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Abstract. Genetic algorithms (GAs) are stochastic search methods based on natural evo-
lution processes. They are defined as a system of particles (or individuals) evolving ran-
domly and undergoing adaptation in a time non-necessarily homogeneous environment
represented by a collection of fitness functions. The purpose of this work is to study the
long-time behavior as weil as large population asymptotic of GAs. Another side topic is to
discuss the applications of GAs in numerica1 function analysis, Feynman-Kac formulae ap-
proximations, and in nonlinear filtering problems. Several variations and refinements will
also be presented including continuous-time and branching particle models with random
population size.
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1 Introduction

] . H. Holland [37] introduced GA s as a kind of universal and global sea rch method
based on natural evolution processes. During the last two decades they have been
used as an optimization tool in a variety of research areas ; to name a few : ma-
chine learning [34], control systems [33], electromagnetics [39,5 3] , economics and
finance [42,49] , aircraft landing [1,16] , topological optimum design [40] , and iden-
tification of mechanical inclu sions [51,52] .

More recently, GA s have appeared naturally in the study of Feynman-Kac formulas
and nonlinear filtering problems (the reader is recommended to con sult the survey
paper [20] and references therein). These particle interpretat ions of Feynman-Kac
models have had num erou s applica tions in man y nonlinear filterin g problem s: to
name a few; radar signal processing ([28,30]), Global Positioning System ([6,7]), as
we il as in track ing problem s ([4 1,45,46,35]). Other numerical exper iments are also
give n in [11 ] and [17] .
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In contrast to the applications in numerical function analysis, GAs are not used here
to approximate the extrema of a given numerical function but a flow of conditional
distributions. In addition the genetic structure ofthe algorithm (such as the mutation
and the selection transitions) is not only designed as an instrumental tool to mimic
natural evolution , but is, in fact, dictated by the structure of the dynamics of the
so-called nonlinear filtering equations .

The main purpose of this article is to introduce the reader to the asymptotic theory of
GAs. We also explain the use of these stochastic methods for the numerical solving
of nonlinear filtering problems and in numerical function optimization problems . We
also give a detailed discussion on several variations and refinements for algorithms
recently proposed in the literature on nonlinear estimation problems .

This work is essentially divided into two main parts devoted, respectively, to the
applications of GAs for the numerical solving of the so-called nonlinear filtering
equations and the convergence of GAs towards the global minima of a given nu-
merical function. Our presentation of this material has relied heavily on the two
papers [20] and [21].

In the opening section 2 we introduce the two-step mutation-selection procedure and
the time-inhomogeneous Markov model of GAs treated in this work. As mentioned
above, this model will then be regarded as aglobaI stochastic search method for
studying the set of the global minima of a given numerical function or as a stochas-
tic adaptive grid approximation of a flow of conditional distributions in nonlinear
filtering settings .

To each of these applications correspond a specific asymptotic analysis . In section 2
we lay the foundations of the work that follows by explaining the general method-
ologies needed to study the large population asymptotic and the long-time behavior
of the algorithm. In section 2.1 we give an alternative description of the genetic
model presented in section 2 in terms of an N-interacting particle system approx-
imating model associated with a measure-valued dynamical system. This formula-
tion enables us to identify the limit of the empirical measures associated with the
GA in terms of a Feynman-Kac formula. The modeling impact of this approach will
be illustrated in nonlinear filtering in section 3.

Section 2.2 is devoted to the study of the long-time behavior of the genetic model
presented in section 2. The idea here is to connect GAs with the so-called gener-
alized simulated annealing . We describe a general methodology to conclude that a
GA converges in probability, as time tends to infinity, to the set of global minima of
a virtual energy function . We will combine this general convergence result with a
natural test set approach in section 4 to prove that the resulting stochastic algorithm
converges towards the set of global minima of the desired fitness function as the
time parameter tends to infinity and when the population size is sufficiently large.

The GA presented in section 2 and further developed in section 3 and section 4 is
the crudest of the evolutionary particle methods . In section 5 we discuss several
variations and refinements arising in the literature about nonlinear filtering and gen-
eralized simulated annealing .
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The final section discusses continuous-time GAs . Incontrast to the c1assical Moran-
type genetic model commonly used in GA literature, our interacting particle system
model converges to a deterministic distribution flow. This model has been proposed
in [23] for solving continuous-time nonlinear filtering problems. Several variants
based on an auxiliary time discretization procedure can be found in [11] and [13].
The fundamental difference between the Moran-type particle scheme and the algo-
rithm s presented in [11,13] lies in the fact that, in the former, competitive interac-
tions occur at random times. The resulting scheme is therefore a genuine continuous-
time particle approximating model.

The interested reader is referred to [20] for a detailed description of the robust and
pathwise filter and for a complete proof of the convergence results in a context
more general than we have given. Here, we have chosen to restriet our attention
to continuous-time Feynman-Kac formulae. We will also discuss the connections
between this scheme and the generalized and spatially homogeneous Boltzmann
models presented in [36,44] .

We end this paper with a novel branching GA in which the size of the population is
not necessarily fixed, but random.

Only a selection of existing results is presented here. Deeper information is available
in [19-21] .

2 Description of the Models and Statement of Some Results

The simplest GA is a two-stage and time-inhomogeneous Markov chain given for
each n 2: 0 by setting

def. ( I N) Selection dE' Mutation
= ) - )

and taking values in a product space E N where N 2: 1 and E is an abstract topo-
logical space. The coordinates of points of E N are seen as positions of N particles
and the integer parameter N represents the size of the population.

• The initial system go = (gJ, . . . , gf/) con sists of N independent random parti-
cles with a common law 7]0 on E .

• In the selection transition the particles fn = ." ,f::) are chosen randomly
and independently in the previous configuration = . . . , according
to a given non-necessarily homogeneous fitness function

gn : E --+ IR+

namely

(1)
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where dx dx I X .. . X dxN is an infinitesimal neighborhood of the point
x = (x l, . . . ,xN) E E N, Y = (y l , ... , y N) E E N and oa stands for the Dirac
measure at a E E .

• The mutation transition is modelied by independent motion s of each particle
that is

N

IP E dx Ifn = y) = n Kn+1 (yP ,dxP)
p= l

(2)

where (Kn n > 1) is a collection on Markov transition kernels from E into
itself.

The study of the convergence as n ---+ 00 or as N ---+ 00 of this algorithm requires
specific developments.

To explain and motivate the organization of our work in the next two sections we
describe the main ideas involved in the study of these different asymptotics as weil
as some of their consequences in the study of nonlinear estimation problems.

Before turning to further detail s it is convenient at this point to make a couple of re-
mark s. As we said above , the previous selection-mutation Marko v chain is the crud-
est of the genetic-type methods. There are, in fact, a number of ways to construct
variations on this model (see for instance [12,20,21] and section 5). In particular, the
definition of the initial system as N i.i.d. particles is not really essential. In numeri-
cal function analysis the asymptotic results as n ---+ 00 (and fixed N ) presented here
(see also [8] and [21]) are valid for any choice of N starting points. In nonlinear
filtering settings we will be interested in the asymptotic behavior of the empirical
measures of the system as N ---+ 00. In this framework the initial distribution 7]0 is
not arbitrarily chosen, but represents the initial law of the stare signal. Therefore,
the initial configuration of the particle systems will be chosen so that the associated
empirical measure is an N -approximating measure of 7]0 .

Another more general remark is that in filtering problems the choice of quantities
( 7]0, gn, Kn) is dictated by the problem at hand . In some situations the initial law
7]0, the transitions of the state signal Kn and/or the corre sponding fitness functions
gn are not explicitly known and/or we cannot simulate random variable s exactly ac-
cording to 7]0 and/or Kn . Therefore, we need to introduce additional approximating
quantities (7]6M), where the parameter M I is a measure of the qual-

ity of the approximation so that in some sense (7]6M), ---+ (7]0 , gn, Kn)
as M ---+ 00. The way the two asymptotics N ---+ 00 and M ---+ 00 combine are
studied in full detail in [18].

2.1 Large Population Asymptotic

To show one of the central roles played by the selection/mutation transition s ( I) and
(2), we start with the study of the asymptotic behavior of the empirical measures
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associated with the systems of particles and in
def. 1 N
= - L

N i=l
and

as the number of particles N tends to infinity. It is transparent from the previous
construction that the pair selection/mutation transition can be summarized, for each
each n 0, as follows

In order to obtain a more tractable description of (3) in terms of a transition which
only depends on the empirical measure of the system it is convenient to
introduce some additional notations. We recall that any transition probability kernel
K(x, dy) on E generates two integral operators. One is acting on the set Bb(E)
of bounded Borel test functions f : E -+ IR endowed with the supremum norm,
defined by

1If11 = sup If(x)1
XEE

and the other on the set MI (E) of probability measures J.1. on E

K(f)(x) d,g.f K(x , dz) fez)

and

(J.1.K)(f) d,g. J.1.(Kf) = f J.1.(dx) K(x , dz) fez) .

I f K land Kz are two integral operators on Bb(E) we denote by K I Kz the composite
operator on Bb(E) defined for any f E Bb(E) by

KI Kzf(x) = { K] (x, dy) Kz(y, dz) fez) .JE
Using these notations (3) can be rewritten as

N (I N )IP' E dx = y) = n <l>n+1 - L Oyi (dr "),
p=1 N i=1

(4)

where for all n 0, <l>n+1 : MI (E) -+ MI (E) is the mapping defined by

(5)
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We note that the one-step mapping <l>n+1 involves two separate transitions : the first
one 'I r-+ \l1n('I) is nonlinear and will be called the updating step, and the second
one 'I r-+ TJKn+1 will be called the prediction transition with reference to filtering
theory.

With this formulation it also becomes quite clear that the flow of empirical measures
; n :::: O} converge in some sense as N -+ to the solution {'In n >: O} of

the following measure-valued process

n::::l. (6)

Intuitively speaking, if is close to the desired distribution 'In-I then one
expects that is a nice approximating measure for 'In' Therefore, at
the next step the particle system = . . . , looks like a sequence of inde-
pendent random variables with common law 'In and therefore is close to the
desired distribution 'In . . .

As a parenthesis, and along the same idea, we can associate with any abstract
measure-valued process (6) an N-interacting particle approximating model as in
(4). In other words, the previous algorithm is a particular example of particle ap-
proximating model and the mutation/selection transitions are dictated by the form
of the limiting measure-valued dynamical system (6).

