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ABSTRACT
Sequential Monte Carlo methods, aka particle methods, are an ef-
ficient class of simulation techniques to approximate sequences of
complex probability distributions. These probability distributions
are approximated by a large number of random samples called par-
ticles which are propagated over time using a combination of im-
portance sampling and resampling steps. The efficiency of these
algorithms is highly dependent on the importance distribution used.
Even if the optimal importance distribution is chosen, the algorithm
can be inefficient. Indeed, current standard sampling strategies ex-
tend the paths of particles over one time step and weight them con-
sistently but do not modify the locations of the past of the paths.
Consequently, if the discrepancy between two successive probabil-
ity distributions is high, then this strategy can be highly inefficient.
In this paper, we propose an extended importance sampling tech-
nique that allows us to modify the past of the paths and weight
them consistently without having to perform any local Monte Carlo
integration. This approach reduces the depletion of samples. An
application to an optimal filtering problem for a toy nonlinear state
space model illustrates this methodology.

1. INTRODUCTION

For the past decade, sequential Monte Carlo (SMC) methods have
been considered for many applications in engineering and statistics
[4]. In particular, they are now used extensively to solve optimal
filtering problems for nonlinear non Gaussian state-space models
arising in telecommunications [9, 10] and robotics for instance [4].
These methods approximate the sequence of probability distribu-
tions of interest using a large set of random samples, named parti-
cles, using simple sampling and resampling mechanisms. No linear-
ity or gaussianity assumption is required. Asymptotically, i.e. as the
number of particles goes to infinity, convergence of the particle ap-
proximations towards the sequence of probability distributions can
be ensured [3]. However, for practical implementations, a finite and
sometimes quite restricted number of particles has to be consid-
ered. In these cases, it is crucial to design an efficient importance
sampling distribution. The optimal importance distribution for an
adequate criterion has been established [5] and various approxima-
tions to this distribution have been proposed in the literature [5, 8].
Alternative look-ahead techniques have been proposed to improve
the sampling schemes [8, 2, 11]: they attempt to boost the number of
particles which will become significant in the next simulation steps.
Nevertheless, this class of techniques does not introduce diversity in
the set of particles and just re-weight them in a consistent way. We
propose here a special importance sampling technique which allows
us to re-impute the path of a particle on a fixed-lag without having
to performed explicitly a Monte Carlo integration. This method is a
natural extension of standard schemes and applies straightforwardly
everywhere SMC are currently used.
The paper is organized as follows. In section §2, standard SMC
methods are reviewed and we outline their limits. The fixed-lag
SMC method is presented in section §3. Some numerical experi-
ments to illustrate this approach are provided in section §4. Finally,
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we conclude in section §5.

2. SEQUENTIAL MONTE CARLO

Let {πn(x1:n)}n≥1 denote a sequence of probability density func-
tions indexed by the discrete-time index n, and zi: j = (zi, . . . ,z j) and
Zi: j = (Zi, . . . ,Z j) for any deterministic zn/random Zn sequences.
Without loss of generality, we assume that πn is defined on En. We
are interested in obtaining N (N � 1) weighted random samples{

W (i)
n ,X (i)

1:n

}
(W (i)

n ≥ 0, ∑N
i=1 W (i)

n = 1) such that for any test func-
tion ϕn : En→ R

N

∑
i=1

W (i)
n ϕn

(
X (i)

1:n

)
N→∞→

∫
ϕn (x1:n)πn(x1:n)dx1:n.

Note that a particle X (i)
1:n represents a path from time 1 to n. A stan-

dard algorithm satisfying this requirement is the Sequential Impor-
tance Sampling Resampling (SISR) scheme described in [4]. Given{

W (i)
n−1,X

(i)
1:n−1

}
approximating πn−1 at time n− 1, the SISR per-

forms as follows at time n:
1. Sample

{
X (i)

n

}
using a proposal distribution qn(·|·)

X (i)
n ∼ qn(·|X (i)

1:n−1) (1)

2. Update and normalize the weights

W (i)
n ∝ W (i)

n−1
πn(X (i)

1:n)

πn−1(X (i)
1:n−1)qn(X (i)

n |X (i)
1:n−1)

︸ ︷︷ ︸
incremental weight

. (2)

3. If the degeneracy of weights is high, resample
{

X (i)
1:n

}
according

to
{

W (i)
n

}
to obtain N unweighted particles (i.e. weights of

resampled particles W (i)
n ← N−1).

