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Abstract— The problem of estimating the probability that
a system reaches a given set within some time horizon is
considered. Standard Monte Carlo methods for reachability
probability estimation do not require specific assumptions on
the system under consideration. However, they are computa-
tionally demanding when the probability to be estimated is
small. An Interacting Particle System (IPS) approach has been
developed for the estimation of small reachability probabilities
for diffusion processes. IPS has then been extended so as to
estimate small reachability probabilities for a certain family
of stochastic hybrid processes, namely switching diffusions.
This contribution further improves the hybrid IPS method
by adopting an importance sampling approach that uses the
interaction equations characterizing stochastic hybrid systems.

I. INTRODUCTION

In this paper we consider the problem of estimating the
probability that a system reaches a given set within some
time horizon. This type of problem is of great interest for
the safe design of complex safety-critical operations, such
as in nuclear and chemical industries, and advanced air
traffic management. The advantage of Monte Carlo (MC)
methods for reachability probability estimation is that they
do not require specific assumptions on the system under
consideration. However, obtaining accurate estimates of rare
event probabilities, say about 10−9, requires to run about
1011 simulations, which is very time consuming.

The IPS approach developed in [1], [2] forms a sequential
MC algorithm for estimating small reachability probabilities
of strong Markov processes. The key idea behind the IPS
approach is to express the small probability to be estimated as
the product of a certain number of larger probabilities, which
can be efficiently estimated by the Monte Carlo approach.
This can be achieved by introducing sets of intermediate
states that are visited one set after the other, in an ordered
sequence, before reaching the final set of states of interest.
The reachability probability of interest is then given by the
product of the conditional probabilities of reaching a set of
intermediate states given that the previous set of intermediate
states have been reached. Each conditional probability is
estimated by simulating in parallel several copies of the
system, i.e. each copy is considered as a particle following
the trajectory generated through the system dynamics. In [3]
it was shown that the IPS approach works very well for
a diffusion example, but fails when applied to a switching
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diffusion with large differences in mode probabilities or with
rare switchings. Hybrid interacting particle system (HIPS)
algorithm [3], [4] was specially developed to cope with this
problems.

In this paper we continue to improve and develop efficient
rare event MC simulation technique for stochastic hybrid
systems the solutions of which are rarely switching diffusions
with state dependent rates of switching between discrete
system modes [5], [6]. We propose a new interacting particle
system approach. The novelty over HIPS [3], [4] is that this
time the probabilities of the discrete modes are estimated
using analytical equations rather than simulating random
mode switchings. Originally this approach was developed in
[7] for filtering problems in hybrid system. Here we combine
this with IPS for rare event probability estimation.

The new rare event probability estimation approach is
based on the same idea as HIPS approach of decomposi-
tion of rare event probability into a product of “less rare”
conditional probabilities and estimation of these conditional
probabilities by particle systems. The difference lies in the
following: only mode conditional Rn -valued particles are
used, and the probabilities that the system is operating in one
of modes are evaluated analytically. In the HIPS algorithm
the time index value of the particles may differ, this is
because some particles reach the level sets and stop earlier,
some later, and some not at all. In our novel particle system
algorithm the mode probabilities are estimated analytically,
but this requires all particles to have the same time index
value. In order to achieve this, we transform the original
SDE, which describes the evolution of switching diffusion,
into particular “equivalent” SDE, the rare event of interest
is transformed correspondingly, but the probability of this
“transformed” rare event is the same as of the “original”
one. The novel IPS algorithm is aimed to cope with rarely
switching diffusions and with large differences in mode
probabilities.

The paper is organized as follows. Section II states the
problem studied. The transformation of SDE and rare event
is done in section III. Section IV briefly explains the theory
interacting particle system based decomposition of rare event
probability in case of a switching diffusion. The novel IPS
algorithm is presented in section V.

II. PROBLEM CONSIDERED

Throughout this paper all stochastic processes are defined
within the setting of one complete stochastic basis.