In our situation, the preceding scheme is clearly a system of interacting particles
undergoing adaptation in a time-nonhomogeneous environment represented by the
fitness functions {gn ; n :::: O} and the selection/mutation transitions are dictated by
the nature of the two-step mappings {<t>n ; n :::: I}. Roughly speaking, the natural
idea is to approximate the two-step transitions

Updating def Prediction
'In ) 'In = Vn(TJn) ) 'In = 'InKn+1 , n::::O

of the system (6) by a two-step Markov chain taking values in the set of finitely
discrete probability measures with atoms of size some integer multiple of 1/N .
Namely, for each n :::: 0

N dEo I . Selection dEo . Mutation N _ .
'In - - 'In - L...-Ö"f' 'In+1 -

N ;=1 n N ;=1 n N ;=1 n+1
(7)

These constructions first appeared in [26] and [27] and they were developed in [24].
In [20] the authors present an expose of the mathematical theory that is useful in an-
alyzing the convergence of such particle-approximating models including the law of
large numbers, large deviations principles, fluctuations, and empirical process the-
ory, as weil as semigroup techniques and limit theorems for processes . In section 3
we briefly indicate some of the main directions explored in this recent research and
we will introduce the reader to some mathematical tools upon which the theory
dweils.

Anticipating section 3.1, we also mention that the measure-valued dynamical system
(6) can be explicitly solved. More precisely, if

X = {X n ; n :::: O}
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denotes a time-inhomogeneous Markov chain with transition probability kemeIs
{K n ; n ::: I} and initial distribution TlO and if Yn(f), f E ßb(E), represents
the Feynman-Kac formula

(with the convention TI0 = I), then the distribution flow {TIn; n :::: O} defined for
any n :::: 0 and for any test function f E ßb(E) as the ratio

(f) = Yn(f)
TIn Yn(l)

(8)

is solution of the measure-valued dynamical system (6). In fact, as we shall see
in the further development of section 3, the classical non linear filtering problem
can be summarized as to find distributions of the form (8). In this framework, the
probability kemeis {K n ; n ::: I} represent the transitions of the signal process and
the fitness functions {gn ; n :::: O} depend on the observation data and on the density
of the noise source.

2.2 Long-Time Behavior

Gur next objective is to initiate the study of the long-time behavior of the genetic-
type algorithms. In contrast to the situation presented in section 2.1, the size N
of the particle systems is fixed, the genetic model is thought of as agiobai search
procedure for studying the set U* of global minima of a given numerical function
U : E IR+, and the state space E is assumed to be finite, namely

U* dg. {x E E; U(x) = mjn u} .
To clarify the notations we shall use the following notations

N

dy) = n Kn(x P , dy")
p=1

and

Thus, = ; n :::: O} is a time-inhomogeneous Markov chain with transition
probability kerne I

Q = Q(2) Q(I)
n n-l n
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and f = Ifn ; n ::: O} is a time-inhomogeneous Markov chain with transition
probability kernel

= Q(1)Q(2)
n n n · (9)

In time-homogeneous settings (that is, if K; = K and gn = g) the general theory
of time-homogeneous Markov chains can be used to study the long-time behavior
of these two chains , but to our knowledge the stochastic stability results which can
be stated are not really useful to calibrate the convergence of GAs to the desired
extrema of a given numerical function.

One of the apparent difficulties in establishing a useful convergence result as n -+
00 is finding a candidate invariant measure which enables us to describe some inter-
esting aspects of the limiting behavior of the algorithm .

The key idea is to introduce an inverse cooling schedule parameter ß : IR+ -+ IR+
with limt---+ oo ß(t) = 00 to reduce the analysis to the study of a generalized simu-
lated annealing. This idea has been initiated in [8-10] and has been simplified and
further extended in [2I]. As the time parameter is growing, the arbitrary exploration
of the path space by the particles during the mutation step will progressively dis-
appear. The precise choice of the mutation transitions K; in terms of the parameter
ß(n) will be given in section 4. I. We have already mentioned that in the selection
transitions the fitness functions gn will take the form

n ::: 1

and, as the time is growing, the randomness in the selection will also tend to disap-
pear so that the particles with below peak fitness will progressively not be selected.

The purpose of this paper is to present some theoretical background needed to ana-
Iyze the convergence of the algorithm . The results presented here will be restricted
to the transition probability kernel (9) and can be found with complete proof in [2 I].
In this opening section we describe the basic but general idea which is, in fact, quite
simple. This methodology will be used in several parts of this paper. It is also quite
general and can be used in other contexts .

We have tried to present easily verifiable conditions and results at a relevant level of
generality. Our claim that this description of the mutation and selection transitions is
the natural framework for formulating and studying the long-time behavior of GAs
in numerical function analysis will be amply justified by the results that follow.

We provide no examples in this short section; this choice is deliberate . In section 4
we will show how to obtain the transitions and Qh2

) in terms of the muta-
tion kerneis and the fitness functions . We will also use this framework in section 5
for studying a related GA in which the mutation and the selection stage take place
randomly at each time step. We also believe that it is possible to use this formula-
tion to analyze the convergence of the branching genetic-type variants presented in
section 5.
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To commence to formalize this we first chose the mutation/selection transitions
and as govemed by ß (n) , that is

Q (I ) - Q (I )
n - ß(n) and Q(2) _ Q (2)

n - ß(n) (10)

so that for any ß > 0, and take the form

and

for some numerical functions qf) : E N x E N --+ 1R+ and

It is then straightforward to check that the transition probability kerneis

( ) Q (1)Q(2) ( )ß x , y - ß ß x, y

take the form

Q ß(x , y) = L qß(x , v, y) e- ß V (x ,v.y )

ve V

with V = EN and

(I ) (2)
qß (X, v , y ) = qß (x , v)qß (v , y)

and

\I(X, v, y) = v(1 )(x , v) + V (2)(v, y ) .

(11)

These kinds of mathematical models naturally arise when studying the long-time
behavior of stochastic algorithms such as the generalized simulated annealing. The
parameter ß in (10) will be regarded as the inverse freezing schedule in classical
simulated annealing and will be used to control the random perturbations of the
stochastic algorithm. When ß -+ 00 the random perturbations will progressively
disappear and the two different cost functions V (1) and V (2) will be regarded, re-
spectively, as the mutation and selection costs to communicate from one population
to another.

The objective is to prove that the law of a weil-chosen time-inhomogeneous genetic
particle scheme concentrates as times tends to infinity to the set U· of global minima
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of a desired numerical function U : E ---+ lR+. In order to prove this asymptotic re-
sult we need to characterize more explicitly the long-t ime behavior of the algorithm
in term s of the communication cost function s y (1) and y (2) .

As traditional, under some nice conditions, the first step consists in proving that the
algorithm converges to the set of the global minima W* of a virtual energy function
W : E N ---+ lR+ defined explicitly in terms of the communication cost functions
y (l ) and y (2 ) . The second subtle step will be to find conditions on the population
size which ensure that W* is contained in the subset U* x .. . x U* (C E N ) . We will
settle this que stion in section 4 and 5 by using a natural test set approach.

Under appropriate continuity and irreductibility conditions the first step can be
solved using quite general results on the generalized simulated anne aling. Antici-
pating section 5.1, we also notice that the transition probability kerne I Qß defined
by

- (1) (Z)
Qß = al Qß +az Qß al +az = I (al ,az E (0,1»

can be written as in (11) with V = {I, 2).

The preci se continuity and irreductibility conditions needed to handle the first step
are summarized in the following assumption:

H The transition probability kernels Qß take the form

Qß(x , y) = L qß(x , v , y ) e- ß V (x ,v,y)

veV

where V is afinite set and there exists a nonnegativefun ction

q: E N x V X E N lR+

so that

• For any x, y E E N and v E V and ß > 0 we have

lim q ß(x, v, z) = q (x , v, z)
ß-> +oo

and

qß(x , v, z) > 0 {:::::::} q(x , v, z) > O.

• For every q(x , v, z) > 0 andfor some ßo 2: 0

dlogqß
sup ! (x , v, z) ! < +00.

dß

• For any x , y E E N there exists an integer r > land sequence 0/ elements
( Pb Vk)O:::k:::r in EN x V such that

PO= X and q (p b Vk, Pk+ I> > 0 VO .:s k < rand Pr = y .
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It is transparent from these conditions that we have some suitable function E (ß) -+
0, as ß -+ +00, such that

where

Qß(x , y) = L (fex, v , y) e-ßV(X ,v,y)
VEV(X,y)

and

V(x , y) = {v E V (fex, v, y) > O} ,

But, if we write

V(x , y) = min V(x , v, y)
VEV(X,y)

q(x, y) = L (fex , v, y)
VEV'(X ,y)

v*(x, y) = {v E V(x , y ) : V(x , v, y ) = V(x, y)}

then we also have that

= L (fex, v, y) e-ßV(x,y)

VEV'(X ,y)
+ e-ßV(x ,y) L (fex , v, y) e-ß(V(X ,v,y)-V(x ,y))

VEV(X ,y)-V'( x,y)

(13)

= q(x, y) e-ßV(x ,y)

+ e-ßV(x ,y) L (fex, v, y) e-ß(V(x ,u,y)-V(X ,y)) .

VEV(X,y)-V'(x ,y)

Note that condition (H) implies that q is irreducible. Furthermore, if we write

I = {(x , y) E E2 : V(x, y) i= 0}

J = {(x, v, y) E E N X V X E N : (x, y) E I v E V(x, y)}

and

hl = min L (fex, v, y) /q(x, y)
(x,y)El VEV(X ,y)-V'(X,y)

h2 = min (V(x, v, y) - V(x , y»
(x,v,y) :



450 P. Dei Moral and L. Miclo

using (13) we get the system of inequalities

(I - E(ß» q(x, y) e-ßV(x.y) .:::: Qß(x, y)

and

(14)

As a parenthesis, if we choose q (x, y) > 0, after some elementary computations,
then we find that

I
d lOg Qß(X, y ) 1 dlogqß

.:::: sup I (x, v, y)1 + sup V(x, v, y).
dß VEV(X .y) dß VEV(X .y)

The inequality (14) shows that the transition probability kerneis

{Qß ; ß > o}

are of the general form of generalized simulated annealing models studied in [54]
and[21].

