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Abstract. Correlated default risk plays a significant role in financial markets. Dynamic intensity-based models,
in which a firm default is governed by a stochastic intensity process, are widely used to model corre-
lated default risk. The computations in these models can be performed by Monte Carlo simulation.
The standard simulation method, which requires the discretization of the intensity process, leads
to biased simulation estimators. The magnitude of the bias is often hard to quantify. This paper
develops an exact simulation method for intensity-based models that leads to unbiased estimators of
credit portfolio loss distributions, risk measures, and derivatives prices. In a first step, we construct
a Markov chain that matches the marginal distribution of the point process describing the binary
default state of each firm. This construction reduces the original estimation problem to one involving
a Markov chain expectation. In a second step, we estimate the Markov chain expectation using a
simple acceptance/rejection scheme that facilitates exact sampling. To address rare event situations,
the acceptance/rejection scheme is embedded in an overarching selection/mutation scheme, in which
a selection mechanism adaptively forces the chain into the regime of interest. Numerical experiments
demonstrate the effectiveness of the method for a self-exciting model of correlated default risk.
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1. Introduction. Correlated default risk is one of the most pervasive threats in financial
markets. Confronting this threat is a daily business for credit investors such as banks making
loans to individuals and corporations or fixed income managers allocating assets in the credit
markets. These investors must measure the aggregate default risk in their asset portfolios
and devise strategies to mitigate that risk. These tasks typically involve estimating the risk
capital, to cushion potential default losses at high confidence levels, and estimating the prices
of portfolio credit derivatives, which are financial instruments that provide insurance against
correlated default risk.

Risk management and derivatives pricing applications require a stochastic model of cor-
related default timing. Intensity-based models are widely used for this purpose. In these
models, a portfolio constituent firm defaults at an inaccessible stopping time whose stochas-
tic structure is governed by an intensity, or conditional default rate. The intensity follows
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a stochastic process that reflects the information revealed over time, including the value of
exogenous risk factors and the state of other firms in the economy. The intensity processes are
correlated across firms, to incorporate the dependence between firm defaults. While many in-
tensity models have been developed in the literature, model computation remains challenging.
The scope of semianalytical transform methods is limited, including mainly doubly stochastic
models. In these models, firm intensities are driven by common risk factors. Conditional on
a realization of these factors, default times are independent of one another.

Monte Carlo simulation is an alternative tool for performing computations in intensity-
based models. It can be applied to models outside the scope of transform methods or to
address applications for which transform methods are unsuitable. A standard simulation
method, which applies to most intensity models and is thus widely used, exploits a time-
change result for point processes due to [58]. Meyer showed that a nonexplosive counting
process can be transformed into a standard Poisson process by a change of time given by
the counting process compensator, or cumulative intensity. This implies that the first jump
time of the process is equal in law to the first hitting time of the compensator process to a
standard exponential variable. This insight provides a recipe for simulating a default time with
given intensity process: generate a path of the cumulative intensity and record its first hitting
time to a level drawn independently from a standard exponential distribution. The resulting
default times have the correct joint distribution, as implied by the correlated evolution of firm
intensity processes.

While widely applicable, the time-scaling scheme may lead to biased simulation estima-
tors. This is because it may not be possible to construct the full path of the continuous-time
stochastic process followed by the time integral of the intensity. Often, the path must be
approximated on a discrete-time grid. Further, it may be difficult to draw exact samples of
the values of the integrated intensity at the grid points, because the joint distribution of the
integrated intensities across firms, from which one needs to sample, is rarely computationally
tractable. In this case, the values of an integrated intensity must be approximated by first
simulating the continuous-time intensity process on the discrete-time grid, and then integrat-
ing the discretized values. If the intensity values cannot be sampled from their joint transition
law, then the SDEs that describe the joint dynamics must be discretized by the Euler or some
higher order scheme. Due to the multiple layers of approximations, it is hard to quantify the
magnitude of the discretization bias in the resulting simulation estimators. While the bias can
be reduced by increasing the number of discretization time steps, this comes at the expense of
increasing the time required to generate a replication. Since the additional computational ef-
fort per firm replication is scaled by the number of firms in the portfolio, this can quickly lead
to a computational burden that is prohibitive for the large portfolios that occur in practice.

This paper develops an exact sampling method that leads to unbiased simulation estima-
tors for intensity-based models. The scope of the method is more limited than that of the
time-scaling method but wider than that of the transform methods. It comprises a broad
range of models proposed in the literature, including doubly stochastic and self-exciting for-
mulations. The method has two parts. We first construct an inhomogeneous, continuous-time
Markov chain M whose value at t has the same distribution as the value at t of the point
process N describing the binary default state of each portfolio constituent. The construction
reduces the problem of estimating the expectation of f(Nt) to that of estimating the expec-
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tation of f(Mt). Unlike N , the mimicking chain M has deterministic interarrival intensities,
and this facilitates the exact sampling of M using a simple acceptance/rejection scheme. As
a result, we obtain an unbiased estimator of the expectation of f(Mt).

For portfolios of high-quality names, most replications produce few if any defaults, so
the computational effort required to obtain accurate estimators may be very large. This is
especially true for estimators of large loss probabilities or tail risk measures, which are at the
center of risk management applications. To address this problem, we embed the acceptance/
rejection scheme in an overarching selection/mutation scheme developed by [21]. On a discrete-
time grid we evolve a collection of particles, i.e., copies of the mimicking Markov chain M ,
using the acceptance/rejection scheme. At each time step, particles are randomly selected
by sampling with replacement, placing more weight on particles with a larger number of
transitions in the previous period. The new generation of selected particles is then evolved
over the next period, at whose end a selection takes place again. The selection procedure
adaptively forces the chain into the regime of interest and therefore reduces variance. The
resulting estimators inherit the unbiasedness of the plain acceptance/rejection estimators.

Numerical experiments demonstrate the effectiveness of the method for a portfolio of
100 names. We analyze a self-exciting model, in which firm intensities follow correlated
Feller jump-diffusion processes that jump whenever a default event occurs. We find that the
exact method requires significantly less computation time than the conventional time-scaling
method, for all levels of accuracy. The root mean square errors of the simulation estimators
converge much faster for the exact method. The selection/mutation scheme is found to offer
substantial variance reduction.

1.1. Related literature. While many alternative intensity-based models of correlated de-
fault risk have been developed in the literature, there is surprisingly little work on simulation
methods for these models. The authors of [27] review time-scaling and other approaches.
[24] provides an inverse transform method for simulating the first to occur of a given set of
events. This scheme is exact and can be used to sample the default times sequentially; it leads
to unbiased estimators of an expectation of a function of the vector of default times of the
constituent names. The method developed in this paper leads to unbiased estimators of an
expectation of a function of the future value of the vector point process indicating the default
state of the constituent names.

Giesecke, Kakavand, and Mousavi [38] develop an exact method for the related problem
of simulating a one-dimensional, real-valued point process. They project the point process
onto its own filtration and then sample it in this coarser filtration. The sampling is based on
the intensity in the subfiltration, which is deterministic between arrival times and therefore
facilitates the use of exact schemes. This projection method leads to unbiased estimators of
an expectation of a function of the path of the one-dimensional point process and a skeleton
of the driving state process.

Bassamboo and Jain [5] propose an asymptotically optimal importance sampling scheme
to estimate the probability of large portfolio losses in a doubly stochastic intensity model
with affine risk factor processes. Their approach exploits the conditional independence of firm
defaults in the doubly stochastic setting. The implementation of the estimators relies on the
time-scaling scheme.

Carmona, Fouque, and Vestal [11] use a selection/mutation scheme to estimate the distri-
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bution of portfolio loss in a structural model of correlated default risk. Here, a firm defaults
when its market value hits a given barrier. Firm values follow correlated stochastic volatility
processes. Carmona and Crepey [10] numerically contrast the performance of the selection/
mutation and importance sampling schemes when estimating the distribution of portfolio loss
in a Markov chain model.

There are several papers on variance reduction schemes for copula-based models of cor-
related default risk. In a copula-based model the firm dependence structure is specified by a
copula function that maps firm-level default probabilities to the joint default probability. [6],
[14], [49], [40], [42] develop importance sampling schemes that exploit the conditional inde-
pendence of firm defaults that is also a feature of the copula models. Glasserman and Li [41]
examine a related scheme for a mixed Poisson model of portfolio credit risk.

1.2. Structure of this article. Section 2 formulates the problem, reviews conventional
simulation approaches, and outlines the exact method. Section 3 discusses the construction of
the mimicking Markov chain. Section 4 develops two algorithms for estimating expectations
associated with the mimicking chain. Section 5 constructs the mimicking Markov chain for a
broad range of models proposed in the literature. Section 6 provides a numerical case study
that demonstrates the effectiveness of the method. An appendix contains the proofs.