Let {xt ,θt} be a switching diffusion taking its values in



Rn×M according to

dxt = a(θt ,xt)dt +b(θt ,xt)dWt , (1)
pθt+δ |θt ,xt (θ |η ,x) = ληθ (x)δ +o(δ ), η 6= θ , (2)

where M is a finite set of modes and (Wt)t≥0 is a Brownian
motion in Rn independent of {θt}. We assume that switching
diffusion (1,2) starts at t = 0 in a Borel set D̄0 ⊂ Rn×M
with a known initial probability distribution Px0,θ0(·). We set

τD̄
4
= inf{t > 0 : (xt ,θt) ∈ D×M}, i.e. the first passage time

of {xt} to a closed connected Borel set D. The problem
addressed in this paper is to estimate the probability P(τD̄ <
T ), i.e. the probability that {xt} will hit the set D on the
time interval (0,T ], T < ∞. Similarly as in [2] and in [4] we
will represent the probability of a rare event as a product of
probabilities of intermediate “less rare” events and then use
our novel particle system approach to estimate this product.

Let us define the nested sequence of sets D̄ = D̄m ⊂ ·· · ⊂
D̄1 as follows:

D̄k
M= Dk×M, k = 1, . . . ,m (3)

where Dk is a closed Borel set of Rn, and D̄1 is such that
D̄1∩D̄0 =∅. These nested sets aim to play an important role
in decomposition of rare event probability, this will become
more clear in the following sections.

The first moment in time that {xt ,θt} hits a set D̄k is
defined as the stopping time:

τk
4
= inf{t ≥ 0 : (xt ,θt) ∈ D̄k}= inf{t ≥ 0 : xt ∈ Dk},

τk = ∞ if this set is empty. The quantity of our interest is the
probability of first passage time into set D̄⊂Rn×M before
time T , i.e. P(τD̄ < T ) = P(τm < T ).

III. TRANSFORMATION

We want to transform the process so that during simulation
at each discretization step all particles will have the same
time index value. This is needed in order to be able to
calculate mode probabilities analytically at each simulation
step. The transformation is done by properly modifying the
coefficients of the SDE (1,2). It is important to note that
the transformation we are going to apply depends on the
sequence of nested subsets (3).

We transform the process {xt ,θt} on [0,T ] to a new
Rn+2×M-valued process {x̃t , θ̃t} on [0,Tm] as the solution
of the following SDE (transformation of (1,2)):

dx̃t = ã(x̃t , θ̃t)dt + b̃(x̃t , θ̃t)dW̃t , (4)

pθ̃t+δ |θ̃t ,x̃t
(θ |η ,x) = λ̃ηθ (x)δ +o(δ ), η 6= θ , (5)

where t ∈ [0,Tm], Tk = k ·T , k = 0,1, . . . ,m. Roughly speak-
ing, the stretching of {xt ,θt} on [0,T ] to {x̃t , θ̃t} on [0,Tm] is
done as follows. On the first time interval [0,T1] = [0,T ] of
[0,Tm] {x̃t , θ̃t} equals {xt ,θt} until the moment that {x̃t , θ̃t}
hits the set D̄1. From that moment on {x̃t , θ̃t} is frozen.
On the second interval [T1,T2] {x̃t , θ̃t} continues to evolve
according to {xt ,θt} from the moment that it hit the set D̄1.
This continues until {x̃t , θ̃t} hits the second set D̄2; then it is

frozen. This repeats m times until {x̃t , θ̃t} hits the m-th set
D̄m or until x̃t,1 = T . For this the coefficients, switching rates
matrix and the driving process {W̃t} are defined as follows:

ã : Rn+2×M−→ Rn+2

b̃ : Rn+2×M−→ R(n+2)×(n+2)

and

for x1 ∈ [0,T ), x2 ∈ [Tk−1,Tk), x3:n+2 ∈ (Dk−1 \Dk), k =
1, . . . ,m.

ã(x,θ) = [1 1 a(x3:n+2,θ)]T

b̃(x,θ) =
[

O2×2 O2×n

On×2 b(x3:n+2,θ)

]

Λ̃(x) =
(
λ̃i j(x)

)N
i, j=1 =

(
λi j(x3:n+2)

)N
i, j=1

else

ã(x,θ) = [010 . . . 0]T

b̃(x,θ) =
[

O2×2 O2×n

On×2 On×n

]

Λ̃(x) =
(
λ̃i j(x)

)N
i, j=1 = ON×N

On×m denotes a zero n×m-matrix.
The Brownian motion driving the transformed process is

defined as follows.

W̃t =





Wx̃t,1

for x̃t,1 ∈ [0,T ),
x̃t,2 ∈ [Tk−1,Tk), and
x̃t,3:n+2 ∈ (Dk−1 \Dk),
k = 1, . . . ,m.