In [54] the author studies the asymptotic behavior of such chains using large devi-
ation techniques and in [21] the authors propose an alternative approach based on
serni-group techniques . Both approaches give a precise study of the convergence of
the time-inhomogcneous Markov process controlled by a suitably chosen cooling
schedule and associated with the family of Markov transitions Qß of the form (11)
when V is an auxiliary finite set.

The first method in [54] is developed for discrete-time models whereas the conver-
gence analysis in [21] is centered around continuous-time models. There is a vast
literature on discrete-time simulated annealing (see, for instance [54], and refer-
ences therein). For this reason we have chosen to give a more detailed description
of the second approach .

It is now convenient to introduce some additional notations. In discrete-time or
continuous-time settings the asymptotic behavior of the desired time-inhomoge -
neous Markov processes will be strongly related to the virtual energy function W :
E N ---+ 1R+ defined as folIows:

W(x) = min L V(y, z) - min min L V(y , z) (15)
gEG(X)() x'E EN gEG(X') ( )

where G(x) is the set of x-graphs over E N (we recall that an x-graph is an oriented
tree over the vertex set EN such that for any x =1= y there exists a unique path
in the x-graph leading from x to y . See also [5] or [32] for more details), and
V : E N x E N ---+ iR+ is the virtual communication cost function given by

V(x, y) = min {\lex, v, y) ; V E V q(x , v, y) > O} .
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We will also use the notation

W* = {x E E N
: W(x) = min WI.

E

As mentioned, the first approach presented in [54] gives a complete answer for the
convergence in discrete-time settings and in the time-inhomogeneous case when
the parameter ß(n) is an increasing function of the time parameter n . With some
obvious abusive notations let us denote by ffn ; n 2: 01 the discrete-time and time-
inhomogeneous Markov chain starting at some point x E E N and associated with
the collection of time-inhomogeneous transitions {Qß(n) ; n 2: I I.

Theorem 1 ([54]). There exists a constant Co (which can be explicitly described
in terms of V) such that if ß(n) takes the parametric form ß(n) = t log n for
sufficiently Zarge n and C > Co then

lim lP' (fn E W*) = I
n---> oo

The semi-group approach presented in [21] is based on log-Sobolev inequalities
and on the notion of relative entropy. We recall that the relative entropy Ent; (/l) of
a measure u. with respect to a measure it (charging all the points) is defined by

EntJr(/l) = L /lex) log (/l(x) /rr(x)).
XE E

In contrast to the latter, the former approach is based entirely on considerations of
the time-continuous semi-group associated with the Markov kerneis Qß' ß > O.
Namely, define, for f : E N ---+ IR

Lß(f)(x) = L (f(y) - fex)) Qß(x, y) .
yE EN

Instead of the discrete-time model introduced above we are now concerned with the
continuous-time Markov process defined as folIows. For a probability measure /l
on E, and an inverse-freezing schedule ß E Cl (IR+ , IR+), we slightly abuse nota-
tion and write ; t E IR+ I the canonical process associated with the family of
generators

(Lß(t»)t ?:o = (Qß(t) - I)t?:o

and whose initial condition is /lo = u , We also write /let) the distribution oft .

Before we turn to the long-time behavior of we first give a more tractable de-
scription of this process. Let 11 = {l1k ; k 2: 01 be independent and exponentially
distributed random variables with parameter 1 and, given 11, let f = {"fn ; n 2: 01
be a time-inhomogeneous Markov chain on E N with initial distribution /l and time-
inhomogeneous transition probability kerneis
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where

n e: O.

Then

Tn-I t < Tn

defines a time-inhomogeneous Markov process"f = It ; t E with initiallaw
(t and infinitesimal generators ILß(t) ; t E

Whenever"f is time-homogeneous (i.e ., ß(t) = ß) it is well-known that Lß has a
unique invariant probability measure nß so that

and nß charges all the points . Asymptotically, the behavior of the invariant measure
Jrß as ß -+ 00 depends principally on the virtual energy function W defined in (15) .
To be more precise, we recall that Jrß can be written as folIows:

where Rß(x) = L n Qß(Y, z).
gEG(X) (Y-> Z)Eg

Now, from the inequality (14) one concludes that

where Ei (ß) , i = 1,2, are some functions such that

lim Ei(ß) = I,
ß -> oo

i = 1,2

and

Rß(x) = L n q(y , z) e-ßV(y.z).

gEG(X) (y-> Z)Eg

This can also be rewritten in the form

Rß(x) = L q(g) e-ßV(g)

gEG(X)

with

q(g) = n q(y, z) and
(y->Z)Eg

V(g) = L V(y, z) .
(y-> Z)E g
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Therefore, we clearly have the estimate

1 1 . 1
lim --logJl'ß(x) = lim --log Rß(x) - hm --log L Rß(z)

ß-'>(JO ß ß-'>(JO ß ß-+ oo ß N
zE E

= min V(g) - min min V(g)
gEG(X) zE EN g EG (Z)

= W(x).

Due to this estimate, for eaeh ß > 0, if {iß .1 ; t :::: O} denotes the time-homogeneous
Markov proeess associated with Lß then we have that

lim lim lP' (fß .1 E W*) = 1.
ß-+oo 1-+00

In the time-inhomogeneous situation the eonvergenee of the algorithm to W* is
guaranteed by the following result:

Theorem 2 ([21]). Let {Qß ; ß > O} be a collection ofgeneral Markov kernels of
theform

Qß(x , y ) = L qß(x, u, y) e-ßV(x ,v.y)
VEV

where V is a givenfinite set, V:E N x V X E N ---+ andqß : E N x U X E N ---+
ß E is afamily offunctions satisfying condition (H). There exist a constant

Co (which can be explicitly described in terms of V) such that if ß(t) takes the
parametric form ß (t) = log t for sufficiently large t and C > Co then

lim EntJTßU) (/l(t» = 0
1-+00

and lim lP' E W*) = 1.
1-+00

This theorem is quite general and it will be used to study the eonvergenee of GAs
when the eorresponding transitions have the form (11) or (12) . It is also powerful
enough to allow one to treat the classical simulated annealing algorithm. In this
situation N = land Qß takes the form

Qß(x , y) = q(x , y) e- ß V(x.y)

with

V(x, y ) = max (U(y) - U(x), 0)

for x ::p y, where q is an irredueible transition probability kerneion E and U
E ---+ In the special ease where q is symmetrie (that is, q(x , y) = q(y, x», it
is also well-known that the eorresponding virtual energy funetion W = U and the
previous theorem implies eonvergenee to the desired subset of the global minima
U* . For genetic-type algorithms the virtual energy function depends on the function
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U in a more subtle way and we need to work harder to check that W· is contained
in the desired subset of global minima .

The results developed here are, in fact, a particular form of those in [21] which also
apply to the study of the convergence of generalized simulated annealing with ran-
dom and time-inhomogeneous communication cost functions . Although this subject
is tangential to the main object of this article; let us discuss how these results may
be useful in solving mean cost optimization problems .

In some practical problems the object is to find the global minima of a function
U : E -+ IR+ defined by

U(x) = JE: (U(x, Z» = t uu. z) v(dz)

where Z is a random variable taking values in a finite set F with distribution v
and U : E x F -+ IR+. The essential problem is to compute at each time step the
mean cost function U, and the huge size of the set F often precludes the use of the
previous stochastic algorithms.

To solve this problem an additional level of approximation is needed . The natural
idea proposed in [21] consists in replacing at each moment of time in the description
of the stochastic algorithm the function U by the time-inhomogeneous and random
function

A

d f I l t

Ut(x) A u«.Zs) ds
t 0

where A > 0 and [Z, ; t 0) is a given tirne-homogeneous Markov process asso-
ciated with the generator 9 = K - Id where K is an irreducible transition probability
kerneion E with invariant measure v. A full discussion of the convergence of the
resulting stochastic algorithm to the desired subset U· is outside the scope of this
work; the interested reader is referred to [21].

3 Feynman-Kac and Nonlinear Filtering Models

3.1 Description of the Models

The nonlinear filtering problem consists in computing the conditional distribution
of internal states in dynamical systems, when partial observations are made and ran-
dom perturbations are present in the dynamics as weil as in the sensors . In discrete-
time settings the state signal X = {X n ; n 0) is a discrete-time Markov chain
taking values in a Polish space E (i.e., a complete separable metric space) with
transition probabilities {Kn ; n I) and initial distribution t)O. The observation
sequence Y = {Yn ; n O} are IRq -valued random variables and take the form



Asymptotic Results for Genetic Algorithms 455

where the Vn are independent and q-dimensional variables, independent of X, and
with a law having a known density, and H; is a measurable function from E x
IRq into IRq . For any x E E we assurne that the variable Yn = H; (x , Vn ) admits
a positive density Y 1-+ <{Jn (x , Y ) and the function <{Jn is bounded. To clarify the
notation we fix the observations Yn = Yn, n 2: 0 and we write

For somewhat technical reasons we will assurne that Hn and <{Jn and the observation
sequence {Yn ; n 2: O} are chosen so that gn is a positive and bounded function on
E. These assumptions can be relaxed considerably: a more complete and general set
of assumptions is formulated in [17] and [18].

Given the stochastic nature of the pair signal/observation process, the nonlinear
filtering problem consists in computing recursively in time the one-step predictor
conditional probabilities rJn and the filter conditional distributions l]n given for any
bounded Borel test function f by

rJn(f) = lE(f(Xn)IYo = Yo, · · · , Yn-l = Yn-l)

l]n(f) = lE(f(Xn)IYo = Yo, · ·· ,Yn-l = Yn-l, Yn = Yn).

As usual , the n-step filter l]n is written in terms of rJn as

l]n(f) = Wn(rJn)(f) = rJn (f gn)
rJn (gn)

and the n-step predictor is defined in terms of the Feynman-Kac type formula

(16)

(f) = Yn(f)
n« Yn(l)

(17)

with the convention n0= I . By (16), the n-step filter l]n may also be expressed as
the ratio

(f) = Ytt (f)
n« Yn(l)

with

It is also not difficult to check that Yn and Ytt are connected by

(18)

n2:1. (19)

It then follows from the relations (16) and (19) that for any n 2: 1

(20)
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with

Another interesting feature of the GA defined by (3) is that it can be used to approx-
imate the Feynman-Kac fonnulas Yn(f) and y" (f) defined in (17) and (18) . One
of the best ways for introducing the corresponding particIe approximating models is
through the following observation . By definition it is easy to establish that for any
n2:0

( )
_ Yn(gn) _ Yn+l (I)

1/n gn - Yn(1) - Yn(l) .

