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Abstract
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1 Introduction

Economic theory often prescribes fundamental nonlinear relationships between variables of inter-

est. Nonlinear models for learning and strategic interaction among agents provide the modern

foundation for microeconomic models. Building on these microfoundations, macroeconomists

formulate their structural models as dynamic stochastic general equilibrium (DSGE) models,

which have nonlinear first order conditions. Many important economic time series also exhibit

strong patterns of non-Gaussian or time-varying behavior. Regime switching, stochastic volatil-

ity, and time-varying parameter models have become increasingly popular over the last decade.

Complex models often lead to integrals that cannot be solved analytically. This has cre-

ated an increase in the popularity of Bayesian methods that utilize Markov chain Monte Carlo

(MCMC) algorithms. Sequential Monte Carlo (SMC) methods are alternative simulation-based

algorithms for solving analytically intractable integrals. In these methods, a (partially) continu-

ous probability distribution is approximated by a discrete distribution made of weighted draws

termed particles. From one iteration of the algorithm to the next, particles are updated to

approximate one distribution after another by changing the particle’s location on the support

of the distribution and their weights. SMC methods include the particle filter, which gener-

alizes the Kalman filter and hidden Markov model (HMM) filter to nonlinear, non-Gaussian

state space models. Particle filters were introduced into the economics literature by Kim et al.

(1998) to study the volatility of asset prices. Their popularity has grown in economics since the

publication of Fernández-Villaverde and Rubio-Ramı́rez (2005, 2007), who used them to esti-

mate DSGE models. Particle filters also share a common mathematical structure with genetic

algorithms which are popular in economics.

The standard reference for SMC methods is Doucet et al. (2001). A considerable number of

advances have taken place since its publication; advances ranging from stimulating new appli-

cations, improved algorithms, and new theoretical results. Most of the methodological results

have occurred outside economics, where nice reviews for engineers and applied mathematicians

are provided by Cappé et al. (2007) and Doucet and Johansen (2009). This paper provides a

guide to the growing literature intended for economists. The presentation given here extends

previous reviews by including a discussion of SMC methods applied outside state space models.

The methods are also applied to several economic applications. To reach as wide an audience as

possible, the survey has been split into two parts. The first half focuses on practical applications

of particle filters to general state space models. The second half covers recent developments in

the field with more emphasis on Bayesian computation as well as an overview of the theoretical

properties of SMC methods.

2



The theoretical properties of SMC algorithms have been intensely studied since Del Moral

(1996), who provided the first consistency proof for the original particle filter of Gordon et al.

(1993). In SMC algorithms, the draws or particles interact and are therefore dependent. Tradi-

tional limit theorems for Monte Carlo methods, e.g. Geweke (1989) and Tierney (1994), do not

apply. The main theoretical properties that are relevant for applied researchers are reviewed

in the paper while additional references are provided for those interested in further study. To

make the paper shorter, readers are assumed to be modestly familiar with linear, Gaussian

state space models, importance sampling, accept-reject algorithms (acceptance sampling), and

MCMC. Harvey (1989) and Durbin and Koopman (2001) provide introductions to linear, Gaus-

sian state space models while Robert and Casella (2004) and Geweke (2005) are good references

for the traditional Monte Carlo methods.

In Section 2, SMC methods are introduced starting with the particle filter and its application

to nonlinear, non-Gaussian state space models. This section contains a minimum of technical

details and concentrates on best practices that a researcher should consider when implementing

them. Some of the theoretical properties of SMC algorithms are reviewed in Section 3. In Section

4, more advanced SMC algorithms are discussed which are applicable outside the context of state

space models. Both Sections 2 and 4 include economic applications to illustrate the relevance

of the methods. The final section concludes.

2 Particle filters for state space and hidden Markov models

2.1 Definition of the models

State space or hidden Markov models are a convenient means for studying dynamic systems. A

state space model consists of two equations: the observation or measurement equation and the

transition equation which are respectively given by

yn = mn (xn, εn) , (1)

xn = hn (xn−1, ηn) . (2)

The state variables xn and observations yn may be continuous-valued, discrete-valued, or a

combination of the two. The functions mn and hn are possibly nonlinear but of known form.

Time is denoted by the subscripts n. It is assumed that the distributions of the observations

and state variable admit density functions with respect to appropriate dominating measures

dyn and dxn, respectively. These densities p (yn | xn; θ) and p (xn | xn−1; θ) corresponding to

(1) and (2) respectively are called the observation (or measurement) and transition densities.

The latter terminilogy stems from the fact that xn is a Markov process. The densities will
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typically depend upon a vector of unknown parameters θ that need to be estimated from the

observed data y1:T = {y1, . . . ,yT }.
The sequence of state variables x0:n = {x0, . . . ,xn} are generally unobserved and it is the

aim of the researcher to estimate them using the observed data. Uncertainty about the state

variable is formulated as a joint conditional probability distribution p (x0:n | y1:n; θ) known as

the joint smoothing distribution. It is defined as

p (x0:n|y1:n; θ) =
p (x0:n,y1:n; θ)

p(y1:n; θ)
, (3)

where the constant of integration p(y1:n; θ) is the likelihood of the state space model. Three of its

marginal distributions are of interest: the one-step ahead predictive distribution p (xn | y1:n−1; θ),

the filtering distribution p (xn | y1:n; θ), and the smoothing distribution p (xn | y1:T ; θ). Each

distribution conditions on a different set of observations. In addition, researchers are often in-

terested in computing the likelihood of the model at a point θ. Although θ is unknown, it is

traditional in the literature to run filtering and smoothing algorithms assuming a fixed value of

θ. Therefore, in Sections 2.1.2-2.7, the value of θ is assumed to be known. The estimation of θ

is considered in later sections.

2.1.1 Joint smoothing recursion

The joint smoothing distribution can be written recursively as

p (x0:n | y1:n; θ) =
p (yn | x0:n,y1:n−1; θ) p (x0:n | y1:n−1; θ)

p (yn | y1:n−1; θ)

=
p (yn | x0:n,y1:n−1; θ) p (xn | x0:n−1,y1:n−1; θ)

p (yn | y1:n−1; θ)
p (x0:n−1 | y1:n−1; θ)

=
p (yn | xn; θ) p (xn | xn−1; θ)

p (yn | y1:n−1; θ)
p (x0:n−1 | y1:n−1; θ) . (4)

This decomposition will be an important component for a particle filter which will recursively

approximate it through time. The marginal distributions of interest are then obtained as a

by-product.

2.1.2 Marginal prediction and filtering recursions

An alternative to working with the joint distribution is to calculate the one-step ahead predictive

and filtering distributions recursively. These recursions are the traditional approach taken in the

state space modeling literature. They begin under the assumption that the initial distribution

of the state variable p (x0; θ) is known. At a future iteration n, the prediction step projects last

period’s filtering distribution p (xn−1|y1:n−1; θ) forward using the dynamics of the model (2) and
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its transition density

p (xn | y1:n−1; θ) =

∫
p (xn | xn−1; θ) p (xn−1 | y1:n−1; θ) dxn−1. (5)

This distribution is a one-step ahead forecast of the state variable. With the addition of another

observation yn, the update step computes the filtering distribution by applying Bayes’ rule

p (xn | y1:n; θ) =
p (yn,xn | y1:n−1; θ)

p (yn | y1:n−1; θ)

=
p (yn | xn, y1:n−1; θ) p (xn | y1:n−1; θ)∫

p (yn | xn; θ) p (xn|y1:n−1; θ) dxn

=
p (yn | xn; θ) p (xn | y1:n−1; θ)∫
p (yn | xn; θ) p (xn|y1:n−1; θ) dxn

. (6)

This completes one iteration of the recursion which continues until the end of the dataset.

Difficulty arises in this approach because for most state space models the integrals in (5) and

in the denominator of (6) cannot be calculated analytically. The latter integral p (yn | y1:n−1; θ)

is the contribution to the likelihood since p (y1:n; θ) = p (yn | y1:n−1; θ) p (y1:n−1; θ). There are

several known cases in which it is possible to solve the recursions analytically. The first case

is when the functions in (1) and (2) are linear and the densities are Gaussian. The recursions

can then be solved by the Kalman filter, see Kalman (1960) and Kalman and Bucy (1961).

The other case is when the state variable xn takes on a discrete number of values and the

recursions can be solved by the HMM filter, see Baum and Petrie (1966) and Baum et al.

(1970). The latter algorithm being rediscovered and extended to autoregressions by Hamilton

(1989) in his influential model for the business cycle. For textbook treatments of these methods

see Harvey (1989) and Durbin and Koopman (2001) for the linear, Gaussian state space model

while Frühwirth-Schnatter (2006) covers models with discrete state variables.

Outside of these cases, computing the distributions of interest requires approximating the

integrals in (5) and the denominator of (6). Deterministic and functional approximations to

the integrals have been proposed in the literature, including Gaussian sum filters (Alspach and

Sorenson (1972)), numerical integration (Kitagawa (1987)), extended Kalman filters (Anderson

and Moore (1979)), and unscented Kalman filters (Julier and Uhlmann (1997), Julier et al.

(2000)). These methods may work well on some problems however they all have the same

limitation. The approximation of the integrals at time n is a function of the approximation

of the integrals at the previous iteration. As noted by Künsch (2001), if the approximation at

iteration n− 1 is poor, the approximation error can effect the current period’s estimate. Errors

can accumulate over iterations and as the number of observations increases the algorithms might

diverge from the true value. In the following sections, we discuss approximating the integrals in

these recursions by Monte Carlo methods.
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2.2 Importance sampling

Consider approximating the entire joint distribution p (x0:n|y1:n; θ). Given a function f of the

state variable, a standard Monte Carlo estimator of the integral

E [f(x0:n)] =

∫
f(x0:n)p (x0:n|y1:n; θ) dx0:n

consists of drawing sequences x0:n directly from the target distribution p (x0:n|y1:n; θ). By the

law of large numbers, sample averages will converge to population moments as the number of

draws increases. This strategy is generally impossible for complex models because the target

distribution is non-standard and it is unknown how to draw directly from it.

Instead, a researcher could use importance sampling (IS) where random draws are taken from

a proposal or importance distribution g0:n (x0:n | y1:n;ψ) from which it is easy to sample. The

importance distribution is chosen by the researcher with the restriction that its support covers

the support of the target distribution. The variable ψ denotes a vector of tuning parameters

which are used to make the proposal distribution approximate the target distribution as closely

as possible. The integral of interest is now

E [f(x0:n)] =

∫
f(x0:n)

p (x0:n|y1:n; θ)

g0:n (x0:n|y1:n;ψ)
g0:n (x0:n|y1:n;ψ) dx0:n. (7)

After taking N draws
{
x

(i)
0:n

}N
i=1

from the proposal distribution, the draws are reweighted to

correct for the fact that they were drawn from the wrong distribution. The importance weights
{
w

(i)
n

}N
i=1

are defined as the ratio of the target distribution to the proposal distribution

w(i)
n ∝

p
(
x

(i)
0:n | y1:n; θ

)

g0:n

(
x

(i)
0:n | y1:n;ψ

) . (8)

Given the draws
{
x

(i)
0:n, w

(i)
n

}N
i=1

, the importance sampling estimator of (7) is given by

E [f(x0:n)] ≈
N∑

i=1

f
(
x

(i)
0:n

)
ŵ(i)
n ŵ(i)

n =
w

(i)
n

∑N
j=1w

(j)
n

, (9)

where the importance weights are self-normalized because the constant of integration in the

target density may not be known.

IS was invented by Kahn and Marshall (1953) and Marshall (1956) and was first used in

econometrics by Kloek and van Dijk (1978). To facilitate IS for state space models, researchers

need to find an importance distribution g0:n (x0:n|y1:n;ψ) that closely approximates the target

distribution. General procedures for finding proposal distributions that approximate the joint

smoothing distribution implied by a state space model have been proposed by many authors.
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Shephard and Pitt (1997) and Durbin and Koopman (2001) use Laplace approximations of

the integral as a proposal distribution. Alternatively, after selecting g0:n (x0:n|y1:n;ψ) to be a

parameteric class of distributions (e.g. multivariate normal), researchers have proposed using

Newton-Raphson schemes to choose ψ to minimize a criterion function such as the Kullback-

Leibler distance or the coefficient of variation that measures the separation between the two

distributions; see, e.g. Oh and Berger (1993), Liu (2001, p. 42). This strategy has been applied

to state space models by Richard and Zhang (2007) who call their method efficient importance

sampling (EIS). Other flexible methods for finding importance distributions that have recently

been developed are Hoogerheide et al. (2007), Cappé et al. (2008), and Cornuet et al. (2009),

although these have yet to be applied to state space models.

