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Abstract. The goal of the paper is the numerical analysis of the performance
of Monte Carlo simulation based methods for the computation of credit-portfolio
loss-distributions in the context of Markovian intensity models of credit risk. We
concentrate on two of the most frequently touted methods of variance reduction in
the case of stochastic processes: importance sampling (IS) and interacting particle
systems (IPS) based algorithms. Because the subtle differences between these meth-
ods are often misunderstood, as IPS is often regarded as a mere particular case of
IP, we describe in detail the two kinds of algorithms, and we highlight their funda-
mental differences. We then proceed to a detailed comparative case study based on
benchmark numerical experiments chosen for their popularity in the quantitative
finance circles.
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1. Introduction

The purpose of this paper is to study the performance of Monte Carlo methods for
the computation of credit portfolio loss distributions, in the context of Markovian
intensity models of credit risk. For simplicity, we assume homogeneity of individual
losses given default, so that the portfolio loss can be identified with the number of
defaults in the portfolio. Since most Monte Carlo methods can produce equally sharp
estimates of the main parts of these distributions, they need to be tested and com-
pared on their ability to estimate accurately the rare events which typically requires
variance reduction techniques. Denoting by LT the cumulative loss (the number of
defaults according to our homogeneity assumption) at time T of a credit portfolio,
we are interested in the computation of the probabilities pℓ(T ) = ℙ{LT = ℓ} for ℓ in
{0, ⋅ ⋅ ⋅ , n} where n is the number of names of the portfolio. The naive Monte Carlo
estimate

(1) pmℓ (T ) =
#{j; 0 ≤ j ≤ m, LT (!j) = ℓ}

m

computed from a set of m Monte Carlo samples !1, ⋅ ⋅ ⋅ , !m, is given by the proportion
of samples giving exactly ℓ losses. It suffers from several shortcomings. First, it is
very unlikely that the Monte Carlo samples will reach the loss level ℓ when {LT = ℓ}
is a rare event. Furthermore, the variance of the estimator, which is equal to

�2,m
ℓ (T ) =

1

m
pℓ(T )(1− pℓ(T ))

can be quite large.

In the factor copulae models most commonly used in practice, the conditional loss
distribution can be recovered analytically by various means, and the unconditional
distribution can then be obtained by quadrature (numerical integration). As for
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Monte Carlo calculations, generating a direct sample of the unconditional distribu-
tion is typically too slow. However it is possible to apply various variance reduction
techniques to the simulation of the conditional distribution, possibly in conjunction
with a shift on the common factor (see for example Glasserman et al. [7, 9, 8]).
Note that for the specific purpose of valuing credit portfolio loss derivatives by sim-
ulation, various direct (unconditional) variance reduction techniques are available,
among them, the use of the portfolio loss at maturity as control variable.

In this paper we consider Markovian intensity models of credit risk, such as those
used for pricing purposes in Frey and Backhaus [5], Bielecki et al. [2], or Herbertsson
[10]. Financial applications can be divided into two categories depending on whether
one is interested in pricing or risk management. Accordingly, probability models are
organized into risk neutral and statistical models. Some of the interesting features of
Markovian intensity models of credit risk are:
∙ to provide a consistent pricing and hedging theory, as opposed to the abovemen-
tioned static models which are essentially pricing tools (even if they can be used for
hedging in an ad-hoc manner);
∙ to account for contagion effects which play an important role in pricing, especially
since the start of the sub-prime crisis.
We shall see in section 5 the potential interest of IPS with respect to IS in relation
to this second bullet point.

But pricing is not the only application of these models. Indeed, they can also be used
for the purpose of the thorny risk management issue highlighted by the credit crisis.
Note that the probabilities of the rare events of interest are significantly smaller under
the statistical measure than under the risk-neutral probability for which contagion
effects are most prevalent. Consequently methods such as those presented in this
paper are especially important in that context.

In Markovian models, one should be able to compute the loss distribution by numer-
ical resolution of the forward Kolmogorov equations. However practical implementa-
tion of deterministic numerical schemes is precluded by the curse of dimensionality for
models of dimension greater than a few units. Simulation approaches appear as the
only reasonable alternative. Unfortunately, simulation methods are typically slow,
and their accuracy depends strongly on the control of the variances of the estimates
(see, e.g., Glasserman [6], for a general reference on these issues).

Importance sampling (IS for short) is often regarded as the method of choice when it
comes to variance reduction. In this paper we show how explicit changes of measures
can be implemented in Markovian models of portfolio credit risk, and we document
the efficiency of these IS estimators. However, we argue that IS does not always make
sense. Sometimes, it is not clear which change of measure will significantly reduce the
variance, and moreover, producing Monte Carlo random samples after the change of
measure can be impractical if at all possible.

We thus present an alternative variance reduction method based on the properties of
twisted Feynman-Kac expectations and the approximation of their values by inter-
acting particle systems (IPS for short), also called in this paper implicit importance
sampling as opposed to the previous explicit importance sampling. The use of IPS
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for the computation of the probabilities of rare events was introduced by Del Moral
and Garnier in [14]. We refer the reader to Del Moral’s account [13] for the general
theory in a textbook form.
An important feature of IPS estimates is that they can be computed by generating
Monte Carlo samples from the original model distribution ℙ rather than from the
changed measure as in the case of importance sampling. In many cases, this repre-
sents an important advantage of IPS over IS. Indeed, in many practical applications,
large programs are used to generate Monte Carlo samples. These programs have been
developed based on complex mathematical models and extensive historical data bases
(see for example the Standard & Poor’s documentation on CPDOs [15]). The level
of intricacy of their implementation files precludes any change of measure and the
generation of Monte Carlo samples from a different distribution. They need to be
used as is, as a black box. IPS algorithms can be used without knowing what is in the
black boxes. This is a major advantage of IPS over IS in this realm of applications.

Remark. A first application of IPS to the computation of credit portfolio losses and
CDO tranche spreads was considered by Carmona, Fouque and Vestal in [3] in the
framework of structural models of credit risk. In the present paper we consider the
application of IS and IPS to the computation of a credit portfolio loss distributions,
in a Markovian intensity model.