This yields that

n-I
Yn(l) = n 1/p(gp)

p=o
and

n-I
,Yn(f) = 1/n(f) n 1/p(gp)

p=o

with the usual convention TI0 I . Taking these relations into consideration, we
define a natural N -approximating measure yn

N for Yn by setting

n-I
yn

N (I) = Il (gp)
p=o

and (21)

In view of (7) and using the same line of ideas we can define the corresponding N-
approximating measures of y" and 7in .We have chosen here to restriet our attention
to the distributions Yn and 1/n.

3.2 Asymptotic Behavior

One of the simplest ways for studying the asymptotic behavior as N -+ 00 of the
GA presented in section 2 is through the analysis of the un-normalized distributions
{Yn ; n 2: O} . This approach has been initiated in [26] and further developed in [19]
and [20]. Here we follow line-by-line the synthetic presentation given in [19]. This
approach is based on the observation that the structure of the dynamics of the latter
is linear and one might expect that the analysis of the corresponding approximating
measures will be simplified. In view of (17) and (18) we have that

VO S P S n, Yn = Y» L p.n, (yo = 1/0) (22)

where {L n.« ; 0 S p Sn} is the time-inhomogeneous semi-group defined by the
relations

with
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and the convention Ln,n = Id. Using these notations one can also check that the
one-step mappings 4>n can be rewritten as

4> ( )(/) = TJ(Ln(f))
n TJ TJ(Ln(l))

for any TJ E MI (E) and 1 E ßb(E) . Using these notations, we notice that for any
n :::: 0 and 1 E ßb(E) the stochastic process

IM:(f) ; Osqsn}

defined as

N def. N
Mq (f) = r; (Lq ,nf) - Yq(Lq ,nf)

q

= L (Y: (Lp ,nf) - Y:-I (LpLp ,nf))
p=o

q

L Y:(l) (23)
p=o

with the convention 4>0 I) = TJO, is a martingale with respect to the natural
filtration FN = 1Ft ; n :::: O} associated with the N-particle system ; n :::: O},
and its angle bracket is given by

N I (N)2 N (( N )2)(M (f)}q = N;:o r; (I) 4>P(TJ p_ l ) Lp ,nl - 4>p(TJ p_I)L p,nl '

(24)

One concludes easily that yn
N is an approximating measure of Yn without any bias,

that is, for any bounded Borel test function 1

(25)

and

= 1; JE ((Y: (l)f ((Lp,nl -

(26)

Under our assumptions it is also clear that there exist some finite constants C(n) <
00 such that

(
2) 1/2 C(n)

JE (YnN(f) - Yn(f)) S .jN !lfII·
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Exponenti al bounds can also be obtain ed using the decomposition (23). For in-
stance, by definition of 17;< , Hoeffding's inequality implies that for each 0 ::s p ::s n
and for any E > 0

From which one concludes that

Since the fitness functions are assumed to be bounded this exponenti al bound im-
plies that there exists some finite constants Cl (n) and C2(n) such that for any
bounded Borel function f, 11 f 11 ::s l and for every E > 0 we have that

IP' ( sup Iy: (Lp,nf) - yp( L p.nf)1 > E) ::s Cl (n) exp _ N E
2

.
O:,,; p:,,;n C2(n )

We now give a brief indication of how these results can be used to obtain useful
estimates for the N -approximating measures and From the previous dis-
played exponential rate one can also prove that there exists some finite constants
CI(n) , C2(n ) such that for any E > 0 and for any bound ed Borel test function f,
1If11 ::s I

>E) s c.o» exp - NE

2.

C2(n )
(27)

Precise estimates of these exponential rates are studied in [24] using large deviations
techniques. The previous exponential rates also imply Ilf mean errors

Vp ?:.. I

for some constant C(p , n ) < 00 which only depends on the parameters p and n .
With little work one can use (25) and (26) to prove that there exist some finite
constants C(n) such that for any bounded Borel function f, such that IIfll ::s 1,

(28)

Taking this inequality into consideration , by the exchan geability of the particles and
the definition of the total variation distance of probability measures one can check
that for each 1 ::s i ::s N

(29)
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The precise magnitude of variability of these mean errors is given by central limit
theorems. A full discussion On these fluctuations would be too great a digression
here, but as the form of the angle bracket (24) indicates, one can prove that the
sequence of random fields

converges in law as N -+ 00 to a centered Gaussian field

{Un(j) ; fE ßb(E)}

satisfying
n

lE (Un(j)2) = L (y p(l))2 T/p ( (Lp .nf - T/ pL p,nf)2)
p=O

for any f E ßb(E) (in the sense of convergence of finite dimensional distributions) .
The previous fluctuations imply that the sequence of random fields

W: (j) d,g. ./N (j) - TJn(j)) ,

converges in law as N -+ 00 to the centered Gaussian field

Vp?:. I

We conclude this section with some comments on the long-time behavior of the N-
interacting particle system approximating models . Ifthe measure-valued dynamical
system (20) is sufficiently stable in the sense that it forgets any erroneous initial
condition, then one can prove uniform convergence results with respect to the time
parameter (see for instance [20,22] and [25] and references therein) . For instance ,
with some suitable stability properties for the Markov kerneis {Kn ; n 2: I} one can
find some coefficient a E (0, 1/2) such that for any bounded Borel test function f ,
1If11 :'S I ,

suplE (j) - TJn(f)jP) I/p :'S
N

for some constant c(p) < 00 which only depends on the parameter p. This uniform
convergence result with respect to the time parameter leads us to hope that maybe we
can construct an asymptotic method to study the convergence of GAs in numerical
function optimization in more general settings than the one treated in section 2.2
and in the next section .

4 Numerical Function Analysis

4.1 Description of the Models

The objective of this section is to formulate more precisely the mutation and selec-
tion transitions (10) so that the resulting empirical measures of the GA presented in



460 P. DeIMoral and L. Miclo

section 2.2 will conccntrate in probability, as the time parameter tcnds to infinity,
on the set U* of the global minima of a given numerical function U : E --+ 1R+ .

As in section 2.2 we assume that E is a finite state space and

ß : N --+ 1R+

is an inverse cooling schedule. Let a : E x E --+ 1R+ be a numerical function which
induces an equivalence relation on E defined by

.r r- y {:::=} a(x, y) = O.

This leads us naturally to consider the partition

SI, . .. ,Sn(a) , n(a) ::: 1

induced by r-:

If x is a typical element of Ethen the equivalence class of x will be denoted by S(x)

S(x) = {y E E : .r r- y}.

We further require that

a(x , y) = 0 ====} U(x) = U(y) .

A trivial example of the equivalence relation satisfying this condition is given by the
following function a

a(x , y) = ao (I - Ix(y» , ao > O.

In this case we clearly have a(x , y) = 0 {:::=} x = y.

Thc mutation kernels K; and thc fitness functions gn are related to ß(n) as

and

with for any ß > 0

!k(x, y) e-ßa(x ,y) if a(x , y) > 0
kß(x , y) = 1 (1" k() -ßa(x ,z») h .

IS(x)1 - x , Z e ot erwise

where k : E x E --+ 1R+ is an irreducible Markov kerneI, that is, for any x E E

L k(x ,y) = I
yEE

and for any (x , y) E E x E there exists a sequence xo, XI, . . . , Xr E E , r ::: 1 such
that

Xo =x, (VO :::: k < r) , x, = y .
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We now describe a general construction which allows us to find the asymptotics of
the desired transition kerneis

dEoQ(I) Q(2)
ß - ß ß

where

N

y) = n kß(x P, yP)
p=l

and

It can be directly checked that

y) = ( n kß(x P, YP»)
p :a(xP ,yP)=O

x ( Il kix", YP») e-ß L;=I a(xP,yP)

p :a(xP ,yP»O

= y) q(I)(x , y) e-ß V(I)(x,y)

with

eh1)(x, y) = n kß(x P, yP)!S(x P)!

p :a(xP,yP)=O

q(l)(x, y) = ( TI ktx!", YP») ( TI IS(XP)!-I)
p :a(xP,yP»o p:a(xP ,yP)=O

and

(30)

(31)

N

V(l)(x, y) = L atx" ; yP).
p=l

We also notice that

ehI) (x, y) -+ I as ß -+ 00.

To describe the asymptotic of as ß -+ 00 we need to recall some terminology
introduced in [8] , We will use the superscript 1* to denote the set of global minima
of a given numerical function f : E -+ IR on a given finite state space E so that

1* d,g. {x E e . f(x) = mjn f} .
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The cardinality of a finite set E will be denoted by lEI and if x and y belong to EN

and Z E E we write

x(z) = I{p I p N , x p = z}1

and

x={p : U(xp)=U(x)} and U(x) = min U(xp) .

A similar discussion to that above leads to the decomposition

with

(32)

and
N

V(2)(x, y ) = L (U(yP) - U(x»).
p=1

As before we also notice that

(x , y) ---+ I as ß ---+ 00 .

If we combine (31) and (32), we conclude that the transition (30) has the same form
as in (ll), namely

Qß(x, z) = L qß(x , y , z) e-ß V(x, y .z)

yEE N

with

qß(x , y, z) = q(x , y , z) eß(x, y, z), V(x , y, z) = v(l)(x, y) + V(2)(y , z)

eß(x, y, z) = y) z) , q(x, y , z) = q(l)(x , y) q(2)(y, z) .

Using the fact that q (I) is irreducible, q (2) (x , x ) > 0 and using the form of e I) ,

one can also check that the assumption (H) introduced on page 448 is satisfied
and therefore theorem 2 applies to OUf situation with

W(x) = min L V(y, z) - min min L V(y , z) (33)
gEG(X)() x ' EE N g EG (X' ) ( )y--->z Eg y -e z Eg
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and

V(X, z) = min {V(1)(x, y) + V(2)(y, z) ; q(1)(x, y)q(2)(y, z) > O} . (34)

Furthermore, we proved in [21] that there exists a critical population size N(a , V)
depending on the function V and on the equivalence relation a such that

===} W*cU*nA

where

A d=ef. Ix E E N \JI " N}Xj"'Xj v SI,jS

and

fJ(X) = min V}.
E

4.2 A Test Set Method

To be more precise about this critical population size we need to investigate more
closely the properties of the virtual energy function W . We now describe a natural
test set approach to study its global minima. This approach is based on the following
concept of A-stability:

Definition 1. Let A be a nonnegative real number. A subset H C E N is called
A-stable with respect to a communication cost function V when the following con-
ditions are satisfied :

1. "Ix E H v» fj H
2. vx ri: H 3y EH

V(X, y) > A,
V(x, y) S A.