2. Preliminaries.

2.1. Default point processes. Consider a portfolio of n firms that are subject to default
risk. The random default times of these firms are modeled by almost surely distinct stopping
times τ i > 0, which are defined on a complete probability space (Ω,F , P ) with right-continuous
and complete information filtration F = (Ft)t≥0. In risk management applications, P is the
statistical probability, while in derivatives pricing applications, P is a risk-neutral pricing
measure. Associated with the τ i are indicator processes N i given by N i

t = I(τ i ≤ t), where
I(A) is the indicator function of an event A ∈ F . For each i, there is a strictly positive,
integrable, and progressively measurable process λi such that the variables

(1) N i
t −

∫ t

0
I(τ i > s)λi

sds

form a martingale relative to F. This means that λi
t is the Ft-conditional default rate of firm

i at time t < τ i, measured in events per unit of time. We refer to the process λi as the default
intensity of firm i, recognizing that this may involve an innocuous abuse of terminology, as
λi need not drop to 0 at τ i. The intensities follow correlated stochastic processes that need not
be specified at this point. The correlation among the intensities reflects the default dependence
structure of the portfolio constituent firms.

Our goal is to calculate E[f(NT )] for a suitable real-valued function f on {0, 1}n and a
horizon T > 0, where N = (N1, . . . , Nn) is the vector of firm default indicator processes. Ex-
amples include the single-name probabilities P (τ i > T ), joint probabilities P (∩i∈S{τ i > T})
for subsets S of firms, the distribution P (CT = k) of the default counting process C = 1n ·N ,
where 1n is an n-vector of ones, and the option E[(CT − K)+]. If taken under the statis-
tical probability measure, P (CT = k) is the fundamental quantity for the risk management
of portfolios of corporate debt. If evaluated under a risk-neutral pricing measure, the option
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E[(CT −K)+] is a key quantity required to price portfolio credit derivatives, as illustrated in
[31].

For clarity in the exposition, our formulation has not made explicit the role of the finan-
cial loss at a default. This is without loss of generality in case the loss � = (�1, . . . , �n) is
deterministic as in [5], [6], [10], [11], [14], [15], [49], [40] and others. In that case, � can be
incorporated into the function f , to express the probability that the portfolio loss � ·NT at T
exceeds a level, or an option on � · NT , as E[f(NT )]. To treat a loss � that is random but
independent of N as in [42], the algorithms developed below require only minor modifications.
Independence is a reasonable assumption for lack of data bearing on the correlation between
� and N .

2.2. Conventional simulation schemes. To estimate E[f(NT )] by simulation, we need to
sample the variable NT . This is straightforward if the intensity λ is deterministic and N is a
Poisson process. It is also straightforward if λ follows a stochastic process that is adapted to
the subfiltration of F generated by N , in which case λ is deterministic between default times.
In these cases, the classical thinning, or acceptance/rejection (A/R) scheme of [54], can be used
to sample the jump times of N exactly. This scheme leads to unbiased simulation estimators
of E[f(NT )]. It involves the sampling of candidate arrival times from a dominating Poisson
process, and an acceptance test. However, if λ is not adapted to the filtration generated
by N , then it evolves randomly also between events, and a dominating Poisson process may
not exist. In this case, one may be able to use an inverse transform scheme to sample the
default times exactly. This requires an explicit expression of the probabilities P (τ i > T ). It
may also be possible to apply the inverse scheme sequentially, as in [24] and [27]. This requires
that the conditional distributions of the interarrival times of C and the defaulter identities be
tractable and also the ability to sample the state variables determining these distributions.

A more widely applicable method exploits a time-change result for point processes due
to [58]. Consider a counting process Z with jumps of size one and compensator Ẑ that is
continuous and increases to ∞ almost surely. Meyer proved that Z is a standard Poisson
process under a change of time defined by Ẑ, relative to the time-changed filtration. Thus,
the first jump time of Z is equal in law to inf{t : Ẑt ≥ E}, where E is a standard exponential
random variable. This provides a recipe for simulating the first jump time of Z: generate a
path of Ẑ and record its hitting time to the level E , drawn independently from a standard
exponential distribution. To apply this recipe to generating a path of N i for a given λi, we let
Z be a counting process with compensator Ẑt =

∫ t
0 λ

i
sds and set N i = min(Z, 1). We generate

a path of
∫ t
0 λ

i
sds and draw E to obtain a sample of τ i as the hitting time inf{t : ∫ t

0 λ
i
sds ≥ E}.

As the λi are correlated across i, the
∫ t
0 λ

i
sds must be drawn from the appropriate joint

distribution.
While the time-scaling scheme has a wide scope, it suffers from an important shortcoming:

it usually leads to biased estimators of E[f(NT )]. This is because, aside from very special
cases, it is impossible to generate the full path of the continuous-time stochastic process∫ t
0 λ

i
sds. The path must be approximated on a discrete-time grid. Even worse, it may not

be possible to draw exact samples of the values of
∫ t
0 λ

i
sds at the grid points, because the

distribution of (
∫ t
0 λ

1
sds, . . . ,

∫ t
0 λ

n
s ds) from which one needs to sample is rarely known or

computationally tractable. This forces one to approximate the values of
∫ t
0 λ

i
sds by first
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approximating the continuous-time intensity process λi on the discrete-time grid and then
integrating the discretized values. If the intensity values cannot be sampled exactly from
their joint transition law, then the SDE that describes the dynamics of (λ1, . . . , λn) must be
discretized by the Euler or some other scheme.

Due to the multiple approximations and the multiple dimensions n of N , it is hard to
quantify the magnitude of the discretization bias in the estimators of E[f(NT )]. The bias can
be reduced by increasing the number of discretization time steps, but this also increases the
computational cost of a replication. Reducing the bias to an acceptable level may require a
prohibitively large computational effort, since the dimension n of N is often large in practice,
and the effort scales with n. Further, it is hard to determine the optimal trade-off between
the number of discretization time steps and the number of simulation trials because the
convergence rate of the bias is unknown.

2.3. Exact simulation. Below we develop an alternative simulation method that elimi-
nates the need to discretize the vector process (λ1, . . . , λn) and that leads to unbiased esti-
mators of E[f(NT )]. The method has two parts. We first construct a time-inhomogeneous
continuous-time Markov chain M = (M1, . . . ,Mn) ∈ {0, 1}n with the property that MT = NT

in distribution for each fixed T . This construction is explained in section 3. It reduces the
problem of estimating the general point process expectation E[f(NT )] to the simpler problem
of estimating the Markov chain expectation E[f(MT )]. Estimators of E[f(MT )] are obtained
by exact sampling of MT using a thinning scheme, as explained in section 4.

3. Mimicking Markov chain.

3.1. Construction. Throughout, we let 0n denote an n-vector of zeros.

Proposition 3.1. Suppose that the default indicator process N has intensity λ. Let M be a
Markov chain on [0,∞) that takes values in {0, 1}n, starts at 0n, has no joint transitions in
any of its components, and whose ith component has transition rate hi(·,M), where

(2) hi(t, B) = E(λi
tI(τ

i > t) |Nt = B), B ∈ {0, 1}n.

Then MT = NT in distribution for each T ≥ 0.
Proposition 3.1 shows that a component transition function hi(t, B) of the mimicking

Markov chain M is given by the projection of the primitive firm intensity λi
tI(τ

i > t) onto the
value of the default process Nt = B, which indicates the state at time t of each firm in the
portfolio. The indicator I(τ i > t) guarantees that hi(t, B) vanishes if Bi = 1, i.e., in a state
where firm i is in default. In the special case where N is a priori a Markov point process,
λi
t = qi(t,Nt) for some function qi on R+×{0, 1}n, and hi(t, B) = qi(t, B)(1−Bi). In general,

N is not a priori a Markov point process. Then the conditional expectation (2) is nontrivial,
and further steps are required to calculate it for the given process λ; see section 5. In any case,
Proposition 3.1 leads to a Markov point process M whose value at t has the same distribution
as Nt.

The fact that the construction leads to a Markov process is a consequence of the condi-
tioning set in the conditional expectation (2). Rather than conditioning on the sigma-field
σ(Ns : s ≤ t) generated by the path of N during [0, t], which seems natural at first, the con-
ditional expectation (2) is taken with respect to the final value Nt only. The conditioning on
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the path does not in general produce a Markov point process. Nevertheless, the conditional
expectation E(λi

tI(τ
i > t) |σ(Ns : s ≤ t)) is meaningful: it defines the intensity of N i in

the subfiltration generated by N . As shown in [38], this observation can be used to develop
an alternative projection scheme for the exact simulation of a point process. That scheme
samples a point process in its own filtration, based on the intensity in the subfiltration. It is
appropriate for estimating an expectation E[g(Ut : t ≤ T )] that involves the path of a univari-
ate point process U ∈ R. For computational reasons, the scheme is less well suited to sampling
a vector point process such as N = (N1, . . . , Nn) ∈ {0, 1}n. The method developed in this
paper targets the vector process N but is restricted to expectations of the form E[f(NT )].
This is because the auxiliary chain M matches the distribution of NT for fixed T only.

