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Approximate Bayesian computation (ABC) is a popular tech-
nique for approximating likelihoods and is often used in parameter
estimation when the likelihood functions are analytically intractable.
Although the use of ABC is widespread in many fields, there has been
little investigation of the theoretical properties of the resulting esti-
mators. In this paper we give a theoretical analysis of the asymptotic
properties of ABC based maximum likelihood parameter estimation
for hidden Markov models. In particular, we derive results analogous
to those of consistency and asymptotic normality for standard max-
imum likelihood estimation. We also discuss how Sequential Monte
Carlo methods provide a natural method for implementing likelihood
based ABC procedures.

1. Introduction. The hidden Markov model (HMM) is an important
statistical model in many fields including Bioinformatics (e.g. Durbin et al.
(1998)), Econometrics (e.g. Kim, Shephard and Chib (1998)) and Popula-
tion genetics (e.g. Felsenstein and Churchill (1996)); see also Cappé, Rydén
and Moulines (2005) for a recent overview. Often one has a range of HMMs
parameterised by a parameter vector θ taking values in some compact sub-
set Θ of Euclidian space. Given a sequence of observations Ŷ1, . . . , Ŷn the
objective is to find the parameter vector θ∗ ∈ Θ that corresponds to the
particular HMM from which the data were generated.

A common approach to estimating θ∗ is maximum likelihood estimation
(MLE). The parameter estimate, denoted θ̂n, is obtained via maximizing
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2 DEAN ET AL.

the log-likelihood of the observations:

θ̂n = arg maxθ∈Θln(θ)

where

ln(θ) := log pθ

(
Ŷ1, . . . , Ŷn

)
=

n∑
i=1

log pθ(Ŷi|Ŷ1, . . . , Ŷi−1).

Unless the model is simple, e.g. linear Gaussian or when X is a finite set,
one can seldom evaluate the likelihood analytically. There are a variety of
techniques, for example sequential Monte Carlo (SMC), for numerically esti-
mating the likelihood. However, in a wide range of applications these meth-
ods cannot be used, for example when the conditional density of the ob-
served state of the HMM given the hidden state is intractable, by which we
mean that this density cannot be evaluated analytically and has no unbiased
Monte Carlo estimator. Despite this, one is often still able to generate sam-
ples from the corresponding processes for different values of the parameter
θ (e.g. Jasra et al. (2010)). This has led to the development of methods in
which θ∗ is estimated by taking the value of θ which maximizes some prin-
cipled approximation of the likelihood which is itself estimated using Monte
Carlo simulation.

One such approach is the convolution particle filter of Campillo and Rossi
(2009). Another technique which can be applied to this class of problems is
indirect inference; see Gourieroux, Monfort and Renault (1993) and Hegg-
land and Frigessi (2004). However in the context of HMMs, when one does
not adopt a linear Gaussian approximation of the filtering density (which
can be very inaccurate, as in extended Kalman filter approximations), this
method is likely to be very expensive. A third method which has recently
received a great deal of attention is approximate Bayesian computation
(ABC). A non-exhaustive list of references includes: McKinley, Cook and
Deardon (2009); Peters, Wüthrich and Shevchenko (2010); Pritchard et al.
(1999); Ratmann et al. (2009); Tavre et al. (1997). See also Sisson and Fan
(to be published) for a review on computational methodology.

In the standard ABC approach (omitting for the moment the possible use
of summary statistics) one assumes that a data set Ŷ1, . . . , Ŷn is given and

approximates the likelihood function pθ

(
Ŷ1, . . . , Ŷn

)
via probabilities of the

form

(1) Pθ
(
d
(
Y1, . . . , Yn; Ŷ1, . . . , Ŷn

)
≤ ε
)

where {Yk}k≥1 denotes the observed state of the HMM, d(·; ·) is some suit-
able metric on the n-fold product space Rm × · · · × Rm and ε > 0 is a
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constant which reflects the accuracy of the approximation. In practice these
probabilities are themselves estimated using Monte Carlo techniques.

The intuitive justification for the ABC approximation is that for suffi-
ciently small ε

Pθ
(
d
(
Y1, . . . , Yn; Ŷ1, . . . , Ŷn

)
≤ ε
)

V ε
Ŷ1,...,Ŷn

≈ pθ
(
Ŷ1, . . . , Ŷn

)
where V ε

Ŷ1,...,Ŷn
denotes the volume of the d-ball of radius ε around the points

Ŷ1, . . . , Ŷn. Thus the probabilities (1) will provide a good approximation
to the likelihood, up to the value of some renormalising factor which is
independent of θ and hence can be ignored. However in general it is not at
all clear in what sense an approximation to the likelihood must be ‘good’ in
order for the resulting inference procedures to be well behaved. The purpose
of this paper is to resolve this issue by directly investigating the effect of
the parameter ε, not on the quality of the approximations (1), but on the
behaviour of the resulting ABC based parameter estimators.

We note that in (1) we have implicitly assumed that one is working with
the entire data set rather than a summary statistic of it as is usually done
in practice, especially when the observations {Yk}k≥0 take values in some
high dimensional space. For ease of exposition we shall persist with this
assumption throughout the rest of the paper, noting where appropriate the
conditions under which the results we derive will continue to hold when
summary statistics are used (see in particular the remarks at the ends of
Sections 3 and 4).

1.1. Contribution and Structure. In this paper we investigate the be-
haviour of ABC when used to estimate the parameters of HMMs for which
the conditional densities of the observations given the hidden state are in-
tractable. We shall use a specialization, first proposed in Jasra et al. (2010),
of the standard ABC likelihood approximation (1) for when the observations
are generated by a HMM. Specifically we approximate the likelihood of a
given sequence of observations Ŷ1, . . . , Ŷn from a HMM with the probability

(2) Pθ
(
Y1 ∈ Bε

Ŷ1
, . . . , Yn ∈ Bε

Ŷn

)
where Bε

y denotes the ball of radius ε centered around the point y. The
benefit of this approach is that it retains the Markovian structure of the
model. This facilitates both simpler Markov chain Monte Carlo (MCMC)
(e.g. McKinley, Cook and Deardon (2009)) and sequential Monte Carlo
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(SMC) (e.g. Jasra et al. (2010)) implementation of the ABC approximation.
Furthermore our experience suggests that this approximation is competitive,
from an accuracy perspective, with a wide range of competing methods; see
the two afore mentioned references for a deeper discussion of this point.

One could use the approximate likelihoods (2) to estimate the parameters
of a HMM in one of two ways. Firstly one could take a Bayesian approach
and use (2) to construct an approximation to the posterior. This is the ap-
proach most commonly taken in the literature. Alternatively, as we shall do
in this paper, one could take a frequentist approach and estimate the param-
eters of the HMM with the value of the parameter vector which maximizes
the corresponding approximate likelihood (2) of the observations. We shall
henceforth term this procedure approximate Bayesian computation maxi-
mum likelihood estimation (ABC MLE).

Although the use of ABC has become commonplace there has to date
been little investigation of the theoretical properties of its use in parameter
estimation in either the Bayesian or frequentist context. In particular the
following questions remain to be answered. Is ABC MLE consistent? Do
ABC based posterior distributions concentrate around the true value of the
parameter vector? Indeed do ABC based estimators converge to anything at
all? Although these questions may seem abstract it is well known that even
the mighty MLE can fail to converge in practice, see Ferguson (1982). Thus
before ABC can be placed on firm mathematical foundations the questions
raised above need to be addressed.

The purpose of this paper is to bridge this theoretical gap in the context of
maximum likelihood estimation. In particular we develop a theoretical jus-
tification of the ABC MLE procedure based on its large sample properties
analogous to that provided for MLE by standard results concerning asymp-
totic consistency and normality. Our approach to this problem is based on
the novel observation that ABC MLE can be considered as performing MLE
using the likelihoods of a collection of perturbed HMMs. This implies that
the ABC MLE should in some sense inherit its behaviour from the standard
MLE. Using this observation we first show that unlike the MLE, which is
asymptotically consistent, the ABC MLE estimator has an innate asymp-
totic bias. Secondly we show that this bias can be made arbitrarily small
by choosing sufficiently small values of ε. Together these results show that
asymptotically the ABC MLE will converge to the true parameter value with
a margin of error which can be made arbitrarily small by taking a suitable
choice of ε. Thus our results allow us to develop a rigorous formulation of the
intuitive justification of ABC and in doing so to provide a firm mathematical
basis for performing ABC based inference.
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We complete the picture by analysing the so called noisy variant (see
e.g. Fearnhead and Prangle (2010)) of ABC MLE. We show that unlike
the ABC MLE the noisy ABC MLE is always asymptotically consistent.
This raises the question: does noisy ABC provide us with a ‘free pass’ when
performing parameter estimation? Unfortunately the answer in general is
no. We show that under reasonable conditions the Fisher information of the
noisy ABC MLE is strictly less than that of the standard MLE. As a result
we show that the noisy ABC suffers from a relative loss of information and
hence statistical efficiency.

As part of these investigations we establish a novel asymptotic missing
information principle for HMMs with observations perturbed by additive
uniform noise which may in itself be of independent interest to the reader.
Finally we remark that although this study is theoretical it is our belief that
the results presented herein will help provide guidance for future method-
ological developments in the field.

This paper is structured as follows. In Section 2 the notation and assump-
tions are given. In Section 3 we establish some approximate asymptotic
consistency type results for the standard ABC MLE. In Section 4 results
concerning the asymptotic consistency and normality of the noisy ABC es-
timator are presented. An extension of the ABC method using probability
kernels is discussed in Section 5 and an overview of the use of SMC methods
to provide a practical way of implementing ABC is presented in Section 6.
An example is given in Section 7 which provides a qualitative demonstration
of the behaviour of the ABC estimator predicted in Sections 3 and 4. The
article is summarized in Section 8. Supporting technical lemmas and proofs
of some of the theoretical results are housed in the two appendices.

2. Notation and Assumptions.

2.1. Notation and Main Assumptions. Throughout this paper we shall
use lower case letters x, y, z to denote dummy variables and upper case letters
X,Y, Z to denote random variables. Observations of a random variable will
be denoted by Ŷ .

We shall frequently have to refer to various kinds of both finite, infinite
and doubly infinite sequences. For brevity the following shorthand nota-
tions are used. For any pair of integers k ≤ n, Yk:n denotes the sequence of
random variables Yk, . . . , Yn; Y−∞:k denotes the sequence . . . , Yk; Yn:∞ de-
notes the sequence Yn, . . . and Y−∞:k;n:∞ denotes the sequence . . . , Yk;Yn, . . ..
Given a sequence of integers . . . , j−1, j0, j1, . . . and indicies r < s we shall
let jr:s denote jr, jr+1, . . . , js−1, js; j−∞:r denote . . . , jr−1, jr and js:∞ de-
note js, js+1, . . . respectively. Further we shall also use j−∞:∞ to denote
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the full sequence . . . , j−1, j0, j1, . . .. The two notations defined above will
be combined in the following manner. Given a doubly infinite sequence of
random variables . . . , Y−1, Y0, Y1, . . ., a doubly infinite sequence of integers
. . . , j−1, j0, j1, . . . and indicies r < s we shall let Yjr:s denote the sequence
Yjr , Yjr+1 , . . . , Yjs−1 , Yjs . The sequences Yj−∞:r , Yjs:∞ and Yj−∞:∞ are defined
analogously. Lastly given a measure µ on a Polish space X we let

∫
·µ(dx1:n)

denote integration w.r.t. the n-fold product measure µ⊗n on the n-fold prod-
uct space X n. Moreover, given a function f(x1, . . . , xn) : X n → R and in-
tegers 1 ≤ k ≤ l ≤ n, we shall let

∫
Xn f(·)µ(dx1:k;l:n) denote the partial

integrals
∫
Xn f(·)µ(dx1) · · ·µ(dxk)µ(dxl) · · ·µ(dxn).

The essence of our approach is to show that in some sense the ABC
MLE inherits the properties of the standard MLE. Thus we shall operate
under assumptions on the HMMs that are sufficient to ensure asymptotic
consistency and normality of the MLE.

It is assumed that the Markov chain {Xk}k≥0 is time-homogenous and
takes values in a compact Polish space X with associated Borel σ-field B (X ).
Throughout it will be assumed that we have a collection of HMMs all defined
on the same state space and parametrised by some vector θ taking values in
a compact set Θ ∈ Rd. Furthermore we shall reserve θ∗ to denote the ‘true’
value of the parameter vector. For each θ ∈ Θ we let Qθ (x, ·) denote the
transition kernel of the corresponding Markov chain and for each x ∈ X and
θ ∈ Θ we assume that Qθ (x, ·) has a density qθ (x, ·) w.r.t. some common
finite dominating measure µ on X . The initial distribution of the hidden
state will be denoted by π0.

We also assume that the observations {Yk}k≥0 take values in a state
space Y ⊂ Rm for some m ≥ 1. Furthermore, for each k we assume that
the random variable Yk is conditionally independent of X−∞:k−1;k+1:∞ and
Y−∞:k−1;k+1:∞ given Xk and that the conditional laws have densities gθ (y|x)
w.r.t. some common finite dominating measure ν. We further assume that
for every θ the joint chain {Xk, Yk}k≥0 is positive Harris recurrent and has

a unique invariant distribution πθ. We shall write Pθ to denote the laws of
the corresponding stationary processes and Eθ to denote expectations with
respect to the stationary laws P̄θ.

Given any ε > 0 and y ∈ Rm let Bε
y denote the closed ball of radius ε

centered on the point y and let UBεy denote the uniform distribution on Bε
y.

For any A ⊂ Rm, let IA denote the indicator function of A. Additionally,
for any square matrix M ∈ Rm×m, we shall let ‖M‖ denote the Frobenius
norm ‖M‖2 =

∑m
j,k=1M

2
j,k.

For any two probability measures µ1, µ2 on a measurable space (E,E ) we
let ‖µ1 − µ2‖TV denote the total variation distance between them. For all
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p ∈ [1,∞) we let Lp(µ) denote the set of real valued measurable functions
satisfying

∫
|f(x)|p µ(dx) <∞.

Finally, we note that the asymptotic results that we prove for the ABC
MLE and its noisy variant hold independently of the initial condition of the
hidden state process {Xk}k≥0. Thus, in order to keep the presentation as
concise as possible we shall suppress the presence of the initial condition of
the hidden state except in those instances where it needs to be referred to
explicitly.

2.2. Particular Assumptions. In addition to the assumptions above, the
following assumptions are made at various points in the article. Assump-
tions (A1)-(A3) below are sufficient to guarantee asymptotic consistency
of the MLE and (A4)-(A5) ensure the existence of an asymptotic Fisher
information matrix, denoted I(θ∗). Further, if the asymptotic Fisher infor-
mation I(θ∗) is invertible then under assumptions (A1)-(A5) the MLE will
be asymptotically normal, see Douc, Moulines and Ryden (2004) for more
details.