The importance of the notion of A-stability resides in the following result which
extends lemma 4.1 of Freidlin-Wentzell [32].

Proposition 1 ([21]). Let A be a nonnegative real number and H C E N . Any A-
stable subset H with respect to V contains W*.

One remark is that the subset A is O-stable with respect to the communication cost
function V defined in (34) . From this observation one conc1udes that the canonical
process It ; t O} associated with the family of generators ILßt = Qßt - Id ; t
O}, converges as t -+ 00 in probability to the set A and

min W(x) = min W(x) = O.
XEA XEEN

(35)
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Using classical arguments (35) implies that for any x E A

W(x) = WA(X)

dg. min L VA(Y , z) - min min L VA(Y , z)
g EG A(X) (Y---> Z)E g x 'EA gEGA(x ') (Y---> Z)Eg

where GA (x) is the set of x -graphs over A (here the starting and end points of the x-
graphs are in A), and VA: A x A iR+ is thc taboo communication cost function
defined by setting for any x, Y E A

VA(x, y)

. {"IPI-IV() ' }= nun Pb Pk+1 ; P E Cx,y with VO < k < Ipl Pk tt A ,

where Cx,y is the set ofall paths P = (po, · . · , Pipi), with some length Ipl, adrnis-
sible for q (that is q (Pb Pk+)) > 0 for each 0 .:::; k < IP i) leading from x to Y (that
is PO = x and Pipi = Y),

Let A = (AI, . . " An(a)} be the partition of A induced by the partition S =
(SI , . .. , Sn(a)} of E associated with the relation ""

VI :s i .:::; n(a)

with

AI' A n Sf" = SN
I I

N def.
Si = Si X .. • X Si .

"-.,--'

N times

We observe that for any I .:::; i .:::; n(a) and x , Y E Ai, V(x , y) = 0, Using this
observation one can prove that for any x E A

where VA is the communication cost function defined by setting for any x E Ai and
Y E A j and I .:::; i, j .:::; n(a )

{

Ipl-l
VA(X , y) =min L V(Pk, Pk+)) : pE Cx,y, 30:s nl < n: .:::; Ipl ·

k=O

VO .:::; k .:::; nl . Pk E Ai, Vn 1 < k < n2 ' Pk tt A,

Vn2 .:::; k :s Ipl . Pk E A j } , (36)

As is easily seen, VA(x , y) does not depend on the choicc of x E Ai and Y E A l :
Another remark is that

W* = WA= WA
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and therefore the following implication holds for any subset H C A

H 'A - stable w.r.t. VA W* C H . (37)

In other words, ft converges in probability as t --+ 00 to any 'A-stable subset H C A
with respect to VA . The technical trick now is to find a critical size N(a, V) and
a nonnegative constant 'A(a, V) such that the subset V* n A is 'A(a , V)-stable with
respect to VA.

To describe N(a, V) and 'A(a, V) precisely, we need to introduce some additional
notation. By r X. y, x , Y E E, we denote the paths q in E joining x and y , that is,

vo ::: I < Iq I qo=x qlql=Y·

We will also denote as R(a) the smallest integer such that for every x, y E E in two
different classes there exists a path joining x and y with length Iq I ::: R(a) , namely

R(a) = max min min Iql.
I:::;i.j:::;n(a) (X; .Xj)ES; XSj qErx; ,xj

It will be also convenient to use the following definitions

I::::.a=min{a(x ,y) : x,yEE a(x,y)::pOj,

8(a) = sup {a(x , y) : x, y E E}

and

I::::.V = min {IV(x) - V(y)1 : x, y E E V(x)::p V(y)},

8(V) = sup {IV(x) - V(y)1 : x, y E E} .

To formulate OUf convergence result precisely we need the following lemma.

Lemma1 ([21]). For every x E A there exists astate y E U* n A such that

VA(x , y) ::: (8(a) + 8(V» R(a) .

For every x, y E A such that fj (x) < fj (y) we have

VA(x, y) :::: min(l::::.a, I::::.V) N .

Let us write

'A(a, V) (8(a) +8(V» R(a)

and

N(a, f) 'A(a, V)/ min(l::::.a, I::::.V).

Using the above lemma one concludes that

is 'A(a ,V)-stablewithrespectto VA . (38)

If we combine (37) and (38), with theorem 2 one concludes that:
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Theorem 3 ([21]) . There exists a constant Co (which can be explicitly described
in terms of V), such that if N ::: N (a, U ) and if ß(r) takes the parametric [orm
ß (t ) = t log t for sufficiently large t and C > Co then

lim IP' (fr E U* n A) = l.
1-> 00

5 Refinements and Variants

The research literature abounds with variation s of the GA described in section 2.
Each of these variants is intended to make the selection and/or the mutation more
efficient in some sense. The convergence analysis of all these alternative schemes is
far from being complete. We also emphasize that these variations come from differ-
ent sources of inspiration. Some of them are strongly related to traditional weighted
re-sampling plans in weighted bootstrap theory (see [4] and references therein ).
Another source of inspiration was provided by branching and interacting particle
system theory. The aim of this section is to introduce the reader to these recently
established connections between branching and interacting particle systems, GAs,
simulated annealing, and bootstrap theory.

We begin our program with an alternative GA whose transitions are obtained through
choosing randomly at each step the selection or the mutation transition. This varia-
tion has been presented for the first time in [21] to improve the convergence results
of the classical GA studied in section 4.

We will use the general methodology presented in section 2.2 and the test set ap-
proach of section 4 to prove that the corresponding genetic-type algorithm converges
towards the set of the global minima of a desired numerical function. These result s
can be found with a complete proof in [21]. We will make some comments on how
these results improve the one of section 4.

The second variation has been presented in [27] for solving non linear filtering prob-
lems. The main difference with the classical GA of section 2 lies in the fact that in
the former the mutation kerneIs also depend on the fitness function. The correspond-
ing mutation transition has, in fact, a natural interpretation in nonlinear filtering and
can be regarded as a conditional transition probability. In reference to nonlinear
filtering we will call this kind of mutation a conditional mutation.

We end this section with a brief presentation of several branching genetic-type algo-
rithms. These branching strategies are strongly related to weighted bootstrap tech-
niques [4].

There are many open problems conce rning these variations such as finding a way to
study the convergence in global optimization problems.
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5.1 Random SelectionIMutation Transitions

The setting here is exactly as in section 2.2 and section 4 but the genetic-type algo-
rithm is now described by the transition probability kerneIs

0:1 +0:2 = I (0:1,0:2 E (0, I)) .

Returning to the definition of and given in (31) and (32) and using the

same notation, one concludes that Qß has the same form as in (11)

Qß(X, z) = L qß(x, v, z) e-ß V(x ,v.z)

VEV

with V = {I, 2) and for any v E V

qß(X, v, y) = 8ß(x , v, y) q(x, v, y)

q(x, v, y) = O:v q(v)(x, y)

8ß(x, v, y) = y)

( v)
V(x, v, y) = V (x, y).

To c1arify the presentation we use the superscript to denote the communication
cost function V, the critical height constant Co arising in theorem 2 and the virtual
energy function W associated with the transition probability kerneIs Qß . From the
above observations and theorem 2, choosing ßof the form

I
ß(t) = C logt where C> Co

for sufficiently large t, yields that the canonical process

associated with the family of generators

converges in probability to the set of the global minima W* of the virtual energy
V associated with Qß and defined as in (33) by replacing the communication cost
functions V by V where

V(x, y) = min {v(V)(x, y); v E V, q(v)(x, y) > o} .
By the same test set approach we used in section 4 the technical trick here is to
find a critical size N(a, U) and a nonnegative constant U) such that the subset
U* n A is U)-stable with respect to VA, where VA is defined as in (36) by
replacing the communication cost function V by V. In this setting the analogue of
lemma 1 is the following
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Lemma 2 ([21]). For every x, y E A such that fj (x) ::: fj (y) we have

VA(X, y) S 8(a) R(a) .

For every x, y E A such that fj (x) < fj (y) we have

VA(X, y) ::: N .

Now, if we write

j,(a, U) = 8(a) R(a)

one concludes that

and N(a, U) = j,(a , U)/

N > N (a, U) ===} U· n A is j,(a , U) - stable with respect to VA.

Using the same line of arguments as in the end of section 4 one finally obtains

Theorem 4 ([21])./f N ::: N(a , U) and if ß(t) takes the parametricfonn ß(t) =
log t for sufficiently large t and C > Co then

lim lP' E U· n A) = 1.
1-+00

Several comments are in order. The first remark is that in contrast to A(a, U) , the
constant j,(a, U) does not depend any more on U . Furthermore, the critical popula-
tion size N(a, U) does not depend on 8(U) . In addition, the bound

A(a, U) > j,(a , U)

seems to indicate that it is more difficult for the algorithm associated with the com-
munication cost function V to move from one configuration to a better one. This
observation also implies that for the critical size values we obtained we have that

(
8(U») - -Nta, U) = 1+-- N(a, U) > N(a , U).
8(a)

Let us see what happens when this alternative genetic-type model specializes to the
case where the state is

E={-I,+I}S S = [-n , nV p:::1

and the fitness function U is given by

U(x) = L L I s,s' x(s) x(s') + L h(s) x(s)
seS s'eVs seS

where Is, s" h(s) E Z, and

Vs ES Vs = {s' ES ISk - ski s I , 1 S k S p}.



Asymptotic Results for Genetic Algorithms 469

Let k be the Markovian mutation kernel on S given by

I
k(x, y) = IV(x)1 IV(x)(y)

with

def
V(x) = (y E E : card{s ES : x(s) =1= y(s)} ::; I}.

Suppose that the function a is given by

a(x , y) = (l - Ix(y»

Then, one can check that

R(a) ::; max min Iql = card(S) = (2n + I)P
X.y qECx .y

and

8(a) = = 1.