Ŵt else

where {Ŵt} is a standard Brownian motion independent of
{Wt}. The first component x̃t,1 is the time index of original
process. The second component x̃t,2 is basically the time
index of transformed process. The remaining n components
x̃t,3:n+2 represent the state.

While x̃t,3:n+2 ∈ (Dk−1 \ Dk) and x̃t,1 ∈ [0,T ), x̃t,2 ∈
[Tk−1,Tk), k = 1, . . . ,m, components {x̃t,3:n+2, θ̃t} follow the
same dynamics as original process (1,2). If x̃t,1 < T , x̃t,2 < Tk
and x̃t,3:n+2 has already reached the set Dk then evolution
of components {x̃t,3:n+2, θ̃t} stops and they remain constant
until x̃t,2 = Tk (k = 1, . . . ,m). If x̃t,1 = T but x̃t,3:n+2 has not
yet reached the target set D then the process stops.

Define

τ̃k =

{
Tk if x̃Tk,3:n+2 ∈ Dk

∞ otherwise
(6)

Then, we have

P(τ̃k = Tk) = P(x̃Tk,3:n+2 ∈ Dk) (7)
= P(x̃Tk ∈ [0,T )× [0,Tm)×Dk) (8)
= P(xτk∧T ∈ Dk) = P(τk < T )

and similarly

P(τ̃k = Tk|τ̃k−1 = Tk−1) = P(τk < T |τk−1 < T ). (9)



IV. PRODUCT OF CONDITIONAL PROBABILITIES

Suppose the switching diffusion {x̃t , θ̃t} starts at t = 0 in
a Borel set {0}×{0}× D̄0 ⊂Rn+2×M with a known initial
probability distribution Px̃0,θ̃0

(·). We assume a sequence of
nested Borel sets, D̄ = D̄m ⊂ ·· · ⊂ D̄1 which are defined by
(3). We want to estimate P(τ̃m = Tm), for Tm = T ·m < ∞,
what is equivalent to the probability that the “original”
switching diffusion {xt ,θt} will hit the rare event set D̄
before time T .

Let us introduce the {0,1}-valued variables {yk,k =
1, . . . ,m} defined as follows:

yk(ω) M= 1{ω:τ̃k(ω)=Tk} = 1{ω:τk(ω)≤T}. (10)

Hence, for each k we have

yk(ω) = 1{ω:τ̃k(ω)=Tk} =
k

∏
i=1

1{ω:τ̃i(ω)=Ti} =
k

∏
i=1

yi(ω). (11)

Next we characterize P(τm < T ) = P(τ̃m = Tm) in terms of
the sequence {yk}. By its definition,

P(τ̃m = Tm) = E[1{τ̃m=Tm}]

Subsequent substitution of (10) and (11) yields:

P(τm < T ) = E[ym] = E[
m

∏
k=1

yk]. (12)

Since yk assumes values from {0,1},

E[
m

∏
k=1

yk] =
m

∏
k=1
E[yk|yk−1 = 1, . . . ,y1 = 1]

Substituting this into (12) yields

P(τ̃m < T ) =
m

∏
k=1
E[yk|yk−1 = 1, . . . ,y1 = 1]

=
m

∏
k=1

P(τ̃k = Tk|τ̃k−1 = Tk−1, . . . , τ̃1 = T1)

=
m

∏
k=1

P(τ̃k = Tk|τ̃k−1 = Tk−1) (13)

This means that (13) characterizes the probability P(τm <
T ) = P(τ̃m = Tm) of the rare event as a product of conditional
probabilities of intermediate “less rare” events leading to it.
Thus, if we estimate the conditional probabilities

γk
M= P(τ̃k = Tk|τ̃k−1 = Tk−1) for k = 1, . . . ,m

and insert this in (13) we get:

P(τm < T ) = P(τ̃m = Tm) =
m

∏
k=1

γk. (14)

Let us denote E = Rn+2 ×M, and let E be the Borel
σ−algebra of E. For any B ∈ E , πk(B) denotes the con-
ditional probability of ξk

M= (xτk∧T ,θτk∧T ) ∈ B given y1:k =

(1,1, . . . ,1). Then the estimation of the probability in subse-
quently hitting the nested Borel sets by {ξk} is characterized
through the following sequence of transformations

