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1 Introduction

Portfolio credit risk is the distribution of financial loss due to defaults in a portfolio

of credit-sensitive assets such as loans and corporate bonds. Monte Carlo simulation is

widely used to estimate the portfolio loss distribution. It applies to virtually any model of

correlated default timing, and is often relatively easy to implement. On the other hand,

the computational effort required to accurately estimate the probability of large losses

may be excessive. This probability is at the center of risk management applications, for

example the estimation of risk measures such as value at risk.

This paper describes and analyzes a sequential Monte Carlo method for the efficient

and unbiased estimation of the probability of large portfolio losses and of other rare events.

The method applies to dynamic point process models of correlated default timing. In these

widely used models, a default of a portfolio constituent is governed by a stochastic intensity

process. The intensity processes are correlated across constituents to reflect the default

dependence structure in the portfolio. Analogous to conventional importance sampling

(IS) schemes, the method involves a change of probability measures. Default events are

sampled sequentially, according to a probability measure that may differ from the reference

measure. In addition, the sequentially generated sample paths are resampled using a

set of state-dependent weights. The resampling mechanism distinguishes our sequential

importance sampling and resampling (SISR) scheme from existing sequential IS schemes.

We analyze the asymptotically optimal selection of the resampling weights, and provide

conditions guaranteeing the logarithmic efficiency of the estimator of the probability of

large portfolio losses generated by the SISR method.

The SISR method is related to the interacting particle system (IPS) scheme ana-

lyzed by Del Moral & Garnier (2005), which was adapted to estimating the probability

of large portfolio losses by Carmona & Crépey (2010), Carmona, Fouque & Vestal (2009)

and Giesecke, Kakavand, Mousavi & Takada (2010). The IPS scheme proceeds sequen-

tially, under the reference measure, and involves a resampling (“selection”) mechanism.

The resampling mechanism corresponds to a change of measure on path space. Its ef-

fectiveness, and hence the performance of the estimators generated by the IPS scheme,

depends heavily on a judicious choice of a parameter specifying the resampling weights.

The asymptotically optimal choice of this parameter has not yet been addressed in the

literature. Therefore, ad-hoc approaches have been used to determine this parameter. Our

SISR scheme eliminates the need to select a parameter, and generates rare-event estima-

tors that are provably efficient. Moreover, the SISR scheme allows one to use a sampling

measure that differs from the reference measure. This can make sampling more convenient

and may also lead to additional variance reduction.

Numerical experiments illustrate the performance of the SISR algorithm for a self-

exciting model of portfolio credit risk, under which the constituent default intensities

follow correlated jump-diffusion processes. For a given computational budget, the SISR

algorithm provides more accurate estimates of the probability of large losses than an IPS

scheme. Moreover, the SISR scheme yields meaningful estimates of very small probabili-

ties. If the portfolio is relatively heterogeneous, the SISR scheme can also outperform the
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logarithmically efficient IS scheme of Giesecke & Shkolnik (2010).

While SISR algorithms have long been used to sample from complex, high-dimensional

distributions occurring in non-linear filtering and other areas, their usefulness for rare-

event simulation has only recently been recognized by Chan & Lai (2011). They provide a

CLT for a generic SISR estimator, and a consistent estimator of the asymptotic variance.

Specializing to a classical large deviations setting, Chan & Lai (2011) then show how to

select the resampling weights in order to obtain logarithmically-efficient estimators of cer-

tain rare-event probabilities for random walks with finite moment generating functions.

In this paper, we propose resampling weights in a setting of multivariate, intensity-based

point processes that model the arrival of correlated events. Building on the arguments of

Chan & Lai (2011), we then develop conditions guaranteeing that these weights generate

a logarithmically efficient estimator of large loss probabilities.

The rest of this paper is organized as follows. Section 2 formulates the portfolio

credit risk problem. Section 3 describes a basic SISR algorithm and Section 4 analyzes

the asymptotically optimal selection of the resampling weights. Section 5 describes an

extended SISR algorithm with occasional resampling. Section 6 provides numerical results.

Section 7 concludes. There is a technical appendix.

2 Dynamic portfolio credit risk

Consider a portfolio of n firms that are subject to default risk. The random default times

of these firms are modeled by almost surely distinct stopping times τ i > 0, which are

defined on a complete probability space (Ω,F ,P) with right-continuous and complete

information filtration. In risk management applications, P is the statistical probability,

while in derivatives pricing applications, P is a risk-neutral pricing measure. Associated

to the τ i are indicator processes N i given by N i
t = I(τ i ≤ t), where I(A) is the indica-

tor function of an event A ∈ F . For each i, there is a strictly positive, integrable and

progressively measurable process λi such that the random variables

N i
t −

∫ t

0

λis(1−N i
s)ds (1)

form a martingale. The process λi(1 − N i) represents the conditional default rate, or

intensity of firm i. The λi are correlated stochastic processes that we take as given.

The correlations among the λi reflect the default dependence structure of the portfolio

constituents. A number of different specifications of λ = (λ1, . . . , λn) have been developed

in the literature. See, for example, di Graziano & Rogers (2009), Duffie & Garleanu (2001),

Duffie, Saita & Wang (2006), Duffie & Singleton (1999), Eckner (2009), Herbertsson &

Rootzen (2008), Jarrow, Lando & Yu (2005), Jarrow & Yu (2001), Mortensen (2006),

Papageorgiou & Sircar (2007) and many others.

The credit risk associated with the portfolio is described by the distribution of the

portfolio loss L = ` · N , where N = (N1, . . . , Nn) is the vector of default indicators and

` = (`1, . . . , `n) is the vector of position losses. Our primary objective is to compute the
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tail of the loss distribution, which represents the probability of atypically large default

losses. These rare-event probabilities are at the center of portfolio risk management and

other applications. For example, they are used to estimate portfolio risk measures such

as value at risk at high confidence levels.

The problem of computing the distributions of NT and LT at a fixed horizon T > 0

can be cast as a Markov chain problem. Proposition 3.1 of Giesecke et al. (2010) states

that there exists a continuous-time Markov chain M = (M1, . . . ,Mn) ∈ S = {0, 1}n such

that P(Nt = B) = P(Mt = B) for fixed t and all B ∈ S. The mimicking chain M has

no joint transitions in any of its components, and a component M i starts at 0 and has

transition intensity πi(·,M), where

πi(t, B) = E(λit(1−N i
t ) |Nt = B), B ∈ S. (2)

The expectation (2) can be computed for many standard models of λ; see Section 5

of Giesecke et al. (2010). The existence of M reduces the problem of computing the

distribution of NT to that of computing the distribution of MT . Similarly, under the

assumption that each `i is drawn, independently of N , from a fixed distribution, it reduces

the problem of computing the distribution of LT to that of computing the distribution of

JT , where J = ` ·M . This reduction is significant; it allows us to analyze a Markov chain

model M rather than a potentially complex point process model N .

The jump process J is not itself a Markov chain, because its jump times have an

intensity of the form
∑n

i=1 π
i(t,Mt). Nevertheless, the distribution of JT can be obtained

from the distribution of MT , which can be computed by solving the forward Kolmogorov

equation. However, this approach is often not practical. This is due to the dimensionality

of the state space S = {0, 1}n of M , which tends to be large in practical applications. In

pricing problems, the number of portfolio constituent firms n is between 100 and 125. In

risk management settings, n can be substantially larger.

We propose to estimate the distribution of JT using Monte Carlo simulation of M .

The transitions of M can be sampled exactly using the thinning scheme of Lewis &

Shedler (1979), leading to unbiased simulation estimators of the distribution. However, a

large number of replications may be required to obtain accurate estimates of the tail of

the distribution, which is at the center of our interest. We develop a sequential simulation

method designed to dramatically reduce the number of simulation trials required to obtain

accurate estimates of tail probabilities. We focus on the case that ` = (1, . . . , 1); Section

7 comments on the treatment of the general case.