This last rejuvenation step is required to counteract the degener-
acy problem of the set of samples: variance of weights naturally
increase with time, so that after a small number of iterations, all
the particles except one might be assigned a non-zero weight. On
the contrary to steps 1 and 2, which can be performed in paral-
lel, resampling step 3 makes the particles interacting, and is thus
generally the most computational expensive part for the sampling
scheme. The complexity of SISR algorithms is proportional to the
number of particles N.
It is easy to check that the proposal distribution minimizing at time n
the variance of the incremental weight conditional upon

{
X (i)

1:n−1

}

is given by qopt
n (xn|x1:n−1) = πn (xn|x1:n−1). In this case the as-

sociated incremental weight is given by πn (x1:n−1)/πn−1 (x1:n−1).
However, in many interesting cases, it is typically difficult to sam-
ple from πn (xn|x1:n−1) and impossible to compute in closed-form
wn (x1:n−1) = πn (x1:n−1)/πn−1 (x1:n−1)1. Several approaches have

1For most models, wn (x1:n−1) actually only depends on xn−1.
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been proposed to approximate πn (xn|x1:n−1) and wn (x1:n−1) in the
optimal filtering context [8, 5].
We would like to emphasize at this point that, even if the optimal
importance distribution can be used, this does not guarantee that the
algorithm is efficient. Indeed if the discrepancy between πn (x1:n−1)
and πn−1 (x1:n−1) is high, then the variance of wn (x1:n−1) will be
high and the algorithm will suffer from a severe depletion of sam-
ples. An obvious way to improve the algorithm would consist at
time n of not only imputing

{
X (i)

n

}
but also re-imputing the vari-

ables
{

X (i)
n−L+1:n−1

}
in light of πn. This is the approach developed

in this paper.
Remark. In the optimal filtering framework, an hidden Markov pro-
cess {Xn}n≥1 of initial pdf X1∼ µ and transition density Xn|Xn−1∼
f (•|Xn−1) is considered and the observations {Yn}n≥1 are condi-
tionally independent of marginal density Yn|Xn ∼ g(•|Xn) . In this
case, πn (x1:n) is given by the joint posterior density of the states
X1:n given a realization of the observations Y1:n = y1:n

πn (x1:n) = p( x1:n|y1:n) ∝ µ (x1)g( y1|x1)
n

∏
k=2

f ( xk|xk−1)g( yk|xk) .

For this case, it is trivial to establish that πn(xn|x1:n−1) =
p( xn|yn,xn−1) and wn (x1:n−1) = p( yn|xn−1) .

3. FIXED-LAG SEQUENTIAL MONTE CARLO

Assume at time n − 1 that a set of weighted particles{
W (i)

n−1,X
(i)
1:n−1

}
approximates πn−1. In the standard approaches,

the current paths
{

X (i)
1:n−1

}
are extended by sampling

{
X (i)

n

}
ac-

cording to qn(·|·) and reweighted. In the fixed-lag framework, we
propose to sample not only the variables at time n but also to mod-
ify the previous values from time n− L + 1 to n− 1 where L > 1
is a fixed integer. Consequently, the sampling step 1 of the SISR
algorithm is modified and consists now of sampling

X ′(i)
n−L+1:n ∼ qn(·|X (i)

1:n−1).

The problem with this approach is that the marginal density of the
new paths

{
X (i)

1:n−L,X
′(i)
n−L+1:n

}
is given by

qn
(
x1:n−L,x′n−L+1:n

)
=

∫
πn−1(x1:n−1)qn(x′n−L+1:n|x1:n−1)dxn−L+1:n−1 (3)

and typically does not admit a closed-form expression. An excep-
tion consists of the finite state-space case where the integral be-
comes a finite sum. However, in this case, the computational com-
plexity typically increases exponentially with L; this method has
been proposed by [7]. To avoid having to compute (3), we consider
the density of the paths

{
X (i)

1:n−1,X
′(i)
n−L+1:n

}
given by

πn−1(x1:n−1)qn(x′n−L+1:n|x1:n−1). (4)

We now propose to perform importance sampling on this joint
space, in order to avoid to integrate explicitly the set of variables
xn−L+1:n−1. For this task, it is necessary to define an appropriate
target density on the same space. Clearly if one sets the target den-
sity as

πn(x1:n−L,x′n−L+1:n)λn(xn−L+1:n−1|x1:n−1,x′n−L+1:n)

where λn ( ·| ·) is any arbitrary conditional density on EL−1 then the
incremental weight defined by

πn(x1:n−L,x′n−L+1:n)λn(xn−L+1:n−1|x1:n−1,x′n−L+1:n)

πn−1(x1:n−1)qn
(
x′n−L+1:n|x1:n−1

) (5)

leads to a consistent Monte Carlo scheme. The fixed-lag SISR algo-
rithm proceeds now as follows

1. Sample
{

X ′(i)
n−L+1:n

}
using a proposal distribution qn(·|·)

X ′(i)
n−L+1:n ∼ qn(·|X (i)

1:n−1).

2. Update and normalize the weights with incremental weight

πn(X (i)
1:n−L,X

′(i)
n−L+1:n)λn(X (i)

n−L+1:n−1|X
(i)
1:n−1,X

′(i)
n−L+1:n)

πn−1(X (i)
1:n−1)qn

(
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n−L+1:n|X
(i)
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) .