πk−1(·)prediction−−−−−−→pk(·) conditioning−−−−−−−−→ πk(·),
where pk(B) is the condition probability of ξk ∈ B given
y1:k−1 = (1,1, . . . ,1). Because {ξt} is a Markov sequence
the prediction satisfies:

pk(B) =
∫

E
Pξk|ξk−1

(B|ξ )πk−1(dξ ) for all B ∈ E , (15)

and the conditioning satisfies:

πk(B) =

∫
B 1{ξ∈([0,T )×[0,Tk)×D̄k)}pk(dξ )∫

E 1{ξ ′∈([0,T )×[0,Tk)×D̄k)}pk(dξ ′)
for all B ∈ E .

(16)
Then

γk = P(τk < T |τk−1 < T ) = E[yk|y1:k−1 = (1,1, . . . ,1)]

=
∫

E
1{ξ∈([0,T )×[0,Tk)×D̄k)}pk(dξ ).

Similarly as in (13), this can be written as:

γk = P(τ̃k = Tk|τ̃k−1 = Tk−1)=
∫

E
1{ξ∈([0,T )×[0,Tk)×D̄k)}pk(dξ ).

(17)
With this each of the m terms γk in (14) is characterized
as a solution of a sequence of “filtering” kind of equations
(15,16). However, an important difference with “filtering”
equations is that (15,16) are ordinary integral equations, i.e.
they have no stochastic term entering them.

V. NOVEL IPS ALGORITHM

Let γNp
k , pNp

k and πNp
k denote the numerical approximations

of γk, pk and πk respectively. By ϕt(θ) we will
denote an approximation of mode probability Pθt (θ)
and ϕ0(θ) = Pθ0(θ). The particle is defined as a pair (ζ ,ω),
ω ∈ [0,1], ζ ∈ Rn+2. The ω component represents a weight
of the particle.

Step 0. Initial setup
• Choose appropriate nested sequence of closed subsets

D j, ( j = 1, . . . ,m), of Rn such that D = Dm ⊂ Dm−1 ⊂
·· · ⊂ D1, and define D̄k = Dk×M, k = 1, . . . ,m.

• Compute r = maxi=1,...,N
x∈Rn

∣∣∑N
j=1
j 6=i

λ̃i j(x)
∣∣ + ε , for some

small ε > 0.
Step 1. Initial sampling; k = 0.

• At time t = 0 we start with a set of Np particles for each
mode θ ∈ M = {e1, . . . ,eN}: {ζ θ ,i

0 ,ωθ ,i
0 }Np

i=1, θ ∈ M,

here ζ θ ,i
0 = (0,0,xθ ,i) and xθ ,i are independently drawn

from px0|θ0(·|θ); the initial weights ωθ ,i
0 =

pθ0 (θ)
Np

, i =
1, . . . ,Np, θ ∈M.

• Then πNp
0 (B,θ) = ∑

Np
i=1 ωθ ,i

0 δ{ζ θ ,i
0 }(B), B ∈ B(Rn+2),

and γNp
0 = 1.



Iteration k; k = 1, . . . ,m over step 2 (prediction), step 3
(assessment) and step 4 (resampling)

Step 2. Prediction: πNp
k−1 −→ pNp

k ;
For j = 1, . . . ,J, with time discretization step h = T

J and
t̂ j := Tk−1 +h · j

Substep 2.a (Interaction based resampling):
• For all θ ,η ∈M, i = 1, . . . ,Np evaluate the transition

probabilities

pθ̃ h
t̂ j
|X̃h

t̂ j−1
,θ̃h

t̂ j−1
(θ |ζ η ,i

t̂ j−1
,η)≈ [Iηθ +(P∗ηθ (ζ η ,i

t̂ j−1
))rh]e−rh,

where P∗(ζ η ,i
t̂ j−1

) = 1
r Λ̃(ζ η ,i

t̂ j−1
)+ I.

• Evaluate probabilities of modes:

pθ̃ h
t̂ j
(θ)≈ϕt̂ j(θ)= ∑

η∈M

Np

∑
i=1

pθ̃ h
t̂ j
|X̃h

t̂ j−1
,θ̃ h

t̂ j−1
(θ |ζ η ,i

t̂ j−1
,η)ωη ,i

t̂ j−1

• If all modes have zero probabilities, i.e. ϕt̂ j(θ) = 0 for
all θ ∈ M then the algorithm is stopped and we set
P(τm < T )≈ 0.

