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Abstract. In this paper a new generation of particle filters for nonlinear dis-
crete time processes is proposed, based on convolution kernel probability density
estimation. The main advantage of this approach is to be free of the limitations
encountered by the current particle filters when the likelihood of the observation
variable is analytically unknown or when the observation noise is null or too small.
To illustrate this convolution kernel approach the counterparts of the well-known se-
quential importance sampling (SIS) and sequential importance sampling-resampling
(SIS-R) filters are considered and their stochastic convergence to the optimal filter
under different modes are proved. Their good behaviour with respect to that of these
filters is shown on several simulated case studies.
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1. Introduction

Nonlinear filtering, i.e estimating the distribution of a dynamical sys-
tem state variables xt conditional on the observations of state-depen-
dent variables yt up to time t, is a real problem in many fields of
engineering. Since the development of the Kalman filter in 1960 for the
linear case, a wide variety of approximate methods were proposed to
deal with the nonlinear one. The most famous and the most widely
used by the engineers is the extended Kalman filter (EKF). For more
details about the EKF see (Jazwinski, 1970). But the EKF lacks of the-
orical support and often presents troubles in practice. Some improve-
ments, a few of which are presented in (Chen, 1993), were proposed
as generalised Kalman filters but without overcoming these drawbacks.
Investigation in the field of nonlinear filtering has thus remained very
active.
Among the alternatives to the EKF, the Monte Carlo approaches of-
fer practical and theorical results. The corresponding state of the art
is reviewed by (Liu & Chen, 1998) and (Doucet, 1998). The Monte
Carlo filters are divided into two families : the first one also the oldest,
includes the filters based on the sequential importance sampling (SIS)
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algorithm and the second the filters based on the sequential importance
sampling resampling (SIS-R) algorithm. The principle of Monte Carlo
filter based on SIS was developped in the early 70’s, by (Handschin,
1970) and by (Akashi & al., 1975) but due to the limitations of the pro-
cessors of the time remained dormant until the 80’s when it was revived
by (Davis, 1981) and (Kitagawa, 1987). However, the SIS filters suffered
from divergence in long time. The new generation of Monte Carlo SIS-
R filters improved on this issue but did not completely overcome it.
The idea of introducing a resampling step in the SIS algorithm was
independently proposed by (Gordon & al., 1993) with “the boostrap
filter”, (Del Moral & al., 1992), (Del Moral, 1995) with “the Interact-
ing Particle Filter” (IPF) still one of the most performant filters, and
(Kitagawa, 1996). A lot of filters based on SIS-R were then developed.
A complete review of these works is presented in (Doucet & al., 2001).
The convergence of the IPF to the optimal filter is proved by (Del
Moral, 1998), (Del Moral & al., 2001) or (LeGland & Oudjane, 2004).
However, in spite of their theorical properties, the filters based on SIS-
R still present several drawbacks in practice. Systems with non-noisy
observations are not supported by these filters because the density of
the noise is used to weight the particles. Even too small observation
noise can induce divergence of the filters. Moreover, the problem of
divergence in long time has not completely disappeared. According to
(Hrzeler & Knsch, 1998) it is caused by the discrete nature of the
distribution approximations produced by the SIS-R filters. A step of
regularization on the state variable distribution was then added into
the SIS-R algorithm successively by (Hrzeler & Knsch, 1998), (Oudjane,
2000), ( Warnes, 2001) and (Musso & al., 2001), in order to produce a
probability density as approximation of the optimal filter. Actually, the
convolution kernels are used to stabilize signal to noise, this idea has
been introduced and analyzed in some details in (Del Moral & Miclo,
2000) and in (LeGland & Oudjane, 2003). Practically, the addition of
this regularization step improves the behavior of the filters and the
theorical properties are kept. See (Oudjane, 2000) or (LeGland & Oud-
jane, 2004) for the convergence of the resulting Regularized Interacted
Particle Filter (RIPF) using convolution kernel regularization.