2. Importance Sampling and Interacting Particle Systems

2.1. Point Process Set-Up. Our goal is to compute the marginal probability dis-
tributions of a (continuous time) point process which we denote by {Lt}t≥0 in analogy
with the notation used for the loss process (number of defaults) of a credit portfolio
in the introduction. We assume that at each time t, the value Lt of the point process
can be derived from the values of a finite set of factors, say x = (x1, ⋅ ⋅ ⋅ , xd) whose
time evolution can be described in discrete time by a Markov chain. In other words,
we are interested in the evaluation of the probabilities of events relative to a (pos-
sibly time inhomogeneous) Markov chain {Xn}n, the background factor Xn being a
random element of a general measurable space (En, ℰn) which can change with n.

We denote by Kn(xn−1, dxn) the transition kernel of the background Markov chain at
time n, and we denote by {Yn}n the historical process of {Xn}n defined by:

Yn = (X0, ⋅ ⋅ ⋅ , Xn) ∈ Fn = E0 × ⋅ ⋅ ⋅ × En.

Next, we let Mn(yn−1, dyn) denote the Markov transition kernels of the inhomoge-
neous Markov chain {Yn}n. Finally, for each integer n ≥ 0 we consider non-negative
measurable functions wn on Fn equipped with the product �-field, and we interpret
these functions as weight functions.

Note that for IPS it is assumed in [14, 13] that these weight functions are bounded
and bounded away from zero in the sense that:

(2) sup
(yn,y′n)∈Fn×Fn

wn(yn)

wn(y′n)
<∞.
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This restrictive boundedness assumption can be relaxed in many cases. However, we
only mention it for the sake of completeness since we are not interested in mathemat-
ical proofs of convergence results. Indeed, when in need of convergence results for the
IPS algorithm, we directly appeal to [14].

Both IS and IPS computations rely on changes from the original probability measure
to absolutely continuous twisted measures, in order to compute quantities of the form

E{fn(Yn)}
for suitable functions fn (like, for instance, the indicator function of some “rare” set
of interest). Yet, despite this similarity, the two methods differ in very significant
ways.

2.2. Importance Sampling for Markov Chains. Importance Sampling is espe-
cially useful when not enough Monte Carlo samples from the original distribution
contribute significantly to the computation of the desired probabilities or expecta-
tions. In this case, typical estimates are unstable and carry higher variance than
desired. A simple fix could be to use random samples from a probability distribution
obtained by deformation of the original measure in such a way that more Monte Carlo
samples contribute significantly, and to correct the naive estimator (1) for the fact
that the samples were generated from a different distribution.

Importance Sampling is well known in the context of random variables, or (see Ap-
pendix A) in the context of diffusions. Let us specialize the description of the method
to the case of interest in this paper. Given a set of weight functions wn as before, for

each fixed n, we let ℙ̃n stand for the twisted probability measure defined by its density
with respect to the original measure ℙ:

(3)
dℙ̃n
dℙ

=

∏
1≤i≤nwi(Yi)

E
{∏

1≤i≤nwi(Yi)
} .

We then have:

E{fn(Yn)} = Ẽ
{
fn(Yn)

dℙ
dℙ̃n

}
= Ẽ

{
fn(Yn)

∏
1≤i≤n

w−i (Yi)

}
E

{ ∏
1≤i≤n

wi(Yi)

}
,(4)

where we used the notation w−i for the inverse 1/wi of the i-th weight function.
Assuming E{wi(Yi) ∣ ℱXi−1} = 1 for every i ≥ 1, we see that the second expectation in
the right hand side is equal to one and that (4) further reduces to

(5) E{fn(Yn)} = Ẽ

{
fn(Yn)

∏
1≤i≤n

w−i (Yi)

}
.

For the computation of E{fn(Yn)}, the importance sampling algorithm based on

ℙ̃n relies on the generation of m Monte Carlo samples �̃jn = (�̃j0, �̃
j
1, ⋅ ⋅ ⋅ , �̃jn) for j =

1, 2, ⋅ ⋅ ⋅ ,m under the twisted distribution ℙ̃n. These samples are generated as follows.

For each j, and given a fixed initial condition �̃0 for X0, for each i = 1, ⋅ ⋅ ⋅ , n, use the
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transition kernel K̃i of the Markov chain X at time i−1 under the twisted probability

measure ℙ̃i to generate a sample �̃ji from �̃ji−1. Then for each fixed Monte Carlo sample
of size m, we have the following unbiased estimate:

(6) E{fn(Yn)} ≈ Emn

{
fn(�̃n)

∏
1≤i≤n

w−i (�̃0, ⋅ ⋅ ⋅ , �̃i)

}

where Emn refers to expectation with respect to the empirical distribution of the m

samples �̃j’s. For the record we notice that this estimator is asymptotically consistent
in the sense that it converges to E{fn(Yn)} as m→∞ (see for example Glasserman
[6]).

Remark 1. Two conditions need to be satisfied for this change of measure to be

practical. First one needs to be able to compute the new transition kernel K̃ of the

chain under ℙ̃, and most importantly, one needs to be able to generate efficiently

Monte Carlo samples from the distribution K̃(xn−1, dxn). Second, one needs to be
able to compute the distorted integrand appearing in the right hand side of (6), and in
particular the product of the inverses of the weight functions with a low overhead. As
in the case of the applications given in this paper, this is typically done by resorting
to a suitable version of the Girsanov theorem which is the time-honored method to
change measure for stochastic processes.

Remark 2. In order to minimize the variance, one should choose, for each integer
i ≥ 1, a weight function wi such that

∏
1≤i≤nwi is proportional to ∣fn∣. But of course,

in this case, the second expectation in the right hand side of (4) is typically unknown
(not equal to 1), since it is the quantity that we aim at computing (at least for
fn ≥ 0, fn = ∣fn∣ =

∏
1≤i≤nwi).

2.3. Twisted Feynman-Kac Expectations. The purpose of this subsection is to
give a crash course on Feynman-Kac path measures. We describe their subsequent
approximations by interacting particle system in the next subsection. The basic mate-
rial is borrowed from [13] and the actual application to the Monte Carlo computation
of probabilities of rare events from [14]. Technical details are included for the sake of
completeness and to ease the introduction of a specific set of notations.