Geweke (1989) proved consistency and asymptotic normality of the IS estimator (9). In

order for the central limit theorem governing asymptotic normality of the IS estimator to apply,

the variance of the importance weights must be finite. IS for high dimensional integrals can be

problematic because it can be shown that the variance of the importance weights grows with

the time index n; see Kong et al. (1994) for a theorem. If the variance of the IS weights does

not exist, estimates produced by IS can be highly unreliable. This does not mean IS should be

avoided for all applications to state space models. However, researchers should always check the

stability of the importance weights by graphical diagnostics or formal hypothesis tests; see, e.g.

Koopman et al. (2009).

Recently, de Jong et al. (2009) proposed the EIS filter for estimating state space models.

They successfully apply their method to several DSGE models. The EIS filter is an IS algorithm,

however, it does not try to approximate the entire joint distribution p (x0:n | y1:n; θ) at one time.

Instead it approximates the marginal prediction and filtering distributions by applying the EIS

algorithm of Richard and Zhang (2007) to the integrals in (5) and (6) at each time period. The

method is similar in spirit to Kitagawa (1987) who uses numerical integration to approximate

the integrals in each time period instead of IS; see also Tanizaki and Mariano (1994).

2.3 Sequential importance sampling

Another limitation of standard IS for state space models is that the entire expression for the

importance weights (8) needs to be recomputed at each iteration. The computational demands

of the algorithm grow over time. To avoid evaluating the entire expression each period, a

researcher can use sequential importance sampling (SIS). SIS is a special case of IS where instead

of drawing x0:n from a joint proposal distribution draws are made from a sequence of conditional

distributions. By redefining the joint importance distribution, SIS iteratively approximates the

joint smoothing recursion in (4).
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To see how this works, the importance distribution in a SIS algorithm is factored into two

parts

g0:n (x0:n | y1:n;ψ) ≡ gn (xn | x0:n−1, y1:n;ψ) g0:n−1 (x0:n−1 | y1:n−1;ψ) . (10)

The second distribution g0:n−1

(
x0:n−1 | y1:n−1;ψ

)
is per particle a Dirac measure δx0:n−1 placing

a unit probability mass on each path that has already been simulated in the previous iterations

up to time n − 1. A new set of values
{
x

(i)
n

}N
i=1

are drawn at time n from the first part of

the importance distribution gn (xn | x0:n−1, y1:n;ψ). Consequently, a new sequence of paths is

obtained by keeping the trajectories of the old draws up to time n− 1 fixed and appending the

newly simulated values to the end of the old trajectories,
{
x

(i)
0:n

}N
i=1

=
{
x

(i)
0:n−1,x

(i)
n

}N
i=1

. The

time subscript on the importance distribution gn indicates that either it or its parameters ψ can

potentially be chosen at time n and can change over time.

Substituting (4) and (10) into (8), one obtains

wn =
p (yn | xn; θ) p (xn | xn−1; θ) p (x0:n−1 | y1:n−1; θ)

p (yn | y1:n−1; θ) gn (xn | x0:n−1, y1:n;ψ) g0:n−1 (x0:n−1 | y1:n−1;ψ)

∝ wn−1
p (yn | xn; θ) p (xn | xn−1; θ)

gn (xn | x0:n−1, y1:n;ψ)
(11)

∝ wn−1w̃n

where

w̃n =
p (yn | xn; θ) p (xn | xn−1; θ)

gn (xn | x0:n−1, y1:n;ψ)
. (12)

The densities p (yn | xn; θ) and p (xn | xn−1; θ) are determined by the state space model (1)-(2).

The ratio of densities w̃n defined in (12) is known as the incremental importance weight. It is

the only part of the importance weight that needs computed at each iteration. The conditioning

information in the importance distribution in the denominator of (11) will typically be reduced

to gn (xn | xn−1, yn;ψ) for computational convenience. Calculating the incremental weights

then does not require the past observations or the entire past trajectories
{
x

(i)
0:n−2

}N
i=1

.

At the end of each iteration, the SIS algorithm produces N simulated paths and importance

weights
{
x

(i)
0:n, w

(i)
n

}N
i=1

. In the literature on SMC methods which includes the particle filter,

these draws are known as “particles.” They provide a discrete distribution that approximates

the (partially) continuous distribution. Estimates of the moments are the same as in standard

IS and are

E [f(x0:n)] ≈
N∑

i=1

f
(
x

(i)
0:n

)
ŵ(i)
n , ŵ(i)

n =
w

(i)
n

∑N
j=1w

(j)
n

. (13)

An estimate of the target distribution is given by

p(x0:n|y1:n; θ) ≈
N∑

i=1

ŵ(i)
n δ

x
(i)
0:n

(x0:n). (14)

8



where δ
x

(i)
0:n

denotes a Dirac measure located at x
(i)
0:n. An estimate of the contribution to the

likelihood at time n is

p (yn | y1:n−1; θ) ≈
N∑

i=1

ŵ
(i)
n−1w̃

(i)
n

which is a function of the normalized weights from last period.

SIS was invented by Hammersley and Morton (1954) and first applied to state space models

by Handschin and Mayne (1969) and Handschin (1970). It was first used in econometrics by

Hendry and Richard (1991). While the SIS algorithm avoids evaluating the entire expression

for the importance weights each period by computing them recursively, the variance of the

importance weights will grow over iterations. In fact, it can be shown that the variance of the

SIS weights grows exponentially in time, see Chopin (2004). This is because as the number

of iterations increases all the probability mass will eventually be allocated to one particle; one

particle’s normalized importance weight converges to one while the normalized weights of the

other particles are converging to zero. The SIS estimator will ultimately be a function of a single

draw. This is known as weight degeneracy in the literature.

2.4 Particle filters

In their seminal paper introducing the particle filter, Gordon et al. (1993) added a resampling

step within the SIS algorithm that mitigates the weight degeneracy problem. Resampling means

that a new population of particles are replicated from the existing population in proportion

to their normalized importance weights. In its simplest form, we draw N random variables

with replacement from a multinomial distribution with probabilities
{
ŵ(i)

}N
i=1

. Particles with

large importance weights are randomly duplicated while particles with small probability are

eliminated. Once resampled the particles’ weights are set equal to any constant, e.g. w
(i)
n = 1

N

for i = 1, . . . , N . This forces the weights not to permanently degenerate as in the SIS algorithm.

This new algorithm called sequential importance sampling with resampling (SISR) combined

the sampling importance resampling (SIR) method of Rubin (1987, 1988) with the SIS algorithm

and applied it to filtering in state space models. The basic SISR particle filter with resampling

applied in each time period is given as Algorithm 1. Different particle filtering algorithms are

obtained by different choices of the incremental importance distribution gn (xn | xn−1,yn;ψ)

and different types of resampling algorithms, which are both chosen by the user. Additional

early contributions to the particle filtering literature include Isard and Blake (1996), Liu and

Chen (1995), Kitagawa (1996), and Berzuini et al. (1997).

Given the particles, quantities of interest (e.g. moments, quantiles, etc.) can be estimated
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Algorithm 1 Sequential Importance Sampling with Resampling (SISR)

At n = 0, for i = 1, . . . , N

Draw x
(i)
0 ∼ g0(x0) and set w

(i)
0 =

p(x
(i)
0 )

g0(x
(i)
0 )

.

For n = 1, . . . , T :

(i) For i = 1, . . . , N draw x
(i)
n ∼ gn

(
xn | x(i)

n−1,yn;ψ
)

and compute

the importance weights w
(i)
n ∝ w

(i)
n−1

p
(
yn|x

(i)
n ;θ

)
p
(
x

(i)
n |x

(i)
n−1;θ

)

gn

(
x

(i)
n |x

(i)
n−1,yn;ψ

) .

(ii) For i = 1, . . . , N normalize the importance weights: ŵ
(i)
n = w

(i)
n∑N

j=1 w
(j)
n

.

(iii) Resample N particles with probabilities
{
ŵ

(i)
n

}N
i=1

and for i = 1, . . . , N set w
(i)
n = 1

N
.

during the algorithm. Estimates of the moments are

E [f(x0:n)] ≈
N∑

i=1

f
(
x

(i)
0:n

)
ŵ(i)
n , ŵ(i)

n =
w

(i)
n

∑N
j=1w

(j)
n

. (15)

and an estimate of the joint target distribution (3) is given by

p(x0:n|y1:n; θ) ≈
N∑

i=1

ŵ(i)
n δ

x
(i)
0:n

(x0:n). (16)

Alternative estimators of these quantities can be obtained after the particles have been resampled

when their importance weights are equal. These are given by

E [f(x0:n)] ≈ 1

N

N∑

i=1

f
(
x

(i)
0:n

)
. (17)

p(x0:n|y1:n; θ) ≈ 1

N

N∑

i=1

δ
x

(i)
0:n

(x0:n). (18)

Estimates of the state variable in (15) and the distribution in (16) should always be preferred to

estimators calculated after resampling such as (17) and (18). Resampling introduces additional

Monte Carlo variation into the algorithm. In the discussion that follows in Section 2.6, we will

see that it is better not to resample at every iteration.

For an algorithm that resamples in every time period, an estimate of the contribution to the

likelihood at time n is

p (yn | y1:n−1; θ) =

∫
p (yn | xn; θ) p (xn|y1:n−1; θ) dxn

≈ 1

N

N∑

i=1

w̃(i)
n . (19)

If resampling is performed in random time periods such as in Algorithm 4 below, an estimator

of contributions to the likelihood is given by

p (yn | y1:n−1; θ) ≈
N∑

i=1

ŵ
(i)
n−1w̃

(i)
n , (20)
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which includes (19) as a special case when ŵ
(i)
n−1 = 1

N
for i = 1, . . . , N .

While resampling is a crucial feature to the success of the particle filter, it is important to

understand why particles are resampled and what the side-effects of resampling are. Resam-

pling does not cure the degeneracy problem when it comes to the particle filter’s estimate of the

entire joint distribution p (x0:n | y1:n; θ). Repeatedly resampling particles copied from previous

generations reduces the number of distinct particles representing the early parts of the joint dis-

tribution. The past paths will eventually coalesce into a single particle. The particle filter can

produce a good approximation of the marginal distribution p (xn | y1:n; θ), the likelihood contri-

bution p (yn | y1:n−1; θ), and for small k the joint distribution p (xn−k:n | y1:n; θ). However, its

approximation at time n of the entire joint distribution p (x0:n | y1:n; θ) and the earlier marginal

distributions p (xn−l | y1:n; θ) will be poor as n and l increase. Due to this effect, in practice

only the most recent generation of particles
{
x

(i)
n−k:n

}N
i=1

are resampled and stored in memory.

The purpose of resampling is to prevent future degeneracy by replicating those particles that

appear relevant for estimating next period’s marginal distribution.

The number of particles also does not need to remain constant during the algorithm. Particle

size may vary either deterministically or at random over time. For example, the number of

particles can change within each iteration. One can draw R particles (where R = αN for a

positive integer α) from the importance distribution, compute the importance weights and any

quantities of interest using the R particles, and then resample only N out of the R particles.

The advantage is that a larger number of particles are used when the estimator is computed.

The popularity of particle filters has increased since the original paper of Gordon et al.

(1993). A simple explanation being that basic particle filters are extremely easy to implement.

A second reason is that as long as the dimension of xn is moderate the particle filters’ estimator

of the marginal filtering distribution p (xn | y1:n; θ) has good properties. In Section 3, we will see

that many particle filters are consistent and asymptotically normal and that they will “forget

their past errors” sufficiently fast to ensure that past errors do not accumulate. In practice, this

means that a particle filter can be applied to a long stretch of time series (e.g. a financial time

series) and the precision of the estimator of the marginal p (xn | y1:n; θ) will not deteriorate as

one obtains more observations.

Example #1 : stochastic volatility model

To provide some intuition about the SISR algorithm and the estimator that it produces,
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Figure 1: 50 iterations of a discrete-time log-normal stochastic volatility model. Pictured is the
true log-volatility (solid line) and a particle system with N=15 particles after: (i) 5 time-steps;
(ii) n = 10 time-periods; (iii) n = 30 time-periods; and (iv) n = 50 time-periods.

data were simulated from a standard stochastic volatility model

yn = exp(xn/2)εn, εn ∼ N (0, 1),

xn = µ+ φ(xn−1 − µ) + σηηn, ηn ∼ N (0, 1). (21)

with parameter values chosen as µ = 0.5, φ = 0.985, and σ2
η = 0.04. Stochastic volatility

models are popular in finance where they are used to model heteroskedasticity in financial asset

returns. Shephard (2005) provides a recent review of the literature and discusses properties of

the model. To implement the SISR algorithm, we selected the conditional proposal distribution

at each iteration to be the transition density gn (xn | x0:n−1, y1:n;ψ) = p (xn|xn−1; θ) implied

by the dynamics of the model (21). This means that the incremental weight function is equal

to the measurement density, w̃n = p(yn|xn; θ). The algorithm uses multinomial resampling at

each iteration and is equivalent to the original particle filter of Gordon et al. (1993) called the

bootstrap filter.