However these improvements do not relieve definitively from practi-
cal difficulties in case of too large (and even too small) signal-to-noise
ratio. Moreover, these regularized filters still rely on the analytical
availability of the observation likelihood, a classic Monte-Carlo filter
assumption not frequently met in real situations. Only (Del Moral &
al., 2001), (Del Moral & Jacod, 2001) considered a context in which this
likelihood is not accessible and used a regularization of the observation
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distribution .

The approach we propose is based on convolution kernel density
estimation and implicit regularization of both state and observation
variable distributions, and is free of their analytical knowledge. Only
the capability of simulating the state and observation noises is required.
The problem of null or small observation noise is also overcome. The
theoretical properties of these new particle filters rely entirely upon the
kernel probability density estimation theory and not upon that of the
current particle filter theory, even if from a certain point of view these
filters can be interpreted as generalization of that of (Del Moral & al.,
2001).

The paper is organized as follows. The next section is devoted to
recalling the Monte carlo filtering context. A transition from the par-
ticle filters to the convolution filters is presented in Section 3. The
algorithmic and theoretical properties of the basic Convolution Filter
(CF) are presented in Section 4 and that of the Resampled-Convolution
Filter (R-CF) in Section 5. In Section 6 the behaviour of our convolution
filters are compared with that of their counterpart interacting particle
filters and Monte Carlo filter, on simulated case studies in different noise
situations. Finally, results of kernel density estimation theory useful to
the study of the convergence properties of our convolution filters are
gathered in Appendix A and the proofs of these properties themselves
are presented in Appendix B.

2. The filtering context

Consider a general discrete dynamical system
{

xt = ft(xt−1, εt)
yt = ht(xt, ηt)

(1)

in which xt ∈ IRd and yt ∈ IRq are the unobserved state variable
and observed variable respectively. εt and ηt are the independent state
noise and observation noise respectively. ft and ht are two known Borel
measurable functions, possibly time-varying.
The filtering problem is to estimate the distribution πt of xt conditional
on the past observations y1, . . . , yt, the so called optimal filter. When
the density function of πt exists it will be noted p(xt|y1, . . . , yt) or
p(xt|y1:t) or simply pt. Of course the filtering problem only exists when
the functions ht are not bijective. All the filters are thus developed to
deal with such a context, and generally the functions ht are not even
assumed injective.
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To build up Monte Carlo filters, the following hypotheses are generally
assumed:

− the distribution, π0, of the initial state variable x0, is known.

− the distributions of the noises εt and ηt, are known for all t ∈ IN.

The density of ηt plays a crucial role for Monte Carlo filters since it is
used to weight the generated particles. Let us illustrate this point by
recalling briefly the Interacting Particle Filter (IPF) algorithm, one of
our filters of reference in this paper:

− For t = 0
generation of n particles : (x̃1

0, · · · , x̃n
0 ) i.i.d. ∼ π0

Estimation of π0 : πn
0 =

∑n
i=1 ωi

0δx̃i
0

(where ωi
0 = 1

n ; i = 1, · · · , n).

− For t ≥ 1
(i) Sampling step : (x̃1

t−1, · · · , x̃n
t−1) ∼ πn

t−1.

(ii) Evolving step : x̃i
t|t−1 ∼ ft(x̃

i
t−1, .)

(iii) Weighting step : ωi
t = Ψt(x̃

i
t|t−1)/(

∑n
i=1 Ψt(x̃

i
t|t−1))

(iv) Approximation step : πn
t =

∑n
i=1 ωi

tδx̃i
t|t−1

,

with δx̃i
t|t−1

Dirac measure.

The weight ωi
t of each particle is given by the likelihood function

Ψt(x) = p(yt|x). The observations yt thus operate the filter through
the likelihood function which is assumed to exist and to be known.
This assumption is rather restricting in practice. Moreover let us note
that it rules out the non-noisy case and can also cause trouble when
the noise ηt is too small and also when the noise is non-additive as in
the general system (1).
These severe drawbacks are circumvented in the approach proposed
in this paper which as will be seen shortly, uses convolution kernels to
weight the generated particles, with furthermore interesting theoretical
and practical benefits.
As a transition let us see beforehand a possible kernel-based improve-
ment of the particle filters to deal with the unknown likelihood case.
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3. From the Particle Filter to the Convolution Filter

