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What is a rare event?
Example
Näıve Monte Carlo Simulation

Assume that a stochastic process {X0,X1, . . .} taking values in R
is given.

Want to estimate probabilities of the form

P , P ({X0,X1, . . .} ∈ A)

for some A ∈ B (R)× B (R) · · · when

P ({X0,X1, . . .} ∈ A)� 1.
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What is a rare event?
Example
Näıve Monte Carlo Simulation

Chemists often use models of the form dZt = ∇b (Zt) + εdWt to
analyse chemical reactions.

Let {X0,X1, . . .} be a discrete approximation to Zt

Xi+1 = Xi +∇b (Xi ) + εWi+1

where {W1, . . .} is a sequence of i.i.d. N (0, 1) random variables.
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What is a rare event?
Example
Näıve Monte Carlo Simulation

Assume that b (·) is a double well potential, that A and B are
neighbourhoods of the two local minima and that X0 ∈ A.

Two probabilities of interest are

P (XT ∈ B)

and

P

(
T⋃

i=1

Xi ∈ B

)
.

When ε is small these probabilities are very (exponentially) small!
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What is a rare event?
Example
Näıve Monte Carlo Simulation

The simplest way to estimate a probability of the form P is to
generate an i.i.d. sequence of samples{
X 1

0 ,X
1
1 , . . .

}
,
{
X 2

0 ,X
2
1 , . . .

}
, . . . ,

{
XN

0 ,X
N
1 , . . .

}
such that{

X k
0 ,X

k
1 , . . .

}
∼ {X0,X1, . . .} and to estimate P by

P ≈ 1

N

N∑
k=1

1{{X k
0 ,X

k
1 ,...}∈A}.

The variance of this estimator is equal to
(
P − P2

)
/N and so the

relative error is equal to√
P − P2

N
.

1

P
≈ 1√

PN
.

It follows that the amount of work required to estimate a
probability P is of the order O( 1

P )!
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Limit Theorems for Sequences of i.i.d. Random Variables
Cramer’s Theorem
Simple Sample Path Large Deviations

Theory of Large Deviations
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Limit Theorems for Sequences of i.i.d. Random Variables
Cramer’s Theorem
Simple Sample Path Large Deviations

Let Y1,Y2, . . . be a sequence of i.i.d. random variables such that
E
[
Y 2

k

]
<∞.

Strong Law of Large Numbers: 1
N

∑N
k=1 Yk

a.s.−→ E [Y1] .

Central Limit Theorem:
√

N
( 1

N

PN
k=1 Yk−E [Y1])q

E[Y 2
1 ]

D−→ N (0, 1) .

This suggests that for any γ > 0, for N large enough

log P

(∣∣∣∣∣ 1

N

N∑
k=1

Yk − E [Y1]

∣∣∣∣∣ ≥ γ
)

= O (−N) .

What can we say about the asymptotic decay rate of

P
(

1
N

∑N
k=1 Yk ≥ γ

)
for large N?
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Cramer’s Theorem
Simple Sample Path Large Deviations

Let Y1,Y2, . . . be a sequence of centered R valued i.i.d. light tailed
random variables, i.e. such that E [Yk = 0] and E

[
eθYk

]
<∞ for

all θ ∈ R.

For each θ let H (θ) , log E
[
eθYk

]
and define L (α) by

L (α) = sup
θ
{θα− H (θ)}

for all α.

Cramer’s Theorem
For any γ > 0

lim
N→∞

− 1

N
log P

(
1

N

N∑
k=1

Yk ≥ γ

)
= L (γ)
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Upper bound: For each θ ≥ 0 let Y θ
1 ,Y

θ
2 , . . . be a sequence of

i.i.d. random variables with probability law given by
dPYθk

dPYk
= eθY−H(θ).

P

(
1

N

N∑
k=1

Yk ≥ γ

)
= E

[
1{ 1

N

PN
k=1 Y θ

k ≥γ}e
(NH(θ)−

PN
k=1 θY

θ
k )
]

≤ eN(H(θ)−θγ)

Thus − 1
N log P

(
1
N

∑N
k=1 Yk ≥ γ

)
≥ supθ≥0 {θγ − H (θ)}. It is

easy to show that H ′ (0) = 0 and that H (.) is strictly convex.
Hence

lim
N→∞

− 1

N
log P

(
1

N

N∑
k=1

Yk ≥ γ

)
≥ sup

θ
{θγ − H (θ)} , L (γ) .
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Lower bound: Let θγ be such that L (γ) = θγγ − H (θγ). Note
that then we have

γ = H ′ (θγ) = E
[
YeθγY−H(θγ)

]
= E

[
Y θγ

]
.