(A1) The parameter vector θ∗ belongs to the interior of Θ and θ = θ∗ if and
only if Pθ(. . . , Y−1, Y0, Y1, . . .) = Pθ∗(. . . , Y−1, Y0, Y1, . . .).

(A2) For all y ∈ Y, x, x′ ∈ X , the mappings θ → qθ(x, x
′) and θ → gθ(y|x)

are continuous w.r.t. θ.

(A3) There exist constants c1, c1 ∈ (0,∞) such that for every y ∈ Y, x, x′ ∈
X , θ ∈ Θ

c1 ≤ qθ(x, x′), gθ(y|x) ≤ c1.

For the remaining assumptions we assume that there exists an open ball
G ⊂ Θ centered at θ∗ such that

(A4) For all y ∈ Y, x, x′ ∈ X , the mappings θ → qθ(x, x
′) and θ → gθ(y|x)

are twice continuously differentiable on G.

(A5) There exists a constant c2 ∈ (0,∞) such that for every y ∈ Y, x, x′ ∈
X , θ ∈ G ∣∣∇θ log qθ(x, x

′)
∣∣ , |∇θ log gθ (y|x)| , |∇2

θ log qθ(x, x
′)|,

|∇2
θ log gθ (y|x) | ≤ c2.

Remark 1. In general assumptions (A3) and (A5) hold when the state
space X is compact and when the conditional laws of the observed state given
the hidden state are heavy tailed, see for example Section 7. However we
expect that the behaviours predicted by Theorems 1, 2, 3 and 5 will provide
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a good qualitative guide to the behaviour of ABC MLE in practice even in
cases where the underlying HMMs do not satisfy these assumptions.

Assumptions (A1)-(A5) are sufficient to show that in some sense the ABC
MLE inherits the its asymptotic properties from the standard MLE. The
Lipschitz assumptions below will be used to establish quantitative bounds
on the relative performance of the ABC MLE estimator with respect to that
of the MLE.

(A6) There exists an L ∈ (0,∞) such that for all, x ∈ X , y, y′ ∈ Y, θ ∈ Θ∣∣gθ(y|x)− gθ(y′|x)
∣∣ ≤ L|y − y′|.

(A7) There exists an L ∈ (0,∞) such that for all, x ∈ X , y, y′ ∈ Y, θ ∈ Θ∣∣∇θgθ(y|x)−∇θgθ(y′|x)
∣∣ ≤ L|y − y′|.

3. Approximate Bayesian Computation.

3.1. Estimation Procedure. Following Jasra et al. (2010) we consider the
ABC approximation to the likelihood of a sequence of observations Ŷ1, . . . , Ŷn
for some fixed θ ∈ Θ given by,

Pθ
(
Y1 ∈ Bε

Ŷ1
, . . . , Yn ∈ Bε

Ŷn

)
=

∫
Xn+1×Yn

[ n∏
k=1

qθ(xk−1, xk)IBε
Ŷk

(yk)gθ(yk|xk)
]
π0(dx0)µ(dx1:n)ν(dy1:n).

(3)

The purpose of this paper is to analyse the asymptotic properties of the
ABC parameter estimator for HMMs defined by

Procedure 1 (ABC MLE). Given ε > 0 and data Ŷ1, . . . , Ŷn, estimate
θ∗ with

(4) θ̂εn = arg max
θ∈Θ

Pθ
(
Y1 ∈ Bε

Ŷ1
, . . . , Yn ∈ Bε

Ŷn

)
.

The key to our analysis is the following observation which is, to our knowl-
edge, original;∫
Xn+1×Yn

[ n∏
k=1

qθ(xk−1, xk)IBε
Ŷk

(yk)gθ(yk|xk)
]
π0(dx0)µ(dx1:n)ν(dy1:n)

∝
∫
Xn+1

[ n∏
k=1

qθ(xk−1, xk)g
ε
θ(Ŷk|xk)

]
π0(dx0)µ(dx1:n)(5)
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where

(6) gεθ(y|x) =
1

ν
(
Bε
y

) ∫
Bεy

gθ(y
′|x) ν(dy′)

and where we note that by Lemma 7 the quantity in (6) is well defined ν
a.s..

The crucial point is that the quantity gεθ(y|x) defined in (6) is the density
of the measure obtained by convolving the measure corresponding to gθ(y|x)
with UBε0 where the density is taken w.r.t. the new dominating measure
obtained by convolving ν with UBε0 . One can then immediately see that the
quantities qθ(x, x

′) and gεθ(y|x) appearing in (5) are the transition kernels
and conditional laws respectively for a perturbed HMM {Xk, Y

ε
k }k≥0 defined

such that it is equal in law to the process

(7) {Xk, Yk + εZk}k≥0

where {Xk, Yk}k≥0 is the original HMM and the {Zk}k≥0 are an i.i.d. se-
quence of UB1

0
distributed random variables. Crucially the constant of pro-

portionality in (5), which by definition is equal to ν
(
Bε
Ŷ1

)
× · · · × ν

(
Bε
Ŷn

)
,

is by Lemma 7 non-zero ν⊗n a.s. and is independent of the parameter value
θ. Thus it follows that (4) is statistically identical to the estimator

(8) θ̂εn = arg sup
θ∈Θ

pεθ

(
Ŷ1, . . . , Ŷn

)
where pεθ (· · · ) denotes the likelihood of the observations w.r.t. the law of the
perturbed process {Xk, Y

ε
k }k≥0. The value of expressing the ABC estimator

(4) in the mathematically equivalent form (8) is that (8) reveals the under-
lying mathematical structure of the estimator and furthermore, as we shall
see in the next section, expresses it in a form which is particularly tractable
to analysis.

We note that our observations (5) and (6) are similar in spirit to those
made in Wilkinson (2008). However in that paper the author takes the point
of view that the original collection of HMMs for which we are trying to
perform inference is itself misspecified.

3.2. Theoretical Results. It follows from the previous section that per-
forming ABC MLE is equivalent to estimating the parameter by taking a
data set generated by one of the original HMMs {Xk, Yk}k≥0 and finding the
value of θ which maximises the likelihood of that data set under the corre-
sponding perturbed HMM {Xk, Y

ε
k }k≥0. Thus the ABC MLE estimator will
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effectively suffer from the problem of model mis-specification. This raises
the question of whether the resulting estimator will still be asymptotically
consistent. As the following example shows one must expect that, in general,
the answer to this question will be no.

Example 1. For each θ ∈ [0, 1] let {Xk}k≥0 be a directly observed se-
quence of i.i.d. random variables with common law

Xk =

{
θ w.p. 0.5
−θ w.p. 0.5

and let θ∗ denote the true value of the model parameter. Then for any ε > 0
the ABC MLE will not be asymptotically consistent even though the MLE
estimator is asymptotically consistent for any value of θ∗. Furthermore for
2θ∗ > ε > θ∗ > 0 the ABC approximation to the likelihood is maximized at
θ = 0 for any sequence of observations.

Although the ABC MLE estimator is no longer asymptotically consistent
we show the following below. Almost surely the ABC MLE will converge,
with increasing sample size, to a given point in parameter space (more gener-
ally the set of accumulation points will belong to a given subset of parameter
space). Further, we show that these accumulation points must lie in some
neighbourhood of the true parameter value and that the size of this neigh-
bourhood shrinks to zero as ε goes to zero (Theorem 2). Finally we show
that under certain Lipschitz conditions one can obtain a rate for the de-
crease in the size of these neighbourhoods (Theorem 3). We note that these
results are very much misspecified MLE results in the spirit of, for example,
White (1982). However because the dominating measures of the original and
perturbed HMMs are no longer necessarily mutually absolutely continuous
with respect to each other they can no longer be interpreted in terms of
minimising Kullback-Leibler distances.

Before we present our results we first discuss some technical issues that
arise in their proofs. It is tempting to try and understand the behaviour
of the ABC MLE by extending the parameter space Θ to include ε and
then applying standard results from the theory of MLE. Unfortunately the
existing theory of MLE requires that the perturbed likelihoods gεθ(y|x) (see
(6)) be continuous w.r.t. ε which is not true for general dominating measures
ν. The essence of our method is show that despite this certain asymptotic
quantities associated with the likelihoods of the perturbed processes (7) are
still sufficiently continuous as functions of ε. In order to do this we need
to establish that in some probabalistic sense the order of the operations of
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differentiating and taking asymptotic limits can be interchanged. It it this
that constitutes the bulk of Appendix B.

In order to state and prove these results it is convenient to make the
following definitions. For any θ ∈ Θ and ε > 0, let

(9) lε(θ) = Ēθ∗ [log pεθ(Y1|Y−∞:0)]

where pεθ(·|·) denotes the conditional laws of the observations of the per-
turbed processes (7) given the infinite past and the expectations are taken
with respect to the stationary measure of the unperturbed HMM with pa-
rameter θ∗. Further for ε = 0 we let

(10) l0(θ) = l(θ) = Ēθ∗ [log pθ(Y1|Y−∞:0)] .

Our first result shows that the ABC MLE is asymptotically biased

Theorem 1. Assume (A2)-(A3). Then for every ε > 0, supθ∈Θ l
ε(θ) is

achieved. Further let

T ε =

{
θ′ ∈ Θ : lε(θ′) = sup

θ∈Θ
lε(θ)

}
be the set of these maximizers, then for any initial distribution π0 we have
that almost surely every accumulation point of the sequence of estimators
θ̂ε1, . . . defined in Procedure 1 belongs to T ε.

Proof. It follows from (A2) and (A3) that for the perturbed HMM de-
fined in (7) the conditional laws pεθ(y1|y−n:0) are continuous w.r.t. θ. Further
it follows from (A3) and (34) that the conditional laws pεθ(y1|y−n:0) converge
uniformly to the conditional laws pεθ(y1|y−∞:0) and are uniformly bounded,
both above and away from zero. It then follows that the conditional log-
likelihood functions log pεθ(y1|y−n:0) are continuous, uniformly bounded and
converge uniformly to log pεθ(y1|y−∞:0) and hence that the expected values
Ēθ∗ [log pεθ(Y1|Y−∞:0)] are also continuous functions of θ ∈ Θ. The first part
of the theorem then follows from the compactness of Θ.

The second part of the result now follows from (A2) and (A3) by using
the same arguments as used by Douc, Moulines and Ryden (2004) to prove
the asymptotic consistency of the MLE. We leave it to the reader to check
the details.

Although Theorem 1 shows that the ABC MLE is asymptotically biased,
the following result shows that this error can be made arbitrarily small by
choosing a sufficiently small ε.
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Theorem 2. Assume (A1)-(A3). Then

(11) lim
ε→0

sup
θ∈T ε

|θ − θ∗| = 0.

Remark 2. Theorems 1 and 2 provide a theoretical justification for the
ABC MLE procedure analogous to that provided for the standard MLE pro-
cedure by the classical notion of asymptotic consistency. In particular they
show that an arbitrary degree of accuracy in the parameter estimate can be
achieved given sufficient data and a sufficiently small ε.

In order to prove Theorem 2 we need the following Lemma whose proof
is relegated to Appendix B.

Lemma 1. Assume (A2)-(A3). Then the mapping (θ, ε) ∈ Θ× [0,∞)→
lε(θ) is continuous in θ and right continuous in ε in the sense that for all
pairs of sequences θn → θ and εn ↘ ε we have that

lεn(θn)→ lε(θ).

Proof of Theorem 2. In order to prove (11), given that by Lemma
1 the mapping (θ, ε) ∈ Θ × [0,∞) → lε(θ) − lε(θ∗) is continuous, it is
sufficient to show that for any δ > 0 there exists an ε′ > 0 such that
T ε ⊂ Bδ

θ∗ for all ε ≤ ε′. Suppose that this property does not hold. Then,
by the compactness of Θ, there must exist δ > 0 and sequences εn ↘ 0 and
θn → θ ∈ {θ′ : |θ′ − θ∗| ≥ δ} such that

lεn(θn)− lεn(θ∗) ≥ 0

for all n. However it would then follow from the continuity of lε(θ)− lε(θ∗)
that l(θ) ≥ l(θ∗) which violates (A1). (In Douc, Moulines and Ryden (2004)
it is shown that under (A2) and (A3) that (A1) is equivalent to having that
l(θ∗) > l(θ) for all θ 6= θ∗.)

The next result shows that, under some additional assumptions, we can
characterise the rate at which the asymptotic error in the ABC MLE de-
creases with ε.

Theorem 3. Assume (A1)-(A7) and that the asymptotic Fisher infor-
mation matrix I(θ∗) is invertible. Then there exist finite positive constants
C, ε such that for all ε ≤ ε

sup
θ∈T ε

|θ − θ∗| ≤ Cε.
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The proof of Theorem 3 relies on the following lemma whose proof is given
in Appendix B.

Lemma 2. Assume (A1)-(A7). Then ∇θlε, ∇θl and ∇2
θl exist for all

θ ∈ G where G is as in (A4) and (A5). Furthermore

(12) sup
θ∈G
|∇θlε(θ)−∇θl(θ)| ≤ Rε

for some R > 0 and ∇2
θl(θ

∗) = I(θ∗).

Proof of Theorem 3. Since by assumption I(θ∗) is invertible and thus
positive definite it follows that there exists some T > 0 such that

(13) inf
v:|v|>0

|I(θ∗)v|
|v|

≥ T.

By Lemma 2, l(θ) is twice continuously differentiable on G and so there
exists a constant δ > 0 such that

(14) sup
|θ−θ∗|≤δ

∥∥∇2
θl(θ)− I(θ∗)

∥∥ ≤ T

2
.

By Theorem 2 there exists a constant ε̄ > 0 such that for all ε ≤ ε̄,

(15) sup
θ∈T ε

|θ − θ∗| ≤ δ.

Consider any θ̂ε ∈ T ε. By Lemma 2 both ∇θlε(θ̂ε) and ∇θl(θ∗) exist and
clearly they must both be equal to zero and hence by (12)

(16)
∣∣∣∇θl(θ̂ε)∣∣∣ ≤ Rε.

Further by the fundamental theorem of calculus

(17) ∇θl(θ̂ε) = ∇θl(θ∗) +

(∫ 1

0
∇2
θl
(
θ∗ + t(θ̂ε − θ∗)

)
dt

)
(θ̂ε − θ∗).