Figure 1 plots the true value of the state variable xn from this model over the first 50

time periods together with the particles. For illustration purposes, the number of particles is
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Figure 2: Empirical distribution functions created using the particles to approximate the marginal
filtering distribution p(x50|y1:50; θ) for the stochastic volatility model. (i) N = 15 particles; (ii)
N = 250 particles; (iii) N = 1000 particles; and (iv) N = 10000 particles.

N = 15. The panels show the evolution of a particle system
{
x

(i)
0:n, ŵ

(i)
n

}N=15

i=1
through time. The

graphs indicate how the particle filter approximates a continuous distribution p (x0:n | y1:n; θ)

with a discrete distribution. The affects of repeated resampling on the early parts of the joint

distribution can be seen by comparing panel (ii) and panel (iv). After n = 10 time periods in

panel (ii), there are many distinct particles covering the support of the distribution. By the time

n = 50 in panel (iv), particles estimating the first 10 time periods overlap one another as some

particles have been duplicated and others eliminated. The surviving particles do not cover the

support of early parts of the distribution resulting in a poor estimate of the joint distribution.

This will happen over time for any fixed value of the number of particles.

The marginal filtering distribution p (xn | y1:n; θ) at the last iteration however can still be

estimated well. To see this, Figure 2 provides perhaps a more intuitive perspective of the

estimator by plotting the empirical distribution function implied by (16) for different particle

sizes. Panel (i) depicts the particles’ approximation of the marginal filtering distribution at time

n = 50 using N = 15 particles. The remaining panels in Figure 2 demonstrate what happens as

the number of particles increases. In this example where the state variable xn is a continuous
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random variable, the particles form a probability mass function that is converging towards a

continuous distribution function.

2.5 Choosing an importance distribution

This section covers the major classes of importance distributions. To shorten the survey, detailed

derivations of the algorithms are left to the references.

2.5.1 Preliminary comments

Before describing the literature on importance distributions for particle filters, it is helpful to

consider when a particle filter might run into problems. The resampling step in a particle filter

ensures that the particles do not permanently degenerate as in SIS. However, the variance of the

incremental importance weights w̃n may still be large. If the variance of the incremental impor-

tance weights is high, the marginal filtering distribution may be poorly estimated in some time

periods. This can happen when the incremental importance distribution gn (xn | xn−1,yn;ψ) is

a poor approximation of the incremental target p (yn | xn; θ) p (xn | xn−1; θ). When designing

a particle filter, a researcher should try to understand the structure and properties of their

model in order to understand how different proposal distributions might cause the variance of

the incremental importance weights to be large.

Secondly, an important feature of the incremental importance distribution in basic particle

filters is that it is a function of the current set of particles
{
x

(i)
n−1

}N
i=1

whose locations represent

the support of the marginal filtering distribution p(xn−1|y1:n−1; θ). Most of these particles will

be located in the high probability mass regions of p(xn−1|y1:n−1; θ) with few particles in the tails.

When two neighboring marginals are extremely different the majority of old particle locations

will not form a good proposal distribution. This is because they are not located near and may

not be informative about the high probability mass regions of the next marginal p(xn|y1:n; θ).

Consequently, the new set of particles will need to be simulated far from their current locations
{
x

(i)
n−1

}N
i=1

.

For example, the performance of a particle filter may deteriorate when there exist observa-

tions that might be inconsistent with the proposed model (e.g. outliers), which is demonstrated

clearly by Pitt and Shephard (1999). In this situation, it is important to incorporate the current

observation yn in the proposal distribution because it will carry more information about xn

than the past particles
{
x

(i)
n−1

}N
i=1

. The presence of outliers suggests a form of model miss-

specification. The literature on particle filters has generally not focused on how substantial

miss-specification of a model impacts the performance of particle filters. However, there is a

literature on the effects of misspecifying the initial distribution, see Douc et al. (2009).
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Figure 3: Incremental weight functions w̃n for three different levels of measurement error. σε =
1, σε = 0.5, σε = 0.05. We observe yn = 1. Each panel plots a different functional form: (i)
h(xn) = xn; (ii) h(xn) = x2

n; (iii) h(xn) = sin(xn); and (iv) h(xn) = exp(xn).

2.5.2 The bootstrap filter

The original particle filter of Gordon et al. (1993) called the bootstrap filter is also the simplest to

implement. It uses the transition density as the proposal, gn (xn | xn−1,yn;ψ) = p (xn | xn−1; θ) .

Many authors call this importance distribution the prior kernel or prior distribution given the

Bayesian interpretation of a state space model. The bootstrap filter resamples in each time

period making the incremental importance weights equal to w̃n = p (yn|xn; θ) . This particle

filter can perform well for some models but notice that it does not use the information in the

current observation yn to propose new particles. Proposal distributions that do not use the

current observation yn are often called blind proposals. When the variance of the measurement

density (as a function of xn) is large, we should expect the incremental weights to be unbalanced

and for proposal distributions that incorporate yn to outperform this choice.

Example #2 : Nonlinear measurement equation with additive noise

This example illustrates a potential limitation of this importance distribution and what it

means to have incremental importance weights with a large variance. Consider the following
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state space model

yn = h(xn) + εn, εn ∼ N (0,Σε),

xn = µ+ φ(xn−1 − µ) + ηn, ηn ∼ N (0,Ση),

where the function h(xn) in the measurement equation is potentially nonlinear and the noise εn

is additively Gaussian. In economics, models that often fit within this framework are nonlinear

DSGE models. Different second-order solution methods for approximating the DSGE model

will result in different functions h(xn). Many researchers add measurement noise εn and set the

diagonal elements of the covariance matrix Σε to small values such as 10−3 or 10−6; see, e.g. An

and Schorfheide (2007) and Amisano and Tristani (2009).

Using the bootstrap filter, the incremental weight function is the normal density w̃n =

N (yn|h(xn),Σε) with mean h(xn) and diagonal covariance matrix Σε. When viewed as a func-

tion of xn for a fixed value of yn, the properties of this function will depend on the covariance

matrix Σε. As Σε → 0, the weight function will become increasingly peaked as the observation

yn becomes increasingly informative. Relative to the bootstrap filter, we should expect the nu-

merical efficiency gains of an alternative particle filter that intelligently incorporates yn in the

proposal to increase as Σε → 0. This illustrates that the efficiency of one proposal distribution

relative to another will generally depend on the parameter values of the model.

To see why the variance of the incremental weights increases as Σε → 0, consider the in-

cremental weight function for a univariate model. Let Σε = σ2
ε . Figure 3 plots w̃n for four

different functional forms for h(xn) and different degrees of measurement error. In each panel,

xn ranges from [−2.5, 2] and we plot the function for different values σε = 1, σε = 0.5, and

σε = 0.05. Assume we observe yn = 1. The functional form h(xn) and the observed value of

yn will determine the location and width of the peak. The height of the peak is determined by

the amount of measurement noise. Consider panel (ii) where h(xn) = x2
n, we can see that when

yn = 1 this functional form causes there to be two peaks at xn = −1, 1. If the proposal density

blindly simulates most of the particles between the peaks and only a few particles around −1

and 1, the normalized importance weights will be highly unstable for small values of σε. In this

setting, the bootstrap filter will tend to degenerate more as σε → 0.

2.5.3 Conditionally optimal importance distribution

The particle filtering literature includes the notion of a conditionally optimal importance distri-

bution for any model. The conditionally optimal distribution is defined as the distribution that

minimizes the Monte Carlo variation of the importance weights. The “conditional” portion of

this statement emphasizes that the importance distribution is optimal if one only conditions on
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the current observation yn and last period’s particles
{
x

(i)
n−1

}N
i=1

. This idea was introduced by

Liu and Chen (1995), although it exists in an earlier literature on SIS algorithms from Zarit-

skii et al. (1975) and Akashi and Kumamoto (1977). The conditionally optimal importance

distribution is given by

gn (xn | xn−1,yn;ψ) = p (xn | xn−1,yn; θ) ,

=
p (yn | xn,xn−1; θ) p (xn | xn−1; θ)

p (yn | xn−1; θ)
, (22)

=
p (yn | xn; θ) p (xn | xn−1; θ)

p (yn | xn−1; θ)
. (23)

A nice feature of p (xn | xn−1,yn; θ) is that it uses the information in yn and xn−1 simultane-

ously. The incremental weight function w̃n = p (yn | xn−1; θ) is interestingly a function of the

previous state xn−1 and not the current state xn. This importance distribution unfortunately

requires drawing from p (xn | xn−1,yn; θ) and evaluating p (yn | xn−1; θ). For most models, these

are rarely known in closed-form except in special circumstances, e.g. when the measurement

equation (1) is linear and its density is Gaussian see Doucet et al. (2000). However, researchers

use this distribution as a benchmark and try to approximate it with sub-optimal choices. For

an application of this idea to DSGE models, see Amisano and Tristani (2009).

2.5.4 Auxiliary particle filters

The auxiliary particle filter (APF) of Pitt and Shephard (1999, 2001) is a popular algorithm that

is simple to implement and works well in many cases. The presentation given here is different

than the original paper, as this discussion does not explicitly include auxiliary variables. When

proposing new particles at the beginning of each iteration, we would like to use the information

available in the current observation yn. These authors call particle filters that incorporate yn

into their proposal adapted particle filters. In addition, since particles carried over from last

period form part of this period’s proposal distribution, some of the old particles provide more

information about xn than others.

Pitt and Shephard (1999, 2001) approximate the incremental target distribution in (4) with

the importance distribution

p (yn | xn; θ) p (xn | xn−1; θ) ≈ g1,n (yn | xn;ψ) g2,n (xn | xn−1;ψ) ,

= g1,n (yn | xn−1;ψ) g2,n (xn | xn−1;ψ,yn) . (24)

The proposal distribution in (24) is decomposed into two parts implying that the sampling of

new values
{
x

(i)
n

}N
i=1

from this distribution can potentially be performed in two steps. The APF

is given as Algorithm 2.
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Algorithm 2 Auxiliary particle filter (APF)

At n = 0, for i = 1, . . . , N

Draw x
(i)
0 ∼ g0(x0) and set w

(i)
0 =

p(x
(i)
0 )

g0(x
(i)
0 )

.

For n = 1, . . . , T :

(i) For i = 1, . . . , N compute τ (i) = gn(yn | x(i)
n−1;ψ)w

(i)
n−1 and normalize τ̂ (i) = τ (i)

∑N
j=1 τ

(j)
.

(ii) Resample N particles
{
x

(i)
n−1

}N
i=1

with probabilities
{
τ̂ (i)

}N
i=1

.

(iii) For i = 1, . . . , N draw x
(i)
n ∼ gn

(
xn | x(i)

n−1;yn, ψ
)
.

(iv) For i = 1, . . . , N compute importance weights: w
(i)
n =

p(yn|x
(i)
n ;θ)p(x

(i)
n |x

(i)
n−1;θ)

gn(yn|x
(i)
n−1;ψ)gn

(
x

(i)
n |x

(i)
n−1;yn,ψ

) .

The APF nests other algorithms in the literature as special cases. If we select the pro-

posal as g1,n (yn | xn−1; θ) = 1 and g2,n (xn | xn−1; θ,yn) = p (xn | xn−1; θ), the APF reduces

to the bootstrap filter of Gordon et al. (1993). Many economic models have a special struc-

ture with non-Gaussian measurement densities and linear, Gaussian transition densities. In this

case if the measurement density is log-concave, Pitt and Shephard (1999, 2001) suggest taking

g1,n (yn | xn−1; θ) to be the Taylor series expansion of log p (yn | xn; θ) around a point µn and

combining it with the transition density g2,n (xn | xn−1; θ,yn) = p (xn | xn−1; θ,yn). The re-

sulting proposal distributions then locally approximate the conditionally optimal distribution.

Smith and Santos (2006) apply this APF to several models demonstrating the improvement of

a second-order expansions over first-order expansions when there are outliers in the data.

In settings where one can evaluate p (yn | xn−1; θ), one can select g1,n (yn | xn−1;ψ) =

p (yn | xn−1; θ) and g2,n (xn | xn−1; θ,yn) = p (xn | xn−1; θ,yn). The incremental importance

weights are then equal to one. Pitt and Shephard (1999, 2001) call this situation full adaption

or perfect adaption. As it incorporates p (yn | xn−1; θ), it is similar to the conditionally optimal

distribution of Liu and Chen (1995). However, the APF is different than the conditionally op-

timal distribution of Liu and Chen (1995) because it uses p (yn | xn−1; θ) to resample first and

“pre-select” from the existing set of particles. Pre-selecting from the previous period’s particles

using yn can potentially improve the current period’s proposal distribution because the resam-

pled particles after step (ii) form a different importance distribution than the original particle

filter that resamples at the end of each iteration. The APF can encompass more general algo-

rithms than discussed here. Pitt and Shephard (1999, 2001) show that it is possible to use the

accept-reject algorithm or alternatively MCMC moves within an APF as well.