3. If the degeneracy of weights is high, resample{
X (i)

1:n−L,X
′(i)
n−L+1:n

}
according to

{
W (i)

n

}
to obtain N un-

weighted particles
{

X (i)
1:n

}
(i.e. weights of resampled particles

W (i)
n ← N−1).

It is also possible to develop a fixed-lag version of the auxiliary par-
ticle method [6]. The choice of the densities qn ( ·| ·) and λn ( ·| ·)
is crucial for the method to be efficient. The details are omitted
here, see [6], but it can be shown that the optimal fixed-lag den-
sities qn ( ·| ·) and λn ( ·| ·) minimizing the variance of incremental

importance weights (5) conditional upon
{

X (i)
1:n−1

}
are given by

qopt
n
(

x′n−L+1:n
∣∣x1:n−L

)
= πn

(
x′n−L+1:n

∣∣x1:n−L
)

and

λ opt
n (xn−L+1:n−1|x1:n−1,x′n−L+1:n) = πn−1( xn−L:+1:n−1|x1:n−L)

which yield the associated optimal importance weight
wn (x1:n−L) = πn (x1:n−L)/πn−1 (x1:n−L). In most cases, one cannot
sample from πn ( xn−L+1:n|x1:n−L) and it is impossible to compute
λ opt

n and wn (x1:n−L) in closed-form. However, the framework we
propose allows us to use approximations π̂n ( xn−L+1:n|x1:n−L)
and π̂n−1( xn−L:+1:n−1|x1:n−L) and consequently approximations
π̂n (x1:n−L) and π̂n−1 (x1:n−L) of πn (x1:n−L) and πn−1 (x1:n−L).
Remark. The optimal filtering framework yields
πn (x1:n) = p( x1:n|y1:n) , πn ( xn−L+1:n|x1:n−L) =
p( xn−L+1:n|yn−L+1:n,x1:n−L) and wn (x1:n−L) =
p( yn|yn−L+1:n,xn−L). Clearly the incremental weight associ-
ated to the optimal or approximately optimal fixed-lag importance
distribution is expected to have a lower variance than when L = 1.
Remark. We do not claim that this method will outperform standard
SMC. It entirely depends on the context and on the ability of the
user to design good approximations of the optimal importance
sampling distribution. In the next section, we consider a nonlinear
state space model. Standard (L = 1) and fixed-lag (L> 1) sampling
schemes are presented. To build such an approximation, we use
the Extended Kalman filter and the forward filtering-backward
sampling decomposition; see [1] for instance.

4. NUMERICAL EXPERIMENTS

To illustrate the fixed-lag approach we are proposing, the following
state-space model is considered

Xn = α(Xn−1 + βX3
n−1) +Un (6)

Yn = Xn +Vn (7)

where Un ∼ N (0,σ2
u ) and Vn ∼ N (0,σ2

v ) stand respectively for
the process and measurement noises. Parameters are set to α=0.9,
β=0.2, σu=0.1 and σv=0.05. Sequences (6) and (7) of 200 samples
are considered. We are interested in estimating the mean E{Xn|y1:n}
of the marginal posterior distribution p(xn|y1:n). The estimates
computed from Monte Carlo approximations are the empirical av-
erages X̂n = ∑N

i=1 W (i)
n X (i)

n for different sampling schemes:
• the bootstrap filter [4]
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• SISR with predictive distribution approximated by Kalman fil-
ters, denoted as SISR-KF and SISR-EKF
• SISR for sampling a block of variables with L-step ahead pre-

dictive distributions approximated by Kalman filters, denoted as
BSISR-KF and BSISR-EKF

Simulations were run for 100 realizations. Firstly, we considered
sample sets of N = 100 particles. To assess the approximation of the
target distribution, the effective sample size (ESS), approximated as
(∑N

i=1[W (i)
n ]2)−1 [4], is computed and used to perform resampling

step 3 each time ESS≤ N
2 . The averaged percentage of resampling

steps (RS) for simulation runs is also recorded as well as the com-
puting time (CPU) for processing the data. The block sampling
schemes improve the estimation and the approximation of the target
distribution as seen on table 1 for the model considered (6) (7).

algorithm MSE ESS RS CPU
Bootstrap 0.0021 36.8 70.3 % 0.68
SISR-KF 0.0019 64.7 19.3% 0.44

SISR-EKF 0.0019 65.8 19.2% 0.48
BSISR-KF 0.0018 72.3 0.9% 0.21

BSISR-EKF 0.0018 73.5 0.8% 0.24

Table 1: Simulation results for state space model (6) (7), N = 100
particles, 100 runs of particle filters for a single and for a block of
L = 2 variables.