Proposition 3.1 extends a univariate construction in [8, Chapter II, exercise E8], which
is refined and applied by [2], [18], and [56] to the calibration of (univariate) intensity-based,
top-down models of portfolio credit risk. These papers construct a mimicking Markov chain
for a nonterminating counting process taking values in N0. Their setting is different from
ours even if n = 1, because the counting processes N i that we consider take values in {0, 1}.
Lopatin [55] suggests a multivariate version. Bentata and Cont [7] analyze the construction
of a mimicking Markov process for a semimartingale that may be discontinuous.

3.2. Markov point process. To prepare the design of simulation algorithms for M in sec-
tion 4 below, we consider the mimicking chain M as a Markov point process relative to its own
right-continuous and complete filtration G = (Gt)t≥0 generated by M . The construction of M
implies that, for a suitable real-valued function g on {0, 1}n, the process g(M)−∫ ·

0 Asg(Ms)ds
is a martingale in the filtration G, where

Atg(B) =
n∑

i=1

hi(t, B)(g(B[i])− g(B)), B ∈ {0, 1}n,

is the generator of M at t. Here, B[i] denotes the vector B whose ith element Bi is replaced
by 1−Bi. It follows that the process

(3) M i −
∫ ·

0
hi(s,Ms)ds

is a martingale with respect to G. Thus, the component counting process M i has intensity
hi(·,M) in the filtration G. Recall that hi(·, B) vanishes for any B ∈ {0, 1}n whose ith element
is equal to 1, and compare with the Doob–Meyer decomposition (1) of the firm default indicator
process N i in the reference filtration F. By Proposition 3.1, the distributions of N i

t and M i
t

agree, and so do the distributions of Ct = 1n ·Nt and 1n · Mt. Let h be the n-vector of the
functions hi. From the martingale property of (3),

(4) 1n ·M −
∫ ·

0
1n · h(s,Ms)ds

is a G-martingale as well. Therefore, the counting process 1n · M has intensity 1n · h(·,M)
relative to the filtration G. As indicated in Table 1, that intensity is the counterpart to the
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Table 1
Indicator and counting processes and their Markovian counterparts.

Filtration Indicator Component Component Counting Counting
process process intensity process intensity

F N N i λi(1−N i) 1n ·N ∑n
i=1 λ

i(1−N i)
G M M i hi(·,M) 1n ·M 1n · h(·,M)

intensity Λ of C = 1n ·N in the reference filtration F, given by

(5) Λ =

n∑
i=1

(1−N i)λi.

We have

(6) 1n · h(t,Mt) = E(Λt |Nt = Mt) =

n−1∑
k=0

H(t, k)I(Tk ≤ t < Tk+1)

almost surely. Here, (Tk)k=0,1,...,n is the sequence of event times of 1n ·M starting at 0, which
is strictly increasing almost surely because there are no joint transitions in M almost surely
(Proposition 3.1), and H(t, k) is the GTk

-measurable interarrival intensity function given by

(7) H(t, k) = 1n · h(t,MTk
), t ≥ Tk, k = 0, 1, . . . , n.

Formula (7) implies that the interarrival intensities of the mimicking Markov counting
process 1n·M evolve deterministically through time. This is a key property that our simulation
algorithms are going to exploit. Note that the original model, which is formulated in the
filtration F, has more complicated interarrival intensity dynamics. This can be seen from
formula (5), which indicates that the interarrival F-intensities of C = 1n ·N follow stochastic
processes whenever the firm F-intensities λi do.

BecauseH(t, k) is GTk
-measurable, the random variable Tk+1−Tk is equal in GTk

-conditional
distribution to the first jump time of a time-inhomogeneous Poisson process starting at Tk

with intensity function H(t, k) for t ≥ Tk. Thus, for all s > 0 the conditional survival function
of the interarrival times of 1n ·M satisfies

P (Tk+1 − Tk > s | GTk
) = P (1n ·MTk+s = k |MTk

)

= exp

(
−
∫ Tk+s

Tk

H(t, k)dt

)
, k = 0, 1, . . . , n− 1.(8)

Let Ik ∈ {1, 2, . . . , n} be the GTk
-measurable random variable identifying the component of

M in which the kth transition takes place, k = 1, . . . , n. Noting that the sigma-field GTk− is
generated by the random variables (Tm, Im)m≤k−1 and Tk, and using an argument similar to
the one applied by [8, Theorem II.15], we see that

(9) P (Ik = i | GTk−) =
hi(Tk,MTk−1

)

H(Tk, k − 1)
, i, k = 1, 2, . . . , n.
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4. Exact simulation algorithms. We wish to evaluate the expectation E[f(NT )] for suit-
able functions f on {0, 1}n and fixed T > 0. The key insight is that Proposition 3.1 reduces
the problem of evaluating E[f(NT )] to the problem of evaluating E[f(MT )] for the mimicking
Markov chain M . Since the number of portfolio constituents n can be 100 or even larger, we
estimate E[f(MT )] by Monte Carlo simulation of M rather than through alternative numeri-
cal methods that would be plagued by the high dimensionality of the state space {0, 1}n. This
section discusses two exact simulation algorithms for this purpose.

4.1. Sequential acceptance/rejection scheme. We simulate the mimicking chain M by
sequentially generating the event times and identities (Tk, Ik) introduced above. The gen-
eration of event times is based on the interarrival intensities (7) of 1n · M , which evolve
deterministically through time. Given an event time, the corresponding identity is drawn
from the discrete distribution (9).

The inverse or time-scaling methods can be used to generate Tk+1 from formula (8) for
the conditional survival function Sk(t) of the interarrival time Tk+1 − Tk. Draw U ∼ U(0, 1)
and calculate the inverse inf{s > 0 : Sk(s) ≤ U}. While allowing for exact sampling, this
procedure requires us to evaluate the function Sk(t) at many points t in order to determine
the inverse at U . Depending on the structure of the function H(s, k), this may be numerically
intensive since Sk(t) involves the time-integral of H(s, k).

We prefer an alternative acceptance/rejection (A/R) scheme, which is based on the clas-
sical A/R, or thinning, scheme of [54]. This scheme requires the evaluation of H(·, k) only at
a set of candidate times for Tk+1. The candidate times are generated from a Poisson process
whose rate dominates H(Tk+ s, k) for s in some interval. A candidate time c is accepted with
a probability given by the ratio of H(Tk+c, k) to the dominating Poisson rate. The tighter the
dominating bound on H(Tk+s, k), the fewer candidate times need to be generated. Therefore,
the dominating Poisson process is redetermined at least at each acceptance or rejection of a
candidate time.

Algorithm 4.1. To generate a sample path of M over [0, T ], perform the following:

1. Initialize t = 0, k = 0, T0 = 0, and M0 = 0n.
2. Stop if t ≥ T .
3. Find J(k) = J(t, k) and K(k) = K(t, k) such that H(t+ s, k) ≤ J(k), 0 ≤ s ≤ K(k).
4. Draw a random variable E from the exponential distribution with parameter J(k).

• If E > K(k), then set t = t+K(k) and go to step 2.
• If E ≤ K(k), then draw U ∼ U(0, 1). If UJ(k) ≤ H(t+ E , k), then set k = k + 1

and t = Tk = t+ E. Else set t = t+ E and go to step 2.
5. Draw a random variable I from the discrete distribution

P (I = i) =
hi(Tk,MTk−1

)

H(Tk, k − 1)
, i = 1, 2, . . . , n,

and let Qk be the n-vector with the Ith component equal to one and the rest equal to
zero. Set MTk

= Q1 + · · · +Qk. Go to step 2.

Algorithm 4.1 is applied to generate a collection of R sample paths M1, . . . ,MR of the
mimicking Markov chain M over [0, T ]. Thanks to Proposition 3.1, for suitable functions f
on {0, 1}n we can estimate the expectation E[f(NT )] by

1
R

∑R
r=1 f(M

r
T ). In particular, the
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distribution of the portfolio default count P (CT = k) is estimated by

(10) PR(CT = k) =
1

R

R∑
r=1

I(1n ·M r
T = k), k = 0, 1, . . . , n.

Algorithm 4.1 also leads to estimators of firm-level probabilities P (τ i > T ) and related
quantities, such as P (∩i∈S{τ i > T}) for subsets S of firms. The setting may simply be n = 1,
with only a single firm of interest. In this case, (10) is an estimator of P (N1

T = k) for k = 0, 1,
while step 5 of the algorithm is redundant. In the general case of n > 1, estimates of P (τ i > T )
are obtained as a byproduct: with ei denoting an n-vector with its ith component equal to
one and the rest equal to zero, we take f(M r

T ) = I(ei ·M r
T = 0).

The estimators E[f(NT )] generated by Algorithm 4.1 are unbiased, because the A/R
scheme generates exact samples of the mimicking chain M , and E[f(NT )] = E[f(MT )]. The
A/R scheme applies to M because this process has deterministic interarrival intensities that
are usually easy to bound. The A/R scheme does not generally apply to the original default
indicator process N , because this process has stochastic interarrival intensities that are usually
not bounded by a constant almost surely.

Algorithm 4.1 may be inefficient in some situations. This occurs, for example, when the
portfolio constituents have small default probabilities, which is typical for investment grade
portfolios of highly rated issuers, and we are interested in estimating tail probabilities of NT .
In this situation, a prohibitively large number of replications may be required to estimate
these probabilities accurately with Algorithm 4.1.