By (13), (14) and (15) it now follows that

(18)

∣∣∣∣(∫ 1

0
∇2
θl
(
θ∗ + t(θ̂ε − θ∗)

)
dt

)
(θ̂ε − θ∗)

∣∣∣∣ ≥ T

2

∣∣∣θ̂ε − θ∗∣∣∣
The result now follows from (16), (17) and (18).
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Remark 3. In many cases the complete data sequence Ŷ1, . . . , Ŷn is
too high-dimensional and instead one performs inference using a summary
statistic S(Ŷ1, . . . , Ŷn) where S(· · · ) is some mapping from Rm × · · ·Rm to
a lower dimensional Euclidean space, e.g. see Tavre et al. (1997). In gen-
eral this mapping will destroy the Markovian structure of the data and the
results derived in this section will not be applicable to ABC based parameter
inference conducted using the corresponding summary statistic.

However in practice it is often the case that the mapping S(· · · ) is of the
form S(Ŷ1, . . . , Ŷn) = S(Ŷ1), . . . , S(Ŷn) for some function S(·) that maps
from Rm to a space Rm′ of lower dimension. When this is true it is easy to
see that the Markovian structure of the data is preserved. Moreover suppose
that assumptions (A1)-(A7) hold for the underlying HMM. If the mapping
S(·) preserves the identifiability of the system, that is to say if assumption
(A1) also holds for the HMMs with observations S(Y1), S(Y2), . . ., then it
is trivial to see that assumptions (A2)-(A7) will also be preserved for all
reasonable choices of S(·) and thus that Theorems 1, 2 and 3 will also hold
for ABC MLE performed using the summary statistic.

4. Noisy Approximate Bayesian Computation.

4.1. Estimation Procedure. In the previous section we showed that per-
forming ABC MLE is equivalent to estimating the parameter by choos-
ing the value of the maximizer of the likelihoods of the perturbed HMMs
{Xk, Y

ε
k }k≥0 defined in (7). Since the likelihoods over which we maximise

are misspecified with respect to the law of the process that is generating the
data the resulting estimator has an inherent asymptotic bias.

Suppose now that a sequence of observations Ŷ1, . . . , Ŷn from the unper-
turbed HMM corresponding to some θ∗ ∈ Θ is given. The sequence of noisy

observations Ŷ1 + εZ1, . . . , Ŷn + εZn where Zk
i.i.d.∼ UB1

0
, k ≥ 1 has the same

law as a sample from the corresponding perturbed HMM defined in (7). As
a result estimating θ∗ by applying the ABC MLE estimator (4) to the noisy
observations Ŷ1 + εZ1, . . . , Ŷn + εZn in place of Ŷ1, . . . , Ŷn, is statistically
equivalent to estimating θ∗ by applying standard MLE to the perturbed
HMMs (7). Clearly one would expect that the resulting estimator would in-
herit the properties of MLE, in particular that it would be asymptotically
consistent. In light of the discussion and remarks immediately following the
definition of Procedure 1 these observations lead one to the following noisy
ABC MLE procedure:

Procedure 2 (Noisy ABC MLE). Given ε > 0 and data Ŷ1, . . . , Ŷn
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estimate θ∗ with

(19) θ̃εn = arg sup
θ∈Θ

Pθ
(
Y ε

1 ∈ Bε
Ŷ1+εẐ1

, . . . , Y ε
n ∈ Bε

Ŷn+εẐn

)
.

Remark 4. Procedure 2 is a likelihood-based version of the noisy ABC
method in Fearnhead and Prangle (2010).

4.2. Theoretical Results. In this section we investigate mathematically
the noisy ABC MLE procedure defined in Section 4.1. In particular we show
that under the assumptions made in Section 2.2 that the noisy ABC MLE
inherits the properties of asymptotic consistency and normality from the
MLE. Further we provide an analysis of the performance of the noisy ABC
MLE relative to the standard MLE by comparing their asymptotic variances.
It is first shown that the asymptotic Fisher information of the ABC MLE is
strictly less than that of the MLE and hence that the asymptotic variance
of the ABC MLE estimator is strictly greater. Thus it follows that the noisy
ABC MLE procedure comes at the cost of a loss in accuracy relative to that
of the standard ABC procedure. Finally we show that this loss in accuracy
can be made arbitrarily small by choosing ε small enough.

The first result establishes that under (A1)-(A3) the noisy ABC MLE
inherits the property of asymptotic consistency.

Theorem 4. Assume (A1)-(A3). Then Procedure 2 is asymptotically
consistent.

Proof. It is sufficient to show that if (A1)-(A3) hold for the original
HMM then they also hold for the perturbed HMM. Recall, for the perturbed
HMM, the transitions are as for the original HMM and the likelihood is
as (6). Thus (A3) for the original model immediately implies (A3) for the
perturbed model.

In order to establish that (A2) holds for the perturbed model it is sufficient
to observe that continuity of the mapping θ → gεθ(y|x) for any x ∈ X , y ∈ Y
follows from continuity of the mapping θ → gθ(y|x), uniform boundedness
of gθ(y|x) (ie. (A3)) and the dominated convergence theorem.

It remains to show that (A1) is also inherited by the perturbed model.
This assumption is equivalent to demanding that for every θ′ 6= θ there
exists some r such that

(20) Lθ (Y1, . . . , Yr) 6= Lθ′ (Y1, . . . , Yr)

where Lθ (·) denotes the law of the process {Yk}k≥0. However by applying
Lemma 6 it immediately follows that (20) holds if and only if

Lθ (Y ε
1 , . . . , Y

ε
r ) 6= Lθ′ (Y ε

1 , . . . , Y
ε
r )
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for all ε and so (A1) holds for the original HMMs if and only if it also holds
for the perturbed HMMs.

Next we consider the question of asymptotic normality. In Douc, Moulines
and Ryden (2004) it was shown that under conditions (A1)-(A5) the MLE
for HMMs has asymptotic Fisher information matrix I(θ∗) where

I(θ∗) = Ēθ∗
[
∇θ log pθ∗ (Y1|Y−∞:0)∇θ log pθ∗ (Y1|Y−∞:0, )

T
]
.

Further it was shown that if I(θ∗) is invertible then the MLE is asymp-
totically normal with asymptotic variance equal to I(θ∗)−1. It follows from
the proof of Theorem 4 that if (A1)-(A3) hold for the original HMM then
they also hold for the perturbed HMM. Further if (A4) and (A5) hold for
the original HMM then a simple application of the dominated convergence
theorem shows that they also hold for the perturbed HMM. Thus, under as-
sumptions (A1)-(A5) the asymptotic Fisher information matrix of the noisy
ABC MLE exists and is equal to Iε(θ∗) where

Iε(θ∗) = Ēθ∗
[
∇θ log pεθ∗

(
Y ε

1 |Y ε
−∞:0

)
∇θ log pεθ∗

(
Y ε

1 |Y ε
−∞:0

)T ]
.

Moreover if Iε(θ∗) is invertible then the noisy ABC MLE estimator will be
asymptotically normal with asymptotic variance equal to Iε(θ∗)−1. Using
these results we can analyze the asymptotic performance of the noisy ABC
MLE estimator relative to that of the standard MLE estimator by comparing
the two Fisher information matrices. Unfortunately one cannot in general
make any explicit quantitative comparisons between these two quantities,
however the following result establishes some qualitative relations between
the two.

Theorem 5. Assume (A1)-(A5). Then:

1. I(θ∗) ≥ Iε(θ∗). Further if ν is connected and I(θ∗) 6= 0 (see Section 2.1)
then the inequality is strict.

2. Iε(θ∗)→ 0 as ε→∞.
3. Iε(θ∗) → I(θ∗) as ε → 0. Hence for epsilon sufficiently small the ABC

MLE is asymptotically normal with asymptotic variance equal to Iε(θ∗)−1.
4. If (A6) and (A7) hold then ‖I(θ∗)− Iε(θ∗)‖ = O(ε2).

Theorem 5 tells us that asymptotic variance of the noisy ABC MLE es-
timator is strictly greater than that of the MLE estimator and hence that
there is a loss in accuracy relative to the MLE in using noisy ABC MLE. For
very large values of ε the asymptotic variance of the noisy ABC MLE grows
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without bound and the loss in accuracy becomes almost complete. Thus if
one chooses values of ε which are too large the noisy ABC MLE becomes
ineffective. Furthermore we have shown that by taking small enough values
of ε the loss in accuracy can be be made arbitrarily small and hence that
we can obtain (ignoring computational issues) a performance of the noisy
ABC MLE arbitrarily close to that of the MLE. Finally, the theorem pro-
vides a rate of convergence for the Fisher information matricies for when
the likelihoods obey certain simple Lipschitz assumptions.

The proof of Theorem 5 is based on the following lemma, see Appendix
B for the proof.

Lemma 3. Assume (A1)-(A5). Then

I(θ∗) = Iε(θ∗) + Ēθ∗
[
I
Y0:Y ε0
Y−∞:−1;Y ε1:∞

(θ∗)
]

where for every doubly infinite sequence Y−∞:−1;Y ε
1:∞ the random variable

I
Y0:Y ε0
Y−∞:−1;Y ε1:∞

(θ∗) is equal to the difference in the Fisher informations of the

conditional laws of Y0 and Y ε
0 given Y−∞:−1;Y ε

1:∞, that is

I
Y0:Y ε0
Y−∞:−1;Y ε1:∞

(θ∗) :=

Ēθ∗
[
∇θ log pθ∗ (Y0|Y−∞:−1;Y ε

1:∞) ·

∇θ log pθ∗ (Y0|Y−∞:−1;Y ε
1:∞)T |Y−∞:−1;Y ε

1:∞

]
− Ēθ∗

[
∇θ log pθ∗ (Y ε

0 |Y−∞:−1;Y ε
1:∞) ·

∇θ log pθ∗ (Y ε
0 |Y−∞:−1;Y ε

1:∞)T |Y−∞:−1;Y ε
1:∞

]
.

Remark 5. The quantity I
Y0:Y ε0
Y−∞:−1;Y ε1:∞

(θ∗) is also equal to the missing

information in the conditional law of Y ε
0 relative to that in the conditional

law of Y0 (where both laws are conditioned on Y−∞:−1;Y ε
1:∞). Here the term

missing information is meant in the sense of that proposed for i.i.d. random
variables in Orchard and Woodbury (1972). Hence, Lemma 3 can be consid-
ered as a conditional asymptotic missing information principle for HMMs
with observations perturbed by uniform additive noise.

Theorem 5 is then an immediate corollary of the following lemma which

establishes the behaviour of I
Y0:Y ε0
Y−∞:−1;Y ε1:∞

(θ∗) for different values of ε.
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Lemma 4. Assume (A1)-(A5). Then:

1. Ēθ∗
[
I
Y0:Y ε0
Y−∞:−1;Y ε1:∞

(θ∗)
]

is positive semi-definite. Further if ν is connected

and I(θ∗) 6= 0 then Ēθ∗
[
I
Y0:Y ε0
Y−∞:−1;Y ε1:∞

(θ∗)
]
6= 0 for any ε > 0.

2. Ēθ∗
[
I
Y0:Y ε0
Y−∞:−1;Y ε1:∞

(θ∗)
]
→ I(θ∗) as ε→∞.

3. Ēθ∗
[
I
Y0:Y ε0
Y−∞:−1;Y ε1:∞

(θ∗)
]
→ 0 as ε→ 0.

4. Assume that (A6) and (A7) also hold. Then
∥∥∥Ēθ∗ [IY0:Y ε0

Y−∞:−1;Y ε1:∞
(θ∗)

]∥∥∥ =

O(ε2).

The proof of Lemma 4 is again deferred to Appendix B.

Remark 6. Comments similar to those in Remark 3 concerning sum-
mary statistics also hold for the results on the noisy ABC MLE given in this
section. In particular we note that given a summary statistic of the form
S(Ŷ1), . . . , S(Ŷn) one can derive a result analogous to Theorem 5 in which
the Fisher information matrices I(θ∗) and Iε(θ∗) are replaced with the Fisher
information matrices for the HMMs S(Y1), . . . and S(Y1) + εZ1, . . . where
S(Y1) + εZ1, . . . is a perturbed version of S(Y1), . . . defined in an analogous
manner to (7).

5. Smoothed ABC. ABC estimators based on Procedures 1 and 2
have an inherent lack of smoothness due to the fact that the estimator ef-
fectively gives weight one to points inside the balls Bε

Ŷ1
, . . . , Bε

Ŷn
and weight

zero to those outside them. As seen in the next section, this becomes par-
ticularly problematic if one then tries to estimate these probabilities using
SMC algorithms as the algorithm can collapse due to the use of indicator
functions; see Del Moral, Doucet and Jasra (2008a) for some discussion.

A common way of smoothing ABC, see for example Beaumont, Zhang and
Balding (2002), is to approximate the likelihoods of a sequence of observa-
tions Ŷ1, . . . , Ŷn not with (3) but instead with the smoothed approximations

Eθ

[
φ

(
Ŷ1 − Y1

ε

)
· · ·φ

(
Ŷn − Yn

ε

)]

=

∫
Xn+1×Yn

[ n∏
k=1

qθ(xk−1, xk)φ(
Ŷk − yk

ε
)gθ(yk|xk)

]
π0(dx0)µ(dx1:n)ν(dy1:n)

(21)
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where φ(·) is the density w.r.t. Lebesgue measure of some smooth probability
distribution Φ. One then estimates the parameters via maximising (21).

By using exactly the same arguments as in Section 3.1 it is clear that the
smoothed ABC MLE estimator resulting from approximating the likelihoods
of a sequence of observations Ŷ1, . . . , Ŷn with (21) for some suitable kernel
φ is statistically equivalent to estimator obtained by by approximating the
true likelihoods with the likelihoods of the perturbed HMM defined to be

(22)
{
Xk, Y

Φ,ε
k

}
k≥0

:= {Xk, Yk + εZk}k≥0

where the {Zk}k≥0 are such that Zk
i.i.d.∼ Φ. Further, in an analogous manner

to Section 4.1 one can define a smoothed noisy ABC MLE by applying
the smoothed ABC MLE defined above to noisy data of the form Ŷ1 +

εẐ1, . . . , Ŷn + εẐn where again Zk
i.i.d.∼ Φ.

It is natural to ask whether results analogous to Theorems 1, 2, 3, 4 and
5 hold for the smoothed ABC MLE and the smoothed noisy ABC MLE. By
a careful reading of the proofs of these theorems one can see that analogous
results hold when the density of Φ satisfies the following conditions:

(i) φ(y) > 0 for all y ∈ Rm.

(ii) φ(·) is continuously differentiable.

(iii) for the reference measure ν and all f ∈ L∞,

lim
ε→0

∫
f(y′)φ(y−y

′

ε )ν(dy′)∫
φ(y−y

′

ε )ν(dy′)
= f(y) ν a.s..