3 Sequential importance sampling and resampling

This section describes a sequential importance sampling and resampling (SISR) scheme

for the efficient estimation of tail probabilities.
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3.1 Overview

Let Yk = (Tk, Uk), where Tk is the kth arrival time of the jump process J , and Uk = MTk
.

Moreover, let Y0 = (0, (0, . . . , 0)) and K ≤ n. The sequence Y = (Yk)0≤k≤K is a discrete-

time Markov chain on R+×S. We denote its P-transition probabilities by pk(x, y). Suppose

the rare event of interest takes the form {YK ∈ Γ} for some suitable set Γ. Here and in

the sequel, we let Yk = (Y0, . . . , Yk) for 0 ≤ k ≤ K. Our algorithm for estimating

P(YK ∈ Γ) combines sequential importance sampling with resampling. The estimator

takes the product form

dP
dP̃
× dP̃
dQ
× I(YK ∈ Γ), (3)

where Q is an importance measure and P̃ is a sampling measure, both defined on the

sigma-field σ(Yk : k ≤ K). Suppose that under P̃, Y is a Markov chain with transition

density p̃k(x, y). Then the first likelihood ratio in (3) is given by

dP
dP̃

=
K∏
k=1

pk(Yk−1, Yk)

p̃k(Yk−1, Yk)
. (4)

The transitions of Y are sampled sequentially according to p̃k(x, y). The resulting sample

paths are resampled using a set of state-dependent weights; this resampling mechanism

attempts to have the effect of the likelihood ratio dP̃/dQ in the estimator (3). While the

choice P̃ = P is not ruled out, the sampling under a measure different from P may be

convenient and may also lead to additional variance reduction. We will illustrate this in

the context of our numerical case study in Section 6.

3.2 Basic algorithm

We describe the basic SISR algorithm with general resampling weight functions wk ≥ 0,

not necessarily those that attempt to mimic dP̃/dQ in (3). The steps are summarized

in Algorithm 1. Let Y
(r)

0 = Y0 for r = 1, . . . ,m, where m is an integer. At each stage

k = 1, . . . , K, we sample m independent variables Ỹ
(r)
k from the density p̃k(Y

(r)
k−1, ·) and

form the m sample paths, or particles, Ỹ
(r)
k = (Y

(r)
k−1, Ỹ

(r)
k ). From these, we draw m

particles Y
(r)
k = (Y

(r)
0 , . . . , Y

(r)
k ) with replacement using the probabilities defined by the

normalized weights

wk(Ỹ
(r)
k )∑m

j=1 wk(Ỹ
(j)
k )

(5)
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Algorithm 1 SISR with bootstrap resampling

Let m be an integer. Initialize Y
(1)

0 , . . . , Y
(m)

0 to Y0.
for k = 1, . . . , K do

for all r = 1, . . . ,m do
Generate Ỹ

(r)
k from p̃k(Y

(r)
k−1, ·). Set Ỹ

(r)
k = (Y

(r)
k−1, Ỹ

(r)
k ). Compute w

(r)
k = wk(Ỹ

(r)
k ).

end for
if k < K then

Resample using weight wk(Ỹ
(r)
k )/

∑m
j=1wk(Ỹ

(j)
k ) to draw Y

(r)
k , r = 1, . . . ,m.

end if
end for
Return estimator α̂ = m−1

∑m
r=1 ZK(Ỹ

(r)
K )VK−1(Y

(r)
K−1)I(Ỹ

(r)
K ∈ Γ).

for r = 1, . . . ,m. We stop at stage K without resampling. The basic SISR estimator α̂ of

the probability α = P(YK ∈ Γ) is given by

α̂ = m−1

m∑
r=1

ZK(Ỹ
(r)
K )VK−1(Y

(r)
K−1)I(Ỹ

(r)
K ∈ Γ), (6)

where V0 ≡ 1 and

Zk(Ỹk) =
dP
dP̃

(Ỹk) =
k∏
i=1

pi(Yi−1, Ỹi)

p̃i(Yi−1, Ỹi)
(7)

Vk(Yk) =
k∏
i=1

wi
wi(Yi)

, wi = m−1

m∑
r=1

wi(Ỹ
(r)
i ). (8)

In the estimator (6), the term ZK(Ỹ
(r)
K ) is the likelihood ratio between the reference

measure P and the sampling measure P̃ of a particle Ỹ
(r)
K . It takes account of the fact that

we sample from P̃ rather than P. The term VK−1(Y
(r)
K−1) takes account of the resampling

at stages k = 1, . . . , K − 1. The resampling weight functions wi can be chosen so that

Vk(Yk) approximates the likelihood ratio of P̃k to some target importance measure Qk.

In this case, the denominator of Vk(Yk) approximates the likelihood ratio of the target

importance measure Qk to P̃k, and the numerator of Vk(Yk) approximates the normalizing

constant by the product of the sample means of these weights. Specifically, define the

weights wk(Yk) recursively by

k∏
i=1

wi(Yi) ∝
dQk

dP̃k
(Yk); (9)

see (3). When Yk is a Markov chain under Q and P̃, the right side of (9) reduces to

qk(Yk|Yk−1)/p̃k(Yk|Yk−1), where qk(x, y) is the transition density of Y under Q and p̃k(x, y)

is that under P̃. The resampling mechanism eliminates the need to sample directly from
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Qk. Using Vk(Yk) to approximate the likelihood ratio dP̃k/dQk, we have

Zk(Y
(r)
k )Vk(Y

(r)
k ) ≈ dPk

dP̃k
× dP̃k
dQk

=
dPk
dQk

, (10)

ZK(Ỹ
(r)
K )VK−1(Y

(r)
K−1) ≈ dPK

dP̃K
× dP̃K−1

dQK−1

. (11)

Thus, SISR can be used to approximate an importance measure Q by using sequential IS

via the P̃k, which corresponds to dPk/dP̃k in (10), and resampling, which corresponds to

dP̃k/dQk. Note that there is no resampling at stage k = K.

3.3 Central limit theorem and variance estimator

It is important to note that due to the resampling at each stage, the SISR particles are

no longer independent. Therefore, the CLT for independent trials is no longer valid. Chan

& Lai (2011) provide a CLT for the estimators generated by the SISR scheme as well as

a consistent estimator of the asymptotic variance. These results apply to any choice of

weight functions wk, and facilitate the analysis of the SISR estimator (6).

The “ancestral origin” a
(r)
k of a particle Y

(r)
k plays an important role. The first gen-

eration of the m particles, before resampling, is Ỹ
(1)

1 , . . . , Ỹ
(m)

1 . Set a
(r)
k = j if the first

coordinate of Y
(r)
k is Y

(j)
1 , i.e., if Y

(j)
1 is the ancestor of Y

(r)
k . Denote by #

(r)
k the number of

copies of Ỹ
(r)
k generated from Ỹ

(1)
k , . . . , Ỹ

(m)
k to form the m particles of the kth generation.