4.2. Selection/mutation scheme. To reduce variance, we embed the sequential thinning
mechanism into a selection/mutation (S/M) scheme. Let T > 0 be the simulation horizon.
Partition the interval [0, T ] into m subintervals of length T/m. Let V be the discrete-time
Markov chain given by

Vp = MpT/m, p = 0, 1, . . . ,m.

We consider a collection of “particles” {V r
p }r=1,2,...,R that are evolved on the discrete-

time grid p = 0, 1, . . . ,m, all starting from the same state 0n at p = 0. At a time step p,
we use the sequential A/R Algorithm 4.1 to independently mutate (evolve) each particle V r

p

during (p, p+1] according to the transition rates determined by Proposition 3.1. Then, before
entering the next mutation step, we select particles according to the number of transitions
during (p, p + 1]. The selection is done probabilistically, by sampling with replacement. The
selection probability increases with the number of transitions during (p, p+1], so the selection
favors particles with transitions. The total number of particles R is kept constant, and the
selected particles are then evolved over the next period. The final estimator “corrects” for the
selections performed at each time step.

Algorithm 4.2. To generate an estimate of P (CT = k), perform the following:
1. Initialize V r

0 = W r
0 = 0n for 1 ≤ r ≤ R.

2. For each 0 ≤ p ≤ m− 1, repeat the following steps:
Selection.
Fix a constant δ > 0. From the set of particles (W r

p , V
r
p )1≤r≤R at p

• Compute the normalizing constant ηp =
1
R

∑R
r=1 exp[δ1n · (V r

p −W r
p )].
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• Select, independently and with replacement, R new particles as follows. Select
particle r with probability

(11)
1

Rηp
exp[δ1n · (V r

p −W r
p )].

Denote the R selected particles by (Ŵ r
p , V̂

r
p )1≤r≤R.

Mutation.
Evolve the particle (Ŵ r

p , V̂
r
p ) to (W r

p+1, V
r
p+1), independently for each 1 ≤ r ≤ R.

• Set W r
p+1 = V̂ r

p .

• Obtain V r
p+1 by generating transitions from V̂ r

p using Algorithm 4.1.
3. For k = 0, 1, . . . , n, calculate the estimator of P (CT = k) as

(12) Pδ,m,R(CT = k) =
η0 · · · ηm−1

R

R∑
r=1

I(1n · V r
m = k) exp (−δ1n ·W r

m) .

Algorithm 4.2 is a variant of an S/M scheme for estimating rare-event probabilities for
time-inhomogeneous Markov chains developed and analyzed by [21]. From their Theorem 2.3
and the fact that the A/R Algorithm 4.1 facilitates exact sampling from the marginal dis-
tribution of M in the mutation step of the scheme, we conclude that the estimator (12) is
unbiased in the sense that E[Pδ,m,R(CT = k)] = P (CT = k) for fixed δ,m,R.

The algorithm requires the selection of the number of particles R, the number of time
steps m, and the value of δ. The parameter δ specifies the exponential weight function
exp[δ1n · (V r

p − W r
p )], which determines the probability distribution used for the sampling

with replacement in the particle selection step of the algorithm.1 Here, 1n · (V r
p −W r

p ) is the
number of transitions (defaults) of the Markov chain particle r during period p. For δ = 0,
each particle has the same probability of being selected. For δ > 0, the selection probability
increases with the number of transitions. The larger δ is, the relatively greater is the focus
on particles with a larger number of transitions. In the extreme case, the particle with the
largest number of transitions is selected R times.

Thus, for a positive δ the selection step favors particles with a greater number of tran-
sitions. It tends to replace particles with few transitions with those that experienced more
transitions. As a result, with each selection step the particles are forced further into the regime
of interest, i.e., a scenario with a large number of defaults during the simulation interval [0, T ].
The number of time steps m determines the number of selections performed during [0, T ]. All
else being equal, the larger the m, the faster the particles transition to the rare event regime.2

The estimator (12) accounts for the selections performed at each time step: compare with the
estimator (10) generated by the A/R scheme. The required adjustment to the estimator (10)
follows from formula (3.13) in [21] and is governed by the form of the weight function.

The parameters δ and m need to be chosen appropriately to guarantee variance reduction
for the event of interest. However, the optimal configuration problem for a general setting

1Other specifications of the weight function can be envisioned. The formulation we adopted from [21] has
computational (memory) advantages: it does not require us to keep track of the full path history of each
particle, since only the most recent transitions are relevant for the selection.

2Note that m, unlike δ, has a direct impact on the memory requirement for the S/M scheme, which is
2Rn+m for our weight function specification.
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has not yet been addressed to our knowledge. In practice, simple experiments can lead to a
reasonable configuration for a given setting. We explain this in the context of our numerical
case study in section 6.

There are alternative approaches to variance reduction. Relative to an importance sam-
pling (IS) scheme, the S/M algorithm eliminates the need to determine and simulate from
an importance measure under which the event of interest is not rare anymore. In the S/M
scheme, we simulate the chain M under the reference measure using the A/R algorithm and
the transition rate functions hi. The chain is adaptively forced into the regime of interest by
the selection mechanism. As shown by [21], the selection mechanism can be interpreted as
a twisting of Feynman–Kac particle path measures, a measure change analogous to the one
underpinning IS.3 An advantage of an IS formulation is that it often enables one to establish
certain asymptotic optimality properties of the IS estimator.4 These properties formally prove
the effectiveness of the estimator in a rare-event regime and lead to an optimal configuration
of the algorithm. However, for the time-inhomogeneous Markov chain considered here, the
optimal IS scheme has not yet been worked out, to our knowledge.5

5. Calculating the projection. The practical implementation of the exact simulation
method requires the construction of the mimicking Markov chain M for the intensity model
λ at hand. This construction amounts to the calculation of the conditional expectation
E(λi

tI(τ
i > t) |Nt = B) defining the transition rates hi(t, B) of M ; see Proposition 3.1. This

section calculates this expectation for a range of doubly stochastic, frailty, and self-exciting
models and therefore extends the scope of the exact simulation method to many models pro-
posed in the literature. The calculation relies, intuitively speaking, on Bayes’ rule and leads
to an explicit expression for the transition rate hi(t, B) in terms of the transform

φ(t, u, z, Z) = E

[
exp

(
−u

∫ t

0
Zsds− zZt

)]
,

where Z is a nonnegative stochastic process and u and z are reals. This transform can be
computed in closed form for a wide range of processes Z, including affine jump-diffusion
processes. For any choice of Z that we consider below, we assume that ∂zφ(t, u, z, Z)|z=0

exists and is finite. Below, B denotes (B1, . . . , Bn) ∈ {0, 1}n.
5.1. Doubly stochastic models. We begin with a simple model in which firms default

independently of one another. The calculation of the corresponding Markov transition rate
hi(t, B) serves as a stepping stone for the calculation in models with a nontrivial default
dependence structure.

Proposition 5.1. Suppose that N is doubly stochastic6 with intensities λi = Xi for mutually
independent nonnegative adapted processes Xi. Then, for Bi = 0, we have

hi(t, B) = −∂zφ(t, 1, z,X
i)|z=0

φ(t, 1, 0,Xi)
.

3Carmona and Crepey [10] discuss this analogy further.
4See [3] for an excellent discussion.
5However, see [43], [44] and the references in these papers for important results in this direction. See [5] for

an optimal IS scheme for doubly stochastic intensity models λ.
6Saying that N is doubly stochastic means that the intensity λ is a function of an adapted process Z and

that, given a path of Z, the components N i are independent inhomogeneous Poisson processes, each stopped
at its first jump time and having (conditionally deterministic) intensity λi.
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We generalize to a model in which a firm is exposed to an idiosyncratic risk factor Xi

and a systematic risk factor Y that is common to all firms. The random variation of Y
generates correlated movements in firms’ conditional default probabilities. Conditional on a
realization of Y , firms default independently of one another. This and related formulations
have been used extensively in theoretical and empirical analyses of correlated default risk; see,
for example, [12], [13], [19], [23], [25], [28], [30], [32], [46], [47], [51], [59], and [60].

Proposition 5.2. Suppose that N is doubly stochastic with intensities λi = Xi + αiY for
mutually independent nonnegative adapted processes X1, . . . ,Xn, Y and nonnegative factor
loadings αi. Then, for Bi = 0, we have

(13) hi(t, B) = −∂zφ(t, 1, z,X
i)|z=0

φ(t, 1, 0,Xi)
− αi

∑2n−1
k=0 ck(t)∂zφ(t, bk, z, Y )|z=0∑2n−1

k=0 ck(t)φ(t, bk, 0, Y )
,

where the deterministic functions ck(t) and the constants bk are determined by the relation

(14)

2n−1∑
k=0

ck(t)e
−bkv =

n∏
j=1

[
Bj − (2Bj − 1)φ(t, 1, 0,Xj )e−αjv

]
, v > 0.