(iv)
∫
x2φ(x)dx <∞.

We observe that these conditions hold for many commonly used smoothing
distributions, in particular the Gaussian distribution.

Finally it is noted that comments analogous to those in Remarks 3 and 6
hold for the smoothed ABC MLE and smoothed noisy ABC MLE. Moreover
the quantities (21) can be straight-forwardly estimated using SMC tech-
niques, see the following section for more details.

6. Implementing ABC via SMC. SMC algorithms are commonly
used to approximate conditional laws of the form p(Xk|Y1:k) (we drop the
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Ŷk notation and omit dependence upon θ here). At each time k the condi-
tional law of the hidden state is approximated by a collection of N particles,
x1
k, . . . , x

N
k as

(23) p̂(·|Y1:k) =
1

N

N∑
l=1

δxlk
(·).

The crucial feature of the SMC algorithm with respect to any form of like-
lihood based parameter inference is that at each step, 1

N

∑N
l=1 g(Yk|xlk), is

an approximation to the conditional likelihood p(Yk|Y1:k−1). Thus when the
conditional likelihoods g(·|·) are tractable SMC algorithms can be used to
generate approximations to the full likelihoods p(Y1, . . . , Yn), e.g. see An-
drieu, Doucet and Tadic (2009) for the use of SMC for MLE in this standard
setting.

Consider now the ABC MLE and noisy ABC MLE procedures defined in
Sections 3 and 4 and recall that we approximate the true likelihoods with the
likelihoods of the perturbed HMMs (7). To see how standard SMC methods
can be implemented in the context of these estimators consider the extended
process {Xk, Yk, Y

ε
k }k≥0 defined such that {Xk, Yk}k≥0 are the hidden state

and observation process of the original HMM and for all k ≥ 0, Y ε
k = Yk+εZk

where {Zk}k≥0 is an i.i.d. sequence of UB1
0

random variables. Clearly the
marginal distributions of the observations of the extended process are equal
to those of the observations of the perturbed HMMs defined in (7). Thus in
order to compute the ABC approximation to the likelihood of a sequence
of observations Ŷ1, . . . , Ŷn it is sufficient to compute the likelihood of the
observations under the extended HMM detailed above. Since the conditional
densities of the observed state given the hidden state of the extended HMM
are trivial the corresponding likelihoods may be computed using standard
SMC. This suggests the following SMC algorithm for evaluating the ABC
approximate likelihoods (3), see Jasra et al. (2010)

Algorithm 1. SMC for Computation of Approximate Bayesian Likeli-
hood pε(Ŷ1, . . . , Ŷn).

For k = 1, . . . , n do

1. Generate proposal states (x̃1
k, ỹ

1
k), . . . , (x̃

N
k , ỹ

N
k ) where each x̃lk ∼ q(xlk−1, ·)

and each ỹlk ∼ g(·|x̃lk).
2. Weight each proposed state (x̃lk, ỹ

l
k) with w̃lk = IBε

Ŷk

(ỹlk).

3. Renormalise the weights; w̃lk 7→ wlk := w̃lk/
∑N

l=1 w̃
l
k.
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4. Generate the particles x1
k, . . . , x

N
k by sampling multinomially from the

proposals x̃1
k, . . . , x̃

N
k according to the weights w1

k, . . . , w
N
k .

Finally approximate the likelihood pε(Ŷ1, . . . , Ŷn) by
∏n
k=1

(
1
N

∑N
l=1 w̃

l
k

)
.

Similarly, given a distribution Φ with smooth density φ w.r.t. Lebesgue
measure, one can define a SMC algorithm for computing the corresponding
smoothed ABC approximations to the likelihoods in an analogous manner;
the details follow from Algorithm 2.

Note that in general one does not have to resample the particles at ev-
ery step and more efficient approaches may be possible, see for example
Del Moral, Doucet and Jasra (2008b) and the references therein. A detailed
analysis of the SMC method, including description of resampling and con-
vergence results can be found in Doucet, De Freitas and Gordon (2001) and
Del Moral (2004).

7. Numerical Example. It is common in economics to model the log
returns of a sequence of price data using a HMM. Typically one uses the
hidden state to model certain underlying economic factors which cannot
be directly observed and the observed state to model the log returns of the
prices themselves. Furthermore it has become increasingly common to model
the distribution of the log returns of asset prices using α-stable distributions
due to their seemingly good fit to the actual data, see for example Rachev
and Mittnik (2000). Unfortunately the likelihoods of α-stable distributions
are intractable and so using them presents difficulties when trying to infer
model parameters from real financial data.

In this section we study the performance of both the standard and noisy
ABC MLE procedures when used to estimate the scale parameter of the
following toy economic model with intractable likelihoods. The hidden state
{X}k≥0 takes values in the set {−1, 1} and the corresponding Markov chain
has transition matrix (

19
20

1
20

1
5

4
5

)
.

Conditional on the hidden state the observed state Yk ∼ Sα(σ, 0, Xk + δ)
where Sα(σ, β, δ) denotes the α-stable distributions with parameters α, σ, β
and δ, see for example Samorodnitsky and Taqqu (1994). Intuitively the
hidden state denotes the health of the underlying economy, +1 being good
ie. growth and −1 being bad ie. recession. Given the state of the economy
the log returns of the relevant asset price are then α-stable distributed with
a positive or negative drift as appropriate.
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Fig 1: Asymptotic bias of ABC MLE parameter estimates.

In Figure 1 we plot the asymptotic bias of the ABC MLE when used to
estimate the parameters σ and δ given that the true model parameters are
α = 1.8, σ = 1 and δ = 0. We note that the ABC MLE seems to induce a bias
in the estimates of the scale parameters but not of the location parameters.
Intuitively this can be understood as being due to the fact that the observed
states of the perturbed HMMs (7) have a greater variance than those of the
corresponding original HMMs but the same mean position. Lastly we note
that for very small ε the size of the bias seems to be O(ε2) ie. one order of
magnitude less than the upper bound obtained in Theorem 3.

Finally we investigate the behaviour of the noisy ABC MLE. In the first
graph in Figure 2 we plot the Fisher information matrix as a function of
ε. The data suggests that for small ε the loss of information is O(ε2). In
the second graph we plot the log of the inverse of the Fisher information as
a function of log ε. In this case the resulting data suggests that the Fisher
information in the noisy ABC MLE decays as the inverse of the fourth power
of ε for sufficiently large values of ε.

This second plot indicates that the Fisher information in the noisy ABC
MLE decays as the fourth power of ε, at least for large values of ε. This
suggests that in order for ABC MLE to provide accurate parameter estimates
one must use relatively small values of ε. However this conflicts with the need
to keep ε reasonably large in order to achieve computational stability. we
note that even in this simple 1-D linear model we had to use large numbers
of particles in our SMC algorithms to obtain accurate estimates of the ABC
likelihoods for small values of ε. In higher dimensions this problem will be
even worse as the volumes of the ε balls around the observations will decay
even more quickly with ε than in the one dimensional case. This suggests
that in order for ABC to become a truly practical statistical method one
needs to find algorithms that can generate samples from arbitrarily small
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Fig 2: Fisher Information of noisy ABC MLE parameter estimates.

neighborhoods of a point in an efficient manner. One way in which this may
be done is to marry ABC with techniques from the rapidly growing field of
rare event simulation (see Rubino and Tuffin (2009) for a recent overview of
this area).

8. Summary. In this article we have investigated the behaviour of the
ABC and noisy ABC MLEs when used for estimating the parameters of
HMMs. We have shown that mathematically these estimators should both be
understood as being MLEs implemented using the likelihoods of a collection
of perturbed HMMs. Using this insight we have shown that the standard
ABC MLE has an innate asymptotic bias which can be made arbitrarily
small by choosing a sufficiently small value of the parameter ε. Further we
have shown that the noisy ABC MLE provides an asymptotically consistent
estimator which is also, under certain conditions analogous to those for the
MLE, asymptotically normal. Moreover this noisy version of the estimator
has a loss of information relative to the MLE which manifests itself via an
increase in the variance of the parameter estimates. Finally we have shown
that under very mild conditions these results can be extended to smoothed
versions of the standard and noisy ABC MLEs.

These theoretical results help to solidify and extend existing intuition
associated to the approximations that have been considered. Further they
suggest some possible avenues for future investigation. Firstly one would ex-
pect that the theoretical results in this paper will hold under much weaker
assumptions than those presented here. The question of finding the neces-
sary mathematical tools to relax these assumptions remains an interesting
and important open problem. Secondly, the numerical results suggest that
in order to provide an efficient and accurate method of parameter estimation
ABC MLE will in practice need to be combined with computational tech-
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niques that allow one to generate samples effectively from sets with very
small probabilities. The question of finding a generally applicable method
of doing this is the topic of our current research.

Appendix A: Auxiliary Results. Here we present some supporting
technical lemmas. The first result is a standard result from real analysis
which we state without proof.

Lemma 5. Suppose that there exists a function f : Ru → Rv and se-
quence of continuously differentiable functions fn : Ru → Rv, n ≥ 1, such
that fn(z),∇θfn(z) are bounded uniformly in n and z, fn(z) → f(z) uni-
formly in z and the sequence ∇θfn(z) is Cauchy uniformly in z. Then f
is itself uniformly bounded and continuously differentiable and ∇θf(z) =
limn→∞∇θfn(z) uniformly in z.

The second lemma is concerned with the identifiability of probability dis-
tributions under additive noise.

Lemma 6. Let distributions µ1, µ2 and ν on Rm for some m ≥ 1 be
given and suppose that the characteristic function of ν is equal to zero on a
set of Lebesgue measure zero. Then

µ1 = µ2 ⇐⇒ µ1 ∗ ν = µ2 ∗ ν.

Proof. For any distribution µ we shall let ϕµ(λ) denote the correspond-
ing characteristic function. It is well known that for any pair of random
variables µ and ν, ϕµ∗ν(λ) = ϕµ(λ)ϕν(λ) and that µ = ν if and only if
ϕµ(λ) = ϕν(λ) for all λ. Thus we have that

µ1 = µ2 ⇐⇒ ϕµ1(λ) = ϕµ2(λ) for all λ

⇐⇒ ϕµ1(λ)ϕν(λ) = ϕµ2(λ)ϕν(λ) for all λ

⇐⇒ µ1 ∗ ν = µ2 ∗ ν.

The following three Lemmas are well known results concerned with the
connectedness of the support of a measure. We state them without proof.

Lemma 7. Let a probability distribution µ on Rm for some m ≥ 1 be
given. Then for all ε > 0 the set

Fµ,ε :=
{
y ∈ Rm : Pµ

(
Y ∈ Bε

y

)
= 0
}
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is measurable and
Pµ (Fµ,ε) = 0.

Lemma 8. If the support of µ is connected then so is the support of the
n-fold product measure µ⊗n for any n ≥ 1.

Lemma 9. Suppose that the support of a probability measure µ on Rm is
connected (see Section 2.1), then so is the support of the probability measure
µ ∗ UBε0 for any ε > 0.

The next lemma shows that adding noise to an observation will, in general,
result in a loss of information. The lemma after shows that for very large
amounts of noise the loss in information will be almost complete.

Lemma 10. Suppose that there exists a collection of distributions Pθ on
some Y ⊂ Rm parameterised by θ ∈ Θ and with densities pθ (·) with respect
to some common finite dominating measure µ, and that the densities pθ (·)
are differentiable w.r.t. θ. For all θ ∈ Θ and ε > 0 let Pεθ = Pθ ∗ UBε0. Then
for any θ ∈ Θ and ε > 0

(24) EPθ
[
∇θ log pθ(Y ).∇θ log pθ(Y )T

]
≥ EPεθ

[
∇θ log pεθ(Y ).∇θ log pεθ(Y )T

]
where pεθ(·) denotes the density of the distribution Pεθ with respect to the
finite dominating measure µ ∗ UBε0. Furthermore, if the supports of the dis-
tributions Pθ are all connected then we have equality in (24) if and only if
both quantities are equal to the zero matrix.

Proof. Let θ ∈ Θ be given and let Y be a random variable distributed
according to pθ(·). Observe that given ε the quantity pεθ(·) is equal to the
density of the random variable Y ε = Y + εZ (with respect to the appro-
priate dominating measure) where Z is an independent random variable
and Z ∼ UB1

0
. By a straightforward application of the Fisher identity and

the fact that pθ(Y, Y
ε) = pθ(Y )IBε(Y ε − Y ) one has that ∇θ log pεθ(Y

ε) =
E [∇θ log pθ(Y, Y

ε)|Y ε] = E [∇θ log pθ(Y )|Y ε] a.s. where pθ(·, ·) denotes the
joint density of the random variables Y, Y ε from which it follows that for
any v ∈ Rm, vT∇θ log pεθ(Y

ε) = E
[
vT∇θ log pθ(Y )|Y ε

]
. Furthermore given

v ∈ Rm we have that
(25)

vTEPθ
[
∇θ log pθ(Y ).∇θ log pθ(Y )T

]
v = EPθ

[
vT∇θ log pθ(Y ).∇θ log pθ(Y )T v

]
,

vTEPεθ

[
∇θ log pεθ(Y ).∇θ log pεθ(Y )T

]
v = EPεθ

[
vT∇θ log pεθ(Y ).∇θ log pεθ(Y )T v

]
.
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Applying Jensen’s inequality to (25) yields

vTEPθ
[
∇θ log pθ(Y ).∇θ log pθ(Y )T

]
v ≥ vTEPεθ

[
∇θ log pεθ(Y ).∇θ log pεθ(Y )T

]
v

for all v ∈ Rm from which (24) immediately follows.
We now prove the second assertion. Since the mapping z ∈ R → z2

is strictly convex it further follows from Jensen’s inequality that for any
v ∈ Rm,

vTEPθ
[
∇θ log pθ(Y ).∇θ log pθ(Y )T

]
v = vTEPεθ

[
∇θ log pεθ(Y ).∇θ log pεθ(Y )T

]
v

if and only if vT∇θ log pθ(Y ) and hence vT∇θ log pθ(Y, Y
ε) is σ (Y ε) measur-

able. Thus equality holds in (24) if and only if vT∇θ log pθ(Y, Y
ε) is σ (Y ε)

measurable for all v ∈ Rm which holds if and only if ∇θ log pθ(Y, Y
ε) is

σ (Y ε) measurable. Hence in order to prove the final part of the result
it is sufficient to show that ∇θ log pθ(Y, Y

ε) is σ (Y ε) measurable if and
only if it is equal to zero a.s. Assume that ∇θ log pθ(Y, Y

ε) is σ (Y ε) mea-
surable. Then ∇θ log pθ(Y

ε) = ∇θ log pθ(Y, Y
ε) a.s.. Using the fact that

∇θ log pθ(y, y
ε) = ∇θ log pθ(y)IBε(yε − y) one then has that

(26) ∇θ log pθ(y) = ∇θ log pθ(y
′)

for Pθ a.s. all y, y′ such that |y − y′| ≤ 2ε.
Suppose now that ∇θ log pθ(Y ) is not Pθ a.s. constant. Then there must

exist v and η such that Pθ(|∇θ log pθ(Y ) − v| ≤ η),Pθ(|∇θ log pθ(Y ) − v| >
η) > 0. It then follows from Lemma 7 that there must exist points y and y
such that for all δ > 0

(27)
Pθ(|Y − y| ≤ δ, |∇θ log pθ(Y )− v| ≤ η) > 0,

Pθ(|Y − y| ≤ δ, |∇θ log pθ(Y )− v| ≤ η) > 0.