Further, denote by w
(r)
k the normalized incremental weight (5) for the rth particle of the

kth generation. Chan & Lai (2011) show that the SISR estimator α̂ of α satisfies

√
m(α̂− α)⇒ N (0, σ2) as m→∞, (12)

and that the asymptotic variance σ2 can be consistently estimated by

σ̂2 = m−1

m∑
j=1

{ ∑
r:a

(r)
K−1=j, eY(r)

K ∈Γ

ZK(Ỹ
(r)
K )VK−1(Y

(r)
K−1)

− α̂
[
1 +

K−1∑
k=1

∑
r:a

(r)
K−1=j

(#
(r)
k −mw

(r)
k )
]}2

. (13)

The derivation of (12) and (13) is based on a martingale representation of m(α̂− α)

that is outlined in the Appendix for K = n. This representation is relevant for the analysis

of the asymptotic efficiency of α̂ in Section 4. It also implies that α̂ is unbiased. Finally,

it indicates that each resampling contributes a term to the variance of α̂. Therefore, one

should avoid unnecessary resampling, i.e., one should resample only if it is effective. The

intuition here is that resampling is ineffective when the histogram of the relative weights

(5) is relatively flat, i.e., when the weights are all similar. In that case, resampling generates
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additional variance without significantly improving the estimator. We will return to this

issue in Section 5 below.

3.4 SISR and IPS

The SISR scheme is related to the interacting particle systems (IPS) scheme developed by

Del Moral & Garnier (2005). While designed from a different perspective, the IPS scheme

can be cast as a SISR scheme for which the sampling measure P̃ = P and the resampling

weight wk takes a particular form. For the purpose of estimating P(f(YK) ≥ x), one often

takes wk(Yk) = exp{δ(f(Yk) − f(Yk−1))} for some parameter δ. Although the general

IPS scheme of Del Moral & Garnier (2005) can in principle allow for other choices, this

formulation is widely adopted in the literature on portfolio credit risk; see Carmona &

Crépey (2010), Carmona et al. (2009) and Giesecke et al. (2010).

The IPS tilting parameter δ remains fixed through all stages k = 1, . . . , K. To ensure

a reasonable performance of the algorithm, δ must take the form δ = δ(x). The asymp-

totically optimal choice of δ(x) has not yet been addressed in the literature. Therefore,

ad-hoc approaches have been used to determine δ(x). One approach is to choose δ(x) so as

to minimize the relative error of the estimator for a given x. The corresponding optimiza-

tion is based on a number of auxiliary simulation experiments, in which a set of proposal

values of δ(x) are tested. These additional experiments reduce the computational budget

available for the actual simulation. Moreover, the values of δ(x) so obtained tend to be

unstable because they are influenced by the variance of the estimator. For this reason it

is difficult to obtain reasonable estimates of extreme tail probabilities.

In the next section, we propose resampling weight functions wk for the SISR Algo-

rithm 1 that lead to an estimator (6) of α = P(YK ∈ Γ) that is provably efficient. These

weight functions do not require the selection of a tuning parameter.

4 Efficiency analysis

The SISR algorithm requires the selection of a sampling measure P̃ and the weight func-

tions wk. Consider an event {YK ∈ Γ} of the form {JT = x} = {Tx ≤ T < Tx+1},
setting K = min(x + 1, n), which is the event that the portfolio loss at T is equal to

x ∈ {0, 1, . . . , n}. We propose resampling weight functions wk = wk(Yk) of the form

wk =

 Zk

πk−1Zk−1

(
πk

πk−1

)x−k
exp{(πk − x

T
)(Tk − Tk−1) + (πk−1 − πk)T} if Tk < T

0 otherwise,
(14)

where πk =
∑n

i=1 π
i(Tk, Uk) is the intensity of J at the kth arrival time Tk for 1 ≤ k ≤ x,

and Zk is the likelihood ratio (7). Below, we develop conditions guaranteeing that, with the

choice of the weight function (14) and the sampling measure P̃ = P, the SISR estimator

of α = P(JT = x) is logarithmically efficient. Recall that if α = αn is a rare-event

sequence, i.e., if αn → 0 as n→∞, then a Monte Carlo estimator α̂n of αn is said to be
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logarithmically efficient, if

Var(α̂n) ≤ m−1α2+o(1)
n as n→∞; (15)

an estimator is said to be strongly efficient if Var(α̂n) = O(m−1α2
n). The SISR estimator

(6) of P(JT = x) is not expected to be strongly efficient because resampling introduces

additional variance and the errors due to using resampling weights to approximate optimal

importance sampling, such as in (9), aggregate. On the other hand, the growth of the

additional variance can be made sub-exponential by choosing the resampling weights

appropriately, leading to logarithmic efficiency.

4.1 Rare event regime and result

The intuitive notion that corporate defaults are rare events can be formalized by prescrib-

ing each πi to approach 0. On the other hand, the number of firms n in a credit portfolio is

typically large, and letting n→∞ may still produce a non-negligible number of defaults

within a time horizon T . Because of default correlations among this large number of firms

and the variations of πi over times t ≤ T and states B, it is difficult to carry out an

asymptotic analysis without assuming uniformity in convergence of πi(t, B) to 0. For the

purpose of our asymptotic analysis, we therefore make two assumptions.

Assumption 1. Suppose πi(t, B) = (π∗ + δi(t, B))(1 − N i
t ) for all 1 ≤ i ≤ n, where

π∗ = π∗(n) and for some positive constants c1 < c2 and rn = o(n), |δi(t, B)| ≤ rn and

c1/n ≤ π∗(n) ≤ c2/n for all 0 ≤ t ≤ T and B ∈ S.

Assumption 2. Letting x = xn and T = T (n), assume that x → ∞, xn = o(n) and

T ∼ bx for some 0 < b < 1/c2.

The function δi(t, B) describes the impact of a default before t on the intensity of

firm i, at the level of the mimicking Markov chain M . Assumption 1 states that, in the

limit that n → ∞, the impact of a default is negligible. Moreover, it states that the

variation of πi(t, B) over i, t and B vanishes in the limit, so that asymptotically, all firms

default at intensity π∗ = π∗(n). Under Assumption 1, the number JT of defaults up

to time T is nπ∗(T + oP(1)), since the inter-arrival times of J are asymptotically i.i.d.

exponential with mean 1/π∗. In view of this and Assumption 2, the probability of the

event {JT = x} = {Tx ≤ T < Tx+1} has a large deviation approximation involving sums

of i.i.d. exponential random variables. This leads to the following result.

Theorem 3. Let α̂n be the estimator of αn = P(Txn ≤ T < Txn+1) generated by the SISR

Algorithm 1 using P̃ = P and the resampling weights (14) with Zk = 1 for all k. Under

Assumptions 1 and 2, α̂n is logarithmically efficient.

4.2 Proof of logarithmic efficiency

The proof of Theorem 3 builds on an argument of Chan & Lai (2011), who establish the

logarithmic efficiency of a SISR estimator of the large deviation probability P(g(Sn/n) ≥
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b). Here, b > g(Eξ) and Sn =
∑n

i=1 ξi, where ξ, ξ1, ξ2, . . . are i.i.d. d-dimensional random

vectors such that ψ(θ) = log E(eθ
′ξ) < ∞ for ‖θ‖ < θ0. Let Θ = {θ : ψ(θ) < ∞} and let

Λ be the closure of ∇ψ(Θ). For µ belonging to the interior of Λ, let θµ = (∇ψ)−1(µ) and

define the rate function φ(µ) = θ′µµ− ψ(θµ). Here the Markov chain Yn is Sn, and in the

special case that d = 1 and g(x) = x, standard large deviation approximations suggest

the following choice of the resampling weights when P̃ = P:

wk = eθbξk−ψ(θb). (16)

Large deviation approximations are also available in the general case under certain smooth-

ness assumptions on g, yielding the resampling weights

wk(Yk) = exp{θ̂′kSk − kψ(θ̂k)− [θ̂′k−1Sk−1 − (k − 1)]ψ(θ̂k−1)} (17)

in which θ̂k = arg maxθ∈ϑ{θ′Sk/k−ψ(θ)}, where ϑ = {θ : φ(µθ) ≤ infg(µ)≥b φ(µ)} contains

all “dominating points” in large deviation theory. As explained in the Appendix, there

are two important elements of the efficiency analysis. The first is the bound

P(g(Sn/n) ≥ b|Sk) ≤ e−nI+o(n)

k∏
i=1

wi, (18)

where I = inf{φ(µ) : g(µ) ≥ b} and wi is defined in (17). The second are the following

bounds on the first two conditional moments of wi:

E(wi|Fi−1) ≤ eρi , E(w2
i |Fi−1) ≤ C for all 1 ≤ i ≤ n, (19)

where ρi and C are nonrandom constants such that limi→∞ ρi = 0, and where the σ-field

Fi−1 is defined in the Appendix.