The multiplication of the n terms on the right-hand side of (14) results in a sum of at
most 2n terms, and typically fewer as Bj = 0 for some j. The ck(t) are the coefficients of
the summands. Each constant bk is a sum of values αj for certain j; note that b0 = 0 and
b2n−1 =

∑n
j=1 α

j . An algorithm for the efficient computation of the ck(t) and the bk is based
on the recursive scheme of [1].

We can extend to a doubly stochastic model with multiple common factors, allowing the
description of a more sophisticated firm dependence structure.

Proposition 5.3. Suppose that N is doubly stochastic with intensities λi = Xi + αi · Y for
mutually independent nonnegative adapted processes X1, . . . ,Xn and Y = (Y1, . . . , Yq) and
nonnegative factor loadings αi = (αi

1, . . . , α
i
q). Then, for Bi = 0, we have

hi(t, B) = −∂zφ(t, 1, z,X
i)|z=0

φ(t, 1, 0,Xi)

−
∑q

l=1 α
i
l

∑2n−1
k=0 ck(t)∂zlφ(t, bk1, z1, Y1) · · · φ(t, bkq, zq, Yq)|z1=z2=···=0∑2n−1

k=0 ck(t)φ(t, bk1, 0, Y1) · · ·φ(t, bkq, 0, Yq)
,(15)

where the deterministic functions ck(t) and the q-vector bk of constants are determined by the
relation (14), where v is a q-vector of positive constants and the products bkv and αjv are
interpreted as dot products.

5.2. Frailty models. Doubly stochastic models ignore the impact of a default on the in-
tensities of the surviving firms. This impact is channeled through the network of informational
and contractual relationships in the economy. For instance, for U.S. corporate defaults, Duffie
et al. [29] find strong evidence for the presence of frailty, or unobservable common or corre-
lated risk factors. The uncertainty about the value of a frailty generates an additional channel
of default correlation, above and beyond the “doubly stochastic channel.” It also leads to ad-
ditional dynamical effects in constituent intensities, in that a default causes a jump in the
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intensities of any other firms that depend on the same frailty. These jump effects are due to
Bayesian learning in the reference filtration F.

We generalize the complete information model of Proposition 5.3 to include a firm’s ex-
posure to unobservable frailty risk factors. This extends the reach of the exact method to the
model specifications in a substantial frailty literature, which includes [16], [22], [29], [34], [35],
[50], [57], [62], and others.

Proposition 5.4. Suppose that, relative to a complete information filtration H ⊃ F, N is
doubly stochastic with intensities Xi + αi · Y for mutually independent nonnegative processes
X1, . . . ,Xn and Y = (Y1, . . . , Yq) that are adapted to H, and nonnegative factor loadings
αi = (αi

1, . . . , α
i
q). Assume that all but one risk factor Ym are adapted to the observation

filtration F.7 Then hi(t, B) satisfies (15).

Proposition 5.4 states that the transition rates of the mimicking Markov chain in a model
with an unobservable common risk factor Ym agree with those in the corresponding complete
information doubly stochastic model. Then, by Proposition 3.1, the distributions of the default
indicator Nt must agree in these two model specifications. This may seem surprising at first:
the specifications generate different intensity processes, so one would expect that they imply
different distributions for Nt. However, while the intensities in the two models are different,
they admit the same projections onto N . This is because the F-intensity λi in the frailty model
is the optional projection onto F of the complete information H-intensity Xi + αi · Y . Now
the conclusion follows from iterated expectations. The proof of Proposition 5.4 formalizes this
intuition.

While the presence of frailty makes no difference for the unconditional distribution P (Nt =
B) of the default indicator Nt, it is important to note that it does influence the conditional
distributions P (Nt = B | Fs) for t > s > 0. The reason is that the sigma-fields Fs representing
the observable information available at time s are different for frailty and complete information
models. In the frailty model of Proposition 5.4, Fs does not contain the path of the frailty
risk factor Ys over [0, s], while in the complete information model of Proposition 5.3 it does.

5.3. Self-exciting models. The impact of a default on the intensities of the surviving firms
can also be attributed to contagion, by which the distress of a firm is propagated to other
firms. The authors of [4] find strong evidence for the presence of contagion in U.S. corporate
defaults, after controlling for other channels of default correlation, including exposure to
observable and unobservable risk factors. This empirical evidence can be addressed with a
self-exciting model, in which the intensity of a firm responds to the default of another firm.
Formulations of this type have been considered by [17], [20], [33], [36], [37], [45], [48], [52],
[53], [55], [63], and others.

Proposition 5.5. Suppose that N has intensities λi = Xi+ci(·, N), where X = (X1, . . . ,X2)
solves dXt = μ(t,Xt)dt + σ(t,Xt)dWt + dJt for a standard Brownian motion W , a point
process J with arrival intensity γ(t,Xt), and fixed jump sizes and suitable functions (μ, σ, γ)
such that the Xi are nonnegative and independent, and where c : R+ × {0, 1}n → R+ is a

7Saying that N is doubly stochastic relative to a complete information filtration H means that the doubly
stochastic property holds if one artificially enlarges the reference observation filtration F to make all risk factor
processes adapted. Note that N is not F-doubly stochastic.
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bounded function. Assume that φ(t,−1, 0,Xi) is finite. Then, for Bi = 0, we have

hi(t, B) = −∂zφ(t, 1, z,X
i)|z=0

φ(t, 1, 0,Xi)
+ ci(t, B).

The impact function ci specifies the dependence of firm i’s intensity on the state of the
other firms in the portfolio. By convention, ci(·, B) = gi(·, B1, . . . , Bi−1, Bi+1, . . . , Bn) for
some bounded gi : R+ × {0, 1}n−1 → R+. Examples of the impact function include ci(t, B) =∑

j �=i β
ij(t)Bj for nonnegative, deterministic, and bounded functions βij(t) that model the

impact on firm i of firm j’s default. A parsimonious “mean-field” model is obtained by
setting βij(t) = 1

n−1 . To allow for nonlinear dependence on events, we can specify a bounded

nonnegative function ϕi and take ci(t, B) = ϕi(
∑

j �=i β
ij(t)Bj) for deterministic functions

βij(t) that are not required to be nonnegative.
The proof of Proposition 5.5 indicates that we can also treat an alternative multiplicative

formulation λi = Xici(·, N). In this case the impact function acts as a scaling to the “baseline
hazard” Xi. We could take, for instance, ci(t, B) = exp(

∑
j �=i β

ij(t)Bj) for deterministic

real-valued functions βij(t).

6. Numerical results. This section demonstrates the utility of the exact method through
numerical experiments. We consider a variant of the self-exciting model treated by Proposition
5.5.

6.1. Model. For nonnegative constants βij , consider the specification

(16) λi
t = Xi

t +
∑
j �=i

βijN j
t ,

where the risk factors Xi follow mutually independent Feller diffusions:

(17) dXi
t = κi(θi −Xi

t)dt+ σi

√
Xi

tdW
i
t , Xi

0 > 0.

Here, κi is a parameter controlling the speed of mean-reversion of Xi, θi is the level of mean
reversion, and σi controls the diffusive volatility ofXi. The process (W 1, . . . ,W n) is a standard
Brownian motion. The parameter βij determines the impact on firm i of firm j’s default. The
corresponding jump terms generate correlation between the firm intensities. The matrix (βij)
governs the default dependence structure.

For each constituent firm i = 1, . . . , n, we initialize the risk factor Xi
0 at its long-run

mean θi. The parameters are selected randomly. We draw κi from U [0.5, 1.5] and θi from
U [0.001, 0.051]. We take σi = min(

√
2κiθi, σ̄i), where σ̄i is drawn from U [0, 0.2]. We draw βij

from U [0, 0.01] for each j = 1, . . . , n. In practice, the parameters are calibrated from market
rates of derivatives referenced on the constituent issuers and on the portfolio, as in [30] or [59].

The formulation (16)–(17) generalizes the specifications in [48], [53], and [63] to include a
diffusion term that modulates the intensity of a firm between arrivals. In the absence of the
diffusion term, the intensity is piecewise deterministic, so that N can be simulated exactly
using the classical A/R scheme of [54]. The exact method developed here extends the reach
of this scheme to the richer model (16)–(17).
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6.2. Mimicking chain. Proposition 5.5 determines the rate hi(t, B) of the mimicking
Markov chain in terms of the risk factor transform φ, its partial derivative ∂zφ, and the
parameters βij . The transform φ takes the well-known exponentially affine form

(18) φ(t, u, z,Xi) = exp(ai(t, u, z) + bi(t, u, z)Xi
0),

where, for γi =
√

κ2i + 2σ2
i u, the coefficient functions

ai(t, u, z) =
2u(1 − exp(γit))− z(γi + κi + (γi − κi) exp(γit))

σ2
i z(exp(γit)− 1) + γi − κi + (γi + κi) exp(γit)

,(19)

bi(t, u, z) =
2κiθi
σ2
i

log
2γi exp((γi + κi)t/2)

σ2
i z(exp(γit)− 1) + γi − κi + (γi + κi) exp(γit)

.(20)

The derivative ∂zφ of φ is also available in closed form. Proposition 5.5 then implies, for
Bi = 0 and evaluating γi at u = 1, the formula

hi(t, B) =
4Xi

0γ
2
i exp(γit)

(γi − κi + (γi + κi) exp(γit))2
− θiκi

σ2
i

(κ2i − γ2i )(exp(γit)− 1)

γi − κi + (γi + κi) exp(γit)
+
∑
j �=i

βijBj.