Since the support of Pθ is connected there exists a continuous curve C :
[0, 1]→ Rm contained in the support of Pθ such that C(0) = y and C(0) = y.
By the continuity of C one can find a finite sequence of open balls Bo

1, . . . , B
o
n

of radius less than or equal to ε such that y ∈ Bo
1, y ∈ Bo

n, C ⊂ ∪nk=1B
o
k

and such that for every 1 ≤ k < n, Bo
k ∩ Bo

k+1 ∩ C 6= ∅. Consider any two
neighbouring balls Bo

k and Bo
k+1. From the above we have that ∇θ log pθ(·) is

Pθ a.s. constant on Bo
k and Bo

k+1 and that there exists some ball contained in
Bo
k∩Bo

k+1 with non zero Pθ mass and thus that∇θ log pθ(·) is Pθ a.s. constant
on Bo

k ∪ Bo
k+1. Hence it follows that ∇θ log pθ(·) is Pθ a.s. constant ∪nk=1B

o
k

which contradicts the assumption that ∇θ log pθ(Y ) is not Pθ a.s. constant.
Thus it follows that if ∇θ log pθ(Y, Y

ε) is σ (Y ε) measurable that ∇θ log pθ(·)
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must be Pθ a.s. equal to some constant K. Further, since E [∇θ log pθ(Y )] = 0
it then follows that K = 0. Conversely if ∇θ log pθ(·) = 0 a.s. then clearly it
is σ (Y ε) measurable.

Lemma 11. Suppose that there exists a collection of distributions Pθ on
some Y ⊂ Rm parameterised by the parameter vector θ ∈ Θ. Assume that
for every θ the corresponding distribution has a density pθ (·) with respect
to some common finite dominating measure µ, that the densities pθ (·) are
continuously differentiable w.r.t. θ and that the corresponding score functions
∇θ log pθ (·) are uniformly bounded above in norm by some some K < ∞.
For all θ and ε let Pεθ = Pθ∗UBε0. Then for any θ and any sequence of positive
real numbers εn such that εn ↗∞

lim
n→∞

Pεnθ
(
{y :

∣∣∇θ log pεnθ (y)
∣∣ > δ}

)
= 0

for all δ > 0 where pεnθ (·) denotes the density of the distribution Pεnθ with
respect to the finite dominating measure µ ∗ UBεn0 .

Proof. Let θ ∈ Θ be given and let Y be a random variable distributed
according to Pθ. As in the proof of Lemma 10 we observe that given ε the
quantity pεθ(·) is equal to the density of the random variable Y ε = Y + εZ
(again with respect to the appropriate dominating measure) where Z is an
independent random variable with Z ∼ UB1

0
. Standard computations show

that for any y

∇θ log pεnθ (y) =
∇θ
∫
pθ(z)IBεn (y − z) ν(dz)∫

pθ(z)IBεn (y − z) ν(dz)

=
∇θ
∫
pθ(z)

(
1− I(Bεn )C (y − z)

)
ν(dz)∫

pθ(z)IBεn (y − z) ν(dz)

=
−
∫
∇θpθ(z)I(Bεn )C (y − z) ν(dz)∫
pθ(z)IBεn (y − z) ν(dz)

where the last equality follows from the dominated convergence theorem
by (A2), (A3), (A4) and (A5). Since |∇θ log pθ (y)| ≤ K it follows that∣∣∣∫ ∇θpθ(z)I(Bεn )C (y − z) ν(dz)

∣∣∣ ≤ KPθ
(
Y n ∈ (Bεn

y )C
)

for all y. Hence the

proof will follow once we establish that for any δ′

(28) lim sup
n→∞

Pεnθ
(
{y : Pθ

(
Y ∈ Bεn

y

)
≤ 1− δ′}

)
≤ δ′.

Note that given any δ′ there exist R <∞ and r < 1 such that Pθ
(
Y ∈ BR

0

)
,

P (Z ∈ Br
0) > 1 − δ′/2 and thus that for any εn > 2R/ (1− r) we have
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that Pθ
(
Y ∈ BR

0 , Y + εnZ ∈ Bεn−R
0

)
> 1 − δ′. Clearly if y ∈ Bεn−R

0 then

Pθ
(
Y ∈ Bεn

y

)
≥ Pθ

(
Y ∈ BR

0

)
> 1− δ′/2 and so the result follows.

The following result establishes a stability-like property of the filter as the
amount of noise in certain components of the observations becomes infinite.
Before we state the result we recall the extended HMM defined in Section 6.
Given a HMM {Xk, Yk}k≥0 and a perturbed version {Xk, Y

ε
k }k≥0 (see (7))

we define the extended HMM to be the joint process {Xk, Yk, Y
ε
k }k≥0. In

other words given a HMM {Xk, Yk}k≥0 and some ε > 0 the extended HMM
is the process

(29) {Xk, Yk, Y
ε
k }k≥0 := {Xk, Yk, Yk + εZk}k≥0

where {Zk}k≥0 is such that for each k ≥ 0, Zk
i.i.d.∼ UB1

0
.

Lemma 12. Let {Xk, Yk}k≥0 be a HMM which satisfies (A3) and let
{Xk, Yk, Y

ε
k }k≥0 be the corresponding extended HMM defined in (29). Then

for any l < m, sequences j1 < · · · < jr, j̃1 < · · · < j̃s, any j ≤ min
{
l, j1, j̃1

}
,

x ∈ X and δ > 0

lim
ε→∞

P
(∥∥∥p(Xl:m|Yj1:jr ;Y

ε
j̃1:j̃s

;Xj = x
)

−p
(
Xl:m|Yj1:jr ;Xj = x

)∥∥∥
TV

> δ
)

= 0.(30)

Proof. Clearly we can assume that {j1, . . . , jr} ∩
{
j̃1, . . . , j̃s

}
= ∅. Let

k = max
{
m, jr, j̃s

}
, then using assumption (A3) and the well known identity

p
(
Xl:m|Yj1:jr ;Y

ε
j̃1:j̃s

;Xj = x
)

=

∫ ∏k
u=j+1 q(xu−1, xu)

∏r
v=1 g(Yjv |xjv)

∏s
w=1 g

ε(Y ε
jw
|xjw)dµ(xj+1:l−1;m+1:k)∫ ∏k

u=j+1 q(xu−1, xu)
∏r
v=1 g(Yjv |xjv)

∏s
w=1 g

ε(Y ε
jw
|xjw)dµ(xj+1:k)

(31)

where gε(·|·) is as in (6) it follows that in order to show (30) it is sufficient
to show that for any l and δ > 0

(32) lim
ε→∞

P

(
sup
x,x′∈X

∣∣∣∣ gε(Y ε
l |x)

gε(Y ε
l |x′)

− 1

∣∣∣∣ > δ

)
= 0.
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In order to prove (32) it is sufficient, by assumption (A3), to show that for
any δ > 0

(33) lim
ε→∞

ν ∗ UBε0

(
y : sup

x,x′∈X

∣∣∣∣∣
∫
Bεy
g(y′|x)ν(dy′)∫

Bεy
g(y′|x′)ν(dy′)

− 1

∣∣∣∣∣ > δ

)
= 0.

By assumption (A3) we have that for any δ′ > 0 there exists some Rδ′ <∞
such that for all x ∈ X ∫

(B
Rδ′
0 )C

g(y|x)ν(dy) < δ′.

It then follows that given the above δ there exists some Rδ < ∞ such that

supx,x′∈X

∣∣∣∣ ∫Bεy g(y′|x)ν(dy′)∫
Bεy

g(y′|x′)ν(dy′)
− 1

∣∣∣∣ ≤ δ for all y such that BRδ
0 ⊂ Bε

y. Thus in

order to prove (33) it is sufficient to show that for any R > 0, limε→∞ ν ∗
UBε0

(
(Bε−R

0 )C
)

= 0. However for any r ∈ (0, 1) we have that

lim sup
ε→∞

ν ∗ UBε0
(

(Bε−R
0 )C

)
≤ lim sup

ε→∞
ν ∗ UBε0

(
(B

(1−r)ε
0 )C

)
≤ lim sup

ε→∞

(
ν
(
(Brε

0 )C
)

+ UBε0
(

(B
(1−2r)ε
0 )C

))
from which the result follows.

The next five results are restatements of certain well-known stability prop-
erties of the filter.

Lemma 13. Let {Xk, Yk} be a HMM which satisfies (A3) and let the
process {Xk, Yk, Y

ε
k } be the corresponding extended HMM defined as in (29).

Then for all k ≤ l < m ≤ n, j1 < · · · < jr and j̃1 < · · · < j̃s such
that j1 ∧ j̃1 ≥ k, jr ∨ j̃s ≤ n, all xk, x

′
k, xn, x

′
n ∈ X and all sequences

Yj1 , . . . , Yjr ;Y
ε
j̃1
, . . . , Y ε

j̃s∥∥∥P(Xl:m|Yj1:r ;Y ε
j̃1:s

;Xk = xk

)
− P

(
Xl:m|Yj1:r ;Y ε

j̃1:s
;Xk = x′k

)∥∥∥
TV
≤ ρ(l−k)

(34)

and∥∥∥P(Xl:m|Yj1:r ;Y ε
j̃1:s

;Xk = xk;Xn = xn

)
−P
(
Xl:m|Yj1:r ;Y ε

j̃1:s
;Xk = x′k, Xn = x′n

)∥∥∥
TV
≤ 2ρ(l−k)∧(n−m)

(35)

where ρ =
(
1− c2

1

/
c2

1

)
.
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Proof. Equations (34) and (36) follow immediately from standard re-
sults in the literature, see for example Del Moral (2004) and Cappé, Rydén
and Moulines (2005).

Corollary 1. Let {Xk, Yk} be a HMM which satisfies (A3) and let
the process {Xk, Yk, Y

ε
k } be the corresponding extended HMM defined as in

(29). Then for all l ≤ m and infinite sequences . . . , j−1, j0 and j̃0, j̃1, . . . the

conditional probability laws p
(
Xl:m|Yj−∞:0

)
and p

(
Xl:m|Yj−∞:0 ;Y ε

j̃0:∞

)
exist

and are well defined. Further for any x ∈ X

(36)
∥∥∥P(Xl:m|Yj−k:0 ;Y ε

j̃0:n
;X−k = x

)
− P

(
Xl:m|Yj−∞:0 ;Y ε

j̃0:∞

)∥∥∥
TV
→ 0,

(37)
∥∥P (Xl:m|Yj−k:0 ;X−k = x

)
− P

(
Xl:m|Yj−∞:0

)∥∥
TV
→ 0

as k, n→∞.

Proof. Equations (36) and (37) are simple consequences of (34).

Corollary 2. Let {Xk, Yk} be a HMM which satisfies (A3) and let
{Xk, Yk, Y

ε
k } be the corresponding extended HMM defined as in (29). Then

for all k < l, j1 < · · · < jr and j̃1 < · · · < j̃s such that j1 ∧ j̃1 ≥ k, all x ∈ X
and all sequences Yj1 , . . . , Yjr ;Y

ε
j̃1
, . . . , Y ε

j̃s

(38)
c3

1

c2
1

≤ p(xl|Yj1:r ;Y ε
j̃1:s

;Xk = x) ≤ c3
1

c2
1

where the constants c1, c1 are as in (A3) and the central quantity in (38)
denotes the density of the corresponding conditional probability with respect
to the dominating measure µ.

Proof. To simplify the exposition we shall only give a proof of (38) for
conditional probabilities of the form p(xl|Yj1:r), the proof in the general case
following in an identical manner.

It is clear by (A3) that when jr < l

(39) c1 ≤ p(xl|Yj1:r ;Xk = x) ≤ c1

Consider the case when jr ≥ l. Let r′ be such that jr′−1 < l ≤ jr′ . By (A3)
we have

p(Yjr′:r |Xl = xl) ≤
c2

1

c2
1

p(Yjr′:r |X
′
l = x′l)
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for any x′l . Note that if l < jr′ one obtains the tighter bound p(Yjr′:r |Xl =
xl) ≤ (c1/c1)p(Yjr′:r |X

′
l = x′l). Thus

p(xl|Yj1:r ;Xk = x) =
p(xl|Yj1:r′−1

;Xk = x)p(Yjr′:r |Xl = xl)∫
p(x′l|Yj1:r′−1

;Xk = x)p(Yjr′:r |Xl = x′l)µ(dx′l)

≤ p(xl|Yj1:r′−1
;Xk = x)

c2
1

c2
1

and the upper bound in (38) is obtained using (39). The lower bound in (38)
is proved similarly.

Corollary 3. Let {Xk, Yk} be a HMM which satisfies (A3) and and let
{Xk, Yk, Y

ε
k } be the corresponding extended HMM defined as in (29). Then

for all k ≤ l ≤ l′ < m ≤ m′, j1 < · · · < jr and j̃1 < · · · < j̃s such that
j1 ∧ j̃1 ≥ k, and all f, h ∈ L∞, x ∈ X∣∣∣E [f(Xl:l′)|Yj1:r ;Y ε

j̃1:s
;Xk = x

]
.E
[
h(Xm:m′)|Yj1:r ;Y ε

j̃1:s
;Xk = x

]
−E

[
f(Xl:l′)h(Xm:m′)|Yj1:r ;Y ε

j̃1:s
;Xk = x

]∣∣∣ ≤ ‖f‖∞ ‖h‖∞ ρm−l′
(40)

where ρ is as in Lemma 13.

Proof. Let

∆H = h(Xm:m′)− E
[
h(Xm:m′)|Yj1:r ;Y ε

j̃1:s
;Xk = x

]
.

It follows from (34) that∣∣∣E [∆H|Yj1:r ;Y ε
j̃1:s

;Xk = x;Xl

]∣∣∣ ≤ ‖h‖∞ ρm−l′ .
The proof is completed by noting that the difference of the two expectations
in (40) can be expressed as

E
[
f(Xl:l′)∆H|Yj1:r ;Y ε

j̃1:s
;Xk = x

]
.