For any bounded measurable function fn on Fn, we define the Feynman-Kac expec-
tation n(fn) by:

(7) n(fn) = E

{
fn(Yn)

∏
1≤i<n

wi(Yi)

}
.

Note that as a non-negative linear form on a cone of non-negative functions, n can
be viewed as a measure. We shall denote by �n the corresponding normalized measure
which is naturally defined as

(8) �n(fn) =
E
{
fn(Yn)

∏
1≤i<nwi(Yi)

}
E
{∏

1≤i<nwi(Yi)
} =

n(fn)

n(1)
.
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Notice that

(9) n+1(1) = n(wn) = �n(wn)n(1) =
n∏
i=1

�i(wi).

This seemingly innocent remark will play a crucial role in the following. Consequently,
for any given bounded measurable function fn, we have

(10) n(fn) = �n(fn)
∏

1≤i<n

�i(wi).

The above relationship has the merit of relating the un-normalized expectations in
the left hand side to normalized twisted expectations in the right hand side. Using
the notation w−i for the inverse of the weight function wi introduced earlier, we have
(to be compared with (4) in the case of IS):

E{fn(Yn)} = E

{
fn(Yn)

∏
1≤i<n

w−i (Yi)
∏

1≤i<n

wi(Yi)

}

= n

(
fn
∏

1≤i<n

w−i

)

= �n

(
fn
∏

1≤i<n

w−i

) ∏
1≤i<n

�i(wi).(11)

This shows that expectations over the original process can be computed if one can
compute normalized twisted expectations. This is in fact possible, in a dynamic way
because, like in classical filtering theory, it is easily checked that the sequence of
normalized twisted probability measures form a well defined dynamical system in the
space of probability measures. Indeed we have

(12) �n = Φn(�n−1), �1 = M1(X0, ⋅ )
where the nonlinear operators Φn giving the dynamics are defined as

(13) Φn(�) =
1

�(wn−1)

∫
Fn−1

�(dyn−1)wn−1(yn−1)Mn(yn−1, ⋅ ).

2.4. Interacting Particle Systems for the Computation of Rare Events. The
IPS method is based on the deformation of the Markov chain successive transitions
by way of mutations and selections in order to force the chain into the rare events of
interest. Because the deformations of the chain can be understood mathematically, at
least locally in time, as changes of measures, this strategy is reminiscent of classical
importance sampling as described earlier. However, as seen in the context of diffusion
processes (see Appendix A), IPS involves Feynman-Kac changes of measures as of
section 2.3, whereas Girsanov-like changes of measure underlie IS. As we already
emphasized in the introduction, this implies the important practical difference that
while the Monte Carlo samples of an importance sampling computation are generated
from the twisted distribution, the Monte Carlo samples used in an IPS Monte Carlo
computation are generated under the original distribution of the chain. As we shall
see in detail now, all we need to have in order to implement the IPS Monte Carlo
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computations is a black box capable of generating Monte Carlo samples from the
distribution of the chain: no need to open the box to perform the changes necessary
to generate samples from the twisted distribution!

2.4.1. Model Simulation. For the purpose of numerical computations and Monte
Carlo estimation of expectations of the form (11), we introduce approximations of
the above probability distributions by convex combinations of Dirac measures, and
we show that the time evolution of the measures �n given by the dynamical system
(12) and (13) implies a natural time evolution for the point masses of the convex
combinations of Dirac measures, hence the interpretation of these approximations as
an interacting particles system.

We choose a (‘large’) integer m which we shall interpret as the number of particles.
A particle at time n is an element

�jn = (�j0,n, �
j
1,n, ⋅ ⋅ ⋅ , �jn,n) ∈ Fn = E0 × E1 × ⋅ ⋅ ⋅ × En.

where the superscript j of the particle ranges from 1 tom. We start with an initial con-
figuration �1 = (�j1)1≤j≤m that consists of m independent and identically distributed
random samples from the distribution:

�1(d(x0, x1)) = M1(X0, d(x0, x1)) = �X0(dx0)K1(x0, dx1)

where we use the notation �x for the Dirac measure at the point x. In other words,
the �j1 = (�j0,1, �

j
1,1) = (X0, �

j
1,1) ∈ F1 = E0 × E1 are independent and in such a way

that all the �j1,1 are all independent with the same distribution K1(X0, ⋅ ). Based on
the transition given by the dynamic equation (13), we define the transition for the
particles which are providing the approximation of �2 by �n−1 → �n from Fm

n−1 into
Fm
n according to the transition probability

(14) ℙ{�n ∈ d(y1n, ⋅ ⋅ ⋅ , ymn ) ∣ �n−1} =
m∏
j=1

Φn(�(�n−1))(dy
j
n),

where �(�n−1) is the empirical measure defined by

�(�n−1) =
1

m

m∑
j=1

��jn−1

and d(y1n, ⋅ ⋅ ⋅ , ymn ) represents an infinitesimal neighborhood of the point (y1n, ⋅ ⋅ ⋅ , ymn )
in Fm

n . Recalling the definition of the operators Φn giving the dynamics of the �n, one
sees that (14) is the superposition of two clearly identifiable elementary transitions,
a selection followed by a mutation. In other words:

Fm
n−1 ∋ �n−1

selection−→ �̂n−1 ∈ Fm
n−1

mutation−→ �n ∈ Fm
n

as follows. The selection stage is performed by resampling with replacement (i.e.
choosing independently) m path-particles

�̂jn−1 = (�̂j0,n−1, �̂
j
1,n−1, ⋅ ⋅ ⋅ , �̂

j
n−1,n−1) ∈ Fn−1,
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with possible repetitions according to the Gibbs measure

(15)
m∑
j=1

wn−1(�
j
n−1)∑m

l=1wn−1(�
l
n−1)

��jn−1
.