In the original paper, the APF contained a second resampling stage at the end of each

iteration. In independent work by Johansen and Doucet (2008) and Douc et al. (2009), the

authors prove that if one keeps the particle size constant at each iteration then the second
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resampling stage in the original algorithm is unnecessary. Including it increases the asymptotic

variance of the corresponding estimator. Johansen and Doucet (2008) also demonstrate that

the APF can actually degrade the performance of a particle filter even in the case of perfect

adaption. These authors show that the performance of the APF will depend upon the signal to

noise ratio in the state space model.

2.5.5 Particle filters built from accept-reject algorithms (acceptance sampling)

Accept-reject algorithms (see Robert and Casella (2004, p. 47)) can also be incorporated within

a particle filter. This idea originates with Hürzeler and Künsch (1998) and also Tanizaki and

Mariano (1998). For example, when it is impossible to draw directly from the conditionally

optimal importance distribution (22), one can draw N particles from this distribution using

an accept-reject algorithm. The algorithms have been studied theoretically by Künsch (2005),

who also proposes some extensions to the algorithms in the original papers. As an accept-reject

algorithm will be run for each particle in each time period, the user needs to find a good proposal

distribution within the accept-reject algorithm. If this is not chosen well, a large number of trial

simulations may be needed for each particle to be accepted.

2.5.6 Other approximations to the conditionally optimal distribution

Other proposal distributions exist when either or both of the functionsmn (·) and hn (·) in (1) and

(2) are nonlinear but the disturbances ηn and εn are additively Gaussian. Proposal distributions

can then be formulated by taking a Taylor series expansion of the non-linear function. These

importance distributions, given in Doucet et al. (2000), van der Merwe et al. (2000) and

Guo et al. (2005), make proposals using one-step of the extended or unscented Kalman filter

applied to each particle. The extended and unscented Kalman filters are nonlinear filters that

use analytical approximations; see, e.g. Anderson and Moore (1979) and Julier et al. (2000)).

When both the observation and transition densities are log-concave, the conditionally optimal

proposal distribution will also be log-concave. As suggested by Pitt and Shephard (1999) and

Doucet et al. (2000), another option is to choose the parameters ψ of the importance distribution

gn (xn | xn−1,yn;ψ) in each time period and for each particle so that its mode and curvature

match the mode and curvature of the incremental target density p (yn | xn; θ) p (xn | xn−1; θ).

This will provide an approximation to the conditionally optimal distribution. Finding the mode

of the target can be accomplished using Newton-Raphson methods. One can then choose the

importance distribution gn (xn | xn−1,yn;ψ) to be a normal or Student’s t distribution setting

the parameters ψ to have this mode and an inflated variance to ensure its support includes the

support of the incremental target distribution.
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2.5.7 Rao-Blackwellization

Some state space models have a special structure, where a subset of the state vector may

be integrated out analytically. Analytical integration of part of the state vector reduces the

Monte Carlo variation of the resulting estimator and will always improve its numerical effi-

ciency. It is known as Rao-Blackwellization in the Monte Carlo literature because it is an im-

plication of the Rao-Blackwell Theorem; e.g., see Robert and Casella (2004, p. 130). When

this is possible, the structure of the model implies that the state vector can be separated

into two parts xn =
(
x′

1,n,x
′
2,n

)′
. The marginal filtering distribution can then be decom-

posed as p(x1,n,x2,n|y1:n; θ) = p(x1,n|x2,n,y1:n; θ)p(x2,n|y1:n; θ). Particles are only simulated

randomly from p(x2,n|y1:n; θ) while conditional on each individual draw x
(i)
2,n the distribution

p(x1,n|x(i)
2,n,y1:n; θ) can be evaluated analytically.

A class of models amenable to Rao-Blackwellization that is popular in economics is

yn = Zn (x2,n)x1,n + εn, εn ∼ N (0, Hn (x2,n)) , (25)

x1,n = Tn (x2,n)x1,n−1 + ηn, ηn ∼ N (0, Qn (x2,n)) , (26)

pij = p (x2,n = j | x2,n−1 = i) , x2,n ∈ {1, 2, ....., k} , (27)

which is a linear, Gaussian state space model where the parameters in the state space matrices

Zn, Tn, Qn, Hn depend upon the value of an additional discrete state variable x2,n. The discrete

state variables follow a first-order Markov process as in (27). These models are covered in Kim

and Nelson (1999) and Frühwirth-Schnatter (2006).

Conditional on the discrete state variables
{
x

(i)
2,n

}N
i=1

the resulting system is a linear, Gaus-

sian state space model and p(x1,n|x2,n,y1:n; θ) can be evaluated by the Kalman filter. These

particle filters are due to Chen and Liu (2000) who named them mixture Kalman filters, see

also Doucet et al. (2001). de Freitas et al. (2004), Schön et al. (2005), and Bos and Shephard

(2006) are additional references which apply some form of this methodology.

Other models that can be Rao-Blackwellized are partially observed Gaussian state space

models as in Andrieu and Doucet (2002), which include dynamic probit and Tobit models with

unobserved states. State space models where the functions in (1) and (2) are nonlinear but

depend on both discrete and continuous-valued states can also be Rao-Blackwellized; e.g., see

Andrieu et al. (2003).

Example #3 : Applying a Rao-Blackwellized particle filter

Forecasting inflation is an important part of monetary policy-making and has a long history

in economics. We illustrate the use of Rao-Blackwellized particle filters on a model recently
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Algorithm 3 Rao-Blackwellized APF for the time-varying local level model

At n = 0, for i = 1, . . . , N

Draw x
(i)
1,0, P

(i)
1,0|0 ∼ p(x1,0), x

(i)
2,0 ∼ p(x2,0), x

(i)
3,0 ∼ p(x3,0) and set w

(i)
0 = 1

N
.

For n = 1, . . . , T :
(i) For i = 1, . . . , N , run the prediction step of the Kalman filter to obtain

the prediction errors and prediction error variances
{
v

(i)
n , F

(i)
n

}N
i=1

.

(ii) For i = 1, . . . , N , compute the importance weights w
(i)
n ∝ N

(
v

(i)
n , F

(i)
n

)
and

normalize them: ŵ
(i)
n = w

(i)
n∑N

j=1 w
(j)
n

.

(iii) Resample N particles
{
x

(i)
1,n−1|n−1, P

(i)
1,n−1|n−1,x

(i)
2,n−1,x

(i)
3,n−1

}N
i=1

with probabilities

{
ŵ

(i)
n

}N
i=1

and for i = 1, . . . , N set w
(i)
n = 1

N
.

(iv) For i = 1, . . . , N , draw x
(i)
2,n ∼ N (x

(i)
2,n−1, 0.2) and x

(i)
3,n ∼ N (x

(i)
3,n−1, 0.2) and

run the Kalman filter on each particle to obtain
{
x

(i)
1,n|n, P

(i)
1,n|n

}N
i=1

.

proposed by Stock and Watson (2007) to forecast inflation πn. It is a time-varying random walk

plus noise or local level model

πn = x1,n + εn, εn ∼ N (0, exp(x2,n)), (28)

x1,n+1 = x1,n + ηn, ηn ∼ N (0, exp(x3,n)), (29)

x2,n+1 = x2,n + ω1,n, ω1,n ∼ N (0, 0.2), (30)

x3,n+1 = x3,n + ω2,n, ω2,n ∼ N (0, 0.2), (31)

where x1,n is the unobserved time-varying mean of inflation and xi,n for i = 2, 3 are unobserved

log-variances. Stock and Watson (2007) argued that this specification improves forecasting

because the model accounts for the structural breaks present in inflation. It can be shown, see

e.g. Harvey (1989, p. 68), that the local level model with constant variances is equivalent to

an ARIMA(0,1,1) model with additional restrictions on the parameter space. The stochastic

variances for the level and irregular components in (28)-(31) imply a time-varying variance and

MA parameter in this ARIMA representation. The time-varying MA parameter conveniently

summarizes how the model’s forecast function changes through time.

Stock and Watson (2007) estimate the state variables of the model by MCMC, while it is

(arguably) easier to implement a particle filter when there are no static parameters that need

to be estimated. The model has a special structure because conditional on the log-variances

x2,n and x3,n the remaining model is a linear, Gaussian state space model. The conditional

distribution can then be calculated exactly by the Kalman filter. A good particle filter for

this application is an APF version of the mixture Kalman filter; see, Chen and Liu (2000).

Following the discussion in Section 2.5.7, the proposal distribution can be broken into two
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Figure 4: Estimates from the time-varying local level model applied to quarterly U.S. inflation
Q1:1959-Q3:2008: (i) inflation and its one-step ahead forecast; (ii) filtered and smoothed es-
timates of the implied MA(1) parameter; (iii) filtered and smoothed estimates of the irregular
volatility exp(x2,n/2); (iv) filtered and smoothed estimates of the state volatility exp(x3,n/2).
NBER recession dates are indicated by the vertical bars.

parts, gn(x1,n|x1,n−1,x2,n,x3,n,yn; θ)gn(x2,n,x3,n|x2,n−1,x3,n−1yn; θ). The log-variances x2,n

and x3,n are first simulated from the latter part of the proposal distribution which was cho-

sen to be the transition densities of the state equations (30) and (31). Conditional on these

values, the Kalman filter can update the sufficient statistics of pn(x1,n|x1,n−1,x2,n,x3,n,yn; θ) =

gn(x1,n|x1,n−1,x2,n,x3,n,yn; θ) which are the mean and covariance matrix of the Gaussian dis-

tribution denoted by x1,n|n and P1,n|n. Since part of the state vector x1,n has been computed

analytically, this algorithm should need fewer particles to achieve the same level of statistical

efficiency relative to other simple particle filtering algorithms such as the SISR filter. This par-

ticle filter is given in detail as Algorithm 3. It can be used for any model that is a conditionally

Gaussian state space model.

In this example, the data are quarterly U.S. CPI inflation from Q1:1959-Q7:2008 constructed

from the “real-time” price indices available from the U.S. Federal Reserve Bank of Philadelphia.

The filtering algorithm was implemented with N = 10, 000 particles and systematic resampling.

22



Smoothed estimates of each of the components were computed by taking 5000 draws using the

simulation smoothing algorithm of Godsill et al. (2004) discussed in Section 2.7 below.

The one-step ahead forecast of inflation and the filtered and smoothed estimates of the

volatilities are pictured in Figure 4. These estimates largely confirm the results of Stock and

Watson (2007). The volatility of the level or permanent component exp(x3,n/2) increased dur-

ing the period of high-inflation in the 1970’s, while the volatility of the irregular component

exp(x2,n/2) was relatively more stable. Filtered and smoothed estimates of the implied MA(1)

parameter are shown in panel (ii) and they indicate that it also increased during this period. The

forecastability of inflation appears to have changed over time as argued by Stock and Watson

(2007). This data set includes five additional years of inflation beyond that analyzed by these

authors. The volatility of inflation has recently increased beginning in the middle of 2007. It

appears to be concentrated in the irregular or transitory component.

2.5.8 MCMC and adaptive proposals

If the particles were resampled during an iteration of the particle filter, the resampling step causes

some particles to be duplicated. The duplicated particles form part of the importance density

at the next iteration. Resampling also causes the particles at the previous iterations to coalesce.

Gilks and Berzuini (2001) proposed the resample-move algorithm which creates diversity among

the particles by applying one iteration of a Metropolis-Hastings or Gibbs sampler Markov kernel

to each particle conditional on the particles being resampled. At time n, the user can choose

their Markov kernel such that the algorithm returns k periods into the past (for small k) and

moves a block of variables
{
x

(i)
n−k:n

}N
i=1

instead of only the last period’s. The resulting resample-

move algorithm will improve on a standard particle filter when it comes to estimating the joint

distribution p(xn−k:n|y1:n; θ). This is because it introduces some diversity into the past paths

whereas these paths are typically fixed in a standard algorithm.