Let I s,s' and h(s) be chosen so that ;:: I and let N be an integer that N >
(2n + l)P. The above theorem shows that N individuals will solve the optimization
problem when using the GA associated with Qß.

5.2 Conditional Mutations

We now present some genetic-type variants arising in nonlinear filtering literature
(see [12,20] and references therein). For the sake of unity and to highlight issues in
both nonlinear filtering and numerical function analysis, we place ourselves in the
abstract setting of section 2 and section 3.

The first variation is based on the observation that the distribution flow {11n ; n ;:: O}
is a solution of a measure-valued dynamical system defined as in (5), by replacing
the transitions K; and the fitness functions gn by the transitions Kn and the fitness
functions gn defined for any f E ßb(E) by setting

and

More precisely, one can check that

n;::1 (39)

with
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and

As in section 2.1 we can associate with (39) an N -interacting particle system ; n ::::
O} which is a Markov chain in E N with transitions

N (I N )IP' E dx = y) = n <i>n+1 - L Gyi (dr "),
p=1 N i=1

n::::ü

and initiallaw iio = \IJ (r,o), where, as usual, dx dx 1 x -.. X dxN is an infinitesimal
neighborhoodofthepointx = (xl , .. . ,xN) E EN,y = (y!, ... ,yN) E E N.
Arguing as in section 2.1, it is transparent that this transition is decomposed into
two separate mechanisms, namely, for each n :::: 0

def. ( I N) Selection def. Mutation
= .. , ) = . . , )

The selection transition is now defined by

and the mutation step

N

IP' E dx Ifn = v) = n Kn +1 (yP , dxP) .
P='

We emphasize that in contrast to the latter genetic model, this genetic particle scheme
involves mutation transitions that depend on the fitness functions . The study of this
variant has been initiated in [27], and large population asymptotic are described
in [24] and [20].

5.3 Branching Genetic-Type Aigorithms

We end this section with abrief description of branching and genetic-type variants
presented in [20]. Here again, we place ourselves in the abstract setting of section 2
and section 3.

All these branching strategies are based on the same natural idea. Namely, how to
approximate an updated empirical measure of the following form

(40)
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by a new probability measure with atoms of size integers multiples of 1/N . In the
GA presented in section 2.1 this approximation is done by sampling N -independent
random variables

t s i :s N}

with common law (40) and the corresponding approximating measure is given by

where

...,M::) d,g. Multinomial (N, ... ,w::)
and for any 1 :s i :s N

Using these notations the random and N-valued random variables

can be seen as random numbers of offsprings created at the positions , . ..
The above question is strongly related to weighted bootstrap and GA theory (see
for instance [4] and references therein). In this connection the above multinomial
approximating strategy can be viewed as a weighted Efron bootstrap.

Let us present several examples of branching laws. The first one is known as the
remainder stochastic sampling in GA literature. It has been presented for the first
time in [2,3]. From a purely practical point of view this sampling technique seems to
be the more efficient since it is extremely time-saving, and if the branching particle
model is only based on this branching selection scheme then the size of the system
remains constant.

In what follows we denote by [al (respectively {a} = a - [aD the integer part
(respectively the fractional part) of a E R

1. Remainder Stochastic Sampling

At each time n ::: 0, each particle branches directly into a fixed number of
offsprings

VI :s i :s N
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so that the intermediate population consists of N n d,g. 1 particles. To
prevent extinction and to the size of the system fixed it is conven ient to
introduce in this population N; additional particles with

N N N
Nn d,g. N - N n = - =

;=1 ;=1 ;= 1

One natural way to do this is to introduce the additional sequence of branching
numbers

(
- I - N)Mn"" .u;

def. . . (- I (NW,;" I )= Multinornial Nn , N j , .. . , N is L'
Lj=t {NWn I Lj=1 {NWn I

(41)

More precisely, if each particle again produces a number of additional
offspring. I S i SN, then the total size of the system is kept constant.
At the end of this stage, the particle system "fn again consists of N particles
denoted by

t;
with

1 .s k N,

and for

ISkSN,

k-I k-I,,-I ,,-I-k

1=1 1=1

k-I k-I
L + 1 S i S L +
1=1 1=1

The multinomial (41) can also be defined as follow s

where , . . . , are Nn independent random variables with common law
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2. Independent Branching Numbers

In the next examples the branching numbers are, at each time step, independent
one of each other (conditionally on the past) . As a result, the size of the pop-
ulation at each time n is not fixed but random. The corresponding branching
genetic-type algorithms can be regarded as a two-step Markov chain

Bran ch in g Mutation
------+ ------+ (42)

with product state space E = UaEN({a} X Ea ) with the convention that E" =
{L:::.} is a cemetery if a = O. We will note

:F= {Fn , i; : n 2: O}

the canonical filtration associated with (42) so that

Fn C r, C Fn+ I .

(a) Bernoulli branching numbers

The BernouIIi branching numbers were introduced in [11] and further de-
veloped in [12] . They are defined as a sequence Mn = I Si S Nn)
of conditionally independent random numbers with respect to Fn with dis-
tribution given for any I S i S N; by

p(Mi = kiR) = { {Nn if k = [Nn + I
n n

In addition, it can be seen from the relation

N.

= »,
i = 1

that at least one particle has one offspring (see [I I] for more details) . There-
fore, using the above branching correction the particle system never dies .
It is also worth observing that the BernouIIi branching numbers are defined
as in the remainder stochastic sampling by replacing the multinomial re-
mainder branching law (41) by a sequence of Nn independent BernouIIi

random variables ...,M:·) given by

-N - N .
P(Mi n = I IFn) = I - P(Mi • = 0lFn) = iN;

(b) Poisson branching numbers

The Poisson branching numbers are defined as a sequence Mn = I S
i S Nn ) of conditionally independent random numbers with respect to Fn
with distribution given for any I S i S N; by

Vk 2:°
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(c) Binomial branching numbers

The binomial branching numbers are defined as a sequence

of conditionally independent random numbers with respect to F; with dis-
tribution given for any 1 i Nn by

for any 0 k s n,

The previous models are described in full detail in [12].ln particular, it is shown that
the GA with multinomial branching laws arises by conditioning a GA with Poisson
branching laws . The law of large numbers and large deviations for the genetic model
with Bernoulli branching laws are studied in [12] and [14] . The convergence anal-
ysis of these particle approximating schemes is still in progress.

6 Continuous-Time Genetic Aigorithms

We shall now describe the continuous-time version of the GA discussed in section 2.
This particle algorithm has been introduced in [23] for solving a flow of distributions
defined by the ratio

(f) = YI(f)
rJl YI(l)

(43)

where YI(f) is defined through a Feynman-Kac formula of the following form :

where {XI; t E lR+} is a cädläg and time-inhomogeneous Markov process tak-
ing values in a Polish space E and {VI ; t E lR+} is a measurable collection of
locally bounded (in time) and measurable nonnegative functions . Here, we merely
content ourselves in describing the mathematical models of such particle numerical
schemes. The detailed convergence analysis as the size of the system tends to infin-
ity can be founded in [20] or [23] . In order to illustrate the idea in a simple form we
will also make the sanguine assumption that X is a time-homogeneous Markov pro-
cess with initial law rJO, its infinitesimal generator is a bounded linear operator on
the set on bounded Borel test functions ßb(E) and VI = V is a time-homogeneous
function. The interested reader is referred to [20] for a more general presentation
including Riemannian or Euclidean diffusions X.
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To motivate our work we also mention that the Feynman-Kac model (43) has differ-
ent interpretations coming from quite distinct research areas. First it can be regarded
as the distributions of a random particle X killed at a given rate and conditioned by
non-extinction (see for instance [48]) . Second the previous Feynman-Kac formula
may serve to model the robust version of the optimal filter in nonlinear filtering
settings (see [20] and [23]). Finally, as pointed out in [20], the ratio distributions
(43) can also be regarded as the solution flow of a simple generalized and spatially
homogeneous Boltzmann equation as defined in [36,44].

As for the discrete-time models discussed in section 2.1 and section 3, one of the
best ways to define the genetic particle approximating models of (43) is through the
dynamical structure of (43) . By definition, one can easily check that for any bounded
Borel test function f E ßb(E)

(44)

where L 'I' for any fixed distribution 7/ on E , is the bounded linear operator on ßb (E)
defined by

L'I(f)(x) = L(f)(x) +f (f(z) - f(x)) U(z) 7/(dz). (45)

As its discrete-time analogue (20), we want to solve a nonlinear and measure-valued
dynamical system (44), and the associate generator 12'1 is decomposed into two sep-
arate generators.

To highlight the quadratic nature of (44) and the connections with spatially-homo-
geneous Boltzmann equations we also notice that (44) can be rewritten as

d I fdt 7/t(f) = 7/t(L(f)) + 2" 7/t(dx) 7/t(dy)

x ((J(x") - f(x)) + (J(y") - f(y))) Q (x, y ; dx", dy")

with

Q (x , y ; .) = U(y) 8(y. y) + U(x) 8( x .x).

In section 6.1 we discuss a Moran-type particle approximation of the Feynman-Kac
formula (43). We also give an illustration of the serni-group techniques introduced
in [20] for proving useful convergence results as the size of the population tends to
infinity including the centrallimit theorem and exponential bounds. In the final sec-
tion 6.2 we propose a branching and interacting particle approximating scheme.
To the best of our knowledge this branching-type particle approximation of the
Feynman-Kac formula (43) has not been covered in the literature. We will also
give the connections between this particle scheme and the previous Moran particle
model.
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6.1 A Moran Particle Model

Description of the Model

As traditional, start ing from a family {'cII ; TI E MI (E)}, we consider an interacting
N -particle system

= . ..

which is Markov process on the product space E N , N ::: I, whose infinitesimal
generator acts on bounded Borel functions f : E N --+ by setting for any x =
(xr , . . . , XN) E E N

N

'c(f)(x) = L
;=1

. def. I N
with m(x) = - L 8x;

N ;=1

and where the notation g(i) has been used instead of 9 when an operator gon Bb(E)
acts on the i -th variable of f (x I, .. . , X N ). This abstract and general formulation is
well-known in mean field interacting particle system literature (the interested reader
is for instance referred to [44] and [50] and references therein). Taking into consid-
eration definition (45) we get

(46)

where

N

[,(f)(x) =L L(i)(f)(x)
;=1

and

and where for I .::: i, j .::: N and X = (XI, .. . , XN) E E N , x (i,j) is the element of
E N given by

V I.::: k.::: N, (i,j) {Xk' if k :f= i
xk = xj,ifk=i

In order to describe more explicitly the time evolution of the E N -valued Markov
process ; t::: O} with infinitesimal generator ,C, it is convenient to write (46) as
follows

'c(f)(x) = [,(f)(x) + A(X) r (f(y) - fex)) Q(x , dy)JEN
= [,(f)(x) +i r (f(y) - fex)) Q(x, dy)lEN (47)
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with

N

)..(x) = L U(Xi) = N m(x)(U )
i = ]

and

and ). = N IIU II

I U(xd
Q(x , dy) = L...J N N 8x (i , j) (dy)

i , j=l Lk=l U(xd

Q(x , dy) = (I -m(x) 8x(dy) + m(x) Q(x, dy).
IIUII IIUII

The construction of ; t O) on an explicit probability space is now classical
(see for instance [23] or [31]). For the convenience of the reader we propose a basic
construction based on the second decomposition (47).