Then, the mutation stage is performed by extending each selected path-particle �̂jn−1
into a path-particle �jn ∈ Fn = Fn−1 × En of the form

�jn = (�j0,n, �
j
1,n, ⋅ ⋅ ⋅ , �jn,n)

= (�̂j0,n−1, �
j
1,n−1, ⋅ ⋅ ⋅ , �̂

j
n−1,n−1, �

j
n,n)

where them samples �jn,n are independently drawn from the distributionsKn(�̂jn−1,n−1, ⋅ ).

2.4.2. Convergence Results. We are now in a position to quote the theoretical
result on which the Monte Carlo approximations are based. See for example [13] or
[14] for details. For each fixed n we have

lim
m→∞

�mn = �n

in distribution, where the empirical measures �mn are defined by:

�mn =
1

m

m∑
j=1

��jn .

This result is screaming for the introduction of the particle approximation

mn (fn) = �mn (fn)
∏

1≤i<n

�mn (wi)

for n(fn). The main result of [14] which we use below states that mn is an unbiased
estimator of n in the sense that for any integer p ≥ 1 and any bounded measurable
function fn on Fn with sup ∣fn∣ ≤ 1, we have

E{mn (fn)} = n(fn),

and in addition

sup
m≥1

√
mE{∣mn (fn)− n(fn)∣p}1/p ≤ cp(n),

for some positive constant cp(n) <∞ whose value does not depend upon the partic-
ular choice of the function fn.

In view of (11), we thus get the following unbiased (for fixed m) and asymptotically
convergent (as m→∞) estimate of E{fn(Yn)}:

mn (fn
∏

1≤i<n

w−i ) = �mn (fn
∏

1≤i<n

w−i )
∏

1≤i<n

�mi (wi)

= Emn

{
fn(�n)

∏
1≤i<n

w−i (�0,n, ⋅ ⋅ ⋅ , �i,n)

} ∏
1≤i<n

Emi {wi(�i)}(16)

where as before, for every i the notation Emi refers to expectation under the empirical
distribution defined by the �ji ’s. More importantly, the variance of the estimator can
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be analyzed. In case the expectation of interest is tantamount to the probability of a
“rare” event

(17) E{fn(Yn)} = E{1A(V (Yn))} = ℙ{V (Yn) ∈ A},
where V is a function from En to ℝ the conclusion is that in order to minimize this
variance, one should use weight functions w favoring the occurrence of the rare event
without involving too large normalizing constants. Moreover, the choice of w should
give rise to an algorithm that can be easily implemented.

We use the guidelines of this and the previous subsection for rare events of the form
{V (Xn) = ℓ} (since our aim is to estimate portfolio loss distributions at fixed points
in time; it is interesting to note however that IPS estimates are also available for more
general ‘path-dependent’ events as of (17)).

3. Benchmark Models

We now introduce the family of Markovian intensity models of credit risk which we
use to illustrate and compare explicit implementations of IS and IPS. Even though
the basic principle of IS does not require the Markov property, we saw that IPS
algorithms are based on a background Markov chain. For this reason, we described
IS in section 2.2 with a definite Markovian bent, and the choice of the models used as
implementation test-beds is based on the specification of suitable Markovian factors.

3.1. Local Intensity Model. Within the context of the Top-Down approach to
credit risk, we assume that the cumulative loss process L = {Lt; t ≥ 0} of a credit
portfolio of n names (we can think of n = 125) is modeled as a Markov point process.
More specifically, we assume that L0 = 0 and that L is a pure birth process with local
intensity �(t, Lt) given by a deterministic function {�(t, i)}t≥0,i≥0 satisfying �(t, i) = 0
for i ≥ n (see, for instance, [12, 2, 4]). This last condition guarantees that the process
L is actually stopped at the level n, as there are only n names in the pool. In any
case, conditionally on the information ℱt = ℱLt available at time t, up to first order
in dt, the probability of a jump in the infinitesimal time interval (t, t + dt) is given
by �(t, Lt)dt.

The infinitesimal generator Gt of the process is given by the (n+1)× (n+1) matrices

Gt =

⎛⎜⎜⎜⎜⎝
−�(t, 0) �(t, 0) 0 0 0

0 −�(t, 1) �(t, 1) 0 0
⋅ ⋅ ⋅

0 0 0 −�(t, n− 1) �(t, n− 1)
0 0 0 0 0

⎞⎟⎟⎟⎟⎠ .

For each time t, we denote by p(t) the (n+1)-dimensional vector p(t) = [pi(t)]i=0,1,⋅⋅⋅ ,n
of loss probabilities pi(t) = ℙ{Lt = i}. They satisfy the forward Kolmogorov equation:

(18) (∂t − G∗t )p = 0 on (0,+∞) , p(0) = �0 ,

which is in fact a system of ordinary differential equations. Here and throughout
the paper, G∗ denotes the adjoint (or transpose) of a generic matrix G. In the time-
homogeneous case (when the intensities �(t, i) do not depend upon t, in which case
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the infinitesimal generator matrices Gt do not depend upon t either), the solution of
the Kolmogorov equation is given by a matrix exponential of the form

p(t) = exp(tG∗)�0, t ≥ 0.

In the general case, the exponential needs to be replaced by the propagator of equation
(18) which has the intuitive interpretation of a time-ordered exponential.

The sample paths of the loss process L are piecewise constant. Let t̃i denote the itℎ

ordered jump time of L, for each i = 1, ⋅ ⋅ ⋅ , n, (or t̃i = +∞, in case there are less
than i jumps on a given trajectory). We also set t̃0 = 0. Given a fixed maturity T ,
say T = 5yr, we define ti = t̃i ∧ T for each i = 0, ⋅ ⋅ ⋅ , n. Consequently, ti < T
and Lti = i if and only if there are at least i jumps of L before the maturity T on a
given trajectory. The background Markov chain {Xi}0≤i≤n introduced in Subsection
2.1 and used in this section is then defined by:

(19) Xi = (ti, Lti), 0 ≤ i ≤ n.

3.2. Homogeneous Groups Model. Despite its usefulness as a toy model for which
explicit computations can easily be carried out, the previous model lacks in realism as
it ignores the fact that L is typically not Markovian. In view of its shortcomings, we
now consider a generalization for which the loss process L is given by a function of a
higher dimensional Markov process Λ. To be more specific, we work with the model
for credit portfolios used by [5, 2, 16, 10] among others. In this model, the pool of n
credit names is organized in d homogeneous groups of � obligors (so n = �d).