Another recent line of research considers using the past particles
{
x

(i)
0:n−1, ŵ

(i)
n

}N
i=1

to adapt

the importance distribution over time. Cornebise et al. (2008) consider selecting the parameters

ψ of gn (xn | xn−1,yn;ψ) each period to minimize an empirical estimate of the Shannon entropy

or the coefficient of variation between the empirical distribution of the particles and the target

distribution. Their paper contains additional references to work on adaptive methods in particle

filters. Using MCMC and adaptive proposals within particle filters are relatively more advanced

methods. They are closely related to the algorithms discussed in Section 4.
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2.5.9 Block sampling

When using MCMC, it is well-known that better performing algorithms can be built if one can

find a proposal distribution that enables joint sampling of blocks of variables from the target

distribution. If the proposal is chosen well, sampling variables in blocks improves the speed

by which the Markov chain explores the support of the distribution. Doucet et al. (2006)

propose a similar idea for particle filters. At the beginning of iteration n of a particle fil-

ter, the algorithm has already simulated and stored the paths
{
x

(i)
0:n−1

}N
i=1

. The goal is not

only to extend each path at the endpoint but instead returning k time periods into the past

(where k is say 5-10) and sample a block
{
x

(i)
n−k:n

}N
i=1

. Instead of using a proposal distribu-

tion for a single time period gn (xn | xn−1,yn;ψ), the proposal distribution is over the path

gn−k:n (xn−k:n | xn−k−1:n−1,yn−k:n;ψ). Particle filters based on block-sampling proposal distri-

butions do not directly approximate the joint smoothing recursion (4) like a standard particle

filter. Instead, they rely on defining a sequence of articial target distributions and are related

to the simulation algorithms discussed in Section 4.

In order to implement block sampling, the importance weight recursions (11) need to be

rewritten to account for the alternative sequence of target distributions. This changes the

definition of the incremental weights, see Doucet et al. (2006) for details. If the proposals

gn−k:n (xn−k:n | xn−k−1:n−1,yn−k:n;ψ) are chosen well, this algorithm will perform better at

estimating the joint distribution p (xn−k:n | y1:n; θ) than a standard particle filter for the same

number of particles. However, selecting good joint proposals may be challenging in practice and

the algorithms are more computationally expensive.

2.6 Resampling and branching algorithms

There are four resampling algorithms that dominate most of the literature: multinomial resam-

pling of Gordon et al. (1993), stratified resampling of Kitagawa (1996), residual resampling

of Liu and Chen (1998), and systematic resampling of Carpenter et al. (1999).1 All of these

algorithms can be performed in O(N) operations.2 The main point for applied researchers to

note is that some resampling algorithms are preferable because they introduce less Monte Carlo

variation into the particle filter’s estimator. Douc et al. (2005) compare their efficiency in terms

of Monte Carlo variation. They prove that the stratified resampling algorithm and the resid-

ual resampling scheme should be preferred to the original multinomial resampling. The Monte

Carlo variation introduced by these algorithms is strictly smaller. The systematic resampling

1The residual and systematic resampling schemes are also known in the genetic algorithm literature under
alternative names, see Whitley (1994).

2Matlab code for each of the resampling algorithms can be found at Nando de Freitas’ webpage at
http://www.cs.ubc.ca/∼nando/software.html..
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Algorithm 4 SISR filter with resampling at random times

At n = 0, for i = 1, . . . , N

Draw x
(i)
0 ∼ g0(x0) and set w

(i)
0 =

p(x
(i)
0 )

g0(x
(i)
0 )

.

For n = 1, . . . , T :

(i) For i = 1, . . . , N draw x
(i)
n ∼ gn

(
xn | x(i)

n−1,yn;ψ
)

and compute

the importance weights w
(i)
n ∝ w

(i)
n−1

p
(
yn|x

(i)
n ;θ

)
p
(
x

(i)
n |x

(i)
n−1;θ

)

gn

(
x

(i)
n |x

(i)
n−1,yn;ψ

) .

(ii) For i = 1, . . . , N normalize the importance weights: ŵ
(i)
n = w

(i)
n∑N

j=1 w
(j)
n

.

(iii) Compute the ESS.

(iv) If ESS ≤ threshold, resample N particles with probabilities
{
ŵ

(i)
n

}N
i=1

and

for i = 1, . . . , N set w
(i)
n = 1

N
else, if ESS > threshold, set w

(i)
n = ŵ

(i)
n for i = 1, . . . , N .

algorithm is the easiest to implement. It can also perform well in Monte Carlo studies but does

not always dominate multinomial resampling in terms of variance, see Douc et al. (2005).

The residual and stratified resampling algorithms are also unbiased in the sense that the

expected number of times a particle x
(i)
n will be resampled is equal to its importance weight.

Thus, the algorithms satisfy the condition

E

[
N#(i)
n |

{
ŵ(i)
n

}N
i=1

]
= Nŵ(i)

n ,

where N
#(i)
n is the number of times the i-th particle is replicated during resampling. This

condition is a maintained assumption in the consistency and asymptotic normality proofs behind

most particle filters.

Other notable resampling algorithms include the optimal resampling algorithm of Fearnhead

and Clifford (2003), which should be used for any model whose state variable has a discrete

component, e.g. the Markov-switching state space model (25)-(27). The stopping-time resam-

pling algorithm of Chen et al. (2005) is another recent alternative. The papers by Fearnhead

and Clifford (2003) and Chen et al. (2005) illustrate the point that a resampling algorithm can

be tailored for specific classes of models or even a specific application.

The original particle filter of Gordon et al. (1993) carries out resampling every time period.

To lower the degree of Monte Carlo variation introduced into the estimator, Liu and Chen (1995)

suggested resampling only after time periods where the importance weights are unstable. They

suggested using the effective sample size (ESS) as a measure of weight instability. The ESS is

given by

ESS =
1

∑N
i=1

(
ŵ

(i)
n

)2 , (32)

and is a number between 1 and N . If the ESS = N , the interpretation is that the weights are
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equally balanced and that all N particles are contributing to the estimator. At each iteration

of the algorithm, the user calculates the ESS and if it drops below a user chosen threshold then

resampling is performed. Resampling is therefore performed at random times, see Algorithm 4.

The threshold for the ESS is typically chosen to be a percentage of the number of particles, say

0.5 to 0.75.

Two other commonly used measures of weight instability are the coefficient of variation (CV)

of Kong et al. (1994) and the Shannon entropy of the weights. These can be substituted into

Algorithm 4 instead of the ESS. The CV is defined as

CV =

[
1

N

N∑

i=1

(
Nŵ(i)

n − 1
)2

]0.5

, (33)

and is a number between zero and
√
N − 1.3 If all the weights are equal then CV = 0 and if

one particle has all the probability mass then CV =
√
N − 1. Note that ESS = N/(1 + CV2).

The Shannon entropy (SE) is

SE = −
N∑

i=1

ŵ(i)
n log2 ŵ

(i)
n , (34)

which is minimal at zero when one particle has all the mass. Its largest value is log2N when

all the weights are equal. When using the CV and SE criterion to determine when to resample,

the threshold will depend upon the model and on the particle size N .

An alternative to resampling algorithms for rejuvenating the particles are “branching” al-

gorithms, which are popular in the theoretical probability literature and are reasonably simple

to implement. In most implementations, the number of particles will be random over time Nn

and therefore these methods are not as common in applications. For more details on branching

algorithms; see, e.g. Crisan et al. (1999) and Del Moral and Miclo (2000).

2.7 Particle smoothing and maximum a posteriori estimation

The marginal smoothing distribution p (xn | y1:T ; θ) characterizes the state variable given all T

observations in the dataset. Computing the distribution p (xn | y1:T ; θ) for all possible n while T

is held fixed is the most common form of smoothing in economics. This is known as fixed-interval

smoothing in the engineering literature; see, e.g. Anderson and Moore (1979). Fixed-interval

smoothing algorithms for state space models are historically based upon one of two frameworks

known as forward-filtering backward-smoothing or two-filter formula smoothing. Both types of

algorithms compute the same sequence of marginal distributions {p (xn | y1:T ; θ)}Tn=1. Particle

3The squared coefficient of variance CV2 is equal to the estimator of the asymptotic variance for the self-
normalized IS estimator (see Geweke (1989, 2005)), where the function being integrated is equal to one, i.e.
f(x0:n) = 1.
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smoothing algorithms have been created using both approaches. A good reference for this

material is Briers et al. (2004) on which my discussion is based while Chapter 3 of Cappé et al.

(2005) contains a more general, measure-theoretic treatment.

After running a filtering algorithm forward and computing each of the predictive and fil-

tering distributions {p (xn+1 | y1:n; θ) , p (xn | y1:n; θ)}Tn=1, the sequence of marginal smoothing

distributions can be computed from n = T − 1, . . . , 1 using the following backward recursion

p (xn | y1:T ; θ) =

∫
p (xn,xn+1 | y1:T ; θ) dxn+1,

=

∫
p (xn+1 | y1:T ; θ) p (xn|xn+1,y1:T ; θ) dxn+1,

=

∫
p (xn+1 | y1:T ; θ) p (xn|xn+1,y1:t; θ) dxn+1,

= p (xn|y1:n; θ)

∫
p (xn+1 | y1:T ; θ) p (xn+1|xn; θ)

p (xn+1 | y1:n; θ)
dxn+1. (35)

The backward recursion is initialized using the last filtering distribution p (xT | y1:T ; θ) and the

predictive distribution p (xT+1 | y1:T ; θ) from the forward filtering recursions. The smoothing

algorithms for the linear, Gaussian state space model that are popular in economics, e.g. Harvey

(1989), Kim and Nelson (1999), and Durbin and Koopman (2001), are versions of this approach

based upon original work by Rauch et al. (1965). Doucet et al. (2000) invented a particle

smoother using this framework but it is an O(N2T ) operation making it uncompetitive with

MCMC. A second shortcoming is the particles’ locations on the support of the distributions are

fixed on the forward filtering pass. These particles are then simply reweighted by changing their

importance weights on a backwards pass using the information in the future data. Although

future observations are available, new particle locations are not simulated on the backwards

pass. These one-sided particle locations may not be representative of the marginal smoothing

distributions given more data.

Two-filter formula smoothing consists of running two filters that are independent of one

another and using their output to construct the marginal smoothing distributions. This method

was proposed by Fraser and Potter (1969) for linear, Gaussian models. The first filter calculates

the one-step ahead predictive and filtering distributions {p (xn | y1:n−1; θ) , p (xn | y1:n; θ)}Tn=1

running forward in time and the second filter calculates a series of functions {p (yn:T | xn; θ)}Tn=1

running backward in time. Together these can compute the marginal smoothing distributions
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using the forward recursion

p (xn | y1:T ; θ) = p (xn | y1:n−1,yn:T ; θ) ,

=
p (xn | y1:n−1; θ) p (yn:T | y1:n−1,xn; θ)

p (yn:T | y1:n−1; θ)
,

∝ p (xn | y1:n−1; θ) p (yn:T | xn; θ) ,

∝ p (xn | y1:n; θ) p (yn+1:T | xn; θ) .

The set of backward functions p (yn:T | xn; θ) can be computed recursively via

p (yn:T | xn; θ) =

∫
p (yn+1:T | xn+1; θ) p (xn+1 | xn; θ) p (yn | xn; θ) dxn+1,

which is known as the backward information filter and was first proposed by Mayne (1966).

Difficulty may sometimes arise with this approach because p (yn:T | xn; θ) is not a probability

density. The integral of this function can grow without bound (the integral is infinite). Prac-

tical implementations of two-filter formula smoothing are therefore based on normalization of

p (yn:T | xn; θ) to ensure that it is a density.

Kitagawa (1996) proposed the first particle smoother based upon two-filter formula smooth-

ing. However, this algorithm implicitly assumes that p (yn:T | xn; θ) is integrable. Briers et al.

(2004) develop a two-filter formula particle smoother that solves the integrability problem. Their

method also simulates fresh particle locations on the backward pass but it remains an O(N2T )

operation. Building on this work, Fearnhead et al. (2008) have recently shown how to apply a

two-filter formula particle smoother which is only an O(NT ) operation making it competitive

with MCMC. This smoother does not solve the problem for all general state space models (1)

and (2) but applies to only those models whose state equation is linear and Gaussian. This is

typically the case in economics. Details of the implementation of the algorithm are relatively

lengthy and therefore we refer to their paper for further discussion.

Godsill et al. (2004) developed a simulation smoothing algorithm for a general nonlinear,

non-Gaussian state space model using particle filters that is an O(NT ) operation. A simulation

smoother is an algorithm that takes random draws of a sequence of state variables x0:T from

the joint smoothing distribution p (x0:T | y1:T ; θ). Their method can be viewed as an extension

of the simulation smoothing algorithms for linear, Gaussian models of Carter and Kohn (1994),

Frühwirth-Schnatter (1994), de Jong and Shephard (1995), and Durbin and Koopman (2002).

By repeatedly drawing samples from this distribution, smoothed estimates of the state variable

can be computed by averaging across the simulations as in standard i.i.d Monte Carlo methods.