We shall illustrate this transition through the well-known IPF particle
filter of (Del Moral, 1995) but it could have been performed with any
filter built up from the SIS or SIS-R principle.
Suppose that a limited knowledge of the distribution of ηt prevents
access to the likelihood function Ψt(x) = p(yt|x) and only permits to
simulate observation yt from a given xt through model (1).
Let Kh(.) be a Parzen-Rosenblatt kernel (see appendix A). In order
to clarify the presentation, we just recall that, for all the paper, a
kernel K is a bounded, positive, symmetrical application from IRd →
IR, such that

∫

Kdλ = 1, where λ is the Lebesgue measure. Using
kernel estimation theory we can then consistently approximate Ψt, by
simulating observations, and use this approximation in place of the true
function in the previous IPF algorithm. This amounts to replace steps
(iii) and (iv) by

(iii)’ Weighting step

For (i=1:n)
Stage 1

Generation of N observations:
ỹ1

t , . . . , ỹ
N
t ∼ ht(x̃

i
t|t−1, .)

Stage 2
Approximation of Ψt:

p̂N (yt|x̃i
t|t−1) = 1

Nhq

∑N
j=1 Kh(yt − ỹj

t )

Approximation of the weight of x̃i
t|t−1:

ωi
t = p̂N (yt|x̃i

t|t−1)

Normalization of the weights ω̂i
t = ωi

t/(
∑n

i=1 ωi
t)

(iv) Approximation step π̂n
t =

∑n
i=1 ω̂i

tδx̃i
t|t−1

.

Theorems A.1 and A.2 of Appendix A give general conditions ensuring
convergence of p̂N (yt|x̃i

t|t−1) to Ψt(x̃
i
t|t−1) as N tends to ∞. But the

interest of this approximation (and the possible recovering of the IPF
properties) is impaired by the high computing cost induced at each
step (N × n random variable generations).

The convolution kernel approach we propose to remedy to the the-
oretical and practical limitations of the particle filters do not suffer
from this computing handicap. It uses a joint (xt, yt) density estimation
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which does not demand extra N × n observation simulations at each
step. Moreover the kernel density estimation theory allows a complete
original theoretical study of the convergence properties of these new
filters.
We shall introduce first the Convolution Filter, i.e. the convolution
counterpart of the basic particle filter.

4. The Convolution Filter (CF)

The density of the optimal filter is defined by

p(xt|y1:t) =
pXY (xt, y1:t)

pY (y1:t)
(2)

where pXY (xt, y1:t) and pY (y1:t) are the (xt, y1:t) joint density and
the marginal density of y1:t, respectively. For all the y1:t such that
pY (y1:t) = 0, we use the convention p(xt|y1:t) ≡ 0.
Let zt = (xt, y1:t).
Assumptions:

− the distribution, π0, of the initial state variable x0, is known.

− the simulation of the noise variables εt and ηt according to their
true distributions is possible for all t ∈ IN.

− there exists a probability measure µt such that zt ∼ µt, for all t.

− there exists a probability measure νt such that y1:t ∼ νt, for all t.

4.1. Kernel estimation of the optimal filter density

Let x̃i
0 (i = 1, · · · , n) be generated according to π0. For i = 1, . . . , n :

starting from x̃i
0 a recursive simulation of system (1) t times succes-

sively, leads to z̃i
t = (x̃i

t, ỹ
i
1:t) ∼ µt.

Empirical estimates of the measures µt and νt are given by

µn
t =

1

n

n
∑

i=1

δz̃i
t

and νn
t =

1

n

n
∑

i=1

δỹi
1:t

where δz̃i
t

and δỹi
1:t

are Dirac measures. Kernel estimates pn
XY and pn

Y

of the densities pXY and pY are then obtained by convolution of these
empirical measures with appropriate kernels:
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pn
XY (zt) = Kz

hn
∗ µn

t (zt) = 1
n

∑n
i=1 Kz

hn
(zt − z̃i

t)

= 1
n

∑n
i=1 Kx

hn
(xt − x̃i

t)K
ȳ
hn

(y1:t − ỹi
1:t)

and for pY

pn
Y (y1:t) = K ȳ

hn
∗ νn

t (y1:t) =
1

n

n
∑

i=1

K ȳ
hn

(y1:t − ỹi
1:t).

in which Kz
hn

, Kx
hn

and Ky
hn

are Parzen-Rosenblatt kernels of appro-

priate dimensions and K ȳ
hn

(y1:t − ỹi
1:t) = Πt

j=1K
y
hn

(yj − ỹi
j).