The group cumulative default processes Ll, l = 1, ⋅ ⋅ ⋅ , d, Ll(t) giving the number of
defaults in the l-th group up to time t, are jointly modeled as a d-variate Markov
point process Λ = (L1, ⋅ ⋅ ⋅ , Ld). To alleviate the complexity of the simulation code,
we exclude simultaneous jumps of the Ll’s (see, e.g., Bielecki et al. [2]). For each
l, the intensity of Ll is assumed to be of the form �l(t,Λt), for some deterministic
intensity function �l = �l(t, �), where � = (i1, ⋅ ⋅ ⋅ , id) ∈ {0, 1, ⋅ ⋅ ⋅ , �}d. We denote
by ti the ordered sequence of the jump times of Λ, capped at T , and we define the
background Markov chain {Xi}0≤i≤n by:

(20) Xi = (ti,Λti), 0 ≤ i ≤ n.

Observe in particular that Lti = V (Λti) =
∑

l L
l
ti

, so the portfolio loss process L at
time ti is given by a simple function of Xi.

Notice that for d = 1, we recover the Markovian local intensity model of the previous
subsection. At the other end of the spectrum, for d = n (i.e. when each group
has only a single element), we are in effect modeling the vector of default indicator
processes of the pool. As d varies between 1 and n, we thus get a variety of models of
credit risk, ranging from pure top-down models for d = 1, to pure bottom-up models
for d = n (see Bielecki et al. [1]).

Knowing the group loss-probability vectors q(t), the related portfolio loss-probabilities
p = pi(t) = ℙ{Lt = i} for i = 0, ⋅ ⋅ ⋅ , n, follow in a straightforward way. However the
infinitesimal generator Gt of the Markov process Λ now appears as a (�+1)d⊗(�+1)d-
dimensional matrix, and even if this matrix is very sparse (since the components of Λ
may only jump by one and only one at a time), its dimension is prohibitive in most
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cases as far as deterministic numerical methods are concerned. For instance, in the
case of d = 5 groups of � = 25 names, one gets (25 + 1)2×5 = 118813762, which rules
out the use of personal computers if not for specialized libraries for the manipulation of
sparse matrices. The computation of the loss distribution by deterministic numerical
schemes is thus precluded by the curse of dimensionality for d greater than a few
units (depending on �). So for high values of d, Monte Carlo methods appear to be
the only viable alternative.

As benchmark model , we shall use henceforth the Local Intensity Model with n =
125 names in the pool. To be more specific we shall consider the case of homogenous
obligors with individual (pre-default) instantaneous default intensities of the form
�t = a exp(bLt/n), for non-negative parameters a and b. The special case where
b = 0, which is dealt with in Section 4, thus corresponds to a case of independent
obligors, whereas the case b > 0, further considered in Section 5, corresponds to
a situation of default contagion (as typically observed under the pricing measure,
particularly so since the sub-prime crisis).

Observe that such a set-up can equivalently be encoded as any homogeneous groups
model with �l(t, �) = (� − il)a exp(bLt/n) for every l = 1, ⋅ ⋅ ⋅ d, provided d and �
satisfy the relation �d = n. We shall use this observation later to compare the sim-
ulation results obtained in encodings of our benchmark model with various nominal
dimension d (specifically d = 1 or d = 5) , and also, to compare them with exact
values computed by analytic procedures relying on the one-dimensional formulation
of the model. Recall that in general, there is no way one can check simulation results
obtained in the homogeneous groups model for d greater than a few units, unless we
consider, as done here, particular cases reducible to a lower-dimensional model.

4. Case of Independent Obligors

In this section we consider the case of homogenous obligors who default independently
of each other, with individual (pre-default) instantaneous intensity at time t equal to
1/n.

4.1. Algorithms.

4.1.1. IS Algorithms. For IS algorithms, we use in the special case of independent
obligors a simple twist transformation which consists in speeding up the arrivals of
the defaults. This is done by scaling up the intensities by a factor �. In the case of
our benchmark model with nominal dimension d = 1, a simple form of Girsanov’s
theorem for point processes gives

If = Ẽ
{
f(LT ) exp[−LT log(�) + (�− 1)

∫ T

0

�(Lt)dt]

}
.

Consequently, the IS estimate of If for the value � > 0 of the free parameter is
obtained by generating Monte Carlo samples !� using the intensity function �� = ��
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and then computing

Î�f =
1

m

m∑
j=1

f(LT (!j�))e−LT (!
j
�) log(�)+(�−1)

∫ T
0 �(Lt(!

j
�))dt.

An analogous formula, though slightly more involved, holds in the case of an encoding
of our benchmark model in the form of a homogeneous group model with d = 5.

In particular, for f = �ℓ (Dirac mass at the loss level ℓ in {0, ⋅ ⋅ ⋅ , n}), we thus get IS
estimates pmℓ (T, �) of the probability of a portfolio loss equal to ℓ at time T .

4.1.2. IPS Algorithms. We follow the approach of Subsection 2.4 applied to the
the background Markov chain defined by (20) (which in the case d = 1 reduces to
(19)), and with weight functions wi therein chosen of the form

(21) wi(yi) = wi(xi−1, xi) = e�(ℓi−ℓi−1), yi = (x0, x1, ⋅ ⋅ ⋅ , xi)

where ℓi represents the loss in the portfolio at step i in the algorithm. So

wi(Yi) = wi(Xi−1, Xi) = e�(Lti−Lti−1 ) =

{
1 if ti = T
e� if ti < T

(recall that Lti is a function of the state Xi of the Markov chain in our model). As in
the IS method, � > 0 is a free parameter whose choice we shall try to take advantage
of.

To be more specific, we have the following IPS algorithm for the computation of the
probability ℙ(LT = ℓ), for ℓ = {0, ⋅ ⋅ ⋅ , n}. Notice that because of the special form of
the weight functions wi, we only need to keep track of the last two components of �ji ,
which we call father and son for the sake of definiteness.