The algorithm is particularly simple and therefore we refer to Godsill et al. (2004) for its

implementation. Recently, Douc et al. (2009) have provided a theoretical analysis of this

algorithm and have suggested ways of improving its implementation.
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Particle smoothing can be used to approximate the mean of the marginal or joint smoothing

distributions. This is the optimal estimator if the user has a quadratic loss function. Viewing

the joint smoothing distribution as a posterior distribution, it is also possible for particle filters

to approximate the maximum a posteriori (MAP) estimator. This is the sequence x0:T that

maximizes the posterior distribution p (x0:T | y1:T ; θ) and is the optimal estimator under a zero-

one loss function. Godsill, Doucet, and West (2002) solve this problem by extending the well-

known Viterbi (1967) algorithm for discrete-state HMM models to the context of particle filters.

The algorithm is a simple dynamic programming problem and is an O(N2T ) operation.

2.8 Parameter estimation and hypothesis testing using particle methods

2.8.1 Computing the likelihood for a general state space model

The log-likelihood of a time series model is given by the prediction error decomposition

logL (θ|y1:T ) = log p (y1, ...,yT ; θ) =
T∑

n=1

log p (yn|y1:n−1; θ) .

The particle filter’s approximation of the likelihood function for a single observation was given

in (20). It is an unbiased estimator. Taking the log of this approximation and summing over all

the observations gives

logL (θ|y1:T ) ≈
T∑

n=1

log

[
N∑

i=1

w
(i)
n−1w̃

(i)
n

]
.

The particle filters estimator of the likelihood can be used in hypothesis testing as well as in

parameter estimation.

2.8.2 Hypothesis testing and model evaluation

In a frequentist setting, estimates of the likelihood can be used for model diagnostics such

as likelihood ratio and Ljung-Box statistics; see Andrieu, Doucet, Singh, and Tadić (2004, p.

429) for details. When θ is treated as a random variable with prior p(θ), the likelihood can

be combined with the prior to obtain the posterior p(θ|y1:T ). Given a set of models m =

1, . . . ,M , the particle filter can be used to help compute the marginal likelihood p(y1:T |m) =

p(y1:T |θ,m)p(θ|m)
p(θ|y1:T ,m) . The marginal likelihood is needed for Bayesian hypothesis testing; see, e.g.

Geweke (2005) and Chapter 5 of Frühwirth-Schnatter (2006) for a general discussion of different

ways to compute marginal likelihoods. Kim et al. (1998) and Chib et al. (2002) among others

use the particle filter’s approximation of the likelihood to compute the marginal likelihood and

compare different stochastic volatility models.
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2.8.3 Frequentist likelihood-based parameter estimation

Frequentist parameter estimation of nonlinear, non-Gaussian state space models by particle

filters remains a current research topic. The two major issues to consider are computing the

maximum likelihood (ML) estimator in a computationally efficient way and its statistical prop-

erties (i.e. consistency and asymptotic normality) once it is computed. Although the particle

filter’s approximation of the likelihood function at a point θ is consistent asymptotically in the

number of particles, the log-likelihood function is not a continuous function of the parameters.

This is true even if one tries to use common random numbers. The discontinuity is created

from the resampling stage within a particle filter and can cause problems for gradient-based

optimizers; e.g., see Hürzeler and Künsch (2001) for a detailed example of the problem.

Pitt (2002) developed a new algorithm called the smooth particle filter to overcome the prob-

lem of a non-smooth log-likelihood function. This algorithm replaces the standard resampling

algorithm with a new resampling method. It builds a continuous c.d.f. using piecewise linear

approximations between particles instead of the discrete c.d.f. used in the standard resampling

algorithms. Pitt’s algorithm is only viable when the state dimension is equal to one or perhaps

two because smoothing the c.d.f. requires the ordering of the state variables during each itera-

tion of the filter. The method becomes an O
(
N2T

)
operation beyond a one-dimensional state

vector.

Olsson and Rydén (2008) consider maximization of the log-likelihood and also address the

resulting estimator’s theoretical properties. They approximate the parameter space using a

discrete grid of points and evaluate the log-likelihood function by particle filter at each point.

They then prove what conditions are needed on the grid size, the number of particles, and the

state space model in order to guarantee consistency and asymptotic normality of the resulting

ML estimator. This appears to be the first result of this kind.

Otherwise, most work on ML estimation using particle filters has focused on using approaches

other than gradient-based optimizers that avoid the discontinuity problem. These methods

include stochastic gradient-based methods, recursive maximum likelihood methods (Doucet and

Tadić (2003), Poyiadjis et al. (2005a), Poyiadjis et al. (2005b)) and Monte Carlo expectation

maximization (MCEM) methods (Cappé et al. (2005), Olsson et al. (2008)). The last paper also

analyzes the statistical properties of the estimator. To my knowledge, none of these methods

have been applied in the economics literature.
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2.8.4 Alternative methods and online estimation

A number of other proposals have been made for estimating the parameters of general state

space models using particle methods. In particular, researchers are interested in accounting for

parameter uncertainty by approximating the distributions p (x0:n, θ | y1:n) and p (xn, θ | y1:n)

online as data arrives. These provide estimates of the marginal distributions p (θ | y1:n) and

p (xn | y1:n) instead of the traditional marginal filtering distribution p (xn | y1:n; θ) which does

not account for parameter uncertainty.

Research in this area is still on-going. Some of the earlier methods are reviewed in Doucet

et al. (2001). Assume throughout this section that we are in a Bayesian setting with an initial

prior for the parameters p(θ) at time n = 0. Kitagawa (1998) proposed simulating from p(θ)

and then placing the parameters in the state vector with the variance set to zero, i.e. θn = θ

∀ n. Unfortunately, the parameter space is then only explored at initialization of the algorithm

and after several stages of resampling the particles will consist of only one value of θ making for

a poor estimator. Kitagawa (1998) and Liu and West (2001) proposed making the parameters

dynamic, θn = θn−1 + ωn, where ωn is artificial noise whose covariance is converging to zero

asymptotically as n → ∞. The parameters are then added to the state vector. Liu and West

(2001) considered an extension of this where they approximate the distribution p(θ|y1:n) using

a nonparametric kernel, e.g. Epanechnikov or normal. This has been a popular approach taken

in the literature. However, some researchers argue that this changes the original problem of

interest as the true parameters in the model of interest are fixed and not dynamic. Selecting

the tuning parameters within the nonparametric kernel may also be difficult in practice.

Storvik (2002) proposed learning the parameters sequentially in time by simulating new

parameter values θ = (θ1, . . . , θk) each period along with the state variables. New parameter

values are drawn from their posterior conditional distribution which he summarizes by a set

of low-dimensional sufficient statistics. Fearnhead (2002), Johannes et al. (2006), Carvalho

et al. (2008), and Johannes et al. (2008) apply more advanced versions of these methods to

several applications. The basic idea behind these methods is that in many models the posterior

conditional distribution of each individual parameter p(θi|y1:n,x0:n) can often be summarized by

a low dimensional set of sufficient statistics denoted by sn = s(y1:n,x0:n). The sufficient statistics

can often be written as a recursive function of the past period’s sufficient statistics, the new data,

and the state variable from the current time period such that sn = s(y1:n,x0:n) = s̃(yn,xn, sn−1).

Instead of storing the entire history of the particles
{
x

(i)
0:n−1

}N
i=1

, the algorithm only needs to

store the sufficient statistics
{
s
(i)
n

}N
i=1

which provides computational savings. Redefine each

particle as x̃n = (s′n,x
′
n, θ

′)′. At each iteration, new state variables are simulated from their
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proposal distribution conditional on the existing parameters and then the sufficient statistics

are updated using the recursion sn = s̃(yn,xn, sn−1). Conditional on the sufficient statistics,

new parameter values are simulated from their posterior condition distribution. The particles

x̃n are reweighted given the particle filter’s importance weights and then resampled (potentially

conditional on the ESS as noted above). The methodology outlined in these papers has the

advantage of being extremely simple to implement.

Andrieu et al. (1999), Andrieu et al. (2005), and Künsch (2006) note, however, that the

success of these methods will depend upon the mixing properties of the Markov kernels within

the algorithm. Past errors produced by the particle filter’s approximations need to be forgotten

and not accumulated over time. Keep in mind that the particle filter does not generally give a

good approximation of the joint distribution p (x0:n | y1:n; θ) for large n because there will be

few particles representing early parts of the distribution (see Example #1 and Figure 1). As n

increases, the particles representing p (x0:n−k | y1:n; θ) for large k should contribute information

toward estimating the parameters θ. However, information about θ may not always accumulate

if there exist few particle paths representing this part of the joint distribution, see Andrieu et al.

(2005) for further discussion.

3 Theoretical properties

Early reviews of the theoretical properties of particle filters can be found in Chapters 2-3 of

Doucet et al. (2001) and Crisan and Doucet (2002) while a full-length treatment is given

by Del Moral (2004). Recent papers on consistency and asymptotic normality for more gen-

eral classes of algorithms are Chopin (2004), Künsch (2005), Douc and Moulines (2008), and

Del Moral et al. (2008). The goal of this section is to discuss some of the main results at an

intuitive level and describe what their implications are for applied researchers.

3.1 Consistency and asymptotic normality

At each iteration, a particle filter produces samples
{
x

(i)
0:n, w

(i)
n

}N
i=1

that can be used to approx-

imate the expectation of a function f with respect to the joint smoothing distribution. The

exact conditions for consistency and asymptotic normality of the estimator depend upon the

particle filter one implements. Proofs in the literature vary accordingly with different types of

regularity conditions favored by different authors. It is not possible to cover all the results in the

literature and the different types of regularity conditions. Instead, the discussion here is limited

to Theorem 1 from Chopin (2004), whose regularity conditions are relatively simple. This the-

orem covers the SISR and APF algorithms under multinomial sampling at each iteration (i.e.
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Algorithms 1, 2, and 3).

Standard IS algorithms require some regularity conditions on the importance weights and

the set of functions f within the integrals for which the estimator will be well-defined; see, e.g.

Geweke (2005, p. 114). These are that the importance weights remain bounded so that the

estimator remains well-behaved. In addition, the function f within the integral must have finite

variance when evaluated under the target distribution. There are similar conditions for particle

filters limiting both the set of functions f that are valid and conditions to ensure that the variance

of the importance weights is finite at each iteration. In a particle filter, the importance weights

are determined recursively through the weight recursion (11). The variability of the importance

weights wn depends on the Monte Carlo variation introduced at the current iteration as well as

any variability that is carried over from previous periods. This is due to the fact that particles

simulated at previous iterations form part of the future joint importance distribution through

the Dirac measure on past paths, see (10).

A particle filter produces several estimators of interest. The results of Chopin (2004) cover

three cases: the estimator of the moments prior to resampling given by (15), the estimator of

the moments after resampling given by (17), and the estimator of the marginal distribution of

the unweighted particles. We consider here only the case of the marginal filtering distribution

p(xn|y1:n; θ) and we denote by Epn the expectation with respect to this distribution. The esti-

mator of the marginal distribution of the unweighted particles xn is generally not of interest but

it is used as an intermediate quantity in the theorem. This marginal can be defined recursively

as

gn(xn) =

∫
gn(xn|xn−1,yn; θ)gn−1(xn−1)dxn−1.

where we omit the fact that this distribution is implicitly a function of the observations and θ.

Let Egn denote the expectation of a function f with respect to this distribution and let Eg0:n be

the expectation with respect to the joint distribution (10).

The initial iteration of a particle filter is a standard importance sampling iteration. There-

fore, the standard importance sampling assumptions apply to the first iteration n = 0. Given

the results in Geweke (1989), these are given by

(i) Ep0 [f(x0)] exists;

(ii) Vp0 [f(x0)] exists;

(iii) The support of the initial importance distribution g0(x0) includes the target p(x0);

(iv) The initial importance weights w0 are bounded.
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Proofs of consistency and asymptotic normality for later iterations of a particle filter follow by

induction. If one starts with a sample that produces a consistent and asymptotically normal

estimator for a function f , then one iteration of the sampling and resampling operations produce

a new sample whose estimator is also consistent and asymptotically normal for any function f

within a class of functions. The basic idea behind the results of Chopin (2004) (and many other

results in the literature) follows by noting that, conditional on the past draws, each new iteration

of the algorithm produces a set of draws that are independent but not identically distributed.

It is then possible to apply a conditional LLN and CLT to each iteration.

Let ‖.‖ denote the Euclidean norm in Rm. Denote by Φ
(m)
n the set of measurable functions

for which the estimator will be consistent and asymptotically normal at iteration n. This set of

functions will be determined recursively. The initial set of functions Ψ
(m)
0 contains those measur-

able functions whose second moments are finite with respect to the initial proposal distribution

(implied by conditions (ii) and (iv) above). At later iterations, the set Φ
(m)
n is constrained by

the following two conditions

(a) For some δ > 0, Egn‖wnf(xn)‖2+δ <∞;

(b) The function Eg0:n(xn−1,.)[wn(.)f(.)] ∈ Φn−1;

Condition (a) implies that the importance weights (for a function f) must have finite moments

of order 2 + δ with respect to gn. Additional assumptions necessary for future iterations are

(v) For all n ≥ 0, the constant function belongs to Φ
(1)
n ;

(vi) For all n ≥ 0, the support of the incremental importance distribution gn (xn|xn−1,yn;ψ)

includes the support of the incremental target p (yn|xn; θ) p (xn|xn−1; θ);

The last assumption is a necessary condition for all IS algorithms.