Remark 7. The proof of Corollary 3 actually yields the stronger result
that the left hand side of (40) is bounded above by

‖h‖∞ ρ
m−l′E

[
|f(Xl:l′)| |Yj1:r ;Y ε

j̃1:s
;Xk = x

]
.
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Corollary 4. Let {Xk, Yk} be a HMM which satisfies (A3) and and let
{Xk, Yk, Y

ε
k } be the corresponding extended HMM defined as in (29). Then

for all k′ ≤ k ≤ l < m, j1 < · · · < jr and j̃1 < · · · < j̃s such that j1∧ j̃1 ≥ k′,
f ∈ L∞, x, x′ ∈ X and 1 ≤ rb ≤ re ≤ r, 1 ≤ sb ≤ se ≤ s such that
jrb ∧ j̃sb ≥ k, jre ∧ j̃se ≥ m and l ≥ jrb ∨ j̃sb we have that∣∣∣E [f(Xl:m)|Yj1:r ;Y ε

j̃1:s
;Xk′ = x′

]
− E

[
f(Xl:m)|Yjrb:re ;Y ε

j̃sb:se
;Xk = x

]∣∣∣
≤ 2 ‖f‖∞ ρ

(jre∧j̃se−m)∧(l−jrb∨j̃sb )(41)

where ρ is as in Lemma 13.

Proof. It is clear that Yjrb:re ⊆ Yj1:r and Y ε
j̃sb:se

⊆ Y ε
j̃1:s

. By conditioning

on Xjrb∨j̃sb
and Xjre∧j̃se , the difference of the two expectations in the left

hand-side of (41) can be expressed as∫ ∣∣∣E [f(Xl:m)|Yjrb:re ;Y ε
j̃sb:se

;x′
jrb∨j̃sb

;x′
jre∧j̃se

]
−E

[
f(Xl:m)|Yjrb:re ;Y ε

j̃sb:se
;xjrb∨j̃sb

;xjre∧j̃se

]∣∣∣
× p

(
x′
jrb∨j̃sb

, x′
jre∧j̃se

|Yj1:r ;Y ε
j̃1:s

;Xk′ = x′
)

× p
(
xjrb∨j̃sb

, xjre∧j̃se |Yjrb:re ;Y ε
j̃sb:se

;Xk = x
)

× µ(dx′
jrb∨j̃sb

)µ(dx′
jre∧j̃se

)µ(dxjrb∨j̃sb
)µ(dxjre∧j̃se ).

The result now follows by bounding the difference of the two conditional
expectations in the integrand using (35).

Remark 8. Using exactly the same proofs as above one can show that
the conclusions of Corollaries 3 and 4 and Remark 7 are still valid if the
functions f(Xl:l′), h(Xm:m′) and f(Xl:m) in the statements of those results
are replaced with the functions f(Xl:l′ , Yl:l′), h(Xm:m′ , Ym:m′), f(Xl:m, Yl:m).

The next result establishes certain properties of the gradient of the filter
conditioned on the infinite past, see Le Gland and Mevel (2000) or Tadić
and Doucet (2005) for further information concerning the gradient of the
filter.

Lemma 14. Let {Xk, Yk} be a parameterised collection of HMMs which
satisfy (A3)-(A5) and let {Xk, Yk, Y

ε
k } be the corresponding extended HMMs

defined as in (29). Then for all θ ∈ G where G is as in assumptions (A4)
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and (A5) and every sequence of observations . . . , Y−1;Y ε
1 , . . . there exists an

Rd valued function ∇̄θpθ;Y−∞:−1;Y ε1:∞
(x0) in L1(µ) such that such that for all

k, n > 0, x ∈ X

sup
f :‖f‖∞≤1

∣∣∣∣∫ f(x0)∇̄θpθ;Y−∞:−1;Y ε1:∞
(x0)µ(dx0)

−
∫
f(x0)∇θpθ (x0|Y−n:−1;Y ε

1:k;X−n = x)µ(dx0)

∣∣∣∣ ≤ Cρn2∧ k2(42)

where ρ is as in Lemma 13, C <∞ is a global constant independent of θ and
. . . , Y−1;Y ε

1 , . . . and ∇θpθ (x0|Y−n:−1;Y ε
1:k;X−n = x) denotes the gradient of

the density of the conditional law Pθ (x0|Y−n:−1;Y ε
1:k;X−n = x) w.r.t. µ.

Furthermore there exists K <∞ such that for all k, n > 0, x and θ ∈ G

(43) ∇θpθ (x0|Y−n:−1;Y ε
1:k;X−n = x) , ∇̄θpθ;Y−∞:−1;Y ε1:∞

(x0) ≤ K

almost surely. Finally we have that for any f ∈ L∞

∇θ
∫
f(x0)pθ (x0|Y−∞:−1;Y ε

1:∞)µ(dx0)

=

∫
f(x0)∇̄θpθ;Y−∞:−1;Y ε1:∞,...

(x0)µ(dx0),(44)

where (44) defines a continuous function of θ on G.

Proof. We begin by proving (42) and (43). First note that since it is
sufficient to prove the results component wise with respect to the vectors
∇θpθ(·| · · · ) and ∇̄θpθ(·| · · · ) we can assume that d = 1. For any suitable x,
f , n and k∫

f(x0)∇θpθ (dx0|Y−n:−1;Y ε
1:k;X−n = x)

=

−1∑
j=−n

E [f(X0)∇θ log (qθ(Xj , Xj+1)gθ(Yj |Xj)) |Y−n:−1;Y ε
1:k;X−n = x]

(45)

−
−1∑

j=−n
Eθ [f(X0)|Y−n:−1;Y ε

1:k;X−n = x]×

Eθ [∇θ log (qθ(Xj , Xj+1)gθ(Yj |Xj)) |Y−n:−1;Y ε
1:k;X−n = x]

(46)

(47)
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+
k∑
l=1

Eθ [f(X0)∇θ log (qθ(Xl−1, Xl)gθ(Yl|Xl)) |Y−n:−1;Y ε
1:k;X−n = x]

(48)

−
k∑
l=1

Eθ [f(X0)|Y−n:−1;Y ε
1:k;X−n = x]×

Eθ [∇θ log (qθ(Xl−1, Xl)gθ(Yl|Xl)) |Y−n:−1;Y ε
1:k;X−n = x] .

(49)

By (A3), (A5), (41) and Remark 8 we have that for all f : ‖f‖∞ ≤ 1,
x, x′ ∈ X , θ ∈ G, k, k′, n, n′ > 0 and j such that −n′ ≤ −n < j < k ≤ k′

that

|E [f(X0)∇θ log (qθ(Xj , Xj+1)gθ(Yj |Xj)) |Y−n:−1;Y ε
1:k;X−n = x]

−E
[
f(X0)∇θ log (qθ(Xj , Xj+1)gθ(Yj |Xj)) |Y−n′:−1;Y ε

1:k′ ;X−n′ = x′
]∣∣

≤ 2c1c2

c1

Cρ(j+n)∧(k−j−1)(50)

and

|E [f(X0)|Y−n:−1;Y ε
1:k;X−n = x]×

E [∇θ log (qθ(Xj , Xj+1)gθ(Yj |Xj)) |Y−n:−1;Y ε
1:k;X−n = x]

− E
[
f(X0)|Y−n′:−1;Y ε

1:k′ ;X−n′ = x′
]
×

E
[
∇θ log (qθ(Xj , Xj+1)gθ(Yj |Xj)) |Y−n′:−1;Y ε

1:k′ ;X−n′ = x′
]∣∣ .

≤ 4C
c1c2

c1

(
1 + C

c1

c1

)
ρ(j+n)∧(k−j−1)(51)

where ρ is as in Lemma 13, C is as in Corollary 4 and c1, c1, c2 are as in
assumption (A3) and (A5). Further by (A3), (A5) and (40) it follows that
for all x ∈ X , θ ∈ G, k, n > 0 and j 6= 0 that

|E [f(X0)∇θ log (qθ(Xj , Xj+1)gθ(Yj |Xj)) |Y−n:−1;Y ε
1:k;X−n = x]

− E [f(X0)|Y−n:−1;Y ε
1:k;X−n = x]×

E [∇θ log (qθ(Xj , Xj+1)gθ(Yj |Xj)) |Y−n:−1;Y ε
1:k;X−n = x]|

≤ 2c1c2

c1

ρ|j|∧|j+1|.(52)
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It thus follows from (45)-(52) that for all θ ∈ G that for all k, n ≥ 1

sup
x,x′∈X

sup
f :‖f‖∞≤1

∣∣∣∣∫ f(x0)∇θpθ (x0|Y−n:−1;Y ε
1:k;X−n = x)µ(dx0)

−
∫
f(x0)∇θpθ

(
x0|Y−n′:−1;Y ε

1:k′ ;X−n′ = x′
)
µ(dx0)

∣∣∣∣
≤ 64C2 c

2
1c2

c2
1ρ

∞∑
r=n

2
∧ k

2

ρr.(53)

Further the first part of (43) follows from (45)-(49), (A3) and (A5), the
uniform boundedness of the densities of conditional probability densities
pθ (x0|Y−n:−1;Y ε

1:k;X−n = x) (Corollary 2) and Remark 7. Let K be the
constant bounding the first part of (43) and for any x ∈ X , k, n ≥ 0 and
observations Y−n, . . . , Y−1;Y ε

1 , . . . , Y
ε
k let

∇θpKθ (x0|Y−n:−1;Y ε
1:k;X−n = x) = ∇θpθ (x0|Y−n:−1;Y ε

1:k;X−n = x) +K.

(54)

The functions ∇θpKθ (·| · · · ) are densities with respect to µ of a collection
of (random) finite positive measures, each with total mass equal to K
and for which (53) clearly still holds. Since the space of positive finite
measures equipped with the total variation norm is a Banach space (see
e.g. Parthasarathy and Steerneman (1985)) it follows from (53) that given
a doubly infinite sequence of observations . . . , Y−1;Y ε

1 , . . . there exists some
positive finite measure µ̄KY−∞:−1;Y ε1:∞

such that for any n ≥ 1

sup
x∈X

sup
f :‖f‖∞≤1

∣∣∣∣∫ f(x0)∇θpKθ (x0|Y−n:−1;Y ε
1:n;X−n = x)µ(dx0)

−
∫
f(x0)µ̄KY−∞:−1;Y ε1:∞

(dx0)

∣∣∣∣ ≤ 64C2 c2
1c2

c2
1ρ(1− ρ)

ρ
n
2 .(55)

It follows by definition that ∇θpKθ (·| · · · ) ≤ 2K and thus from (55) that
µ̄KY−∞:−1;Y ε1:∞

� µ and that its density ∇̄θpKθ;Y−∞:−1;Y ε1:∞
(·) is bounded above

by 2K. Equation (42) and the second part of equation (43) now follow by
letting ∇̄θpθ;Y−∞:−1;Y ε1:∞

(·) = ∇̄θpKθ;Y−∞:−1;Y ε1:∞
(·) − K. We shall prove (44)

by, for any f ∈ L∞, applying Lemma 5 to the sequence of functions

(56) Ēθ [f(X0)|Y−n:−1;Y ε
1:n;X−n = x]

for n ≥ 1 and x ∈ X arbitrary. Clearly the sequence of functions in (56) are
continuously differentiable by (A2) and (A4). In order to be able to apply
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Lemma 5 we further need to establish that the functions in (56) and their
derivatives are uniformly bounded. This follows from (38) and (43), that

Ēθ [f(X0)|Y−n:−1;Y ε
1:n;X−n = x]→ Ēθ [f(X0)|Y−∞:−1;Y ε

1:∞]

uniformly which follows from (36) and finally that the sequence of derivatives
of the functions in (56) is uniformly Cauchy which follows from (42).

Corollary 5. Assume the same conditions as in Lemma 14. Then
results analogous to those in (42), (43) and (44) hold for the gradients of
the conditional densities pθ (x0|Y−n:−1;X−n = x), pεθ

(
x0|Y ε

−n:−1;X−n = x
)

and pθ (x0|Y−∞:−1;Y ε
m:∞). Furthermore for every sequence of observations

Y−∞:−1, Y ε
1:∞ and integer m ≥ 1

(57) |∇θpθ (x0|Y−∞:−1;Y ε
m:∞)−∇θpθ (x0|Y−∞:−1)| ≤ Cρ

m
2

where ρ is as in Lemma 13 and C <∞ is a global constant independent of
θ, x0, Y−∞:−1, Y ε

1:∞ and m.

Proof. The first part of the corollary can be proved in exactly the same
way as Lemma 14.

To prove the second part of the corollary it is sufficient to show that
(58)
|∇θpθ (x0|Y−n:−1;Y ε

m:n;X−n = x)−∇θpθ (x0|Y−n:−1;X−n = x)| ≤ Cρ
m
2
∧n

2

for some C and all θ, Y−∞:−1, Y ε
1:∞, x and n. Inequality (58) can be es-

tablished by decomposing the two gradients that appear on its left hand
side in an analogous manner to (45)-(49). The bound on the right hand side
then follows by bounding the terms in this decomposition individually using
(50)-(52) and the fact that

(59) Pθ (x0|Y−n:−1;Y ε
m:n;X−n = x)− Pθ (x0|Y−n:−1;X−n = x) ≤ 2ρm

for all θ, Y−∞:−1, Y ε
1:∞, x and n which follows immediately from (35).

Appendix B: Proofs of Lemmas 1, 2, 3 and 4.

Proof of Lemma 1. We begin by observing that a straightforward con-
sequence of assumption (A3) is that for all (θ, ε) ∈ Θ × [0,∞), r > 0 and
sequences y−r, . . . , y1

(60) c1 ≤ pεθ(y1|y−r . . . , y0) ≤ c1.