Initialization: For every j = 1, ⋅ ⋅ ⋅ ,m, set �j0,1 = 0 and simulate a pair (tj1, �
j
1,1)

starting from �j0,1 at time 0 as defined above, using the dynamics of Λ (alias L, in
case d = 1) for this simulation step. Loop: Assuming the m (time, father and
son)-particles (tji−1, �

j
i−2,i−1, �

j
i−1,i−1) already simulated:

Selection: Sample independently m (father and son)-particles

(t̂ji−1, �̂
j
i−2,i−1, �̂

j
i−1,i−1)

with possible repetitions according to the Gibbs measure defined by the weights

w�(�ji−2,i−1, �
j
i−1,i−1)�tji−1,�

j
i−2,i−1,�

j
i−1,i−1

normalized to one, recall formula (15);

Mutation: For every j = 1, ⋅ ⋅ ⋅ ,m, set �ji−1,i = �̂ji−1,i−1 and simulate a pair

(tji , �
j
i,i) starting from (t̂ji−1, �̂

j
i−1,i−1) using the dynamics of Λ (alias L, in case

d = 1) for this simulation step.

Termination: Exit from the loop when i = n, and compute the following estimate
of the loss probability ℙ(LT = ℓ), for every ℓ ∈ {0, ⋅ ⋅ ⋅ , n}:

p̃mℓ (T, �) = Emn {�ℓ(L(�n,n)) exp(−�L(�n−1,n))}
∏n−1

i=1 Emi w�(�i−1,i, �i,i)(22)
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where for every fixed i the notation Emi refers to the empirical distribution defined by
the �ji ’s as j ranges from 1 to m.

Remark. Regarding the simulation of Λ in these algorithms, it is crucial to exploit
the fact that, according to our assumptions, the components of Λ do not jump simul-
taneously. So the simulation of Λ may be done “component by component”, in time
O(d) (see Bielecki et al. [2]).

4.1.3. Choice of �. In each case (IS and IPS), we introduce a twisted measure
(used explicitely in the case of IS and implicitly in the case of IPS) parameterized
by a constant �. The range of values of ℓ for which the estimate pmℓ (T, �), resp.
p̃mℓ (T, �), is significantly different from 0, is expected to vary with �. Consequently
we run a certain number � of Monte Carlo (IS or IPS) loops corresponding to different
values of �. Then, for every loss level ℓ and for every method (IS or IPS), we retain the
estimator pmℓ (T, �) or p̃mℓ (T, �) of the related probability with the highest significance,
in the sense of the value �(ℓ) having given rise to the greatest number of trajectories
at level ℓ of the loss. To be more specific, our final IS estimate of ℙ(LT = ℓ) is

(23) pmℓ (T ) = pmℓ (T, �(ℓ))

where

(24) �(ℓ) = arg max
�

#{j; 0 ≤ j ≤ m, LT (!j�, �) = ℓ},

and likewise for our final IPS estimate p̃mℓ (T ) of ℙ{LT = ℓ}.
For each encoding of our benchmark model (with nominal dimension d = 1 or d = 5),
we implemented a straight explicit importance sampling method and an interacting
particle system method. We also used numerical matrix exponentiation to compute
the exact values of the loss probabilities.

In each simulation experiment, we ran � = 11 Monte Carlo loops (one standard MC
loops and � = 10 IS or IPS MC loops), yielding eleven different estimates pmℓ (T, �) or
p̃mℓ (T, �) of the probabilities ℙ{LT = ℓ}, for every ℓ ∈ {0, ⋅ ⋅ ⋅ , n}. Then, for every ℓ,
we retained the estimator pmℓ (T, �(ℓ)) or p̃mℓ (T, �(ℓ)) of the related probability with
the highest significance as explained above.

The values of the parameters we used are given in Tables 1 and 2.

T n �(t, i) � � (Step)/ IS � (Step)/ IPS
5y 125 1− i

n
11 1 0.4

Table 1. Parameter Values for our benchmark model with nominal
dimension d = 1 (local intensity model).
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T n = d× � �l(t, �) � � (Step) / IS � (Step)/ IPS

5y 125 = 5× 25 �−il
n

11 1 0.4

Table 2. Parameter Values for our benchmark model with nominal
dimension d = 5 (case of a homogeneous five groups model reducible
to a local intensity model).

4.2. Results for IS. Figure 1 displays the results obtained with the explicit impor-
tance sampling method in the local default intensity model (benchmark model with
nominal dimension d = 1): multiplying the local default intensity function by a factor
� ranging from � = 1 to � = 11, simulating m = 5000 trajectories in the models with
scaled intensities and applying the related payoffs corrections.

The left panel displays the concentration of loss levels hit depending on the value
of � used. The number of hits increases as the color ranges from blue to red. The
right part of the figure displays the exact values of the log-probabilities (black curve)
together with the estimations obtained by simulation (points in color). The color of a
point refers to the value of � retained for estimating the related probability, from blue
for the lowest value of �, to red for the highest value. The results are very accurate,
for loss levels comprised between 0 and 50 (and on this example it is actually possible
to go far beyond this level by further adjustment of the parameter �).
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Figure 1. IS losses as function of alpℎa (left) and log-probability es-
itmates (dots) superimposed on the exact probabilities (right). We used
d = 1 and m = 5000.

We also checked how the method handles the curse of dimensionality by assessing the
robustness of the method as the model dimension increases. Figure 2 displays the
results in the case of the benchmark model with d = 5 homogeneous classes. The loss
distribution can be recovered exactly by numerical matrix exponentiation based on
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the one-dimensional local intensity formulation of the model. The accuracy of the IS
method is not altered in higher dimension (d = 5 in this experiment).
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Figure 2. IS losses (left) and log-probabilities (right). d = 5 and
m = 5000.

4.3. Results for IPS. Figure 3 displays the analogous results in the case of the IPS
method in the local default intensity model (d = 1). Despite the fact that we used
m = 105 simulations here (instead of m = 5000 as in Figures 1 and 2), for high levels
of the loss the accuracy is not as good as with IS. Moreover, it seems very difficult to
go higher in the loss level simply by adjusting the value of �: the related probabilities
are too small and the generic IPS methodology is not able to provide reasonable
estimates (see, e.g., Johansen, Del Moral and Doucet [11] for another instance of this
shortcoming of the IPS).