Given the discussion above, Theorem 1 of Chopin (2004) states that the three estimators

produced by the particle filter are consistent at iteration n for any measurable function f ∈ Φ
(m)
n

meaning that as N → ∞

1

N

N∑

i=1

f(x(i)
n )

a.s.−→ Egn [f(xn)] , (36)

N∑

i=1

ŵ(i)
n f(x(i)

n )
a.s.−→ Epn [f(xn)] , (37)

1

N

N∑

i=1

f(x(i)
n )

a.s.−→ Epn [f(xn)] . (38)

The estimators (37) and (38) differ by the fact that the former is computed before the particles

are resampled while the latter is computed using the particles after the resampling step. The
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two estimators (37) and (38) are asymptotically normal for any measurable function f ∈ Φ
(m)
n

meaning that as N → ∞

√
N

[
N∑

i=1

ŵ(i)
n f(xn) − Epn [f(xn)]

]
d−→ N (0, Vn(f)) , (39)

√
N

[
1

N

N∑

i=1

f(xn) − Epn [f(xn)]

]
d−→ N

(
0, V̂n(f)

)
, (40)

where Vn(f) and V̂n(f) are the respective asymptotic variances. The notation makes explicit

that the asymptotic variances are a function of the function f being integrated.

The asymptotic variances within the CLTs are written recursively as

Ṽn(f) = V̂n−1 {Eg0:n [f(xn)]} + Epn−1 {Varg0:n [f(xn)]} , n > 0, (41)

Vn(f) = Ṽn {wn(f(xn) − Epn [f(xn)])} , n ≥ 0, (42)

V̂n(f) = Vn(f) + Varpn [f(xn)], n ≥ 0. (43)

where the recursions are initialized with Ṽ0(f) = Varg0 [f(x0)]. A particle filter consists of three

basic steps: (i) drawing new particles at each iteration; (ii) weighting the draws with their

importance weights; and (iii) resampling the particles. The asymptotic variance is broken into

three parts and written recursively to demonstrate the impact each of these three steps has on

the variability of the estimator in each period. For example, the difference between Vn(f) and

V̂n(f) in (42) and (43) is the additional variance created by the resampling step. As noted by

Chopin (2004), the resampling step has an additive effect and will always increase the variance

of the current period’s estimator (for any nonconstant function f) by the factor Varpn [f(xn)].

This is why the estimator computed from the particles before resampling is preferred to the

estimator available after resampling.

The expressions for the asymptotic variance will depend on the particle filter one implements,

including what type of resampling. Several authors have evaluated the relative numerical ef-

ficiency of different algorithms by comparing these theoretical expressions; see, e.g. Chopin

(2004) and Künsch (2005). For example, both these authors prove that the asymptotic variance

of the SISR algorithm with residual resampling will be strictly smaller than the SISR filter with

multinomial resampling. Chopin (2004) also verifies the discussion from Section 2.5.7 that Rao-

Blackwellization of a particle filter will always increase its numerical efficiency. In applications

of standard importance sampling, an estimator of the asymptotic variance within the CLT is

often used to measure the ex-post numerical efficiency of the simulation algorithm; these are the

numerical standard errors, see, e.g. Geweke (2005). The asymptotic variance expressions for

particle filters are complicated enough that estimators of the asymptotic variances have not been
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seriously evaluated in the particle filtering literature, although one was proposed by Gilks and

Berzuini (2001). Most practioners simply use the effective sample size (ESS) to measure insta-

bility. Under some simplifying assumptions, Johansen and Doucet (2008) show that it is possible

to write the asymptotic variance expressions explicitly for the SISR and APF algorithms.

For standard importance sampling, the variance of the importance weights grows to infinity

as the time dimension increases. A theoretical result that has important implications for applied

researchers using particle filters is that the asymptotic variance in the CLT can be proven to be

finite and bounded by a constant that is not a function of time. In practice, this means that

a particle filter can be applied to a long stretch of time series (e.g. financial time series) and

the precision of the estimator will not systematically deteriorate as one obtains more observa-

tions.4 In this sense, the particle filter forgets its past errors. We note that these results have

been established for the marginal filtering distribution but generally will not hold for the joint

smoothing distribution (due to the resampling step causing the past particles to coalesce). In

addition, they do not apply for all particle filters. These results generally require additional

regularity conditions such that the transition density p (xn|xn−1; θ) of the state space model as

well as the Markovian transition kernel gn(xn|xn−1,yn; θ) have good mixing properties.5 Bounds

on the asymptotic variance have been obtained by many authors for different types of particle

filtering algorithms and under different metrics, see Del Moral and Guionnet (2001), Le Gland

and Oudjane (2004), Del Moral (2004), Künsch (2005), Chapter 9 of Cappé et al. (2005), and

Douc et al. (2009).

Although the asymptotic variance within the CLT can be proven to be bounded by a finite

constant, this constant is (generally) a function of the dimension of the state vector and will get

larger as the state vector gets larger. In practice, this means that as the state vector’s dimension

grows the only way to keep the same level of efficiency is to increase the number of particles.

Note that this is a problem shared by all Monte Carlo estimators including MCMC, IS, etc, and

is not necessarily a criticism of only particle filters.

4Keep in mind that the estimator may be poor in some time periods when gn(xn|xn−1,yn; θ) is a poor
approximation of p (yn|xn; θ) p (xn|xn−1; θ).

5For example, Theorem 5 of Chopin (2004) states that the asymptotic variance (42) will remain bounded if
there exist constants C, p, p such that for any n ≥ 0

(a) for any x, x′, x′′ ∈ X, the transition density satisfies p(x′|x;θ)
pn(x′′|x;θ)

≤ C;

(b) for any x, x′, x′′ ∈ X, the incremental importance density satisfies gn(x′|x;ψ)
gn(x′′|x;ψ)

≤ C;

(c) for any x ∈ X, y ∈ Y, the observation density satisfies 0 < p ≤ p(y|x; θ) ≤ p;

where X and Y are the state spaces of the Markov chain.
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3.2 Additional references on consistency and asymptotic normality

The first consistency proof of the bootstrap filter was given by Del Moral (1996) with asymptotic

normality established in Del Moral and Guionnet (1999) and Del Moral and Miclo (2000). The

CLT was later extended to include more advanced algorithms in Chopin (2004) and Künsch

(2005). These include the SISR, APF, and resample move algorithms under multinomial and

residual resampling. Künsch (2005) provides a CLT for particle filters based on the accept-

reject algorithm. Del Moral (2004) includes consistency and asymptotic normality results for

the particle filters’ estimator of the likelihood p(yn; θ) of the state space model. Douc and

Moulines (2008) and Del Moral et al. (2008) both prove consistency and asymptotic normality

for algorithms that resample at random times (see Algorithm 4). Douc and Moulines (2008)

consider algorithms that resample at random times via the coefficient of variation (CV) while

Del Moral et al. (2008) covers algorithms that resample according to the effective sample size

(ESS). Douc et al. (2009) is an in-depth analysis of the auxiliary particle filter using the limit

theorems from Douc and Moulines (2008). In the discussion above, we focused on consistency

and asymptotic normality of estimators of the moments. Some of the authors, particularly

Del Moral (2004) and Künsch (2005), investigate empirical process results and the convergence

of the empirical distribution function to the true distribution.

3.3 Properties other than consistency and asymptotic normality

Del Moral (2004) includes more advanced coverage of particle systems including properties other

than consistency and asymptotic normality. These include results on Berry-Esseen theorems

for the CLT, empirical process theory, large deviations, and propogation of chaos properties.

Del Moral and Doucet (2009) provides a recent review of theoretical properties using Feynman-

Kac path integral theory as a unifying framework. There also exists a literature on forgetting

of the initial condition and initial distribution, see Douc et al. (2009) with additional references

therein. This is relevant when the initial condition is miss-specified and we would like to know

how this miss-specification affects the performance of the algorithm. Finally, this survey does

not cover contributions in the applied probability theory literature that analyze optimal filtering

algorithms for continuous-time models; see, e.g. Bain and Crisan (2008) and Xiong (2008).

4 Recent developments in Sequential Monte Carlo

This section covers two more recent developments that extend SMC outside the context of

traditional particle filtering. In the first extension, researchers working in Monte Carlo methods

recognized that SMC could be used to simulate from sequences of distributions other than the
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filtering distributions defined by a state space model. These methods are particularly applicable

to Bayesian inference problems because they provide an alternative to MCMC for simulating

from complex distributions. They can also be applied to models for cross-sectional data. Sections

4.1-4.2 review this research. The second extension of standard particle filtering uses the particle

filter to provide a proposal distribution for draws within MCMC algorithms. This type of

algorithm is currently being used in the macroeconomics literature on Bayesian estimation of

DSGE models. Section 4.3 covers this material.

4.1 SMC samplers

Recognizing that the particles form a collection of interacting Markov chains on a sequence of

general state spaces is the key to building other types of SMC algorithms. Leading references

in this field include Gilks and Berzuini (2001), Chopin (2002), Liang (2002), and Cappé et al.

(2004). Del Moral, Doucet, and Jasra (2006b, 2006) built a framework titled SMC samplers

that encompasses a number of the algorithms in the literature

Research in this area of Monte Carlo methods is on-going. There are several key themes

in this research: (i) an emphasis on building adaptive Monte Carlo algorithms that learn from

their previous draws; (ii) understanding the practical circumstances where allowing the Markov

chains to interact is beneficial relative to MCMC; (iii) developing the necessary limit theory to

justify the methods in practice.

Consider a setting where a researcher would like to sample from a sequence of probability

distributions, {pn(xn)}Jn=1. The iteration number n in the sequence is a counter that may or

may not represent calendar time. The number of observations in the researcher’s sample (not

necessarily a time series) is denoted by T while J is the number of distributions in the sequence.

The random variable or particle xn is no longer restricted to denote a state variable in a state

space model as in Section 2. It is simply a quantity of interest with its interpretation depending

upon the application. Some examples are

(i) Filtering in state space models: the sequence of target distributions are equal to the marginal

filtering distributions with pn (xn) = p (xn|y1:nθ). A particle is equal to the state variable

at time n.

(ii) Sequential Bayesian estimation: consider a Bayesian model resulting in a posterior distri-

bution p (θ|y1:n) where θ denotes a (k × 1) vector of unknown parameters. The sequence

of target distributions are equal to the posterior distribution given the number of obser-

vations pn (xn) = p (θ|y1:n). A particle is equal to the vector of parameters xn = θ for all

n = 1, . . . , J .
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In the former problem, the sequence of distributions is naturally defined by the problem. The

second example demonstrates that the researcher can artificially define the sequence of distri-

butions.

Each density in the sequence is defined as

pn (xn) =
γn (xn)

Zn
, (44)

where γn (xn) is the unnormalized density which can be calculated for any realization of xn.

The normalizing constant Zn in the denominator of (44) typically includes integrals that cannot

be solved analytically.

An SMC sampler begins by drawing N particles
{
x

(i)
1

}N
i=1

from an initial importance density

g1 (x1) and reweighting the particles using standard importance weights. Importance weights at

the first iteration are

w1 =
γ1 (x1)

g1 (x1)
, (45)

which can be computed explicitly because the user knows the initial importance density g1 (x1).

Beginning at the second iteration and continuing forward, each particle is sampled from a forward

nonhomogenous Markov transition kernel x
(i)
n ∼ Kn

(
x

(i)
n−1, .

)
. This Markov kernel is simply a

generalization of the Markovian importance distribution gn (xn | xn−1,yn;ψ) within a standard

particle filter from Section 2. The marginal distribution of the unweighted particles after drawing

from the transition kernel Kn is

gn(xn) =

∫
gn−1(dxn−1)Kn(xn−1,xn). (46)

The importance weights at the n−th iteration are the ratio of the target density to the impor-

tance density and are given by

wn =
γn (xn)

gn (xn)
. (47)

Unfortunately, the integral in (46) cannot usually be solved analytically for an arbitrary choice of

the transition kernel Kn. This makes it impossible to directly calculate the importance weights.