We modify these ideas to prove Theorem 3. In particular, first note that P(g(Sn/n) ≤
b) with b < g(µ) can be handled similarly. Consider the special case in which ξ is expo-

nential with intensity λ. Here ψ(θ) = log(λ/(λ− θ)) and d
dθ
ψ(θ) = (λ− θ)−1 for θ < λ, so

θµ = λ− µ−1. Therefore the resampling weights (16) that yield a logarithmically efficient

SISR algorithm (with P̃ = P) to evaluate P(Sn ≤ bn), with b < µ, reduce to

wk = exp{θbξk − ψ(θb)} = (λ/b−1)e(λ−b−1)ξk . (20)

To prove Theorem 3, let λn = nπ∗(n). For notational simplicity, we shall drop the

subscript n in xn and denote T (n) by T . Note that since x = o(n), we have uniformly in

k ≤ x

πk−1/(nπ
∗(n))→ 1, (πk/πk−1)x−k ∼ (x− k)/n, (πk−1 − πk)T = O(x/n), (21)

in view of Assumptions 1 and 2. Let ξk = Tk−Tk−1. As noted in Section 4.1, Assumptions

1 and 2 imply that the ξk are approximately i.i.d. exponential with intensity λn for k ≤
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x = o(n), and c1 ≤ λn ≤ c2. Therefore we have the following analog of (18):

P(Tx ≤ T |Yk) = P(x−1Tx ≤ (1 + o(1))b|Tk)

= e−(Ib+o(1))xeθbTk−kψ(θb)

∝ eθbTk−kψ(θb), (22)

where θb = λn − b−1 and Ib = (b−1 − λn)b − log(λn/b
−1). Moreover, x/T ∼ b−1 by

Assumption 2. In view of (21) and that c1 ≤ λn ≤ c2 and λn = nπ∗(n) = πk(1 + o(1)) for

1 ≤ k ≤ x = o(n), this argument has proved the logarithmic efficiency of the resampling

weights (20), with λ replaced by λn, for the SISR estimator of P(Tx ≤ T ). Although

the event of interest is {Tx ≤ T < Tx+1} rather than {Tx ≤ T} = {JT ≥ x}, (22) still

holds with {Tx ≤ T < Tx+1} replacing {Tx ≤ T}, which can be shown by making use of

saddlepoint approximations for the density functions; see Jensen (1995, Section 2.2) for

the i.i.d. case and Chan & Lai (2003) for the present Markovian setting. In view of (21),

using the resampling weights wi defined by (14) instead of eθbξk−ψ(θb) associated with (22)

still yields

P(Tx ≤ T < Tx+1|Yk) ≤ e−(Ib+o(1))x

k∏
i=1

wi (23)

and the bounds (19). Thus, we again have the two key elements of the analysis of efficiency

as described above, with (23) replacing (18) in the present setting. We are in a position

to apply the same argument as that summarized in the Appendix to complete the proof

of Theorem 3.

4.3 Discussion

The preceding argument basically uses the resampling weights wk = exp
(
(λn − b−1)ξk

)
when the ξk are i.i.d. exponential and extends the argument to the present setting by

exploiting Assumptions 1 and 2. For the case P̃ = P, it is natural to ask why we do

not stick to these resampling weights but use (14) instead while using (21) to show that

those more complicated weights are asymptotically equivalent to wk = exp
(
(λn − b−1)ξk

)
under Assumptions 1 and 2. The reason is that we want the weights (14) to be generally

applicable, far beyond what Assumptions 1 and 2 allow. We start by replacing λn in

exp
(
(λn − b−1)ξk

)
by some representative intensity over the interval (Tk−1, Tk+1) within

which Tk assumes its value. Two obvious choices of this representative intensity are πk−1

and πk, which are asymptotically equivalent under Assumptions 1 and 2 but which can

differ substantially in general. The additional factor π−1
k−1(πk/πk−1)x−k exp{(πk−1− πk)T}

in (14) is used to adjust for this difference. We have arrived at the adjustment by the

following heuristics.

The key idea underlying the preceding argument to establish logarithmic efficiency

under Assumptions 1 and 2 is that the resampling weights wk can be chosen such that

11



they have good variance properties, as specified by (19), and also satisfy

P(JT = x|Yk) ≤ α1+o(1)
n

k∏
i=1

wi, (24)

for which (22) is the analog in the case of P(Tx ≤ T |Yk). The preceding treatment of the ξk
as approximately i.i.d. exponential suggests that a simple approximation to the seemingly

intractable conditional distribution of JT given Yk, which we shall denote by JT |Yk, is

Poisson with mean λ(T − Tk). In particular, setting λ = πk for JT |Yk and λ = πk−1 for

JT |Yk−1 suggests that a suitable approximation of the ratio

P(Poisson(πk(T − Tk)) = x)/P(Poisson(πk−1(T − Tk−1)) = x)

may be a good choice for wk, in view of (24). The reason why we use an approximation

instead of the ratio itself is to ensure that the weights wk thus constructed have good

variance properties. Starting with the case πk = πk−1 = λn considered in the proof of

Theorem 3 suggests the form of the approximation, which we modify as (14).

We close this section by emphasizing that the scope of the resampling weights (14) we

have proposed and analyzed in this section is much broader than that of Assumptions 1

and 2. The numerical experiments in Section 6 illustrate that the weights (14) generate a

SISR estimator that can perform well also in more complex intensity model formulations

that violate Assumptions 1 and 2.

5 Occasional resampling

Section 4 has shown how the resampling weights wk = wk(Ỹk) can be chosen to obtain an

efficient SISR estimator. For a given sequence of resampling weights wk, the performance

of the SISR scheme can be improved by resampling only at certain pre-specified or data-

dependent times.

As pointed out in the discussion of (23) and (24), the product
∏k

i=1 wi plays a basic

role in the performance of the SISR estimator of a rare-event probability when resampling

is carried out at every stage k = 1, 2, . . . , K. This suggests that if one performs resampling

only at times R1 < R2 < . . . , one should keep track of the product

Wk =
k∏

s=Rj+1

ws for Rj < k ≤ Rj+1

so that a SISR scheme with occasional resampling has properties similar to those of the

basic Algorithm 1. Kong, Liu & Wong (1994) have proposed a method of choosing the

resampling times, which has been widely used in the IPS literature and the closely related

literature on particle filters. The method is based on the coefficient of variation (CV),

which is the standard deviation divided by the mean, of the weights W
(1)
k ,W

(2)
k , · · · ,W (m)

k

12



Algorithm 2 SISR with occasional bootstrap resampling

Let m be an integer. Initialize Y
(1)

0 , . . . , Y
(m)

0 to Y0. Set the CV threshold κ. Set TR = 0
and V (r) = 1 for r = 1, . . . ,m.
for k = 1, . . . , K do

for all r = 1, . . . ,m do
Generate Ỹ

(r)
k from p̃k(Y

(r)
k−1, ·). Set Ỹ

(r)
k = (Y

(r)
k−1, Ỹ

(r)
k ). Compute w

(r)
k = wk(Ỹ

(r)
k ).