ESTIMATION OF INTRACTABLE HMMS 37

Further by Lemma 13 it follows that the finite history conditional likeli-
hoods pεθ(y1|y−r, . . . , y0) converge to the infinite history conditional likeli-
hoods pεθ(y1| . . . , y0) as r →∞ uniformly in θ, ε, the sequence of observations
. . . , y0, y1 and initial distribution π(x−r−1). Thus by (60) it follows that in
order to show continuity w.r.t. the first term and right continuity w.r.t. the
second term of the mapping (θ, ε) ∈ Θ × [0,∞) → lε(θ) it is sufficient to
show that these properties hold for the mapping

(61) (θ, ε) ∈ Θ× [0,∞)→ Ēθ∗ [log pεθ(Y1|Y−r:0)]

for all r > 0. For the rest of the proof we shall assume an arbitrary fixed
r > 0 and initial distribution π(x−r−1) are given. Observe that by (A2), (A3)
Lemma 7 and the dominated convergence theorem the mapping (θ, ε) ∈ Θ×
(0,∞)→ gεθ(y|x) is continuous w.r.t. its first term and right continuous w.r.t.
its second term for all y ∈ Y and x ∈ X . Thus by a second application of
(A2), (A3) and the dominated convergence theorem one immediately obtains
these properties of the mapping (θ, ε) ∈ Θ× (0,∞) → pεθ(y1|y−r . . . , y0) for
any r > 0 and sequence y−r, . . . , y1. A final application of (A2), (A3) and
the dominated convergence theorem along with the inequality (60) yield that
the mapping Θ × [0,∞) → R given in (61) is also respectively continuous
and right continuous. In order to prove continuity w.r.t. the first term and
right continuity w.r.t. the second term of (61) on Θ× [0,∞) we shall show
for any sequences εn ↘ 0 and θn ∈ Θ→ θ ∈ Θ, that

(62) Ēθ∗
[
log pεnθn(Y1|Y−r:0)

]
→ Ēθ∗ [log pθ(Y1|Y−r:0)]

as n→∞. First note that

Ēθ∗
[
log pεnθn(Y1|Y−r:0)

]
= Ēθ∗

[
log pεnθn(Y−r, . . . , Y1)− log pεnθn(Y−r, . . . , Y0)

]
.

Thus in order to prove (62) it is sufficient to show that

(63) Ēθ∗
[
log pεnθn(Y−r, . . . , Y1)

]
→ Ēθ∗ [log pθ(Y−r, . . . , Y1)]

and

(64) Ēθ∗
[
log pεnθn(Y−r, . . . , Y0)

]
→ Ēθ∗ [log pθ(Y−r, . . . , Y0)]

as n → ∞. We will now conclude the proof of the theorem by proving
(63) and observing that the proof of (64) follows in a completely identical
manner. The differences in the values of the likelihoods in (63) evaluated at
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different parameter values θn and θ can be bounded by∣∣pεnθn(Y−r, . . . , Y1)− pεnθ (Y−r, . . . , Y1)
∣∣

≤
∣∣∣∣ ∫
X r+3

[ 1∏
k=−r

qθn(xk−1, xk)g
εn
θn

(Yk|xk)
]
π(dx−r−1)µ(dx−r:1)

−
∫
X r+3

[ 1∏
k=−r

qθ(xk−1, xk)g
εn
θn

(Yk|xk)
]
π(dx−r−1)µ(dx−r:1)

∣∣∣∣
+

∣∣∣∣ ∫
X r+3

[ 1∏
k=−r

qθ(xk−1, xk)g
εn
θn

(Yk|xk)
]
π(dx−r−1)µ(dx−r:1)

−
∫
X r+3

[ 1∏
k=−r

qθ(xk−1, xk)g
εn
θ (Yk|xk)

]
πθ(dx−r−1)µ(dx−r:1)

∣∣∣∣
≤ cr+2

1

∫
X r+3

∣∣∣∣∣
1∏

k=−r
qθn(xk−1, xk)−

1∏
k=−r

qθ(xk−1, xk)

∣∣∣∣∣π(dx−r−1)µ(dx−r:1)

(65)

+ cr+1
1

(
1∑

l=−r

∫
X r+3

∣∣gεnθn(Yl|xl)− gεnθ (Yl|xl)
∣∣π(dx−r−1)µ(dx−r:1)

)
(66)

where c1 is as in (A3) and (66) follows from (A3), the definition of gεθ(·|·)
and the telescopic identity

n∏
k=1

akbk −
n∏
k=1

ak b̂k =
n∑
l=1

(
n∏
k=1

ak × (bl − b̂l)
l−1∏
k=1

bk

n∏
k=l+1

b̂k

)

which holds for any collection of reals a1, . . . , an; b1, . . . , bn; b̂1, . . . , b̂n. Clearly
assumptions (A2) and (A3) and the dominated convergence theorem imply
that the quantity in (65) converges to zero as θn converges to θ. Furthermore
the definition of gεθ(·|·) and convergence of θn to θ imply that for any δ > 0
the limit supremum of (66) as n→∞ is bounded above by

lim sup
n→∞

cr+1
1

 1∑
l=−r

∫
X r+3

∫
BεnYl

∆gδθ(y|xl)ν(dy)

ν(Bεn
Yl

)
π(dx−r−1)µ(dx−r:1)


(67)
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where for all x ∈ X and y ∈ Y

∆gδθ(y|x) = sup
θ′:|θ′−θ|≤δ

|gθ′(y|x)− gθ(y|x)| .

It then follows from (A3), (67), the dominated convergence theorem and
the Lebesgue differentiation theorem (see Wheeden and Zygmund (1977),
Chapter 10) that

lim sup
n→∞

cr+1
1

(
1∑

l=−r

∫
X r+3

∣∣gεnθn(Yl|xl)− gεnθ (Yl|xl)
∣∣π(dx−r−1)µ(dx−r:1)

)

≤ cr+1
1

(
1∑

l=−r

∫
X r+3

∆gδθ(Yl|xl)π(dx−r−1)µ(dx−r:1)

)(68)

for any δ > 0. Next we observe that by (A2) we have that limδ→0 ∆gδθ(y|x) =
0 for all y ∈ Y and x ∈ X and hence that by applying (A3) and the domi-
nated convergence theorem to (68) we have that

lim sup
n→∞

cr+1
1

(
1∑

l=−r

∫
X r+3

∣∣gεnθn(Yl|xl)− gεnθ (Yl|xl)
∣∣π(dx−r−1)µ(dx−r:1)

)
= 0.

(69)

Thus it follows from (60), (65), (66) and (69) that for almost all sequences
of observations Y−r, . . . , Y1 that

lim
n→∞

log pεnθn(Y−r, . . . , Y1) = lim
n→∞

log pεnθ (Y−r, . . . , Y1).(70)

Since

pεθ(Y−r, . . . , Y1)

=

∫
X r+3

[ 1∏
k=−r

qθ(xk−1, xk)

∫
BεYk

gθ(y|xk)ν(dy)

ν(Bε
Yk

)

]
π(dx−r−1)µ(dx−r:1)

we have that (63) now follows from (60), (70), the Lebesgue differentiation
theorem, (A3) and the dominated convergence theorem.

Proof of Lemma 2. We start by showing that l(θ) is continuously dif-
ferentiable. First observe that by (A3), (A4), (A5), (36), (38), (42), (43), (44)
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and the dominated convergence theorem we have that for arbitrary x ∈ X

(71)
lim
n→∞

log pθ(Y1|Y−n:0;X−n = x) = log pθ(Y1|Y−∞:0)

lim
n→∞

∇θ log pθ(Y1|Y−n:0;X−n = x) = ∇θ log pθ(Y1|Y−∞:0)

uniformly in θ ∈ G and . . . , Y0, Y1 and that the quantities in (71) are uni-
formly bounded. It follows from (71) that

l(θ) = lim
n→∞

Ēθ∗ [log pθ(Y1|Y−n:0;X−n = x)]

and hence from (71) and Lemma 5 that ∇θl(θ) exists, is continuous and is
equal to limn→∞ Ēθ∗ [∇θ log pθ(Y1|Y−n:0;X−n = x)]. Since gεθ(y|x) defined in
(6) satisfies all the conditions laid out in (A3)-(A5), the same conclusion
applies to lε(θ). To prove the corresponding results for ∇2

θl(θ) observe that
by the Fisher information identity

∇2
θĒθ∗ [log pθ(Y1|Y−n:0;X−n = x)]

= Ēθ∗
[
∇θ log pθ(Y1|Y−n:0;X−n = x)∇θ log pθ(Y1|Y−n:0;X−n = x)T

]
.

Existence and continuity of ∇2
θl(θ) then follows from (71) and Lemma 5

applied to the functions ∇θ log pθ(Y1|Y−n:0;X−n = x). Furthermore the fact
that ∇2

θl(θ
∗) = I(θ∗) now follows from Douc, Moulines and Ryden (2004).

We begin the proof of (12) by observing that from (71) and the identity
log pθ(Y1, . . . , Yn|X1 = x) =

∑n
k=1 log pθ(Yk|Y1:k−1;X1 = x) we have that

∇θl(θ) = lim
n→∞

1

n
Ēθ∗ [∇θ log pθ(Y1, . . . , Yn|X1 = x)]

and similarly, for any ε > 0 that

∇θlε(θ) = lim
n→∞

1

n
Ēθ∗ [∇θ log pεθ(Y1, . . . , Yn|X1 = x)] .

Thus it is sufficient to show that there exists some positive constant R such
that for any sequence Y1, . . . , Yn, initial distribution π0 and θ ∈ G,

(72) |∇θ log pθ(Y1, . . . , Yn|X1 = x)−∇θ log pεθ(Y1, . . . , Yn|X1 = x)| ≤ nRε.

For all θ ∈ G, sequences Y1, . . . , Yn and Y ε
1 , . . . , Y

ε
n drawn from the original
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and perturbed processes respectively and x ∈ X

∇θ log pθ (Y1, . . . , Yn|X1 = x)−∇θ log pεθ (Y ε
1 , . . . , Y

ε
n |X1 = x)

=

n∑
i=1

(
∇θ log pθ

(
Y1:i;Y

ε
i+1:n|X1 = x

)
−∇θ log pθ (Y1:i−1;Y ε

i:n|X1 = x)
)

=

n∑
i=1

(
∇θ log pθ

(
Yi|Y1:i−1;Y ε

i+1:n;X1 = x
)

−∇θ log pθ
(
Y ε
i |Y1:i−1;Y ε

i+1:n;X1 = x
))

=
n∑
i=1

(∫
∇θgθ (Yi|xi) pθ

(
xi|Y1:i−1;Y ε

i+1:n;X1 = x
)
µ(dxi)

+

∫
gθ (Yi|xi)∇θpθ

(
xi|Y1:i−1;Y ε

i+1:n;X1 = x
)
µ(dxi)

)
×
(∫

gθ (Yi|xi) pθ
(
xi|Y1:i−1;Y ε

i+1:n;X1 = x
)
µ(dxi)

)−1

−
n∑
i=1

(∫
∇θgεθ (Y ε

i |xi) pθ
(
xi|Y1:i−1;Y ε

i+1:n;X1 = x
)
µ(dxi)

+

∫
gεθ (Y ε

i |xi)∇θpθ
(
xi|Y1:i−1;Y ε

i+1:n;X1 = x
)
µ(dxi)

)

×
(∫

gεθ (Y ε
i |xi) pθ (xi|Y1:i−1;Yi+1:ε;X1 = x)µ(dxi)

)−1

.

(73)

In particular (73) holds true when Y ε
1 , . . . , Y

ε
n = Y1, . . . , Yn and so (72)

follows from (A3), (A5), (A6), (A7) and (43).

Proof of Lemma 3. Throughout this proof we shall assume that the
density of any finite collection of random variables from . . . , Y0, Y1, . . . and
. . . , Y ε

0 , Y
ε

1 , . . . is computed assuming that the initial condition of the hidden
state process has the stationarity distribution P̄θ∗ . We begin by observing
that from Douc, Moulines and Ryden (2004) we have that
(74)

I(θ∗) = lim
n→∞

1

n
Ēθ∗

[
∇θ log pθ∗ (Y1, . . . , Yn) .∇θ log pθ∗ (Y1, . . . , Yn)T

]
,

Iε(θ∗) = lim
n→∞

1

n
Ēθ∗

[
∇θ log pεθ∗ (Y ε

1 , . . . , Y
ε
n) .∇θ log pεθ∗ (Y ε

1 , . . . , Y
ε
n)T
]
.

By the Fisher identity we have that for any 1 ≤ k < k′ and subsequences
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{j1, . . . , jl} ⊂ {1, . . . , k} and
{
j′1, . . . , j

′
l′
}
⊂ {k + 1, . . . , k′} that

(75) ∇θ log pθ

(
Yj1:l ;Y

ε
j′
1:l′

)
= E

[
∇θ log pθ

(
Y1:k;Y

ε
k+1:k′

)
|Yj1:l ;Y

ε
j′
1:l′

]
.

Further by construction of the perturbed process one can easily show that
given any n and any subset {j1, . . . , jl} ⊂ {1, . . . , n} that

(76) ∇θ log pθ (Y1, . . . , Yn) = ∇θ log pθ
(
Y1, . . . , Yn;Y ε

j1 , . . . , Y
ε
jl

)
.

Using (75) and (76) it follows that for any 1 ≤ i < n

Ēθ∗
[
∇θ log pθ∗

(
Y1:i, Y

ε
i+1:n

)
.∇θ log pθ∗ (Y1:i−1, Y

ε
i:n)T

]
= Ēθ∗

[
∇θ log pθ∗ (Y1:i−1, Y

ε
i:n) .∇θ log pθ∗ (Y1:i−1, Y

ε
i:n)T

]
,

and hence that

Ēθ∗
[(
∇θ log pθ∗

(
Y1:i, Y

ε
i+1:n

)
−∇θ log pθ∗ (Y1:i−1, Y

ε
i:n)
)

·
(
∇θ log pθ∗

(
Y1:i, Y

ε
i+1:n

)
−∇θ log pθ∗ (Y1:i−1, Y

ε
i:n)
)T ]

= Ēθ∗
[
∇θ log pθ∗

(
Y1:i, Y

ε
i+1:n

)
.∇θ log pθ∗

(
Y1:i, Y

ε
i+1:n

)T ]
− Ēθ∗

[
∇θ log pεθ∗ (Y1:i−1, Y

ε
i:n) .∇θ log pεθ∗ (Y1:i−1, Y

ε
i:n)T

]
.(77)

Using (77) and (74) and stationarity we have that

I(θ∗)− Iε(θ∗)

= lim
n→∞

1

n

n∑
i=1

Ēθ∗
[(
∇θ log pθ∗

(
Y0|Y1−i:−1;Y ε

1:n−i
)

−∇θ log pθ∗
(
Y ε

0 |Y1−i:−1;Y ε
1:n−i

))
·
(
∇θ log pθ∗

(
Y0|Y1−i:−1;Y ε

1:n−i
)

−∇θ log pθ∗
(
Y ε

0 |Y1−i:−1;Y ε
1:n−i

))T]

= lim
n→∞

Ēθ∗
[(
∇θ log pθ∗ (Y0|Y−n:−1;Y ε

1:n)−∇θ log pθ∗ (Y ε
0 |Y−n:−1;Y ε

1:n)

)
·
(
∇θ log pθ∗ (Y0|Y−n:−1;Y ε

1:n)−∇θ log pθ∗ (Y ε
0 |Y−n:−1;Y ε

1:n)

)T]
.