With parameter values selected as explained above, the function hi(t, ·) is decreasing.
This suggests an adaptive rule for setting the bound J(k) and the interval length K(k) in
step 3 of Algorithm 4.1. The first candidate time S for Tk+1 is generated using H(Tk, k) =∑n

i=1 h
i(Tk,MTk

) as a bound, where the interval length is taken to be the time to the simu-
lation horizon. If that time is rejected, we generate the next candidate time using the value
H(S, k) as a bound, taking the interval length to be the remaining time to the simulation
horizon. The value H(S, k) is computed in any case for the acceptance test. We proceed
according to this rule until a candidate time is accepted.

6.3. Estimators. We contrast the estimators generated by the exact scheme with those
generated by the time-scaling method described in section 2.2. The time-scaling method
requires paths of the continuous-time stochastic processes

∫ t
0 λ

i
sds for i = 1, . . . , n, where

the λi follow jump-diffusion processes that are correlated through common jumps. We must
discretize the time interval and simulate the joint integral process dynamics on this discrete-
time grid. Since the joint law of the integrals is not known, we first simulate the joint
intensity dynamics on the discrete-time grid and then integrate. To generate the values of λi,
we generate the values of Xi by sampling from the noncentral chi-squared distribution that
describes the transition law of Xi, and add the value βij when another firm j defaults. While
the sampling from the chi-squared distribution leads to exact values of the Xi, it tends to
be more time-consuming than an alternative Euler scheme. On the other hand, the Euler
scheme introduces additional discretization bias because it does not facilitate exact sampling.
To analyze the trade-off between computation time and bias, we implement both the exact
sampling from the chi-squared transition law and the modified Euler scheme in [39, (3.66)].

To compare the estimators generated by the different simulation methods, we consider the

root mean square error (RMSE), given by
√

SE2 +Bias2. The standard error SE is estimated
as the sample standard deviation of the simulation output divided by the square root of the
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Table 2
Simulation results under the self-exciting model (16)–(17) for E[(C1 − 3)+]. “Time-scaling (χ2)” refers

to the time-scaling method using the exact sampling of the values of Xi from the noncentral transition law.
“Time-scaling (Euler)” refers to the time-scaling method using the modified Euler scheme to sample the Xi.
The true value was estimated to be 1.0145, based on 5,000,000 trials with the exact scheme.

Method Trials Steps Estimate Bias SE RMSE Time (min)

5K N/A 1.0394 0 0.0239 0.0239 0.10
7.5K N/A 1.0247 0 0.0193 0.0193 0.15

Exact 10K N/A 0.9854 0 0.0165 0.0165 0.20
A/R 50K N/A 1.0161 0 0.0073 0.0073 1.01

100K N/A 1.0083 0 0.0052 0.0052 2.03
1M N/A 1.0138 0 0.0016 0.0016 20.29

1K 32 0.8744 0.0893 0.0650 0.1104 21.20
Time- 2.5K 50 0.9400 0.0796 0.0420 0.0899 85.30
scaling 5K 71 1.0538 0.0735 0.0246 0.0775 257.30
(χ2) 7.5K 87 1.0873 0.0697 0.0199 0.0725 483.50

10K 100 1.0805 0.0660 0.0171 0.0682 767.60

1K 32 0.8570 0.2094 0.0474 0.2147 4.83
Time- 2.5K 50 0.8448 0.1763 0.0277 0.1785 12.27
scaling 5K 71 0.9254 0.1324 0.0232 0.1344 36.57
(Euler) 7.5K 87 0.9394 0.1070 0.0193 0.1087 86.54

10K 100 0.9354 0.0860 0.0186 0.0880 194.27

number of trials. The bias is given by the difference between the expectation of the estimator
and the true value. The bias of the estimator generated by the exact method is zero. The bias
of the estimator generated by the time-scaling method with a specific number of time steps
can be estimated using a large number of trials to estimate the expectation of the estimator,
and then taking the difference with the true value, estimated using the exact method with a
large number of trials.

We estimate the (undiscounted) value of a call E[(CT −K)+] on the default count at T .
This option is a basic building block for the valuation of portfolio credit derivatives; see [31].
We take the number of reference names n = 100, which is the standard portfolio size for many
traded portfolio derivatives, T = 1 year, and K = 3. Table 2 reports the simulation results.
The bias in the table is estimated using 50,000 trials. The number of discretization time steps
in the time-scaling method is set equal to the square-root of the number of simulation trials.8

The experiments were performed on a desktop PC with an Intel 3.4 GHz processor and 1 GB
of RAM, running Windows XP Professional. The methods were implemented in Matlab.

Figure 1, which shows the convergence of the RMSE graphically, indicates the substan-
tial performance advantages of the exact method. The exact method requires the shortest
computation time to achieve a given accuracy. It also has the fastest convergence rate. This
rate is of order O(1/

√
t), where t is the computation time, the optimal rate of unbiased

schemes.

8It is unclear how to allocate the computational budget of the time-scaling method between the number of
time steps and the number of replications. The square-root rule is adopted from [9] and others. It is motivated
by the results in [26], which show that for first order methods it is asymptotically optimal to increase the
number of time steps in a manner proportional to the square root of the number of replications. However, the
optimal constant of proportionality is not known.
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Figure 1. Convergence of the RMSEs of the exact A/R and time-scaling methods under the self-exciting
model (16)–(17) for E[(C1 − 3)+].

There is an alternative exact scheme for the model (16)–(17). This scheme is based on the
repeated application of the first-to-default time and identity simulation algorithm developed by
[24]. This scheme requires greater computational effort than the A/R scheme, which is easily
explained in case n = 2. In the first-to-default scheme, one starts by generating T1 = τ1 ∧ τ2

by the inverse transform method from P (T1 > t) = φ(t, 1, 0,X1)φ(t, 1, 0,X2). Given T1,
one then samples the identity of the first defaulter from the discrete distribution defined by
γ(T1, i)/(γ(T1, 1) + γ(T1, 2)) for i = 1, 2. Here γ(t, 1) = −φ(t, 1, 0,X2)∂zφ(t, 1, z,X

1)|z=0; a
similar expression holds for γ(t, 2). This second step is similar to step 5 in Algorithm 4.1.
In a third step, one draws the second default time T2. To do this, note that, given FT1 , the
time T2 − T1 is equal in law to the first jump time of a doubly stochastic Poisson process
started at T1, with F-intensity (X2

t + β21)t≥T1 (this assumes T1 = τ1). Thus one needs to

sample from P (T2 − T1 > t | FT1) = E(exp(− ∫ T1+t
T1

(X2
s + β21)ds) |X2

T1
, T1). This can be

done by the inverse method, once X2
T1

is drawn from the conditional distribution of X2
t given

T1 = τ1 = t. However, as shown by [24], this conditional distribution is known only in terms
of its transform, making it relatively costly to sample from it. The A/R scheme avoids this
third step and also tends to require less computational effort to generate the Ti.

6.4. Variance reduction. We demonstrate the effectiveness of the S/M Algorithm 4.2 for
variance reduction under the self-exciting model (16)–(17). We estimate P (CT = k) for the
test portfolio described in section 6.1. To measure the variance reduction offered by Algorithm
4.2, we compute variance ratios for each of several values of k. Each variance ratio is calculated
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by estimating the variance of the estimator generated by the plain A/R Algorithm 4.1 and
dividing it by the estimated variance of the estimator generated by Algorithm 4.2. The
variance is estimated by the sample variance of the simulation output.9

To run Algorithm 4.2, we need to select the number of particles R, the number of selections
m performed during [0, T ], and the parameter δ of the selection probability (11). The number
of particles R is analogous to the number of trials in a standard simulation. In practice, this
quantity is determined by the desired accuracy of the estimator, or the available computa-
tional budget, for fixed m. However, the theoretically optimal allocation of the computational
budget between m and R has not yet been worked out to our knowledge. Therefore, we
will illustrate the influence of R and m on the estimator through experiments, treating each
variable separately.

Also the choice of δ is difficult. Intuitively, we want to pick δ so as to minimize the relative
error of the estimator, given by the variance of the estimator divided by the product of the
estimator and the square root of the number of simulation trials. Again, the theoretically
optimal choice of δ has not yet been worked out, to our knowledge. Therefore, we approximate
the optimal δ through experiments. Specifically, we discretize a range of values of δ, run the
simulation for each grid value using a small number of particles, and select the value of δ that
produces the smallest relative error. The δ so chosen increases with the target event count k,
because the selections must place greater weight on particles with transitions, the smaller the
probability of interest.

