of the form ht(N) = ht(1)/N
−1/(nR+4), then

Ut(N) is of the form:

Ut(N) = u1,tN
−4/(nR+4) + u2,tUt−1(N) +N−1. (A.5)

where u1,t and u2,t are finite nonnegative coefficients.12 By a simple recursion, Ut(N) is of

order N−4/(nR+4) for all t. Q.E.D.

12We verify that u1,t = 4[f(rt|Rt−1)]
−2

[

2κ′2
t ht(1)

4A(K)2 +B(K)κtht(1)
−nR

]

and u2,t =
8κ2

t [f(rt|Rt−1)]
−2.
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B Learning Economies (Section 3)

B.1 Proof of Proposition 6

We infer from Bayes’ rule that

Πj
t ∝ fX(xt|Mt = mj,Xt−1; θ)

︸ ︷︷ ︸

=fX(xt|Mt=mj ;θ) by As. 5(b)

P(Mt = mj |Xt−1; θ),

where

P(Mt = mj |Xt−1; θ) =

d∑

i=1

P(Mt = mj|Mt−1 = mi,Xt−1; θ)
︸ ︷︷ ︸

=aij by As. 5(a)

P(Mt−1 = mi|Xt−1; θ),

and Proposition 6 holds. Q.E.D.

B.2 Proof of Proposition 7

Bayes’ rule (3.1) implies that for every i ∈ {1, . . . , d},

Πt|Mt = mi, st−1, . . . , s1 ∼ Πt|Mt = mi,Πt−1 . (B.1)

Also, by Assumption 5(a)

P(Mt = mi|st−1, . . . , s1; θ) = P(Mt = mi|Mt−1; θ) . (B.2)

From (B.1) and (B.2), we conclude that st is first-order Markov.

We know from Kaijser (1975) that under the conditions stated in the proposition,

the belief process Πt has a unique invariant distribution. Proposition 2.1 in van Handel

(2009) implies that (Mt,Πt) also has a unique invariant measure Λ∞.
13 We infer from the

Birkhoff-Khinchin theorem that for any integrable function Φ : S → R, the sample average

T−1
∑T

t=1 Φ(st) converges almost surely to the expectation of Φ under the invariant measure

Λ∞. Q.E.D.

13Chigansky (2006) derives a similar result in continuous time.

34



B.3 Proof of Proposition 9

The econometrician recursively applies Bayes’rule:

P(Mt = mj |Rt;φ) =
fR,FI(rt|Mt = mj, Rt−1;φ)P(Mt = mj |Rt−1;φ)

fR,FI(rt|Rt−1;φ)

Since fR,FI(rt|Mt = mj , Rt−1;φ) =
∑d

i=1 fi,j(rt;φ)P(Mt−1 = mi|Mt = mj, Rt−1;φ), we

infer that fR,FI(rt|Mt = mj, Rt−1;φ)P(Mt = mj|Rt−1;φ) =
∑d

i=1 fi,j(rt;φ)P(Mt−1 =

mi,Mt = mj |Rt−1;φ), and therefore

P(Mt = mj|Rt;φ) =

∑d
i=1 ai,jfi,j(rt;φ)P(Mt−1 = mi|Rt−1;φ)

fR,FI(rt|Rt−1;φ)
.

The econometrician’s conditional probabilities are therefore computed recursively.

Since the conditional probabilities P(Mt = mj |Rt;φ) add up to unity, the conditional

density of rt satisfies

fR,FI(rt|Rt−1;φ) =

d∑

i=1

d∑

j=1

ai,jfi,j(rt;φ)P(Mt−1 = mi|Rt−1;φ).

The log-likelihood function LFI(φ|RT ) =
∑T

t=1 ln fR,FI(rt|Rt−1;φ) thus has an analytical

expression. Q.E.D.

B.4 Indirect Inference Estimator

We provide a set of sufficient conditions for the asymptotic results at the end of section

3.2, and then discuss numerical implementation.