(78)
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where the last equality follows from assumptions (A3) and (A5) and equa-
tions (34), (43) and (53). In addition, using (42) and the dominated conver-
gence theorem, we conclude from (78) that

I(θ∗)− Iε(θ∗) = Ēθ∗
[(
Gθ∗;Y−∞:−1;Y ε1:∞

(Y0)−Gεθ∗;Y−∞:−1;Y ε1:∞
(Y ε

0 )
)
·

(
Gθ∗;Y−∞:−1;Y ε1:∞

(Y0)−Gεθ∗;Y−∞:−1;Y ε1:∞
(Y ε

0 )
)T](79)

where for any sequence . . . , Y−1;Y ε
1 , . . .

Gθ∗;Y−∞:−1;Y ε1:∞
(Y0) = lim

n→∞
∇θ log pθ∗ (Y0|Y−n:−1;Y ε

1:n)

=

(∫ (
∇θgθ∗ (Y0|x0) pθ∗ (x0|Y−∞:−1;Y ε

1:∞)

+gθ∗ (Y0|x0) ∇̄θpθ∗ (x0|Y−∞:−1;Y ε
1:∞)

)
µ(dx0)

)

×
(∫

gθ∗ (Y0|x0) pθ∗ (x0|Y−∞:−1;Y ε
1:∞)µ(dx0)

)−1

(80)

and

Gεθ∗;Y−∞:−1;Y ε1:∞
(Y ε

0 ) = lim
n→∞

∇θ log pθ∗ (Y ε
0 |Y−n:−1;Y ε

1:n)

=

(∫ (
∇θgεθ∗ (Y ε

0 |x0) pθ∗ (x0|Y−∞:−1;Y ε
1:∞)

+gεθ∗ (Y ε
0 |x0) ∇̄θpθ∗ (x0|Y−∞:−1;Y ε

1:∞)

)
µ(dx0)

)

×
(∫

gεθ∗ (Y ε
0 |x0) pθ∗ (x0|Y−∞:−1;Y ε

1:∞)µ(dx0)

)−1

.

(81)

Further by using assumptions (A3), (A5) and (34), (42), (43) and (44) we
have that the conditional likelihood functions log pθ∗ (Y0|Y−n:−1;Y ε

1:n) and
log pθ∗ (Y ε

0 |Y−n:−1;Y ε
1:n) as well as their derivatives are bounded uniformly

in θ and . . . , Y−1;Y ε
1 , . . . and that the derivatives are uniformly Cauchy in

n whilst the conditional likelihoods themselves converge uniformly to the
quantities log pθ∗ (Y0|Y−∞:−1;Y ε

1:∞) and log pθ∗ (Y ε
0 |Y−∞:−1;Y ε

1:∞). Hence we
can apply Lemma 5 to obtain

(82)
Gθ∗;Y−∞:−1;Y ε1:∞

(Y0) = ∇θ log pθ∗(Y0|Y−∞:−1;Y ε
1:∞),

Gεθ∗;Y−∞:−1;Y ε1:∞
(Y ε

0 ) = ∇θ log pθ∗(Y
ε

0 |Y−∞:−1;Y ε
1:∞).
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It now follows from (79) and (82) that

I(θ∗)− Iε(θ∗)

= Ēθ∗
[(
∇θ log pθ∗(Y0|Y−∞:−1;Y ε

1:∞)−∇θ log pθ∗(Y
ε

0 |Y−∞:−1;Y ε
1:∞)

)
·(

∇θ log pθ∗(Y0|Y−∞:−1;Y ε
1:∞)−∇θ log pθ∗(Y

ε
0 |Y−∞:−1;Y ε

1:∞)
)T]

= Ēθ∗
[
Ēθ∗
[(
∇θ log pθ∗(Y0|Y−∞:−1;Y ε

1:∞)−∇θ log pθ∗(Y
ε

0 |Y−∞:−1;Y ε
1:∞)

)
·(

∇θ log pθ∗(Y0|Y−∞:−1;Y ε
1:∞)−∇θ log pθ∗(Y

ε
0 |Y−∞:−1;Y ε

1:∞)
)T
|Y−∞:−1;Y ε

1:∞

]]
.

(83)

Finally by applying the Fisher inequality (75) and (76) to the conditional
laws Pθ∗(Y0|Y−∞:−1;Y ε

1:∞) and Pθ∗(Y ε
0 |Y−∞:−1;Y ε

1:∞) we get that

Ēθ∗
[(
∇θ log pθ∗(Y0|Y−∞:−1;Y ε

1:∞)−∇θ log pθ∗(Y
ε

0 |Y−∞:−1;Y ε
1:∞)

)
·(

∇θ log pθ∗(Y0|Y−∞:−1;Y ε
1:∞)−∇θ log pθ∗(Y

ε
0 |Y−∞:−1;Y ε

1:∞)
)T
|Y−∞:−1;Y ε

1:∞

]
= Ēθ∗

[
∇θ log pθ∗(Y0|Y−∞:−1;Y ε

1:∞)·

∇θ log pθ∗(Y0|Y−∞:−1;Y ε
1:∞)T |Y−∞:−1;Y ε

1:∞

]
− Ēθ∗

[
∇θ log pθ∗(Y

ε
0 |Y−∞:−1;Y ε

1:∞)·

∇θ log pθ∗(Y
ε

0 |Y−∞:−1;Y ε
1:∞)T |Y−∞:−1;Y ε

1:∞

]
:= I

Y0:Y ε0
Y−∞:−1;Y ε1:∞

(θ∗).

(84)

The result now follows from (83) and (84).

Remark 9. Assume (A1)-(A5). Then in exactly the same way as one
proves Lemma 3 one may prove that

I(θ∗) = Iε(θ∗) + Ēθ∗
[
I
Y0:m−1:Y ε0:m−1

Y−∞:−1;Y εm:∞
(θ∗)

]



ESTIMATION OF INTRACTABLE HMMS 45

where for any pair of sequences Y−∞:−1 and Y ε
1:∞ and any integer m ≥ 1

I
Y0:m−1:Y ε0:m−1

Y−∞:−1;Y εm:∞
(θ∗)

=
1

m
Ēθ∗
[
∇θ log pθ∗(Y0:m−1|Y−∞:−1;Y ε

m:∞)·

∇θ log pθ∗(Y0:m−1|Y−∞:−1;Y ε
m:∞)T |Y−∞:−1;Y ε

m:∞

]
− 1

m
Ēθ∗
[
∇θ log pθ∗(Y

ε
0:m−1|Y−∞:−1;Y ε

m:∞)·

∇θ log pθ∗(Y
ε

0:m−1|Y−∞:−1;Y ε
m:∞)T |Y−∞:−1;Y ε

m:∞

]
.

(85)

Proof of Lemma 4. We begin by establishing part 1. From (24) and

(84) we have for any Y−∞:−1 and Y ε
1:∞ that I

Y0:Y ε0
Y−∞:−1;Y ε1:∞

(θ∗) ≥ 0 from which

the first assertion of part 1 immediately follows. In order to prove the second
assertion of part 1 we note that it is sufficient to prove that under the

assumption of connectivity we must have that Ēθ∗
[
I
Y0:Y ε0
Y−∞:−1;Y ε1:∞

(θ∗)
]

= 0

implies I(θ∗) = 0. Since we have by Remark 9 that Ēθ∗
[
I
Y0:Y ε0
Y−∞:−1;Y ε1:∞

(θ∗)
]

=

Ēθ∗
[
I
Y0:m−1:Y ε0:m−1

Y−∞:−1;Y εm:∞
(θ∗)

]
for all m ≥ 1 this will follow once we show that

Ēθ∗
[
I
Y0:m−1:Y ε0:m−1

Y−∞:−1;Y εm:∞
(θ∗)

]
= 0 for all m ≥ 1 implies I(θ∗) = 0.

Observe that by Lemmas 8 and 9 and the assumption that ν is connected
it follows that

(
ν ∗ UBε0

)⊗m
is connected for all ε > 0 and m ≥ 1 and thus

from (A3) and (6) that the conditional laws Pθ∗(Y0:m−1|Y−∞:−1;Y ε
m:∞) and

Pθ∗(Y ε
0:m−1| Y−∞:−1;Y ε

m:∞) are also connected for all ε > 0 and sequences
Y−∞:−1 and Y ε

m:∞. It then follows from (24) and (85) that for all m ≥ 1 that

Ēθ∗
[
I
Y0:m−1:Y ε0:m−1

Y−∞:−1;Y εm:∞
(θ∗)

]
= 0 implies that

Ēθ∗
[
∇θ log pθ∗(Y0:m−1|Y−∞:−1;Y ε

m:∞)·

∇θ log pθ∗(Y0:m−1|Y−∞:−1;Y ε
m:∞)T |Y−∞:−1;Y ε

m:∞

]
= Ēθ∗

[
∇θ log pθ∗(Y

ε
0:m−1|Y−∞:−1;Y ε

m:∞)·

∇θ log pθ∗(Y
ε

0:m−1|Y−∞:−1;Y ε
m:∞)T |Y−∞:−1;Y ε

m:∞

]
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for all Y−∞:−1,Y ε
m:∞ a.s. and hence by Lemma 10 that

∇θ log pθ∗(Y0:m−1|Y−∞:−1;Y ε
m:∞) = 0

pθ∗(Y0:m−1|Y−∞:−1;Y ε
m:∞) a.s. and thus by Fisher’s identity applied to the

conditional probabilities that

(86) ∇θ log pθ∗(Y0|Y−∞:−1;Y ε
m:∞) = 0

pθ∗(Y0|Y−∞:−1;Y ε
m:∞) a.s. also. Finally observe that one can derive expres-

sions for the gradients of the conditional densities pθ∗(Y0|Y−∞:−1;Y ε
m:∞) and

pθ∗(Y0|Y−∞:−1) analogous to (80) and (82). It then follows from these and
(A3), (A5), (35), (36), (37) and (57) that

(87) ∇θ log pθ∗(Y0|Y−∞:−1) = lim
m→∞

∇θ log pθ∗(Y0|Y−∞:−1;Y ε
m:∞)

a.s.. It now follows from (86) and (87) that if Ēθ∗
[
I
Y0:m−1:Y ε0:m−1

Y−∞:−1;Y εm:∞
(θ∗)

]
= 0

for all m ≥ 1 then ∇θ log pθ∗(Y0|Y−∞:−1) = 0 a.s. and hence that I(θ∗) = 0.
Next we establish part 2. Recall that given a positive semi-definite matrix

M ∈ Rd×d and a sequence of Rd×d valued positive semi-definite matrices
{Mn}n≥1 that Mn → M if and only if vTMnv → vTMv for all v ∈ Rd.
Thus in order to prove part 2 it is sufficient to show that for every sequence

εn ↗∞ and every v ∈ Rm that vT Ēθ∗
[
I
Y0:Y ε0
Y−∞:−1;Y ε1:∞

(θ∗)
]
v → vT I (θ∗) v. By

definition and stationarity

vT Ēθ∗
[
I
Y0:Y ε0
Y−∞:−1;Y ε1:∞

(θ∗)
]
v

= E
[(
vT . (∇θ log pθ∗ (Y0|Y−∞:−1;Y ε

1:∞)−∇θ log pθ∗ (Y ε
0 |Y−∞:−1;Y ε

1:∞))
)2]

(88)

and

(89) vT Iv = E
[(
vT .∇θ log pθ∗ (Y0|Y−∞:−1)

)2]
.

Further by assumptions (A3) and (A5) and (43) we have that there exists
some K <∞ such that

(90)
vT .∇θ log pθ∗ (Y0|Y−∞:−1) , vT .∇θ log pθ∗ (Y0|Y−∞:−1;Y ε

1:∞) ,

vT .∇θ log pθ∗ (Y ε
0 |Y−∞:−1;Y ε

1:∞) ≤ K

a.s. for all ε > 0 and sequences . . . , Y−1;Y ε
1 , . . .. The proof of the second part

of the result will follow from (88), (89) and (90) once we show that for any
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. . . , Y−1;Y ε
1 , . . .

(91)
∇θ log pθ∗ (Y ε

0 |Y−∞:−1;Y ε
1:∞)→ 0,

∇θ log pθ∗ (Y0|Y−∞:−1;Y ε
1:∞)→ ∇θ log pθ∗ (Y0|Y−∞:−1)

as ε → ∞ in pθ∗ (Y0|Y−∞:−1;Y ε
1:∞) probability. The first part of (91) is a

straightforward consequence of applying Lemma 11 to the conditional laws
Pθ∗ (Y0|Y−∞:−1;Y ε

1:∞). To establish the second part of (91) observe that from
(34), (42), (44), (82) and (80) we have that there exists some C < ∞ such
that for all . . . , Y−1;Y ε

1 , . . .

(92)
|∇θ log pθ∗ (y|Y−∞:−1;Y ε

1:∞)−∇θ log pθ∗ (y|Y−n:−1;Y ε
1:n)| ≤ Cρn/2

|∇θ log pθ∗ (y|Y−∞:−1)−∇θ log pθ∗ (y|Y−n:−1)| ≤ Cρn/2

for all n ≥ 1, ε > 0 and y ∈ Y. It then follows from (A3), (A5) and (43),
the representation of the score functions ∇θ log pθ∗ (·| · · · ) given in (73), the
representation of integrals w.r.t. the filter gradients given in (45)-(49) and
Lemma 12 that

(93) ∇θ log pθ∗ (Y0|Y−n:−1;Y ε
1:k)→ ∇θ log pθ∗ (Y0|Y−n:−1)

in probability as ε↗∞. One can then conclude that the second part of (91)
holds via (92) and (93). In order to complete the proof of the lemma recall the
two random variables Gθ∗;Y−∞:−1;Y ε1:∞

(Y0) and Gεθ∗;Y−∞:−1;Y ε1:∞
(Y ε

0 ) defined in

(80) and (81). It follows from (A3), (A5) and the Lebesgue differentiation
theorem that Gθ∗;Y−∞:−1;Y ε1:∞

(Y0)→ Gεθ∗;Y−∞:−1;Y ε1:∞
(Y ε

0 ) a.s. as ε↘ 0. Since

it follows from the proof of (82) that there exists some K < ∞ such that
for all ε > 0 the functions Gθ∗;Y−∞:−1;Y ε1:∞

(Y0) and Gεθ∗;Y−∞:−1;Y ε1:∞
(Y ε

0 ) are
bounded above by K for all . . . , Y−1, Y0;Y ε

1 , . . . we have that part 3 follows
from (84) and a simple application of the dominated convergence theorem.
Finally, part 4 is a trivial consequence of (79), (80) and (81) and assumptions
(A3), (A6) and (A7).
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