The resampling weights are defined as W
(r)
k =

∏k
s=TR+1w

(r)
s .

end for
Calculate the CV of the resampling weights W

(r)
k .

if k < K and CV> κ then
Update: TR ← k. V (r) ← V (r) ×W k/W

(r)
k where W k =

∑m
r=1 W

(r)
k /m.

Resample using weights W
(r)
k /

∑m
j=1 W

(j)
k to draw (Y

(r)
k , V (r)), r = 1, . . . ,m.

else
Let Y

(r)
k = Ỹ

(r)
k .

end if
end for
Return estimator α̂ = m−1

∑m
r=1 ZK(Ỹ

(r)
K )V (r)I(Ỹ

(r)
K ∈ Γ), where ZK is defined in (7).

of the m particles. When the CV is large, the effective sample size,1 given by m
1+CV 2 , is

small. This leads to the recommendation of Kong et al. (1994) to resample whenever

the CV of the weights exceeds a specified threshold. Algorithm 2 summarizes the SISR

scheme with occasional resampling with a CV threshold κ. In the special case that the

CV threshold κ = 0, we obtain Algorithm 1, which prescribes resampling at each stage.

When κ→∞, we never resample and obtain a plain sequential IS scheme. The arguments

used to prove (12) and (13) can be modified to show that the estimator α̂ of α generated

by Algorithm 2 satisfies
√
m(α̂ − α) ⇒ N (0, σ2) as m → ∞, and that the asymptotic

variance σ2 can be consistently estimated by

σ̂2 = m−1

m∑
j=1

{ ∑
r:a

(r)
Rs(K)−1=j, eY(r)

K ∈Γ

ZK(Ỹ
(r)
K )VRs(K)

(Y
(r)
Rs(K)

)

− α̂
[
1 +

s(K)∑
s=1

∑
r:a

(r)
Rs−1=j

(#
(r)
Rs
−mW (r)

Rs
)
]}2

(25)

where the R1, R2, . . . , Rs(K) are the resampling times and all other notation is defined in

Section 3.3.

1Kong et al. (1994) show that the ratio of the variance of an estimator based on weighted samples to
the variance of a direct Monte Carlo estimator based on i.i.d. samples is approximately 1 + CV 2.
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6 Numerical experiments

This section evaluates the performance of the SISR Algorithms 1 and 2. The SISR es-

timators are contrasted with those generated by direct Monte Carlo simulation, an IPS

scheme, and an IS scheme. The simulations are performed on a desktop computer with

Intel Core i5 processor and 4 GB of RAM. The methods are implemented in R, which

only uses a single CPU core.

6.1 Stochastic intensity model

We specialize to the setting of Section 2 and consider a self-exciting stochastic intensity

model λ = (λ1, . . . , λn) proposed and analyzed using an IPS scheme by Giesecke et al.

(2010). Variants and special cases of this model have been studied by Jarrow & Yu (2001),

Kusuoka (1999), Yu (2007) and others. Suppose firm i has intensity

λi = X i + βi ·N (26)

where N = (N1, . . . , Nn) is the vector of default indicators, βi = (βi1, . . . , βin) is a vector

of non-negative reals with βii = 0, and X i is a risk factor following a Feller diffusion

dX i
t = κi(θi −X i

t)dt+ σi
√
X i
tdW

i
t , X i

0 > 0. (27)

Here κi is a parameter controlling the speed of mean-reversion of Xi, θi is the level of

mean reversion, and σi controls the diffusive volatility of Xi. The process (W 1, . . . ,W n)

is a standard Brownian motion. The parameter βij determines the impact on firm i of

firm j’s default. The corresponding jump terms βi ·N generate correlations between the

firms’ intensities. Thus, the vectors βi govern the default dependence structure.

Our goal is to estimate the distribution of portfolio loss LT = ` · NT under the

model (26)–(27), where T > 0 is a fixed horizon and ` is the vector of position losses. As

explained in Section 2, it suffices to estimate the distribution of JT = ` ·MT , which agrees

with the distribution of LT . Here, M is the Markov chain mimicking N . We estimate

the probabilities P(JT = x) = P(LT = x) for integers x ∈ [0, n], taking ` = (1, . . . , 1).

Proposition 3.5 of Giesecke et al. (2010) implies that the transition rate (2) of the Markov

chain M takes the form

πi(t, B) = (1−Bi)

(
βi ·Nt −

∂zφ
i(t, z)|z=0

φi(t, 0)

)
, B ∈ S, (28)

where φi(t, z) = E(exp(−
∫ t

0
X i
sds − zX i

t)) is exponentially affine in X i
0 under the model

(27), with coefficient functions given in Cox, Ingersoll & Ross (1985). Thus, for γi =√
κ2
i + 2σ2

i and Bi = 0, we have the explicit formula

πi(t, B) =
4X i

0γ
2
i e
γit

(γi − κi + (γi + κi)eγit)2
− θiκi

σ2
i

(κ2
i − γ2

i )(e
γit − 1)

γi − κi + (γi + κi)eγit
+ βi ·B. (29)
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Unless stated otherwise, the model parameters are selected randomly. We draw κi
from U [0.5, 1.5] and θi from U [0.001, 0.051]. We take σi = min(

√
2κiθi, σi) where σi is

drawn from U [0, 0.2]. We draw βij from U [0, 0.01], for each i, j = 1, . . . , n, i 6= j. This

selection procedure results in a relatively homogenous portfolio of relatively high credit

quality. In practical pricing applications, the parameters would be calibrated from market

rates of credit derivatives referenced on the constituent issuers and on the portfolio, as in

Eckner (2009) and Mortensen (2006). In risk management applications, the parameters

would be estimated from historical default experience, as in Duffie et al. (2006).

6.2 SISR vs. direct Monte Carlo

We begin by comparing the estimators of the loss probabilities P(JT = x) generated by

Algorithms 1 and 2 with those generated by a direct Monte Carlo (MC) scheme. In the

SISR algorithms, we use the weight function (14). We also take the sampling measure

P̃ = P; another choice is considered in Section 6.4. For Algorithm 2, we use the CV

threshold κ =
√

2. Thus, we resample whenever the effective sample size reaches one

third of the number of weighted samples m. Our results indicate that the performance of

Algorithm 2 is relatively insensitive to the particular value of κ chosen.

The direct MC scheme and the SISR schemes with P̃ = P require the simulation of

transitions of M under P. We generate a jump time Tk of J using the exact thinning

scheme of Lewis & Shedler (1979). This scheme relies on the fact that the intensity∑n
i=1 π

i(t,Mt) of J is deterministic between the Tk. At a jump time Tk, we draw the

component of M in which the transition took place from the discrete distribution given

by πi(Tk, Uk−1)/
∑n

j=1 π
j(Tk, Uk−1) for i = 1, . . . , n.

We estimate the loss probabilities P(J1 = x) for a portfolio of n = 100 firms. Table 1

reports the estimates for x = 15, . . . , 30. For a given SISR algorithm, we perform separate

simulation experiments for each of the 16 values of x. An experiment uses 1000 particles.

For direct MC, a single simulation experiment yields estimates of P(J1 = x) for all values

of x, unlike the SISR schemes that depend on x. The number of direct MC trials, 80,000, is

chosen to roughly match the total computation time required by the 16 SISR experiments.

This choice facilitates the comparison of the estimators.

For 16 ≤ x ≤ 27, Algorithm 1, which resamples at every stage, is more accurate

than Algorithm 2 but requires slightly more CPU time. While the SISR schemes provide

accurate estimates for all 16 values of x with relative error below 35%, the direct MC

simulation fails to provide estimates for x ≥ 18. Figure 1 plots the estimates for all x =

0, 1, . . . , 100 along with their CVs generated by Algorithm 2. We observe that SISR yields

meaningful estimates for the extreme tail of the loss distribution, where the probabilities

are of order 10−67.