Table 3 shows the results for T = 1, m = 4 selections, and R = 10,000 particles. Table
4 reports the results when only R = 1,000 particles are used. To provide a meaningful
comparison between the two methods, the number of trials in the estimation using the plain
A/R Algorithm 4.1 is chosen such that the total time required to estimate P (CT = k) is
approximately the same as that required by the S/M Algorithm 4.2 for the given R and m
(excluding the fixed time it takes to select δ). We see that the smaller the probability, the
larger the variance ratio. Further, for sufficiently small probabilities, the smaller the number
of particles R, the higher the variance ratio. Figure 2 graphs the estimated probabilities
P (C1 = k) reported in Tables 3 and 4. It indicates the relative benefits of the S/M scheme
for each value of R.

Next we analyze the role of the number of selections m. Figure 3 graphs the estimated
variance ratios for each of several values of m, fixing the number of particles R = 1,000.
The variance ratio increases with the number of selections if the probability of interest is
only moderately small. For smaller event probabilities, this may not be the case anymore.
The intuition is as follows. The computation time required by the S/M scheme increases
with m. The increase in computation time is relatively larger the larger k becomes, i.e., the
smaller the probability of interest. Now, by the design of our experiments, the number of
trials that can be completed by the plain A/R scheme increases with m and k, so that the
absolute variance of the corresponding estimator may decrease faster than the variance of the
estimator generated by the S/M scheme. However, note that, for a fixed number of particles,
increasing m always reduces the variance of the simulation estimator in absolute terms. This

9In the case of Algorithm 4.2, the sample variance is a biased estimator of the variance. This is because
the samples are not independent due to the selections performed in the scheme.
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Table 3
Variance reduction ratios for estimating P (C1 = k) under the self-exciting model (16)–(17). In the S/M

Algorithm 4.2, m = 4, and δ is chosen such that the relative error of the simulation estimator is minimized.
The number of trials in the estimation using the plain A/R Algorithm 4.1 is chosen such that the total time
required to estimate P (CT = k) is approximately the same as that required by the S/M scheme, excluding the
fixed time it takes to select δ. (*) indicates that the event of interest was not observed in any of the trials.

S/M scheme Plain A/R scheme

k δ Particles Estimate SE Trials Estimate VarRatio

8 0.55 10,000 0.02364596 0.00096165 15,806 0.02240 2.54
9 0.7 10,000 0.01253552 0.00065596 16,452 0.01349 3.08
10 0.75 10,000 0.00587429 0.00044357 16,452 0.00626 3.16
11 0.8 10,000 0.00337833 0.00020285 17,742 0.00293 7.10
12 0.8 10,000 0.00162340 0.00014706 17,742 0.00220 10.14
13 0.85 10,000 0.00068818 0.00007336 18,065 0.00066 12.33
14 0.85 10,000 0.00029433 0.00002062 18,387 0.00027 63.88
15 1.05 10,000 0.00016310 0.00001609 19,032 0.00011 121.80
16 1.05 10,000 0.00006790 0.00000471 19,032 0.00005 236.92
17 1.15 10,000 0.00002597 0.00000352 19,355 (*)
18 1.15 10,000 0.00000970 0.00000171 19,355 (*)
19 1.15 10,000 0.00000500 0.00000054 19,355 (*)
20 1.15 10,000 0.00000203 0.00000020 19,355 (*)
21 1.15 10,000 0.00000106 0.00000008 19,355 (*)
22 1.3 10,000 0.00000039 0.00000005 19,677 (*)

Table 4
Variance reduction ratios for estimating P (C1 = k) under the self-exciting model (16)–(17). In the S/M

Algorithm 4.2, m = 4, and δ is chosen such that the relative error of the simulation estimator is minimized.
The number of trials in the estimation using the plain A/R Algorithm 4.1 is chosen such that the total time
required to estimate P (C1 = k) is approximately the same as that required by the S/M scheme, excluding the
fixed time it takes to select δ. (*) indicates that the event of interest was not observed in any of the trials.

S/M scheme Plain A/R scheme

k δ Particles Estimate SE Trials Estimate VarRatio

8 0.55 1,000 0.02433732 0.00310121 1,343 0.02010 2.05
9 0.7 1,000 0.01110821 0.00156666 1,407 0.00498 2.02
10 0.75 1,000 0.00738774 0.00108022 1,439 0.00625 5.33
11 0.8 1,000 0.00340511 0.00083321 1,600 0.00500 7.16
12 0.8 1,000 0.00156213 0.00029693 1,600 0.00125 14.16
13 0.85 1,000 0.00073482 0.00019565 1,600 0.00125 32.62
14 0.85 1,000 0.00024352 0.00005751 1,600 0.00188 565.20
15 1.05 1,000 0.00009061 0.00001921 1,726 0.00058 1562.75
16 1.05 1,000 0.00009384 0.00001385 1,759 0.00057 2951.99
17 1.15 1,000 0.00006344 0.00000372 1,790 (*)
18 1.15 1,000 0.00002131 0.00000152 1,823 (*)
19 1.15 1,000 0.00000971 0.00000091 1,887 (*)
20 1.15 1,000 0.00000041 0.00000014 1,887 (*)
21 1.15 1,000 0.00000082 0.00000008 1,918 (*)
22 1.3 1,000 0.00000031 0.00000004 1,983 (*)

is indicated by Figure 4, which graphs the estimated probabilities P (C1 = k) for each of
several values of m, for fixed R = 1,000.
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Figure 2. Estimated probabilities P (C1 = k) under the self-exciting model (16)–(17) for each of several
values of R. The number of selections m = 4.

Figure 3. Estimated variance reduction ratios under the self-exciting model (16)–(17) for each of several
values of m. The number of particles R = 1,000.
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Figure 4. Estimated probabilities P (C1 = k) under the self-exciting model (16)–(17) for each of several
values of m. The number of particles R = 1,000.

6.5. Potential extensions. There are several potential variations and extensions of the
formulation (16)–(17). As explained in section 5.3, the additive specification of the feedback
term in the intensity dynamics (16) could be replaced by a multiplicative specification. This
would lead to different self-exciting dynamics and a greater degree of flexibility in designing
the feedback behavior, without reducing the analyticity of hi. The Feller diffusion risk factor
dynamics (17) could be extended to include a compound Poisson jump term. This extension
would allow for discontinuous movements of the intensity between defaults, while requiring
only a minor modification of the coefficient functions (20) and (19) based on the results of
[25]. The rate hi would still take a closed form. More generally, the Feller diffusion dynamics
(17) could be replaced by more general affine jump-diffusion dynamics. The transform (18)
would remain exponentially affine in the state, while the coefficient functions would be given
as solutions to a system of ODEs.

7. Conclusion. This paper develops a simulation method for dynamic intensity-based
models of correlated default risk. The method generates unbiased estimators of credit port-
folio loss distributions, risk measures, and prices of derivative securities that are referenced
on a portfolio of defaultable assets. It reduces the simulation problem to one of a simple
Markov chain expectation. This problem can be treated with exact methods. An overarching
selection/mutation scheme reduces variance in rare-event situations. The method is widely
applicable to many intensity models in the literature. Numerical experiments demonstrate its
effectiveness and highlight its advantages over alternative methods.
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The simulation method has potential applications in other areas that deal with the arrival
of correlated events. These include, in particular, applications in reliability, where intensity-
based models have long been used to analyze the reliability of systems of interdependent
components whose failure times are correlated.

Appendix. Proofs.
Proof of Proposition 3.1. For all B ∈ {0, 1}n and t > 0, we have

I(Nt = B) = I(N0 = B) +
∑

0<s≤t

[
I(Ns = B)− I(Ns− = B)

]

= I(N0 = B) +
n∑

i=1

∫ t

0

[
I(Ns = B)− I(Ns− = B)

]
dN i

s

= I(N0 = B) +

n∑
i=1

∫ t

0

[
I(Ns− + ei = B)I(Bi = 1)− I(Ns− = B)

]
dN i

s,(21)

where ei is an n-vector with ith component equal to 1 and the rest equal to 0. Next we recall
the Doob–Meyer decomposition (1) of the submartingale N i into the sum of a martingale M i

and a process
∫ ·
0 λ

i
s(1−N i

s)ds. Since the integrand in the integral∫ t

0

[
I(Ns− + ei = B)I(Bi = 1)− I(Ns− = B)

]
dM i

s

is bounded and predictable, the integral defines a martingale with initial value equal to zero.
Thus, after we take expectation on both sides of (21) and apply Fubini’s theorem, we obtain

P (Nt = B) = P (N0 = B)+

n∑
i=1

∫ t

0
E
([
I(Ns = B− ei)I(Bi = 1)− I(Ns = B)

]
λi
s(1−N i

s)
)
ds.

Now we differentiate both sides of this equation with respect to t. By the definition of the
deterministic functions hi(t, B), we obtain

∂tP (Nt = B) =

n∑
i=1

I(Bi = 1)P (Nt = B − ei)hi(t, B − ei)−
n∑

i=1

P (Nt = B)hi(t, B).