Let (X(k ,i)(a) ; (k, i) E N2 , a E E} be a collection of independent copies of
(X(a) ; a E E} where for any a E E, X(a) denotes the process X starting at a.
Let (Tk ; k E N) (To = 0) be a sequence of independent and identically distributed
random variables on 1R+ with a common exponentiallaw with parameter N 11 U 11.

The random times (Tk ; k E N) (To = 0) will be regarded as the random dates at
which competitive interaction occurs. The initial particle system = ..,
consists of N independent random variables with common law 710.

I. Mutation

Between the dates Tk-l and Tk the particles evolve randomly and independently
according the law of the time-inhornogeneous Markov process X. That is for
any 1 .s i s N

t i _ X (k,i ) (t i )
'>I - I-Tk _1 '>Tk_1 ' k 1.

2. Competitive Selection

At the time t = Tb = . . . is an E N -valued random variable with

law Q(hk - , .).

The important difference between this Moran-type particle model and the classical
one is that for the former N -particles system, the total rate of selection jumps ). is of
order N, while for the classical N -particle Moran model it is of order N 2 . It is that
difference of scaling, with comparatively less frequent selections, which enables us
to end up with a deterministic process in the limit.

Furthermore, even if we had multiplied the rate of selection by N, the limit exists
(as a right-continuous measure-valued stochastic process) only if the weight of re-

placin g the particle by the particle is symmetrical in and ' a condition
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which is not satisfied here, since due to the fitness functions, its value is U, /N .
In our case, more frequent selections would oblige the limit measure-valued pro-
cess to jump instantaneously from a probability to another one better suited for the
maximization of U . In fact, an asymmetrical weighted sampling needs a selection
total rate of order N (this can be deduced from the calculations given in the sec-
tion 5.7.8 of [15]), if one wants to end up with a bounded selection generator. Then
one can add the natural non-weighted sampling selection (see section 2.5 of [15],
or more generally, any other symmetrical weighted sampling selection) with a total
rate of order N 2, to obtain in the limit a Fleming-Viot process with selection, as it is
defined directly in the level of the measure-valued process (and not at the particles
system approximation level) in section 10.1.1 of [15] (or, more generally, p. 175 of
this review).

Asymptotic Behavior

The interpretation of the distribution flow {1]t

empirical measures

1 N
N dEo "8.

1]t - N L..J
;=1

t 2: O} in terms of the limit of the

(48)

as N -+ 00 is given in [20,23] including the centrallimit theorem and exponential
bounds, see also [36,44] for an alternative approach using coupling techniques. To
see that (48) is a reasonable approximation of 1]t observe that for any bounded Borel
function cP E ßb(E) if

def. I N
f(Xj, . . . , XN ) = - L cp(X;)

N ;= 1

then forany x = (XI, . .. ,XN) E E N

L(f)(X) = m(x) (Lm (x)(cp»).

Our aim is now to make some comments on the semi-group approach presented
in [20] to study the asymptotic behavior of 1]f as the population size N tends to
infinity.

Under our assumption, it is well-known (see lemma 3.68, p. 446 in [38]) that for
any bounded Borel test function f E ßb(E N) the stochastic process

is a square integrable martingale, and its angle bracket is given by
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where I' is the "carre du champ" associated with L

Using the decomposition (46) and the definition of i: and Z it is easy to establish
that

ri]. f) = t(j, f) + r(j, f)

with

and if f E ßb(EN ) is chosen so that

f(x) = m(x)(q;»

for some q;> E ßb(E) then

- I
f(j, f)(x) = N m(x) (fL<q;>, q;>))

with

and

r(j, f)(x) = m(x) (q;> - m(x)(q;>))2 cu + m(x)(U))) .

Using these notations one concludes that

with

CI < 00 Vt o.

One can use this result to check that the sequence of distributions ; t O] is
weakly compact and any weak limit point is concentrated on the set of solutions of
(44). Using the continuity of the angle bracket and the construction of one can
check that there exists some finite constant C; < 00 such that the jumps !:::..MI (j) of
the previously defined martingale are bounded by C; 1Iq;> 111N , that is lP'-a.s.
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Let us recall a c1assical exponential inequality for martingales Mt starting at 0 and
b

whose jumps are bounded uniformly by a E]O, 00[: for all 0 < E :s - and t > 0
a

lP'( sup IMsl > E,
SE[O,t)

(49)

This inequality may be established using calculations from section 4.13 of [43] (see
corollary 3.3 in [47]). Now, if we apply this inequality to the martingale Mt (f) one
obtains the following result:

Proposition 2. For any bounded Bore! test function tp E ßb(E), and T > 0, and
o< E :s IIcplI, we have that

for some finite constant C (r) < 00.

To get some more precise estimates we proceed as in discrete-time settings. We start
by noting that

Yt(l) = exp1t
IJs(U) ds

and therefore for any cP E ßb(E),

Yt(CP) = IJt(CP) exp1t
IJs(U) ds.

As in section 3 we introduce the N -approximating measures

N def. N r Nr, (cp) = IJt (cp) exp Jo TJs (U) ds .

On the other hand, using the Markovian property of X we observe the simple but
essential fact that

Yt(CP) = ys(Kt-s(cp)),

where {Kr; r :::: O} is the semi-group defined by

(Kr (cp))(x) = JE (cp (Xr(x)) exp l r

U(Xs(x)) dS)
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where {Xr (x) ; r ::: O} is the time-hornogeneous Markov process with infinitesimal
generator Land starting at x E E . From this simple observation one concludes that
for any fixed T > 0 and for any t E [0, Tl, x E E and cP E Bb(E)

d
dt (KT -t(CP»(x) = -L(KT-t(CP»(x) - U(x) (KT -t(CP»(x) .

By definition of yt
N (I) and using the same kind of arguments as before, one can

check that the stochastic process

def. rt: ( N N)Mt(cp , T) = v N Yt (KT-t(CP» - Yo (KT(cp» ,

is a martingale, and its angle bracket is given by

(M(cp, T»)t =l t
Ys

N (I) (rdKT-s(cp) , KT-s(cp))) (50)

+ ((KT-s(cp) - (KT -s(CP» / (u + (U») ) } ds.

Recalling that Yt(KT -t(CP» = n(cp) = YO(KT(cp» and yt' = YO = 1]oone
concludes that

yt
N (KT-t(CP» - Yt (KT-t(CP»

N 1
= 1]0 (KT(cp» - 1]0 (KT(cp» + .jN Mt(cp, T) .

From which it becomes clear that:

Proposition 3. For any N ::: 1 andfor any bounded Borel testfunction cP E Bb(E)
we have that

JE (yf (CP») = n(cp)

and

(51)

for some finite constant CT which does not depend on the test function .

Using the same line of argument as the one we used in discrete-time settings (see
section 3), it is possible to obtain centrallimit theorems for the N-approximating
measures yf and as weil as error bounds for the total variation distance. For
instance, using the decomposition

N yf(cp) YT(cp)
1]T (cp) -1]T(cp) = yf (1) - n(l)

= ((yf (cp) - YT(CP») + (cp) (n(l) - yf (I»))
and (51) one gets the following result:

(52)
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Proposition 4. For any N 2: 1 and for any bounded Borel test function E Bb (E)

for some finite constant CT which does not depend on the test function .

Using the decomposition (52) and Proposition 3 one obtains that

Thus, a simple application of Cauchy-Schwartz's inequality yields that for any test
function e, :s I

IIE - :s C;
for some finite constant CT which only depends on the time parameter T. By ex-
changeability of the particles and the definition of the total variation distance of
probability measures, this implies that

Finally, as the form of the angle bracket (50) indicates one can prove the following
result:

Theorem 5 ([20]). The sequence 0/ random fields

ulf (f) d,g..JN (rlf (f) - YT(f») ,

converges in law as N -+ 00, in the sense 0/ finite distributions, to a centered
Gaussianfield {Un(f) ; / E Bb(E)} satisfying

IE (UT(f)2) = rJo -

+11

Ys(l) {rJs

+ rJs - (U + rJs(U»)} ds.
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Arguing as in discrete-time settings , the previous fluctuation result implies that the
sequence of random fields

wf (f) d,g. v1V (f) -17T(f)) ,

converges in law as N -+ 00 to the centered Gaussian field

def (1 )WT(f) = ' UT YT(l) (f - "]T(f)) ,

Finally, setting

and, using the same reasoning as before, one can prove that for any° t T

and

C < 00

for some finite constant CT < 00 . Thus , the exponential bound (49) implies that for
anyO < E 1I<p1l

( )

NE2
!P' sup IYtN (KT -t(<P)) - y(;' (KT(<p))1 > E 2 exp 2

tE[O.TI C(T)II<p1l

for some finite constant C(T) < 00 . On the other hand, using Hoeffding 's inequality
we have that

for some finite constant C' (T) < 00 . If we combine these two bounds one concludes
that

and therefore

( )
NE2

!P' l17f(<p) -17t(<p)1 > E 4 exp- C"(T)II<p112

for some finite constant C" (T) < 00 .