An estimate of the density of the optimal filter pt(xt|y1:t) is then given
by:

pn(xt|y1:t) =
pn

XY (zt)

pn
Y (y1:t)

=

∑n
i=1 Kz

hn
(zt − z̃i

t)
∑n

i=1 K ȳ
hn

(y1:t − ỹi
1:t)

=

∑n
i=1 Kx

hn
(xt − x̃i

t)K
ȳ
hn

(y1:t − ỹi
1:t)

∑n
i=1 K ȳ

hn
(y1:t − ỹi

1:t)
. (3)

The basic convolution filter (CF) is defined by this density estimator.
As for the true densities, we use the convention : pn(xt|y1:t) ≡ 0 for all
the y1:t such that pn

Y (y1:t) = 0. Before giving convergence properties of
CF, let us see a simple recursive algorithm for its practical computing.

4.2. CF algorithm

− For t = 0

. generation of x̃1
0, . . . , x̃

n
0 ∼ π0.

. initialization of the weights : wi = 1 for (i = 1, · · · , n).

− For t ≥ 1

(i) evolving step : x̃i
t ∼ ft(x̃

i
t−1, .) and ỹi

t ∼ ht(x̃
i
t, .),

for (i = 1, · · · , n)

(ii) weight updating : wi = Ky
hn

(yt − ỹi
t) × wi,

for (i = 1, · · · , n)

(iii) estimation :

pn
t (xt|y1:t) =

∑n
i=1 wiKx

hn
(xt − x̃i

t)
∑n

i=1 wi
(4)
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4.3. Convergence properties of the CF filter

Several results of stochastic convergence and convergence rate are pro-
posed in the following for the CF filter. Proofs are given in Appendix
B.
Let us see first some results of ponctual convergence.

THEOREM 4.1 (quadratic mean convergence).
If Kx and K ȳ are Parzen-Rosenblatt kernels, if pY is positive and

continuous at y1:t and if pt(x|y1:t) is bounded then,

lim
n→∞

hn = 0

lim
n→∞

nhtq+d
n = ∞

}

=⇒ lim
n→∞

IE[pn
t (xt|y1:t) − pt(xt|y1:t)]

2 = 0

The expectation is defined with respect to all the simulated variables
(x̃i

t, ỹ
i
1:t)i=1,...,n, conditional on the observed variables y1:t.

THEOREM 4.2 (a.s. convergence ).
If Kx and K ȳ are positive, bounded, Parzen-Rosenblatt kernels, if pY

is positive and continuous at y1:t and if pXY (xt, y1:t) is continuous at
(xt, y1:t) then

limn→∞ hn = 0

limn→∞
nhtq+d

n

log n = ∞ =⇒ lim
n→∞

pn
t (xt|y1:t) = pt(xt|y1:t) a.s.

Results of L1-convergence are now provided which have no equivalent
for the usual (not regularized) particle filters since only the optimal
filter probability measure is estimated by these filters.

THEOREM 4.3 (a.s. L1-convergence ).
If Kx and K ȳ are positive, bounded, Parzen-Rosenblatt kernels, if pY is
positive and continuous at y1:t and if xt 7→ pXY (xt, y1:t) is continuous
for almost every xt, then

limn→∞ hn = 0

limn→∞
nhtq+d

n

log n = ∞ =⇒ lim
n→∞

∫

|pn
t (xt|y1:t) − pt(xt|y1:t)|dxt = 0 a.s

Proof: Theorem 4.2 and Glick’s theorem (A.3) ensure this result.

Let us complete this L1-norm result by a convergence rate result, This
necessitates to recall the notion of class of a kernel.

DEFINITION 4.1 (kernel of class s).
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Let s ≥ 1. A kernel of class s is a Borel measurable positive function
K which satisfies

(i) K is symmetric, K(−x) = K(x), x ∈ IRd.