Del Moral et al. (2006b) solve the problem of having to evaluate the unknown importance

density gn (xn) to compute importance weights beyond the first iteration by introducing new

artificial target densities p1:n (x1:n). The sequence of artificial targets {p1:n (x1:n)}Jn=1 are the

joint distributions associated with the sequence of random variables x1, . . . ,xn.
6 The artificial

joint densities in an SMC sampler are not of interest in themselves but their introduction allows

the importance weights to be computed. An artificial target must be defined up to a normalizing

6In a standard particle filter from Section 2, the joint smoothing densities are analagous to the artificial joint
densities described here.
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constant

p1:n (x1:n) =
γ1:n (x1:n)

Zn
, (48)

where the new target is intentionally designed to admit pn (xn) as a marginal density. The

expanded target is similar to the earlier presentation of the particle filter which operated on the

joint smoothing distributions to approximate the marginal filtering distributions. By sampling

in a larger space, estimates of the marginal using the particles’ locations and importance weights

can be computed as a by-product.

Del Moral et al. (2006b) provide a framework for choosing both the artificial target densities

p1:n (x1:n) as well as the forward Markov kernels. As in Jarzynski (1997) and Neal (2001),

they suggest defining the artificial targets as a sequence of artificial backward Markov kernels

Ln (xn+1,xn) which can be written as

γ1:n (x1:n) = γn (xn)
n−1∏

k=1

Lk (xk+1,xk) . (49)

Given particles
{
w

(i)
n−1,x

(i)
1:n−1

}N
i=1

that approximate the artificial target γ1:n−1 (x1:n−1), the next

artificial target γ1:n (x1:n) can be approximated by sampling from the forward Markov kernel.

The (unweighted) particles’ joint distribution after n transitions is

g1:n (x1:n) = g1 (x1)
n∏

j=2

Kj (xj−1,xj) . (50)

Reweighting the particles using the importance weights changes their distribution from g1:n (x1:n)

to p1:n (x1:n).

The unnormalized importance weights wn for the joint distribution are defined as the ratio of

the (unnormalized) joint target density (49) to the joint importance density (50) and are given

by

wn =
γ1:n (x1:n)

g1:n (x1:n)
. (51)

These can be written recursively such that at each iteration one only calculates the incremental

importance weights w̃n given by

wn = wn−1w̃n w̃n =
γn (xn)Ln−1 (xn,xn−1)

γn−1 (xn−1)Kn (xn−1,xn)
. (52)

Notice the similarities between this recursion and (11). After normalizing the importance

weights, an estimator of the moments is

E [f(xn)] ≈
N∑

i=1

f
(
x(i)
n

)
ŵ(i)
n , ŵ(i)

n =
w

(i)
n

∑N
j=1w

(j)
n

. (53)
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Algorithm 5 Sequential Monte Carlo sampler

At n = 1, for i = 1, . . . , N

Draw x
(i)
1 ∼ g1(x1) and set w

(i)
1 =

p(x
(i)
1 )

g1(x
(i)
1 )

.

For n = 2, . . . , J :

(i) For i = 1, . . . , N draw x
(i)
n ∼ Kn

(
x

(i)
n−1, .

)
.

and compute the importance weights: w
(i)
n ∝ w

(i)
n−1w̃

(i)
n .

(ii) For i = 1, . . . , N normalize the importance weights: ŵ
(i)
n = w

(i)
n∑N

j=1 w
(j)
n

.

(iii) Calculate the effective sample size (ESS).

(iv) If ESS ≤ threshold, resample N particles with probabilities
{
ŵ

(i)
n

}N
i=1

and

for i = 1, . . . , N set w
(i)
n = 1

N
else, if ESS > threshold, set w

(i)
n = ŵ

(i)
n .

Estimates of a marginal target distribution can be calculated as

pn(xn) ≈
N∑

i=1

ŵ(i)
n δ

x
(i)
n

(xn) .

and estimates of the ratio of normalizing constants can be computed as

Ẑn
Zn−1

=
N∑

i=1

w
(i)
n−1w̃

(i)
n (54)

If the user chooses an initial distribution where the normalizing constant Z1 can be calculated,

then they obtain an estimate of the normalizing constant for any distribution in the sequence

including the final iteration ẐJ . For example, this could be the marginal likelihood in a Bayesian

context or the likelihood of a general state space model.

Like the standard particle filter described previously, it is usually not optimal to resample

the particles at each iteration of an SMC sampler. Particles should only be resampled when the

variance of the importance weights grows and becomes unstable. This can be measured by any

of the criterion described in Section 2.6. A standard SMC sampler is given by Algorithm 5.

Although an SMC sampler is simply a particle filter in a more general context, it requires

more input and experience from the user. In a standard particle filter, the sequence of target

densities (and implicitly the backwards kernels) are already defined for the user by their state

space model. This leaves only the choice of the forward Markov kernel (i.e. the importance

distribution gn (xn | xn−1,yn;ψ)) which is relatively easy to select. Conversely in an SMC

sampler, the user will have to define the sequence of target densities and choose the forward

and backward Markov kernels. Different choices for the forward and backward Markov kernels

also determine how challenging it is to compute the incremental weight (52). Del Moral et al.

(2006b) provide suggestions to users for choosing each of these quantities in practice. Although

these authors consider many options, the easiest algorithms to implement for practitioners with
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experience using MCMC will be to choose Kn (xn−1,xn) to be a Gibbs or Metropolis-Hastings

kernel. Del Moral et al. (2006a, 2006b) give the equations to calculate the incremental weights

(52) when using these kernels, see their paper for details. Many of these only involve evaluating

the unnormalized target density (44) as in a standard MCMC algorithm.

4.2 Additional references and comments

A number of algorithms in the Monte Carlo methods literature are special cases of an SMC

sampler for specific choices of the sequence of target distributions and forward and backward

Markov transition kernels. These include the resample move particle filtering algorithm of Gilks

and Berzuini (2001), which has been applied either explicitly or implicitly by a number of authors

including Chopin (2002), Chopin and Pelgrin (2004), and Carvalho et al. (2008). Chopin (2002)

introduced the concept of applying SMC for static parameter estimation in models without latent

state variables; his applications also included cross-sectional data. Chopin and Pelgrin (2004)

and Chopin (2007) estimate discrete-state HMM models with the unique ability to estimate the

number of states in the HMM as the data-set gets processed. Carvalho et al. (2008) focus on

learning the parameters sequentially in time using the sufficient statistics structure proposed by

Storvik (2002) as described in Section 2.8.4.

Another special case of an SMC sampler are the Population Monte Carlo (PMC) algorithms

developed in a series of papers by Cappé et al. (2004), Celeux et al. (2006), Douc et al. (2007a),

Douc et al. (2007b). In most of these papers, the sequence of target distributions are equal

at each iteration. The purpose of introducing iterations into the Monte Carlo algorithm is to

try and adapt the proposal distribution (i.e. the forward Markov kernel Kn (xn−1,xn)) over

iterations by using the information in the previously simulated draws.

Additional applications of SMC samplers include Johansen et al. (2006), who consider

applications to rare event simulation. Jasra et al. (2008) use adaptive SMC samplers to estimate

Lévy-driven SV models. Jasra et al. (2008) extended SMC samplers one step further by allowing

the particles to be defined on different state spaces at different iterations of the algorithm.

The theoretical analysis of adaptive SMC algorithms is a current area of research. Del Moral

et al. (2006b) provide a LLN and a CLT for their SMC sampler under some simplying assump-

tions. For the PMC algorithm, Douc et al. (2007a) consider the conditions under which adapting

the conditional importance distribution using the past particles will and will not improve the

algorithm.
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4.3 Using SMC algorithms as proposal distributions within MCMC algo-

rithms

The discussion in Sections 4.1-4.2 assumed that SMC algorithms are used as an alternative

to MCMC. Another possibility is to use an SMC algorithm as a proposal distribution within

a MCMC algorithm. This computational method has been used within the macroeconomics

literature for the Bayesian analysis of second-order approximations to DSGE models; see, e.g.

Fernández-Villaverde and Rubio-Ramı́rez (2007) and An and Schorfheide (2007). In these pa-

pers, a particle filter is used to approximate the likelihood function of the nonlinear DSGE

model. The log-likelihood approximation is then used within a standard random-walk Metropo-

lis algorithm.

Recently, Andrieu et al. (2010) have given a formal proof for the convergence of the al-

gorithm. These authors prove that as long as the estimate of the likelihood function is unbi-

ased then the estimation error produced by the approximation does not change the equilibrium

distribution of the Markov chain being simulated. These authors label their algorithms Parti-

cle Markov chain Monte Carlo (PMCMC). Andrieu et al. (2010) call the PMCMC algorithm

currently being used in the macroeconomics literature a particle marginal Metropolis-Hastings

sampler. In addition to providing convergence results for this algorithm, they also establish the

results for a particle Gibbs sampler and a particle independent Metropolis-Hastings algorithm.

They note that the particle Gibbs sampler should not be treated like a standard Gibbs sampler.

Additional care needs to be used when implementing an MCMC algorithm that uses a particle

filter within it and has steps other than random-walk Metropolis. Flury and Shephard (2008)

apply the methodology to several simple economic models to demonstrate its applicability.

For practictioners, it is important to use a resampling algorithm that is known to be unbiased

(e.g. multinomial, residual, or stratified resampling). This is one of the assumptions needed to

apply the convergence results established by Andrieu et al. (2010). In addition, the performance

of the PMCMC algorithm will depend on the quality of the approximation of the normalizing

constant (i.e. the log-likelihood). If the variance of the approximation is high, the performance

may deteriorate. Finally, it is possible to use the more advanced SMC algorithms such as an

SMC sampler from Section 4.1 within the PMCMC algorithm.

5 Summary

This paper surveyed SMC methods that are applicable for economics and finance. From either

a frequentist or Bayesian perspective, particle filters enable researchers to perform prediction

and filtering in nonlinear, non-Gaussian state space models. Particle filters and other SMC
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methods may play a larger role in risk management, option pricing, and high-frequency financial

econometrics. Following recent trends in macroeconomics, particle filters are appearing more

frequently to estimate structural models. Applied econometricians can use the particle filter

in testing situations; i.e. to compute marginal likelihoods, likelihood-ratio statistics, or Ljung-

Box statistics. Maximum likelihood estimation of nonlinear, non-Gaussian state space models

using particle filters still remains an open research area. No single method has demonstrated

an overwhelming computational or theoretical advantage for a reasonably large class of models.

Work remains to be done on the statistical properties of the estimators as well.

SMC methods are likely to have a continued impact on Bayesian inference. SMC opens

many new research avenues for estimating challenging models. These include trans-dimensional

models, models that result in multimodal posteriors, and models with potentially a large number

of parameters. The emphasis in this literature is currently on developing adaptive Monte Carlo

algorithms that learn from previous draws. Understanding how the algorithms should be built

in practice to make adaption work and its comparison with MCMC is part of this research. The

limit theorems needed to justify their use is another. A second theme is the introduction of

particle filters as proposal distributions within MCMC algorithms.

Acknowledgements

I would like to thank Charles Bos, Siem Jan Koopman, Michael Massmann, Herman van Dijk,

Eric Zivot, participants at the Emerging Methods in Bayesian Econometrics Workshop at Eras-

mus Universiteit Rotterdam, and two anonymous referees for constructive comments. I would

also like to acknowledge financial support from the Grover and Creta Ensley Fellowship, which

funded part of this research while I was a graduate student at the University of Washington. All

the computations reported in this paper were carried out using the OxMetrix 6.0 programming

environment of Doornik (2009). Ox and some Matlab code are available upon request from the

author.

References

Akashi, H. and H. Kumamoto (1977). Random sampling approach to state estimation in

switching environment. Automatica 13, 429–434.

Alspach, D. L. and H. W. Sorenson (1972). Nonlinear Bayesian estimation using Gaussian

sum approximations. IEEE Transactions on Automatic Control 17 (4), 439–448.

Amisano, G. and O. Tristani (2009). Euro area inflation persistence in an estimated nonlinear

44



DSGE model. Journal of Economic Dynamics and Control (forthcoming).

An, S. and F. Schorfheide (2007). Bayesian analysis of DSGE models. Econometric Re-

views 26 (2-4), 113–172.

Anderson, B. D. O. and J. B. Moore (1979). Optimal Filtering. New Jersey: Prentice-Hall.

Andrieu, C., M. Davy, and A. Doucet (2003). Efficient particle filtering for jump Markov

systems. Application to time-varying autoregressions. IEEE Transactions on Signal Pro-

cessing 51 (7), 1762–1770.

Andrieu, C., J. F. G. De Freitas, and A. Doucet (1999). Sequential Markov chain Monte Carlo

for Bayesian model selection. Proc. Wrkshp Higher Order Statistics, 130–134.

Andrieu, C. and A. Doucet (2002). Particle filtering for partially observed Gaussian state

space models. Journal of the Royal Statistical Society, Series B 64 (4), 827–836.

Andrieu, C., A. Doucet, and R. Holenstein (2010). Particle Markov chain Monte Carlo meth-

ods (with discussion). Journal of the Royal Statistical Society, Series B 72 (2), 1–33.

Andrieu, C., A. Doucet, S. S. Singh, and V. B. Tadić (2004). Particle methods for change
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