Figure 4 is the counterpart to Figure 3 in the case of the homogeneous classes model
with d = 5. Again the performance of the method is not significantly altered by the
higher state space dimension.

Figures 5 and 6 show the results obtained using m = 20000 and m = 5000 Monte
Carlo samples instead of m = 105 above. IPS runs with too small a number of samples
do not ensure accuracy over the desired range of loss levels.

5. General Case with Default Contagion

We now assess the impact of default contagion. In presence of strong contagion be-
tween obligors, as observed on the credit markets since the start of the sub-prime
crisis, the portfolio loss distribution has a very different structure than in the in-
dependent case. To address this issue we now consider an homogenous portfolio of
credit risk with individual (pre-default) instantaneous intensity at time t equal to
�t = a exp(bLt/n) for a possibly positive parameter b. Note that b was always taken
equal to zero in the previous section.
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Figure 3. IPS losses (left) and log-probabilities (right). We used d = 1
and m = 105.
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Figure 4. IPS losses and log-probabilities. We used d = 5 and m =
105.

We already discussed the fact that dimensionality matters little regarding the perfor-
mance of the importance sampling methods (IS as well as IPS) at hand. In fact, we
believe it is the main advantage of simulation approaches over deterministic meth-
ods. We now focus on the effect of contagion. We shall thus only work with the
one-dimensional encoding of the model (local intensity model of Subsection 3.1), so
throughout this section d = 1 and � = n = 125.
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Figure 5. IPS Losses, d = 5. Left panel: m = 20000; Right panel:
m = 5000.
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Figure 6. IPS Values, d = 5. Left panel: m = 20000; Right panel:
m = 5000.

5.1. Armageddon. Figure 7 gives plots of the loss distribution for T = 5yr in
two different scenarios. For the left panel we used the values a = 0.01 and b =
0. This corresponds to a case of independent obligors as already considered in the
previous section. For the right panel, we used the values a = 0.01 and b = 13 which
correspond to a case of extreme contagion. These distributions were computed by
matrix exponentiation of the one-dimensional model generator (126 ⊗ 126 matrix).
Note the different scales on the ordinate axes of the two plots.
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Figure 7. 5y loss distributions. Left panel: Independent obligors (a =
0.01, b = 0); Right panel: Extreme contagion (a = 0.01, b = 13).

In the case of independent obligors (left panel), the structure of the loss distribution
is basically that of a Poisson distribution (truncated at the level n). The right-tail of
the distribution goes exponentially fast to zero, which makes high levels of the loss
extremely rare. The probability of the Armageddon event (everyone defaulted in the
portfolio) by the time of maturity T = 5yr, is equal to 1.04e − 164. This is why
importance sampling (IS or IPS) methods are a must in this case.

In the case of extreme contagion (right panel), we observe the so-called Armageddon
effect : the default of all the obligors within a finite time horizon becomes an event with
significant probability, 7.106e−03, of the order of one percent in the present situation.
This is very important for pricing CDO tranches. Moreover there are no extremely
rare levels of the loss any more. The less likely loss level is the level i = 115, with a loss
probability of 1.108e− 06. For such a model, importance sampling methods are not
strictly needed, since a standard Monte Carlo method with 106 samples will basically
do a good job at estimating the 5yr loss distribution with a reasonable accuracy over
the whole range of the loss levels. In this case, the usefulness of importance sampling
methods is variance reduction, providing estimates for the 5yr loss distribution with
m = 104 samples instead of m = 106.

5.2. Algorithms. An interesting point is that the specific IS (based on the idea of
multiplying the intensities by a ‘large’ factor to favor defaults) or IPS (based on
the choice of weight function favoring the defaults) algorithms that we used in the
independent case of section 4.1 become completely inappropriate in a strong contagion
context. Indeed in the context of a model with extreme contagion, favoring the
defaults simply leads to concentrate all the trajectories on the Argameddon scenario.
So the probabilities of all the events but Argameddon will be essentially estimated
by zero in any IS or IPS scheme based on the idea of favoring the defaults. As for
Argameddon, its probability is very well estimated by standard Monte Carlo with a
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small number of trajectories (since this probability is of the order of one percent),
therefore putting more trajectories on this event is also useless in this regard.

We do not report the related numerical results but they fully confirm the intuition.
In order to implement IS and IPS algorithms covering the whole range of the loss
levels in case b > 0 (for high b’s in particular), we thus need to devise new (explicit
or implicit) importance sampling strategies.

5.2.1. Algorithm for IS. In order to cover the whole range of loss levels, we now
resort for IS to Markovian changes of probability measures (see, e.g., [2] for general
formulas) such that the aggregated portfolio jump intensity under the twisted measure
becomes a constant of the form � n

T
, where � is fixed in (0, 1). The average proportion

of defaults at the loss horizon T under the twisted measure is thus of the order of �.
Varying �, it is possible to cover the whole range of loss levels.

5.2.2. Algorithm for IPS. As for IPS the idea to cover the whole range of loss
levels is to use weight functions of the form (to be compared with (21))

(25) wi(yi) = exp(−1ti<T arctan(ℓi − �))

where ℓi represents the loss in the portfolio at step i in the algorithm and � is a free
parameter. The IPS algorithm is thus analogous to that of section 4.1.2, except for
the use of the weight function w defined by (25) and the fact that we do not need a
father-and-son algorithm anymore. We thus favor the trajectories with loss level at
T of the order of �.

5.3. Results for IS. We tested the IS algorithm described Subsection 5.2.1 in two
cases. Figure 8 gives the results for independent obligors (a = 0.01, b = 0), while
Figure 9 gives the results in a case of strong contagion (a = 0.01, b = 14).

The fact that it is possible to cover the whole range of loss levels by varying � in the
IS algorithm of section 5.2.2 is clearly visible on the left panels of Figures 8 and 9,
which were produced using the five values � = 1/6, ⋅ ⋅ ⋅ , 5/6.

In the case of independent obligors, this IS method accordingly succeeds very well in
estimating the T = 5yr loss distribution on the whole range of loss levels (right panel
of Figure 8).