Thus for any δ > 0

P

(
1

N

N∑
k=1

Yk ≥ γ

)
= E

[
1n 1

N

PN
k=1 Y

θγ
k >γ

oe
“
NH(θγ)−

PN
k=1 θγY

θγ
k

”]
≥ eN(H(θγ)−θγ(γ+δ))P

(
1n

γ+δ> 1
N

PN
k=1 Y

θγ
k >γ

o) .
Since δ is arbitrary it follows that

lim
N→∞

− 1

N
log P

(
1

N

N∑
k=1

Yk ≥ γ

)
≤ θγγ − H (θγ) = L (γ) .
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Using exactly the same proof techniques as above one can show
that for any x and t ∈ [0, 1]

lim
N→∞

− 1

N
log P

 1

N

N∑
k=1

Yk ≥ γ

∣∣∣∣∣∣ 1

N

btNc∑
k=1

Yk = x

 = V (x , t)

where

V (x , t) =

{
(1− t) L

(
γ−x
1−t

)
if x < γ

0 otherwise
.
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By definition L (·) is strictly convex. Thus it follows that for all x , t

V (x , t) = inf
ψ:ψ(t)=x ,ψ(1)≥γ

{∫ 1

t
L
(
ψ̇(s)

)
ds

}
.

In particular V (·, ·) is a solution to the HJB equation

0 = Vt −H(−Vx)

where H(β) = supα {αβ − L (α)} = H (β).
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The Sample Mean Process
Zero Variance Estimator
Approximating the Zero Variance Estimator
Asymptotic Optimality

Assume an i.i.d. Y1,Y2, . . . of R valued, centered and light tailed
random variables is given.

Given N define the “sample mean” process
{
XN

0 , . . .
}

by

XN
i = 1

N

∑i
k=1 Yk for all i ∈ {0, 1, . . .}.

Consider the problem of estimating the probabilities

P

(
1

N

N∑
k=1

Yk ≥ γ

)
= P

(
XN

N ≥ γ
)

for some γ > 0.

Thomas Dean Introduction to Rare Event Simulation



Problem Description
Theory of Large Deviations

Simulating Rare Events
Extensions
References
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Asymptotic Optimality

Suppose that the probabilities P
(
XN

N ≥ γ|XN
i = x

)
are known for

all i ∈ {0, 1, . . .} and all x .

Further suppose that we we can sample from a sequence of
random variables Ỹ1, Ỹ2, . . . distributed according to the law

dP Ỹk

dPYk
=

P
(
XN

N ≥ γ|XN
k = X̃N

k−1 + 1
N Ỹk

)
P
(
XN

N ≥ γ|XN
k−1 = X̃N

k−1

)
where

{
X̃N

0 , . . .
}

denotes the sample mean process for the random

variables Ỹ1, Ỹ2, . . ..
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Note that the sequence Ỹ1, Ỹ2, . . . has the following properties:

I P
(

1
N

∑N
k=1 Ỹk ≥ γ

)
= 1 .

I Given Ỹ1, . . . , ỸN

dPY1,...,YN

dP Ỹ1,...,ỸN

=
N∏

k=1

P
(
XN

N ≥ γ|XN
k−1 = X̃N

k−1

)
P
(
XN

N ≥ γ|XN
k = X̃N

k−1 + Ỹk

)
=

P
(
XN

N ≥ γ|XN
0 = 0

)
P
(
XN

N ≥ γ|XN
N = X̃N

N

)
= P

(
XN

N ≥ γ
)
.

Thus if we could sample from the random variables Ỹ1, . . . the
quantity 1{X̃N

N ≥γ}
dPY1,...,YN

dP Ỹ1,...,ỸN
would yield a perfect (zero variance)

estimate!
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Unfortunately the conditional probabilities P (·|·) are unknown.

However we do know that P
(
XN

N ≥ γ|XN
i = x

)
≈ e−NV (x , i

N
).

This suggests sampling from the sequence Ŷ1, . . . where

dP Ŷk

dPYk
=

e−NV (X̂N
k−1+ 1

N
Ŷk ,

k
N )

e−NV (X̂N
k−1,

k−1
N )

.

Using elementary calculus we have the relation

dP Ŷk

dPYk
= e

−N
“

1
N

Vt(X̂N
k−1,

k−1
N )+ 1

N
ŶkVx(X̂N

k−1,
k−1
N )+O

“
1

N2

””

= e−(Vt(X̂N
k−1,

k−1
N )+ŶkVx(X̂N

i−1,
k−1
N )+O( 1

N )).
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In practice we sample from the sequence Ȳ1, . . . where

dP Ȳk

dPYk
= e−(Vt(X̄N

k−1,
k−1
N )+ȲkVx(X̄N

k−1,
k−1
N )).