We compare the computation time requirements of the SISR Algorithm 2 with those

of the direct MC scheme. It takes 4.1 seconds to generate 1000 direct MC replications.

The average number of defaults per replication is 3.22. Viewing a default as an event in

the thinning scheme of Lewis & Shedler (1979), the cost of generating one default per 1000

replications is 1.27. In comparison with direct MC simulation, the SISR schemes require
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SISR Algorithm 1 SISR Algorithm 2 Direct MC
x Estimate CV CPU Estimate CV # CPU Estimate CV
15 1.805e− 04 0.1750 15.90 2.149e− 04 0.1726 6 13.96 1.375e− 4 0.30
16 8.972e− 05 0.1687 16.78 1.029e− 04 0.1957 7 14.68 8.750e− 5 0.38
17 6.127e− 05 0.1468 17.55 4.120e− 05 0.1899 7 15.32 1.250e− 5 1.00
18 1.470e− 05 0.1891 18.72 1.378e− 05 0.2000 8 16.52 0 N/A
19 6.797e− 06 0.2790 19.55 4.852e− 06 0.2555 9 17.12 0 N/A
20 3.276e− 06 0.2021 20.47 2.630e− 06 0.1896 10 18.26 0 N/A
21 1.633e− 06 0.1941 20.98 1.316e− 06 0.2411 10 18.77 0 N/A
22 5.596e− 07 0.2191 22.34 4.948e− 07 0.2101 11 20.09 0 N/A
23 1.932e− 07 0.2157 23.26 2.268e− 07 0.2311 12 20.75 0 N/A
24 6.194e− 08 0.2362 23.65 5.173e− 08 0.2752 13 21.56 0 N/A
25 2.371e− 08 0.2016 24.60 2.168e− 08 0.2523 14 22.79 0 N/A
26 1.140e− 08 0.3111 25.60 1.076e− 08 0.3370 14 23.53 0 N/A
27 3.415e− 09 0.2565 26.80 2.914e− 09 0.3344 16 24.30 0 N/A
28 9.140e− 10 0.3057 27.35 1.313e− 09 0.2651 16 25.12 0 N/A
29 7.588e− 10 0.3051 28.17 6.167e− 10 0.2873 18 26.38 0 N/A
30 1.603e− 10 0.2640 28.58 1.534e− 10 0.2567 18 26.92 0 N/A

Table 1: Estimating P(J1 = x) for various values of x for a portfolio of n = 100 firms using

SISR Algorithms 1 and 2 with sampling measure P̃ = P, resampling weight functions wk
given by (14), CV threshold κ =

√
2 (if applicable) and 1,000 particles, and direct Monte

Carlo using 80,000 trials. The “Estimate” column reports the estimate. The “CV” column
reports the coefficient of variation of a SISR estimator, given by the ratio of standard
deviation to the mean of the estimator. The standard deviation of a SISR estimator
is given by the square root of the asymptotic variance (13) and (25), respectively. The
standard deviation of a direct MC estimator is given by the sample standard deviation
of the simulation output. The “#” column reports the number of resampling steps. The
“CPU” column reports the CPU time in seconds required to perform a simulation.

the storage of particles and an additional resampling step. A regression analysis indicates

that the computation time needed by the SISR scheme grows roughly linearly, with an

intercept representing fixed costs (memory allocation etc.) of 0.50. After these fixed costs,

the cost of generating one default per 1000 particles is roughly 0.88. Adjusting the costs of

the direct MC scheme for these fixed costs, we see that both schemes require roughly the

same amount of computation time to generate one default per 1000 replications (particles),

which is roughly the cost required by the thinning scheme of Lewis & Shedler (1979) to

generate an event.

6.3 SISR vs. IPS

Next we compare the estimators of P(JT = x) generated by the SISR Algorithm 2 as

configured in Section 6.2 with those generated by an IPS scheme for the Markov chain
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Figure 1: SISR estimates of P(J1 = x) for all values of x = 0, 1, . . . , 100 for a portfolio of
n = 100 firms, along with the CV for each of the estimates. The SISR scheme is based on
P̃ = P and weight function (14) with 1000 particles.

Yk = (Tk, Uk). To facilitate a meaningful comparison, in the IPS scheme we perform

a selection (i.e., resample) whenever the effective sample size is less than one third of

the number of IPS particles. As explained in Section 3.4, the IPS scheme requires the

selection of a parameter δ = δ(x) specifying the weight function, for each value of x. We

use a grid search over [0.2, 3] with a step size 0.2 to determine the value of δ(x) for which

the IPS estimator obtained using 1, 000 particles has the smallest CV. The variance of

the estimator is obtained from (13).

We estimate the loss probabilities P(J1 = x) for a portfolio of n = 100 firms. Table 2

reports the estimates for x = 15, . . . , 30. As in the case of SISR, we perform 16 separate

IPS experiments to obtain these estimates. We choose the number of IPS particles in a

given experiment to roughly match the computation time required by the corresponding

SISR experiment (Algorithm 2). Here, when calculating the IPS computation time, we

ignore the time required to determine the value of δ(x).

The CV column of Table 2 indicates that the IPS estimates of P(J1 = x) have a

relative error exceeding 50% for all values x ≥ 18. Figure 2, which plots the estimates and

their CV, indicates that the IPS estimates become unreliable for large x although they

are based on a larger number of particles than the SISR scheme. The values of δ(x) shown

in Table 2 are not monotone in x, suggesting that the CV criterion used to determine the

value of δ(x) in the IPS scheme may lead to unstable choices. It seems difficult to avoid

these issues, because working with a fixed δ for any x degrades the performance of the

IPS scheme. Figure 3 shows the IPS estimates and their CVs when a fixed value of δ is

used, for each of several values of δ. When δ is not large enough, the rare event set is not

hit. On the other hand, the IPS estimator becomes unreliable when δ is too large because
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IPS Scheme
x δ(x) Particles Estimate CV # CPU
15 2.2 1500 1.529e− 04 0.3367 5 12.87
16 2.0 1500 4.923e− 05 0.3694 6 13.06
17 2.0 1500 2.329e− 05 0.3914 6 13.64
18 2.0 1500 1.080e− 05 0.5571∗ 7 14.21
19 2.4 1500 1.811e− 06 0.5140∗ 7 14.72
20 2.2 1500 9.530e− 07 0.6117∗ 8 15.26
21 2.0 1500 1.080e− 06 0.7471∗ 8 15.65
22 2.2 1500 1.031e− 06 0.5021∗ 8 16.67
23 1.8 1500 1.469e− 07 0.6931∗ 9 15.81
24 3.0 1800 9.702e− 09 0.8374∗ 10 21.46
25 3.0 1800 9.683e− 10 0.9694∗ 11 21.80
26 2.2 1800 1.706e− 09 0.8120∗ 11 21.14
27 2.0 1800 3.102e− 10 0.7712∗ 11 20.55
28 3.0 1800 3.291e− 10 0.7440∗ 13 24.86
29 2.2 2000 5.047e− 10 0.9232∗ 12 26.35
30 2.6 2000 3.245e− 11 1.0052∗ 13 27.33

Table 2: Estimating P(J1 = x) for various values of x for a portfolio of n = 100 firms
using an IPS scheme. The “δ(x)” column reports the value of the parameter δ(x) that
minimizes the CV of an estimator. The “Particles” column reports the number of IPS
particles used; this number is chosen to roughly match the computation time required by
the corresponding SISR Algorithm 2 experiment in Table 1. The “CV” column reports
the coefficient of variation of an IPS estimator, given by the ratio of standard deviation
to the mean of the estimator. The standard deviation of an IPS estimator is given by
the square root of the asymptotic variance (25). The “#” column reports the number
of selections performed (resampling steps). The “CPU” column reports the CPU time in
seconds required to perform the simulation, excluding the time it takes to determine δ(x).
An “∗” indicates cases with CV exceeding 50%.

of its large variance.