(ii)
∫

IRd K = 1.

(iii)
∫

IRd xαK(x)dx = 0 for 1 ≤ α ≤ s − 1.

(iv)
∫

IRd |xα||K(x)|dx < ∞ for |α| = s.

where α ∈ INd, xα = xα1

1 . . . xαd

d and |α| = α1 + . . . + αd.

Note that, a kernel K of class s > 2 must necessary take negative
values. Although in this paper we only consider positive kernels, in non-
parametric estimation advanced works, (Devroye, 1987) for example,
kernels taking negative values are allowed.

Let W s,p(Ω) = {f ∈ Lp(Ω) |Dαf ∈ Lp(Ω), ∀α : |α| ≤ s} the
standard Sobolev space.

THEOREM 4.4 (rate of L1-convergence).
Suppose that pY ∈ W s,1(IRtq) and pXY ∈ W s,1(IRtq+d) and that K ȳ ∈
L1(IR

tq) and Kz ∈ L1(IR
tq+d) are kernels of class s ≥ 1. Assume

further that for some ε > 0, K = K ȳ,Kz, f = pY , pXY , δ = tq, tq +d,
we have

∫ ‖u‖δ+εK(u)2du < ∞ and
∫

(1 + ‖u‖δ+ε)f(u)du < ∞. Then,

IE
[

∫

|pn(xt|y1:t) − p(xt|y1:t)|dxt

]

= O(hs
n) + O(1/

√

nhtq+d
n )

The expectation is defined with respect to all the simulated random
variables (x̃i

t, ỹ
i
t) and the observation variables y1:t.

4.4. Comments

The assumptions limn→∞ nhtq+d
n = ∞ and limn→∞ hn = 0 used in the

first three theorems imply that the number n of generated particles
must grow with t to ensure convergence. This restricting condition
was already required by the Monte Carlo filters built from the SIS
algorithm. The same improvements can be considered. The first one is
to limit the memory of the filter to T time steps backwards. It is easy
to show that convergence results analogous to those just presented are
obtained under the more satisfying assumptions limn→∞ nhTq+d

n = ∞
and limn→∞ hn = 0. However, the optimal choice of T is difficult in
practice and such a limited memory approximation of the optimal filter
is only justified under mixing assumptions on the dynamical system
(Del Moral, 2004). Other approaches are possible, as the introduction
of a forgetting factor of the past. A more efficient one is the introduction
of a trajectory selection step in which only simulated trajectories (ỹi

1:t)
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sufficiently close to the observed one (y1:t) are kept, with a complete
set of theoretical convergence results (Rossi, 2004). In this paper we
present another improvement of the basic convolution filter using a
resampling step analogous to that of the SIS-R filters, with the effect
of relieving from a necessary particle number increase with time to
improve the optimal filter estimation.

5. The Resampled-Convolution Filter (R-CF)

A resampling step can take place very easily at the beginning of each
time step cycle of the basic CF algorithm, as follows.

5.1. R-CF Algorithm

− For t = 0

let p0
n be taken as the probability density of the initial state dis-

tribution π0.

− For t ≥ 1

(i) resampling step : (x̃1
t−1, . . . , x̃

n
t−1) ∼ pn

t−1

(ii) evolving step : x̃i
t ∼ ft(x̃

i
t−1, .) and ỹi

t ∼ ht(x̃
i
t, .),

for i = 1, . . . , n.

(iii) estimation step :

pn
t (xt|y1:t) =

∑n
i=1 Ky

hn
(yt − ỹi

t)K
x
hn

(xt − x̃i
t)

∑n
i=1 Ky

hn
(yt − ỹi

t)
(5)

Remark: even though the dependence of the xt density estimator pn
t

on the past observed values y1:t−1 is not explicit in (5), the resampling
step makes it effective, as shown by the following convergent properties
of the filter.

5.2. Convergence properties of the R-CF filter

All the convergence results proper to the CF filter are kept and even
improved since they are now free of any particle number increase with
time. We shall just show it through the study of the L1-convergence of
the filter.