• For each θ ∈ M draw Np random vectors ζ̃ θ ,i
t̂ j−1

, i =
1, . . . ,Np, from the particle spanned measure:

pX̃h
t̂ j−1

,θ̃ h
t̂ j
(B,θ)≈

≈ ∑
η∈M

Np

∑
i=1

pθ̃ h
t̂ j
|X̃h

t̂ j−1
,θ̃ h

t̂ j−1
(θ |ζ η ,i

t̂ j−1
,η)ωη ,i

t̂ j−1
δ{ζ η ,i

t̂ j−1
}(B).

• This yields for each θ ∈M the following set of particles
{ζ̃ θ ,i

t̂ j−1
,ωθ ,i

t̂ j
}Np

i=1 with ωθ ,i
t̂ j

= ϕt̂ j(θ)/Np.

Substep 2.b:
• Determine the new set of particles (the weights are not

changed) {ζ θ ,i
t̂ j

,ωθ ,i
t̂ j
}Np

i=1, θ ∈M by evaluating for each
particle a new value according to Euler discretization
scheme:

ζ θ ,i
t̂ j

= ζ̃ θ ,i
t̂ j−1

+ ã(ζ̃ θ ,i
t̂ j−1

,θ) ·h+ b̃(ζ̃ θ ,i
t̂ j−1

,θ)(W̃ i
t̂ j
−W̃ i

t̂ j−1
)

• Set j := j +1, if j < J then go to Substep 2.a, else we
have:

pNp
k , the empirical distribution associated with the cloud of

particles {ζ̄ θ ,i
k , ω̄θ ,i

k }Np
i=1, with ω̄θ ,i

k = ωθ ,i
t̂J

and ζ̄ θ ,i
k = ζ θ ,i

t̂J
obtained after series of substeps 2.a and 2.b ( j = 1, . . . ,J):

pNp
k (B,θ) =

Np

∑
i=1

ω̄θ ,i
k δ{ζ̄ θ ,i

k }(B).

Step 3. Assess particle arrival:
• We set ω̂θ ,i

k = ω̄θ ,i
k if ζ̄ θ ,i

k ∈ ([0,T )× [0,Tm)× D̄k), and
otherwise ω̂θ ,i

k = 0. This yields the set of particles
{ζ̄ θ ,i

k , ω̂θ ,i
k }Np

i=1, θ ∈M.
• Approximation of πk:

πk(B,θ)≈ πNp
k (B,θ) =

1

γNp
k

Np

∑
i=1

ω̂θ ,i
k δ{ζ̄ θ ,i

k }(B).

• Approximation of γk: γk ≈ γNp
k = ∑θ∈M∑Np

i=1 ω̂θ ,i
k .

• If γNp
k = 0 then the algorithm is stopped and we set

P(τm < T )≈ 0.
Step 4. Resampling:
• For each mode θ ∈ M resample with replacement

Np values of ζ θ ,i
k according to the empirical measure

πNp
k (·,θ) and assign new weights to particles:

ωθ ,i
k =

1

NpγNp
k

Np

∑
j=1

ω̂θ , j
k .

Hence at time t = Tk we have a set of Np particles per
mode θ : {ζ θ ,i

k ,ωθ ,i
k }Np

i=1, θ ∈M.
• k := k +1. If k < m then repeat step 2, 3 and 4.
• Otherwise, algorithm stops with P(τm < T )≈∏m

k=1 γNp
k .

This completes our novel IPS particle system algorithm
for estimating the probability of reaching a subset D by
a switching diffusion. In a follow up study we plan to
compare for an illustrative example this novel IPS estimation
algorithm with the Hybrid IPS estimation algorithm of [4].
The main difference between this new IPS and HIPS consist
in the way these two approaches deal with the problem of
rare switches in stochastic hybrid systems. Our novel IPS
approach uses only mode conditional Rn -valued particles,
and the probabilities of switches and mode probabilities
(i.e. probabilities on M) are evaluated analytically at each
discretization step. In HIPS approach particles are Rn×M
valued, and, in order to capture the interaction between sys-
tem operation modes, during simulation it uses importance
switching procedure.
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