6.4 SISR vs. IS and choice of the sampling measure

The choice of a sampling measure P̃ different from P can be beneficial in some situations.

Suppose the portfolio contains a high-quality firm whose default has a strong impact on

the other firms in the portfolio. When this firm defaults, it causes, with high probability, a

cascade of other failures. A failure cascade may be associated with contagion, by which the

default by one firm has a direct impact on the health of other firms, channeled through the

complex relationships in the economy. Let constituent 1 be this firm, and let θ1 = 0.001

and βi1=0.05 for each i = 2, . . . , n. Let all other βij = 0; all other parameters are as in

the preceding Sections 6.2 and 6.3. This configuration of βij implies that a default of firm
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Figure 2: Estimates of P(J1 = x) generated by the IPS scheme and SISR Algorithm 2 in
a portfolio of n = 100 firms, along with the CV of each of the estimates. The value of the
IPS parameter δ(x) is chosen according to the CV criterion.

1 increases the intensities of all surviving firms by 0.05.

By choosing a sampling measure P̃ that increases the default probability of firm 1

relative to the reference measure P, we may improve the efficiency of the SISR scheme.

We consider a sampling measure P̃ such that the reversion parameter θ̃1 = 1; all other

model parameters under P̃ are the same as those under P. We denote the SISR scheme

by SISReP to emphasize this choice of P̃. Although we need fewer particles to achieve a

given accuracy with this choice of P̃, the computational effort required to evaluate the

estimator (6) is larger. This is because we need to evaluate the likelihood ratio (7) of P
to P̃, which at stage k is given by

Zk =
k∏
i=1

exp

(∫ Tk∧T

0

log

(
πi(s−,Ms−)

π̃i(s−,Ms−)

)
dM i

s −
∫ Tk∧T

0

(πi(s,Ms)− π̃i(s,Ms))ds

)
.

Here, πi is the transition rate of the component M i of M under P, and π̃i is the transition

rate under P̃. With our choice of P̃, Zk simplifies to

Zk =

(
π1(τ 1−,Mτ1−)

π̃1(τ 1−,Mτ1−)

)M1
Tk∧T

exp

(
−
∫ Tk∧T

0

(π1(s,Ms)− π̃1(s,Ms))ds

)
, (30)

where π1(t, B) is given by (29) and π̃1(t, B) is given by (29) with θ̃1 replacing θ1. Note that

π1(t, B) = π̃1(t, B) = 0 for all B ∈ S with B1 = 1. Despite the additional computational

cost associated with evaluating (30), the efficiency gains due to using P̃ rather than P for
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Figure 3: Estimates of P(J1 = x) generated by the IPS scheme in a portfolio of n = 100
firms, along with the CV of each of the estimates. The value of the parameter δ is fixed
for all x in advance rather than chosen according to the CV criterion.

sampling can be substantial, as we will illustrate.

We use the weights (14) in conjunction with P̃ for SISReP Algorithm 2. For compar-

ison, we also consider the IS scheme of Giesecke & Shkolnik (2010), which rescales the

constituent intensities proportionally so that J is a stopped Poisson process with rate x.

While SISReP uses 1, 000 particles, IS uses 10, 000 simulation trials. Table 3 shows that

although IS requires more CPU time than SISReP, its estimates have considerably larger

relative errors than those of SISReP. In fact, all except two of the CV values of IS in Table

3 are larger than 60% while those of SISReP are all below 37%.

We have also considered an alternative ad-hoc IS scheme ISeP that uses P̃ as the

importance measure rather than the measure identified by Giesecke & Shkolnik (2010).

In order to roughly match the CPU time of SISReP, ISeP is based on 4, 000 simulation runs.

ISeP performs better than IS only for a few values of x. It fails for x ≥ 16, yielding no

simulation run that hits the rare event. The reason why SISR can work well with the

importance measure P̃ whereas ISeP fails is that resampling makes up for the inadequacy

of P̃ to appropriately transform the rare event under P. This is similar to the situation in

Section 6.2, in which both SISR and direct Monte Carlo sample from P.

We have also studied the choice P for the sampling measure in SISR, which still uses

(14) for wk and which we denote by SISRP. Note that SISReP takes more time to run than

SISRP because of the need to evaluate the likelihood ratio (7). To roughly match the total

computation times, we use 2, 000 particles for SISRP. The CV values are even worse than

those of the IS scheme of Giesecke & Shkolnik (2010) reported in Table 3. Noted that P̃
raises the intensity of firm 1 by increasing θ1 = 0.001 to θ̃1 = 1, while keeping all other

parameters under P unchanged. The performance of SISReP is robust with respect to the
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SISReP IS
x Particles Estimate CV CPU Runs Estimate CV CPU
15 1000 1.065e− 06 0.1694 21.82 10000 2.386e− 08 0.3394 47.04
16 1000 5.203e− 07 0.2909 22.83 10000 7.084e− 08 0.6227 44.88
17 1000 9.100e− 08 0.1826 23.71 10000 2.778e− 10 0.3139 47.72
18 1000 5.435e− 08 0.1940 24.66 10000 1.017e− 07 0.9885 49.39
19 1000 1.844e− 08 0.2407 26.09 10000 3.594e− 08 0.7408 53.01
20 1000 5.466e− 09 0.2399 28.23 10000 3.415e− 09 0.8280 53.43
21 1000 8.984e− 10 0.2466 30.72 10000 7.783e− 12 0.7008 51.88
22 1000 2.656e− 10 0.3337 31.01 10000 2.983e− 11 0.9990 52.56
23 1000 6.641e− 11 0.2884 33.06 10000 7.302e− 12 0.9989 56.13
24 1000 1.345e− 11 0.2868 33.52 10000 4.859e− 11 0.8631 55.52
25 1000 4.460e− 12 0.3146 34.16 10000 8.424e− 12 0.9363 55.10
26 1000 6.672e− 13 0.3629 37.70 10000 1.104e− 13 0.9944 57.39
27 1000 1.115e− 13 0.3334 38.25 10000 1.209e− 13 0.8446 61.62
28 1000 3.342e− 14 0.3299 40.03 10000 1.096e− 15 0.6062 57.72
29 1000 3.808e− 15 0.3082 42.54 10000 1.997e− 15 0.9972 61.11
30 1000 1.518e− 15 0.3105 43.64 10000 5.039e− 15 0.8476 60.17

Table 3: Estimating P(J1 = x) for various values of x for a portfolio of n = 100 firms under
a contagion model in which the default by firm 1 has a large impact on the other firms.
The estimates are obtained using the SISR Algorithm 2 with P̃ 6= P, wk given by (14) and
κ =
√

2, and the IS scheme of Giesecke & Shkolnik (2010). The “Particles” column gives
the number of SISR particles used. The “Runs” column reports the number of simulation
runs for IS. The “Estimate” columns report the estimates. The “CV” columns report the
coefficients of variation of the various simulation estimators. The “CPU” columns report
the CPU time in seconds required to perform the simulations.

choice of θ̃1, yielding similar results when we vary θ̃1 from 0.3 to 2.