B.4.1 Sufficient Conditions for Convergence

We assume that η̂T maximizes a criterion H(η,RT ) that does not depend on the full-

information MLE φ̂T . The auxiliary estimator µ̂T = (φ̂′T , η̂
′
T )

′ can therefore be written

as:

µ̂T = argmax
µ

QT (µ,RT ), (B.3)

where QT (µ,RT ) = T−1LFI(φ,RT ) +H(η,RT ) for all µ = (φ′, η′)′.
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Assumption 10 (Binding Function) Under the structural model θ∗, the auxiliary cri-

terion function QT (µ,RT ) converges in probability to Q∞(µ, θ∗) for all µ. Moreover, the

function µ : Rp → R
p defined by

µ(θ) = arg max
µ

Q∞(µ, θ),

called the binding function, is injective.

Assumption 11 (Score) The renormalized score satisfies:

√
T
∂QT

∂µ
[µ(θ∗), RT ]

d→ N(0, I0),

where I0 is positive definite symmetric matrix.

Assumption 12 (Hessian of Criterion Function) The Hessian matrix

− ∂2QT

∂µ∂µ′
[µ(θ∗), RT ]

is invertible and converges in probability to a nonsingular matrix J0.

Under assumptions 10-12, the auxiliary estimator satisfies
√
T [µ̂T − µ(θ∗)]

d−→ N(0,W ∗),

whereW ∗ = J−1
0 I0J

−1
0 , and the asymptotic results at the end of section 3.2 hold (Gouriéroux,

Monfort, and Renault, 1993; Gouriéroux and Monfort, 1996).

B.4.2 Numerical Implementation

Since in the just-identified case µ̂ST (θ̂T ) = µ̂T , the simulated auxiliary estimator µ̂ST (θ)

satisfies
∂QST

∂µ
[µ̂ST (θ)
︸ ︷︷ ︸

µ̂T

, RST (θ)] = 0 .

Hence, the indirect inference estimator θ̂T minimizes the EMM-type objective function:

{
∂QST

∂µ
[µ̂T , RST (θ)]

}′

WT

{
∂QST

∂µ
[µ̂T , RST (θ)]

}

, (B.4)
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whereWT is any positive-definite weighting matrix. This property can be used to compute

θ̂T . For each iteration of θ, the evaluation of the EMM objective function (B.4) requires

only the evaluation of the score. By contrast, the evaluation of the objective function

(3.6) requires the optimization of the FI likelihood in order to obtain µ̂ST (θ). The com-

putational advantage of EMM is substantial in applications where the calculation of the

full-information MLE is expensive.

In the just-identified case and under assumptions 10-13, the asymptotic variance-

covariance matrix of the indirect inference estimator simplifies to

Σ =

(

1 +
1

S

){
∂2Q∞

∂θ∂µ′
[µ(θ∗), θ∗] I−1

0

∂2Q∞

∂µ∂θ′
[µ(θ∗), θ∗]

}−1

,

as shown in Gouriéroux and Monfort (1996). Note that the choice of the weighting matrix

WT does not affect the asymptotic variance of the indirect inference estimator in the exactly

identified case.

In practice, we can estimate I0 and ∂2Q∞

∂θ∂µ′ [µ(θ
∗), θ∗] in the following way.

Assumption 13 (Decomposable Score) The score function can be written as:

∂QT

∂µ
(µ,RT ) ≡

1

T

T∑

t=1

ψ(rt|Rt−1;µ)

for all RT and µ.

Note that Assumption 13 is satisfied by the median-based and the third moment-based

indirect inference estimators considered in section 4.

By Assumption 13, the auxiliary parameter satisfies the first-order condition:

∂QT

∂µ
(µ̂T , RT ) =

1

T

T∑

t=1

ψ(rt|Rt−1; µ̂T ) = 0. (B.5)

We estimate I0 by the Newey and West (1987) variance-covariance matrix:

Î0 = Γ̂0 +

τ∑

v=1

(

1− v

τ + 1

)(

Γ̂v + Γ̂′
v

)

, (B.6)

where Γ̂v = T−1
∑T

t=v+1 ψ(rt|Rt−1; µ̂T )ψ(rt|Rt−1; µ̂T )
′. All the results reported in the paper

37



are based on τ = 10 lags. We approximate ∂2Q∞

∂θ∂µ′ [µ(θ∗), θ∗] by

∂2QST

∂θ∂µ′
[µ̂T , RST (θ̂T )],

and obtain a finite-sample estimate of the asymptotic variance-covariance matrix Σ.
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