But this equation coincides with the backward Kolmogorov equation,

∂tP (Mt = B) =

n∑
i=1

I(Bi = 1)P (Mt = B − ei)hi(t, B − ei)−
n∑

i=1

P (Mt = B)hi(t, B),

which describes the time evolution of the distribution of the Markov chain M with transition
rates hi(t, B). Thus, the probabilities P (Mt = B) and P (Nt = B) satisfy the same ODE.
Since the solution to this ODE is unique and M0 = N0 = 0n by construction, we conclude
that Mt and Nt must have the same distribution for all t ≥ 0.

Proof of Proposition 5.1. By the independence of the random variables τ i, we get

hi(t, B) = E(Xi
t (1−N i

t ) |N i
t = Bi) = (1−Bi)E(Xi

t | τ i > t).
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By Bayes’ formula and iterated expectations,

(22) E(Xi
t | τ i > t) =

E(Xi
tI(τ

i > t))

P (τ i > t)
=

E(Xi
tP (τ i > t | (Xi

s)s≤t))

E(P (τ i > t | (Xi
s)s≤t))

.

The doubly stochastic property of τ i implies that

P (τ i > t | (Xi
s)s≤t) = exp

(
−
∫ t

0
Xi

sds

)
,

whose expectation equals φ(t, 1, 0,Xi). This gives the denominator of the right-hand side of
(22). For the numerator,

E(Xi
tP (τ i > t | (Xi

s)s≤t)) = E

(
Xi

t exp

(
−
∫ t

0
Xi

sds

))
= −∂zφ(t, 1, z,X

i)|z=0,

and this completes the proof.

Proof of Proposition 5.2. By the independence of the idiosyncratic factors Xi,

hi(t, B) = (1−Bi)E(Xi
t | τ i > t) + (1−Bi)αiE(Yt |Nt = B),

where the first summand is treated as in the proof of Proposition 5.1. It remains to calculate
the second summand. By Bayes’ formula and iterated expectations,

E(Yt |Nt = B) =
E(YtI(Nt = B))

P (Nt = B)
=

E(YtP (Nt = B | (Ys)s≤t))

E(P (Nt = B | (Ys)s≤t))
.

Given a path of the common factor Y , the intensities λi are independent of one another, and
so are the components N i of the process N . Thus,

P (Nt = B | (Ys)s≤t) =

n∏
j=1

P (N j
t = Bj | (Ys)s≤t)

=

n∏
j=1

[
Bj − (2Bj − 1)P (τ j > t | (Ys)s≤t)

]
.(23)

By iterated expectations, the doubly stochastic property, and the independence of the pro-
cesses Y and Xj , we get

P (τ j > t | (Ys)s≤t) = E

[
exp

(
−
∫ t

0
(αjYs +Xj

s )ds

) ∣∣∣ (Ys)s≤t

]

= exp

(
−αj

∫ t

0
Ysds

)
E

[
exp

(
−
∫ t

0
Xj

sds

)]

= exp

(
−αj

∫ t

0
Ysds

)
φ(t, 1, 0,Xj).(24)
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Now, expanding the n-fold product on the right-hand side of (23) and using (24), we see that
there are deterministic functions ck(t) and constants bk satisfying (14) such that

P (Nt = B | (Ys)s≤t) =

2n−1∑
k=0

ck(t) exp

(
−bk

∫ t

0
Ysds

)
.

Taking expectation on both sides of this equation leads to

P (Nt = B) =

2n−1∑
k=0

ck(t)φ(t, bk, 0, Y ).

A similar argument is applied to E(YtP (Nt = B | (Ys)s≤t)).
Proof of Proposition 5.3. Apply the argument used in the proof of Proposition 5.2.
Proof of Proposition 5.4. For clarity in the exposition, we consider the case q = 2 and

suppose that the observation filtration F is the right-continuous and complete filtration gen-
erated by the processes X1, . . . ,Xn, N , and Y1. Thus, the common factor Y1 is observable
(adapted to the filtration F), while the common factor Y2 is a frailty (not adapted to F). An
intensity λi of N i relative to the observation filtration F is given by the optional projection
(see [61, Chapter VI, p. 375]) of the complete information intensity Xi + (αi

1, α
i
2) · (Y1, Y2)

onto F. Since Xi and Y1 are adapted to F, we have

λi
t = Xi

t + αi
1Y1t + αi

2E(Y2t | Ft)

almost surely, for each t ≥ 0. Then

hi(t, B) = (1−Bi)
{
E(Xi

t |Nt = B) + αi
1E(Y1t |Nt = B) + αi

2E(Ut |Nt = B)
}
,

where Ut = E(Y2t | Ft). Since the Xi are independent of one another, the first expectation
on the right-hand side of this equation can be analyzed as in the proof of Proposition 5.1.
The second expectation is treated as in the proof of Proposition 5.2, by conditioning on the
path of Y = (Y1, Y2) over [0, t] and using the doubly stochastic property of N in the complete
information filtration. The third expectation can be calculated by an analogous conditioning
argument by noting that

E(Ut |Nt = B) = E(E(Y2t | Ft) |Nt = B) = E(Y2t |Nt = B)

since σ(Nt) ⊂ Ft. The sum of these three expectations gives (15) for q = 2.
Proof of Proposition 5.5. We have

hi(t, B) = (1−Bi){E(Xi
t |Nt = B) + ci(t, B)}.

To calculate the conditional expectation, we apply a measure change argument developed by
[17]. For clarity in the exposition, we consider the case n = 2 and take ci(·, 02) = 0. The
general case can be treated by the same argument. We have

E(Xi
t |Nt = 02) =

E(Xi
tI(Nt = 02))

P (Nt = 02)
=

E∗(Xi
t exp(−

∫ t
0 (λ

1
s + λ2

s)ds))

E∗(exp(− ∫ t
0 (λ

1
s + λ2

s)ds))
,
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where E∗ denotes the expectation operator relative to the absolutely continuous probability
measure P ∗ on Ft defined by the density

dP ∗

dP
= I(Nt = 02) exp

(∫ t

0
(λ1

s + λ2
s)ds)

)
.

The condition φ(t,−1, 0,Xi) < ∞ guarantees that P ∗ is well-defined. Under P ∗, the event
{Nt = 02} has measure 1. Girsanov’s theorem for absolutely continuous measure changes as
in [61, Chapter III.8, Theorem 41] along with Lévy’s theorem imply that the standard P -
Brownian motion W driving the Xi’s remains a standard Brownian motion under P ∗ on [0, t],
relative to the filtration F augmented by the P ∗-null sets. The intensity of the point process J
remains γ(t,Xt) relative to P ∗ and the augmented filtration, because the components of J do
not have jumps in common with the components of N almost surely. Therefore, the dynamics
of the Xi are invariant under the measure change. Taking i = 1, it follows that

E∗
(
X1

t exp

(
−
∫ t

0
(λ1

s + λ2
s)ds

))
= E

(
X1

t exp

(
−
∫ t

0
X1

s ds

))
E

(
exp

(
−
∫ t

0
X2

s ds

))
= −∂zφ(t, 1, z,X

1)|z=0φ(t, 1, 0,X
2).

An analogous expression holds for i = 2. Similarly,

E∗
(
exp

(
−
∫ t

0
(λ1

s + λ2
s)ds

))
= φ(t, 1, z,X1)φ(t, 1, 0,X2),

implying that

(25) E(Xi
t |Nt = 02) = −∂zφ(t, 1, z,X

i)|z=0

φ(t, 1, 0,Xi)
.

Next, we use a similar argument to calculate

E(Xi
t |N i

t = 0) =
E(Xi

tI(N
i
t = 0))

P (N i
t = 0)

=
Ei(Xi

t exp(−
∫ t
0 λ

i
sds))

Ei(exp(− ∫ t
0 λ

i
sds))

,

where Ei denotes the expectation operator relative to the absolutely continuous probability
measure P i on Ft defined by the density

dP i

dP
= I(N i

t = 0) exp

(∫ t

0
λi
sds

)
.

Under P i, the event {N i
t = 0} has measure 1. As reasoned in the case of P ∗, Girsanov’s the-

orem implies that the dynamics of (X1,X2) are invariant under the measure change. Taking
i = 1 and recalling that c1(s,Ns) takes the form g1(s,N2

s ),

E1

(
X1

t exp

(
−
∫ t

0
λ1
sds

))
= E1

(
X1

t exp

(
−
∫ t

0
X1

s ds−
∫ t

0
c1(s,Ns)ds

))

= −∂zφ(t, 1, z,X
1)|z=0E

1

(
exp

(
−
∫ t

0
g1(s,N2

s )ds

))
.
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An analogous expression holds for i = 2. Applying a similar argument to the expectation
Ei(exp(− ∫ t

0 λ
i
sds)), we find that E(Xi

t |N i
t = 0) = E(Xi

t |Nt = 02). Bayes’ rule, along with
this relation, then shows that also E(X1

t |Nt = (0, 1)) = E(X1
t |N1

t = 0) and E(X2
t |Nt =

(1, 0)) = E(X2
t |N2

t = 0). Thus, we have shown that

E(Xi
t |Nt = B) = −∂zφ(t, 1, z,X

i)|z=0

φ(t, 1, 0,Xi)

for all B ∈ {0, 1}2 with Bi = 0.
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