But, oddly enough, this is not true any more in the case of extreme contagion. Indeed
the right panel of Figure 9 shows that the IS method is completely inefficient at
estimating the probabilities of loss levels with probabilities less than 10−3, though
m = 104 simulations were used in this experiment. The reason of this negative result
is that the weights involved in the change of measures become extreme, creating huge
fluctuations and a large variance, rendering the method essentially useless in practice.

5.4. Results for IPS. We now report the results obtained with the IPS algorithm
described in Subsection 5.2.2, using the values � = 0, ⋅ ⋅ ⋅ 125.

In the independent case (Figure 11) the performances of the IPS algorithm are good
for computing not too small probabilities (until the loss level i = 36 with exact
probability 2.12e − 18, on this specific example). For higher levels of the loss, the
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Figure 8. IS losses and log-probabilities for independent obligors (a =
0.01, b = 0,m = 10000).
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Figure 9. IS losses and log-probabilities in the case of extreme conta-
gion (a = 0.01, b = 13,m = 10000).

related probabilities are too small and the generic IPS methodology is not sufficient
to provide reasonable estimates. This is a known limitation of IPS estimates, already
illustrated and commented upon in Section 4). However, the IPS method captures
events of probability 10−5 to 10−6 (right panel of Figure 10) in the strong contagion
case, even with only m = 104 Monte Carlo samples.



22 R. CARMONA & S. CRÉPEY
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Figure 10. IPS losses and log-probabilities in the case of extreme con-
tagion (a = 0.01, b = 13,m = 10000).
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Figure 11. IPS losses and log-probabilities in the case of independent
obligors (a = 0.01, b = 0,m = 10000).

6. Summary and Conclusions

We showed how to implement explicit forms of importance sampling together with
interacting particle systems algorithms for the computation of credit portfolio loss
probabilities in Markovian intensity models of credit risk. The need for simulation
and variance reduction methods for such models is dictated by the fact that, even
in relatively simple cases, the computational complexity of deterministic methods is
prohibitive because of the curse of dimensionality.
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We illustrated the fact that explicit IS methods can do wonders when models for the
loss distribution are simple enough for a Girsanov like transformation to be identi-
fied, a random generator for the distorted probability structure is available and the
corresponding densities can be easily computed along the samples.

However, these conditions are not always satisfied in practice and we showed that rare
event probability estimation based on interacting particle systems offer a very useful
alternative when no obvious or effective Girsanov change of measure is available,
or when the Monte Carlo simulations are based on a computer implementation in
the form of a black box which cannot be opened and modified for the purpose of
importance sampling.

Appendix A. IS and IPS for Diffusion Processes

Both IS and IPS computations rely on changes from the original probability mea-
sure to absolutely continuous twisted measures. Yet, despite this similarity, the two
methods differ in very significant ways. For pedagogical purposes we illustrate these
differences in the context of diffusion processes. Indeed, despite the fact that we work
with point processes throughout the paper, the ubiquitous Girsanov theory of change
of measures offers a clear platform familiar to stochastic analysts.

Let us assume for the sake of definiteness that we are trying to estimate the value of
an expectation of the form If = E{f} = Eℙ{f} where ℙ denotes the d-dimensional
Wiener measure, W = {Wt}t∈[0,T ] the coordinate process on Wiener’s space (with
finite horizon T ), and f a functional of the Wiener sample path (up to time T ).
The typical IS and IPS procedures used to compute approximations of I can be
summarized as follows:

In the case of Importance Sampling, we change probability measure using Gir-

sanov’s theorem. Denoting by ℙ̃ the twisted distribution on Wiener’s space given by
its density with respect to Wiener’s measure

dℙ̃
dℙ

= ℰ
(∫ T

0

ℎ′(Wt)dWt

)
= exp

(∫ T

0

ℎ′(Wt)dWt −
1

2

∫ T

0

(ℎ′(Wt))
2dt

)
where ℎ is a differentiable function with ℎ(0) = 0, we can write (assuming ℎ differen-
tiable)

If = Ẽ
{
f(W ) exp

[
−
∫ T

0

ℎ′(Wt)dW̃t −
1

2

∫ T

0

(ℎ′(Wt))
2dt

]}
.

where Ẽ stands for expectation under ℙ̃ and W̃ = W −
∫ ⋅
0
ℎ′(Wt)dt. The strategy

is then to generate Monte Carlo samples !̃1, ⋅ ⋅ ⋅ , !̃m from the twisted distribution ℙ̃
and to compute the estimate

Îf =
1

m

m∑
j=1

f
(
!j
)

exp

[
−
∫ T

0

ℎ′(!jt )d!̃
j
t −

1

2

∫ T

0

(ℎ′(!jt ))
2dt

]

=
1

m

m∑
j=1

f
(
!j
)

exp

[
−ℎ(!jT ) +

1

2

∫ T

0

(ℎ′(!jt )
2 − ℎ′′(!jt ))dt

]
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(26)

in which ! = !̃ +
∫ ⋅
0
ℎ′(!t)dt, and where we postulated ℎ twice differentiable in the

second line.

In the Interacting Particles System approach, the change of measure is done by

ways of the Feynman-Kac twisted distributions ℙ̃ defined from a potential function V
by:

dℙ̃
dℙ

=
e
∫ T
0 V (Ws)ds

E{e
∫ T
0 V (Ws)ds}

.

In this way, the expectation to be computed is expressed as a Feynman-Kac expec-
tation

(27) If = Ẽ{f(W )e−
∫ T
0 V (Ws)ds}E{e

∫ T
0 V (Ws)ds}.

It is well known from the classical theory of Markov processes that multiplicative
functionals of the Feynman-Kac type correspond to killing and branching. In the
discrete time setting, these path transformations take the form of a re-sampling pre-
ceding a normal one-step transition of the Markov chain (“Selection and Mutation” in
our discussion of the IPS algorithm in section 2.4). In the present context, this means

that the estimate Îf related to the representation (27) can in fact be computed by
generating Monte Carlo samples from the original distribution ℙ only. As discussed
at length in the paper, this represent, in many applications, an important advantage
of IPS over IS.
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