Recall that Vt − H (−Vx) = 0 so this does define a change of
probability measure!

We calculate the variance of the estimator 1{X̄N
N ≥γ}

dPY1,...,YN

dP Ȳ1,...,ȲN

E

[
1{X̄N

N ≥γ}

(
dPY1,...,YN

dP Ȳ1,...,ȲN

)2
]

= E

[
1{X̄N

N ≥γ}
(
eN(V (X̄N

N ,1)−V (0,0))+O(1)
)2
]

= e−2NV (0,0)E

[
1{X̄N

N ≥γ}
(
eO(1)

)2
]
.
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One can show that limN→∞
1
N log E

[
1{X̄N

N ≥γ}
(
eO(1)

)2
]

= 0.

Thus

lim
N→∞

1

N
log

√
E

[
1{X̄N

N ≥γ}
(

dPY1,...,YN

dP Ȳ1,...,ȲN

)2
]

P
(∑N

k=1 Yk ≥ γ
) = 0.

This is known as asymptotic optimality.
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Markov Chains
Subsolutions

Let a probability kernel P (·|x) on R be given. For each N define a
Markov Chain

{
XN

0 ,X
N
1 , . . .

}
such that XN

0 = 0 and for all i

N
(
XN

i+1 − XN
i

)
∼ P

(
· |XN

i

)
.

We again consider the problem of estimating

P
(
XN

N ≥ γ
)

for some γ.
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Assume that for every x ∈ R all exponential moments of the form
EP(·|x)

[
eθY

]
exist.

Define

H (θ, x) = log EP(·|x)

[
eθY

]
for all θ, x and

L (α, x) = sup
θ
{θα− H (θ, x)}

for all α, x .
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Under certain conditions it can be shown that for all x and
t ∈ [0, 1]

lim
N→∞

− 1

N
log P

(
XN

N ≥ γ
∣∣∣XN
btNc = x

)
= V (x , t)

where

V (x , t) = inf
ψ:ψ(t)=x ,ψ(1)≥γ

{∫ 1

t
L
(
ψ̇(s), ψ(s)

)
ds

}
.

In this case V (·, ·) is a solution to the HJB equation

0 = Vt −H(−Vx , x)

where H(β, x) = supα {αβ − L (α, x)} = H (β, x).
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As in the i.i.d. case one can use the function V (·, ·) to define an
importance sampling scheme. Further the same reasoning can be
used to show that the resulting estimator is asymptotically optimal.

However in general the function V (·, ·) can be difficult to find,
further the partial derivatives Vt ,Vx may not even exist.
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Suppose we can find a function U (·, ·) such that

0 ≤ Ut −H (−Ux) ; U(x , 1) ≤ 0 for all x ≥ γ.

Such a function is called a subsolution. We could then use U (·, ·)
to define a sequence ¯̄Y1, . . . where

dP
¯̄Yk

dPYk
=

e
−
“
Ut

“
¯̄XN

k−1,
k−1
N

”
+ ¯̄YkUx

“
¯̄XN

k−1,
k−1
N

””

E

[
e
−
“
Ut

“
¯̄XN

k−1,
k−1
N

”
+ ¯̄YkUx

“
¯̄XN

k−1,
k−1
N

””]
and use this as the change of measure for an importance sampling
estimator.
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We can again calculate the variance of the estimator
1n ¯̄XN

N ≥γ
o dPY1,...,YN

dP
¯̄Y1,...,

¯̄YN

E

[
1n ¯̄XN

N ≥γ
o(dPY1,...,YN

dP
¯̄Y1,...,

¯̄YN

)2
]

= E

1n ¯̄XN
N ≥γ

o
(

e
N
“
U( ¯̄XN

N ,1)−U(0,0)
”

+O(1)
N∏

k=1

E

[
e
−
“
Ut+ ¯̄YkUx

”])2


≤ e−2NU(0,0)E

[
1{X̄N

N ≥γ}
(
eO(1)

)2
]
.
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As before it can be shown that

lim
N→∞

1

N
log E

[
1{X̄N

N ≥γ}
(
eO(1)

)2
]

= 0

and so the estimator has asymptotic relative error equal to

lim
N→∞

1

N
log

√
E

[
1{X̄N

N ≥γ}
(

dPY1,...,YN

dP Ȳ1,...,ȲN

)2
]

P
(∑N

k=1 Yk ≥ γ
) = V (0, 0)− U(0, 0).
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