The Kalman and extended Kalman filter proposals give similar re-
sults for the sampling of single and for a block of variables. Also,
these filters implemented to compute the posterior mean give a
slightly higher mean squared error, equal to 0.0034 in this case. As
the distribution of interest p(xn|y1:n) is not Gaussian, Monte Carlo
approximations usually give better estimates than the means com-
puted from Kalman filters.
For the model considered here, the choice of the sampling scheme is
crucial to propagate efficiently the particles in the sampling space.
This is demonstrated by different values for averaged ESS in ta-
ble 1. To focus more on the degeneracy involved by the sampling
schemes, instantaneous ESS indexed by time is depicted in figure 1.
Higher values and low decreasing rates for the ESS show that the
degeneracy of the sampling scheme can be efficiently dealt within a
block sampling approach for this model. This results in less fre-
quent resampling steps, as shown by the RS column in table 1.
Consequently, the computational time required by this algorithm
is reduced. This is illustrated with the CPU measured quantities for
different sampling schemes, given in table 1. As recalled in section
§2, the main contribution of the computing time for SISR algorithm
comes from the resampling step 3, and is globally proportional to
the number of particles N. This quantity is displayed as a function
of N and for the different sampling schemes on figure 2. For model
(6) (7), the computational time is significantly reduced when con-
sidering a block approach in comparison with sampling schemes
with one variable, for a given number of particles.
Performance of block sampling schemes is now considered for dif-
ferent lags L. The mean squared error is stable for different configu-
rations and averaged estimates of effective sample size are depicted
in table 2 for different number of particles N. Proposals of Kalman
and extended Kalman filters lead to very similar results, and thus are
not distinguished in table 2, but considering a block size L from 3
to 5 samples gives the best propagation of particles in the sampling
space. Sampling blocks of larger sizes is not necessarily efficient;
the computational complexity increases and the approximation of
the optimal importance distribution deteriorates.
The proportion of resampling steps (RS), also recorded for the var-
ious configurations, does not vary significantly with parameter N.
It is more sensitive to the block size L and thus has an incidence
on the computational time. Figure 3 depicts the computing time as
a function of the number of particles for block sampling schemes
with different lags. As expected, considering blocks of larger lag
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Figure 1: Approximated Effective Sample Size vs. time index for
a realization of the Bootstrap filter (dotted), the SISR with Kalman
filter proposal for a single variable (dashdotted) and for a block of
L=2 variables (straight), N = 100 particles.

block size L N=100 N=500 N=1000 RS
2 74 370 715 0.9%
3 96 493 985 0.9%
4 99 496 989 1%
5 98 494 988 1%
10 97 486 972 2.5%

Table 2: Approximated Effective Sample Size for state space model
(6) (7), averaged over 100 runs of particle filters for blocks of L
variables, considering N particles.

increases the computational time. A trade-off has thus to be made
by the user with respect to estimation task and the quality of the
Monte Carlo approximation, tackled by measuring mean squared
error and effective sample size, and the computational power avail-
able: the number of particles, the choice of the size for blocks. It
should finally be recalled that processing variables by block for the
model (6) (7) considered here makes it possible to propagate the
particles more efficiently than by considering a single variable, and
thus it minimizes computational time for the simulation.

5. CONCLUSION

We have proposed an original methodology to impute blocks of
variables within a Sequential Monte Carlo framework. Previous
techniques proposed in the literature were relying on look-ahead
approaches requiring expensive calculations. The method presented
here is a cheaper and natural extension of standard SMC algorithms
and can be used wherever these algorithms apply.
However, as in the standard case, one can only expect the algorithm
developed to be efficient if it is possible to design some sensible
approximation of the (fixed-lag) optimal importance distribution.
Given the higher computational cost of fixed-lag importance sam-
pling schemes compared to standard ones, it is difficult to assess
beforehand whether it is beneficial for a specific application. Nev-
ertheless, the example presented in the previous section shows that
it can significantly reduce the number of resampling steps and over-
all being more computationally efficient. Generally speaking, our
guidelines are that we will observe significant gains when the dis-
crepancy between two successive target distributions is high. In
the optimal filtering framework, this situation occurs when one re-
ceives for example a very informative observation; this is demon-
strated by the numerical simulation in the previous section. This
suggests that the fixed-lag sampling approach could also only be
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Figure 2: Computational time vs. number of particles N for the
Bootstrap filter (dotted), the SISR with Kalman filter proposal for
a single variable (KF: dashed, EKF: dashdotted) and for a block of
L=2 variables (straight), 100 realizations.
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Figure 3: Computational time vs. number of particles N for the
block sampling scheme with different lags from L=2 (bottom), 3, 4,
5, 10 (top), 100 realizations.

used in cases where one observes a significant drop of the effective
sample size using standard techniques. Applications of this method-
ology for various navigation and tracking applications are currently
under study.
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