The IS scheme of Giesecke & Shkolnik (2010) performs much better for relatively

homogeneous portfolios, as in the parameter configuration treated in Sections 6.2 and

6.3. Using an appropriate number of simulation runs to roughly match the CPU time of

the SISR Algorithm 2 reported in Table 1, Table 4 indicates the performance of the IS

estimate of P(J1 = x) under the parameter configuration treated in Sections 6.2 and 6.3. A

comparison of Tables 4 and 1 indicates that because IS is faster than SISR when estimating

P(J1 = x), which in turn makes it possible to use more trials in each experiment, the IS

estimator has a smaller CV than the estimator generated by SISR Algorithm 2.

7 Conclusion

The management of credit risk in portfolios of defaultable assets such as loans and corpo-

rate bonds requires accurate estimates of the probability of large losses due to defaults.

We provide a sequential Monte Carlo method for the efficient and unbiased estimation of
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IS
x Runs Estimate CV CPU
15 2968 2.162e− 04 0.05855 14.26
16 3271 9.733e− 05 0.05762 15.88
17 3210 4.181e− 05 0.05924 15.74
18 3345 1.796e− 05 0.06214 16.11
19 3230 7.999e− 06 0.06348 16.12
20 3418 2.971e− 06 0.06169 18.02
21 3618 1.351e− 06 0.06238 19.64
22 3822 5.342e− 07 0.06040 21.04
23 3697 2.226e− 07 0.06208 21.27
24 3883 8.291e− 08 0.06600 21.60
25 4136 2.859e− 08 0.06728 21.59
26 4100 1.083e− 08 0.06327 22.72
27 3944 4.415e− 09 0.06396 24.91
28 4352 1.532e− 09 0.06268 26.63
29 4317 5.352e− 10 0.06623 25.72
30 4474 1.923e− 10 0.06361 26.93

Table 4: Estimating P(J1 = x) for various values of x for a portfolio of n = 100 firms under
the model treated in Sections 6.2 and 6.3 using the IS scheme of Giesecke & Shkolnik
(2010). The “Runs” column reports the number of IS runs; this number is chosen to
roughly match the computation time required by the corresponding SISR Algorithm 2
experiment reported in Table 1. The “Estimate” column reports the estimate. The “CV”
column reports the coefficient of variation of the IS estimator.

such probabilities in the widely-used dynamic point process models of portfolio credit risk.

At the center of the method is a resampling mechanism that uses state-dependent weights.

We analyze the selection of the resampling weights and provide conditions guaranteeing

the logarithmic efficiency of the estimator of the probability of large losses. Numerical

experiments illustrate the performance of the method, and contrast it with alternative

schemes. The method has potential applications in other areas, including reliability and

insurance.

The efficiency analysis in Section 4 can be extended to the case of stochastic position

losses ` by exploiting large deviations arguments and saddlepoint approximations for

Markov random walks; see Chan & Lai (2003). The reference Markov chain in this more

general setting is the Markov random walk Yk = (Tk, JTk
, Uk). However, the dimensionality

of Uk may be an issue, and one needs to use the special structure of the model at hand to

design a good SISR scheme, as we have illustrated in Section 6.4. We leave that extension

to future work.
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A Appendix

This appendix reviews Chan & Lai’s (2011) martingale representation of m(α̂−α), where

α = P(A) is the probability of an event A that is estimated by α̂ using SISR Algorithm 1.

We also summarize the main steps of their proof of the logarithmic efficiency of the SISR

estimator when A = {g(Sn/n) ≥ b}. Besides providing a key analytic tool for establishing

logarithmic efficiency, the martingale representation also yields the central limit theorem

(12) and the consistent variance estimate (13) as simple corollaries.

Let f0 = α, fk(Yk) = Zk(Yk)P(A|Yk) for k = 1, . . . , n, and #
(i)
k denote the number

of copies of Ỹ
(i)
k generated from {Ỹ(1)

k , . . . , Ỹ
(m)
k } to form the m particles of the kth

generation. Moreover, let a
(i)
k be the ancestral origin of a particle and w

(i)
k the normalized

incremental weight; see Section 3.3. For r = 1, . . . ,m, define

ε
(r)
2k−1 =

∑
i:a

(i)
k−1=r

[fk(Ỹ
(i)
k )− fk−1(Y

(i)
k−1)]Vk−1(Y

(i)
k−1) for 1 ≤ k ≤ n,

ε
(r)
2k =

∑
i:a

(i)
k−1=r

(#
(i)
k −mw

(i)
k )[fk(Ỹ

(i)
k )Vk(Ỹ

(i)
k )− α] for 1 ≤ k ≤ n− 1.

(31)

For each fixed r, the sequence {ε(r)k , 1 ≤ k ≤ 2n − 1} is a martingale difference sequence

with respect to the measure P̃ from which Ỹ
(r)
k and Y

(r)
k are drawn,2 and the filtration

{Fk, 1 ≤ k ≤ 2n − 1}. Here, F2k−1 is the σ-field generated by {Ỹ (r)
1 , 1 ≤ r ≤ m} and

{(Y(r)
s , Ỹ

(r)
s+1, a

(r)
s ), 1 ≤ s < k, 1 ≤ r ≤ m}, and F2k is the σ-field generated by F2k−1 and

{(Yr
k, a

(r)
k ), 1 ≤ r ≤ m}. Moreover,

m(α̂− α) =
2n−1∑
k=1

m∑
r=1

ε
(r)
k . (32)

An immediate consequence of this martingale representation is the unbiasedness of α̂,

i.e., EeP(α̂) = α. Another corollary of (32), together with the central limit theorem for

martingales, is (12). Moreover, this martingale representation also yields

VareP(m(α̂− α)
)

=
2n−1∑
k=1

VareP
( m∑
r=1

ε
(r)
k

)
. (33)

One can regard the ε
(r)
k in (31) as encapsulating the random fluctuation due to resampling

when k is even, and encapsulating the randomness in sampling from P̃ when k is odd.

Chan & Lai (2011) exploit (33) to prove the logarithmic efficiency of the SISR es-

2We assume an augmented probability space in which all random variables involved in resampling are
measurable and described by the specified probability measure. Here P̃ corresponds to that probability
measure, and we use EeP and VareP to denote the mean and the variance with respect to P̃. When P = P̃,
we simply denote EeP and VareP by E and Var. This avoids the more complicated notation P∗ used by
Chan & Lai (2011) to include the randomization variables in the probability space.
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timator of the large deviation probability P(g(Sn/n) ≥ b), using P̃ = P and resampling

weights (17), as noted in the first paragraph of Section 4.2. They show that the summands

of
∑m

r=1 ε
(r)
k are either independent or negatively correlated when conditioned on Fk−1,

and therefore

Var
(
m(α̂− α)

)
≤

2n−1∑
k=1

m∑
r=1

E(ε
(r)
k )2 (34)

The rest of the task is to use the form of the resampling weights to bound
∑m

r=1 E(ε
(r)
k )2 =

mE(ε
(1)
k )2, since the expectations are the same for all r. Lemma 1 of Chan & Lai (2011)

gives the bound (18) and Lemma 2 gives the bound (19). Making use of (31) and (18),

they first show that

E
(
(ε

(1)
k )2

)
≤

{
e−2nI+o(n)E(w2

1 · · ·w2
k−1) if k is odd

e−2nI+o(n)E(w2
1 · · ·w2

k) if k is even.
(35)

They then use (19) and an induction argument to show that

E(w2
1 · · ·w2

k) ≤ (1 + Cm−1)ke2ρ1+···+2ρk . (36)

Since limi→∞ ρi = 0, the right-hand side of (36) is bounded, uniformly in k ≤ n, by

exp{Cn/m + o(n)}. As the number m of particles becomes infinite, applying (35) and

(36) to (34) yields Var(α̂) ≤ m−1e−2n(I+o(1)), proving logarithmic efficiency of the SISR

estimator of P(g(Sn/n) ≥ b), which they have shown to be equal to e−nI+o(n).
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