Uniform convergence results are developed in [20,22]. These papers provide various
stability conditions on the process X under which one can find (as in discrete-time
settings, see page 459) some coefficient Cl E (0, 1/2) , such that for any 1 i N

. C
sup IlLaw(;J) -17tlltv
t ::::O N
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and for any bounded Borel test function f , 11 f 11 :s 1

Vp 1 (
I I

P) IIP c(p)
JE (f) - 1]((f) :s Na

for some constant c(p) < 00 which only depends on the parameter p .

6.2 A Branching Particle Model

We end this paper with a presentation of a novel genetic-type model based on
branching selection transitions . To our knowledge this model has not been covered
by the literature and its convergence analysis is still in progress. We also believe that
the semi-group approach presented in [20] applies to study the convergence of this
branching algorithm to the distributions (43).

In contrast to the previous Moran-type GA, the size of the population here will not
be necessarily fixed but random . As a result the corresponding branching particle
system will be regarded as a continuous-time process taking values in the state space

c U EP
Co - P'::o

with the convention that EP = {L} is a cemetery point if p = O. The point L will
be isolated and, by convention, all bounded Borel test functions f E ßb([ - {L})
will be extended to [by setting f(L) = O.

It will be also convenient to adjoin L to the state space E and we set E6, = EU {L} .
Again, the test functions cP E ß b(E) will be extended to E6, by setting cp(L) = O.

The infinitesimal generator 9 of this branching scheme is defined by

(53)

where, forany fE ßb([) andx = (XI , . . . , x p ) E EP, P 1,

P
Qf(x) =L L(i)(f)(x)

i = I

and

?reX) = A(X) L(f(y) - fex)) Q(x , dy)

with

P

A(X) =L U(Xi)
i=l
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the transition probability kernel Q on E given by

QJ(X) = f J(y) Q(x , dy)

= tL {1 J (x(i , q , u)) Sex , x i, dU)} s«, xi, q),
P i=\ E

where

x(i,q,u)=(X\ , . .. ,Xi-\,U, . .. , U, Xi+ I , .. . ,xp ) ,
'-v--"

q times

and for any X E E, Sex , xi, du) and H(x, xi, q) are distributions on E and on N-
In our construction, the point L will be an absorbing point in the sense that if the
process started at L it will stay in L. Therefore, for p = 0 we will also use the
convention L0 = 0 and Q(L, {L)) = 1. With this convention if p = 0 (i.e.,
X = L) we have that 9J(L) = 0 and 9J(L) = O.

The distributions Sex, x i , du) and H(x, xi, q) will be chosen so that the following
equality holds true :

I p - - p U(Xi)
-" H(x ,x,o)S(m)(x,X,o) =" p m(x,o)

L 'f' L "'Jo_-l U(xJo) -rP i=\ i=\ L.

for any cp E Hb(E) where Sex, Xi) and S(cp)(x, Xi) are defined by

SeX, Xi) = L q H(x, x., q)

and

S(cp)(x, Xi) = 1Sex , xi, du) cp(u).

(54)

We now make this condition more precise by noting that if J E Hb(E) is defined for
anyx = (XI, . . . , xp ) E EP,p l,by

J(X) = p.m(x)(cp)

for some sp E Hb(E), then

where
I p

m(x) = - L s;
P i=l

(55)

9(f)(x) = p.m(x) (Lm(xj(cp)).
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To see this ciaim we first observe that for such a bounded test function fand for
anyx = (XI, . . . ,xp ) E EP, P 2: 1

Q(f)(x)

= A(X) tI: fL (qep(u) - ep(x;» S(x , X;, dU)} e«.X;, q)
p ;=1
1 P

=A(X) - I:I: (ß(x,x;)S(ep)(x,x;)-ep(x;)ß(x ,x;,q») .
p ;=1

Using (54) one conciudes that for any X = (XI, . .• ,xp ) E EP, P 2: 1,

p ( P U(x;) )
Q(f)(x) = f; U(Xj) U(Xj) ep(x;) - m(x)(ep)

= p , (m(x) (epU) - m(x) (ep)m(x)(U».

Recalling that for any bounded test function f of the form (55) and for any x =
(XI, . . . ,xp) E EP, P 2: 1, we have that

P P
Q(f)(x) =I: LU) (f)(x) = I: L(ep)(x;) = p.m(x)(L(ep»,

;=1 ;=1

one conciudes that for any bounded test function f of the form (55) and for any
X = (XI , . .• ,xp) E EP, P 2: 1

Q(f)(x) = p. (m(x)(L(q;» + m(x) (q;U) - m(x) (q;) m(x)(U) )

= p.m(x) (Lm(x)(ep») .

Along the same line of ideas as before , it is possible to construct inductively the
branching (with interaction) particle system with generator Q. In contrast to the
previous situation, the size of the population is not necessarily fixed and it will be
denoted by Nt at each time t, in other words

= ' . . . E E N
/ •

We also need to introduce a sequence {tk ; k 2: I} of independent random variables
with a common exponentiallaw on IR+ with parameter I . If we write {Tk ; k 2: O}
for the random times at which the competitive branching interaction occurs, the
inductive description is as folIows. Initially To = 0 and the particie system =

... , consists of No independent random variables with common law fJO.
The initial size No is a non-random integer and represents the precision parameter
of the scheme.

Now we assurne that we have defined the branching process up to time Tk-l (in-
ciuded) for some k 2: 1. If NTk_1 = 0 the particie system dies and we let Nt = 0
and = 6. for any t 2: n - I . Othcrwise the mutation/branching selection transition
is defined as folIows:
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1. Mutation

Between the dates Tk-I and h the particles evolve randomly and independently
according to the law of the time-inhomogeneous Markov process X. That is, für
any I S i S NTk _1

ci _ X(k,i) (ci )
51 - I-h-I 5Tk_1

where Tk = h-I + rk and rk is defined by setting

(recaII that tk is a random variable with exponential law on lR+ with parameter
I) . During this stage the size of the system remains constant and we set

Vt E [Tk-I, Td .

2. Competitive Branching Selection

At time t = Tk a label i is chosen uniformlyon {I, . . . , NTk _I}' and the particle
with label i dies and is replaced by a random number of offsprings with law

and independently, these offspring are randomly given a location with law

At the end of this stage the particle system h k is defined as

c (cl ci -I i i ci+1 CNTk _l)
st; = 'jTk- " '" 'jTk-' uk' . . . ,uk' 'jTk-' . . . , sti :

"-v-'

times

and the resulting population size is defined as

Let us give some examples of branching selection laws satisfying condition (54).
We assurne that x = (XI, .. . , x p ) E EP for some p I .

I. If ß (x, xt , .) and S (x , x., . ) are defined by

ß(X,xi,.)=8,
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and

(56)

then, since for any rp E Bb(E ) and 1 S i S p

H(x, Xi) = 1 and

condition (54) clearl y holds. This example corresponds to the Moran -type ge-
netic scheme presented in the previou s section. Indeed, in this situation we
clearly have for any f E Bb(E) and for any X = (XI, .. . , xp ) E EP, P :::: I

Q(f)(x)

(

P ) I P P U (x .)
= LU(Xk) - ?= ?= (J (x(i ,j» - f (x ») P }

k= 1 P 1=1 } = I L U (x/ )

/=1

where for 1 S i , j S p and X = (Xl, · · · ,xp) E EP, x(i,j) is, as usual , the
element of EP given by

(57)andS (X, xr , .) = s;

(i,j) { Xk ' if k i= i
V 1 S k S p , xk = x j , if k = i

2. If B (x, xi , . ) and S (X, xi , . ) are defined by

- p U (Xi )
B (x , Xi) = '\'P

L...k= 1 U (Xk)

then for any rp E B b(E ) we have S (rp) (X, Xi) = rp(Xi ) and condition (54) is
again met. In this situation the size of the population may not be fixed. To high-
light the connections with the discrete-time branching schemes presented in
section 5.3 the reader may check that condition (57) hold s for the Bemoulli and
Poisson branching laws

B (x, xi, .) = (1 - (H(x, Xi)}) l[B(x ,x;)l (. ) + (H(x, Xi) } 1[B (x, xil]+1 (.)

and

- (H(x, x;) q
B (X, Xi ,. ) = e-B(x,x;) L ---- l q(. ).

q:::o q !

We recall that [al (respect ively (a) = a - [a l) is the integer part (respectively
the fractional part ) of a E R
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Now we return to the probabilistic analysis of this branching particle model. We
have studied the asymptotic behavior of this scheme, but the corresponding publi-
cation still isn't ready. For the convenience of the reader, we only formulate a few
basic results to illustrate how the methodology used for the Moran type GA can
be used in this more general framework. As usual, we start by noting that for any
bounded Borel test function f E ßb(E) the stochastic process

is a local martingale and its angle bracket is given by

where r is the "carre du champ" associated with 9

Now, using the decomposition (53) and the definition ofQand 90ne can check that

rc], f) = fU, f) +ru, f)

with

If f E ßb(E) is chosen so that for any x = (XI, . .. , x p ) E EP, p ::: I , and for
some cp E ßb(E)

fex) = p.m(x)(cp) ,

then for any X = (x I, . .. , x p) E E P, P I

fU, f)(x) = p. m(x) (rLCcp, cp))

with

and

ru, f)(x) = 9((f(.) - f(x))2) (x)

1 P 1=A(X) - L L (qcp(u) - cp(Xi))2 sex, xi, du) B(x , xi, q).
P i=1 q?:.O E

(58)

Let us notice that if distributions S(x, x., du) and B(x, x., q) are defined by (56)
then for any X = (x I, . .. , x p) E EP, P ::: I, we have that

ru, f)(x) = p.m(x) ((CP - m(x)(cp))2 (U + m(x)(U)))
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and if these d istribution s sa tisfy (5 7) one gets that

r u, f)(x) = p.m (x )(U ).m(x ) (rp2:2)q - 1)2 st». " q») .
q ::,:O

In contrast to the previou s M oran -type genetic model the "carre du champ" cor-
resp onding to th e se lec tio n pro cedure is not necessaril y bounded and we need to
introduce so me auxi lia ry assumptio n on the mass varia tion of the systems, namel y
we will assume th at

sup m (x ) (L: q2 tu». " q») < 00.

xeE q::,:o

In the special case where the te st func tion f is given by (58) we have that the
stochas tic process

t 0

is a square integrable martingale. Of co urse, if rp = 1 thi s implies th at the total mass
process {NI ; t O} is a square int egrable martingale start ing at No.
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