THEOREM 5.1 (a.s. L1-convergence ). If Kx and Ky are positive bounded
Parzen-Rosenblatt kernels, if p(·|y1:t−1) is positive and continuous at yt
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and exists M > 0 such that p(yt|xt) ≤ M for all t, if exits α ∈]0, 1[
such that nh2q

n = O(nα) then
{

limn→∞
nhd+q

n

log n = ∞
limn→∞ hn = 0

=⇒ lim
n→∞

∫

|pn
t (xt|y1:t)−pt(xt|y1:t)|dxt = 0 a.s

THEOREM 5.2 (rate of convergence).
Suppose that pY = p(yt|y1:t−1) ∈ W s,1(IRq) and pXY = p(xt, yt|y1:t−1) ∈
W s,1(IRq+d) and that the kernels Ky ∈ L1(IR

q) and Kxy = KxKy ∈
L1(IR

q+d) are of class s ≥ 1. Assume further that for some ε > 0, for
K = Ky,Kxy, f = pY , pXY , δ = q, q +d, we have

∫ ‖u‖δ+εK(u)2dx <
∞ and

∫

(1 + ‖u‖δ+ε)f(u)du < ∞. Then

IE
[

∫

|pn(xt|y1:t) − p(xt|y1:t)|dxt

]

= ut[O(hs
n) + O(1/

√

nhq+d
n )]

with ut = 2t − 1.

The expectation is defined with respect to all the simulated random
variables (x̃i

t, ỹ
i
t) and the observation variables y1:t.

5.3. Comments

As wanted, by comparison with the CF filter convergence conditions the
assumptions limn→∞ nhq+d

n / log n = ∞ and limn→∞ hn = 0 ensuring
convergence of the R-CF to the optimal filter, are more satisfactory
and the rate of convergence with respect to the particle number is less
time dependent.

6. Simulated case studies

The behaviour of the proposed CF and R-CF convolution filters are
now compared with that of their SIS and SIS-R counterparts, on a
well-known bench-mark nonlinear dynamical system, for different state
and observation noise situations.
Let us consider the following system, considered by (Netto & al., 1978),
(Kitagawa, 1996; Kitagawa, 1998) and (Doucet, 1998; Doucet & al.,
2001) among others.







xt = 1
2xt−1 + 25xt−1

1+x2
t−1

+ 8cos(1.2t) + vt

yt =
x2

t

20 + wt

where x0 ∼ N(0, 5).
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The competing filters are
MCF : Monte Carlo Filter

IPF : Interacted particle Filter

IPF-R : Interacted particle Filter post-Regularised

CF : Convolution Filter

R-CF : Resampled Convolution Filter

in the three different situations
Case 1 : vt ∼ N(0, 1) and wt ∼ N(0, 0.12)

Case 2 : vt ∼ N(0, 1) and wt ∼ N(0, 1)

Case 3 : vt ∼ N(0, 10) and wt ∼ N(0, 1)

For each of the three noise cases and a given number n of parti-
cles, the behaviours of the respective filters are compared through a
mean squared error criterion computed for each filter over N = 100
trajectories of length L = 500 time steps,

MSE =
1

L

L
∑

t=1





1

N

N
∑

j=1

‖ xj,t − x̂j,t ‖2





in which xj,t is the true value of the state variable for the jth trajec-
tory at time t and x̂j,t is the estimate of E[xj,t|yj,1, · · · , yj,t] given by
1
n

∑n
i=1 x̃i

j,t the mean of the n particles generated according to the filter
at time t.
A Gaussian kernel is used to build up the CF and R-CF filters and to
regularize the IPF filter (i.e. to compute the IPF-R). The kernel band-
with is taken as hn = std(x̃1

t , . . . , x̃
n
t )/n1/5, as usually recommended.

Table 1 shows that in Case 1 (small observation noise) only the CF and
R-CF filters perform safely, whereas the MCF, IPF and IPF-R filters
all diverge whatever the number of particles used.
For greater observation noise (Case 2 and 3) the performances of the
interacting particle filters and convolution filters are rather close to
each other, with a slight advantage for the R-CF filter.

7. Conclusion

The convolution kernel estimation theory offers a set of probability den-
sity estimating tools very efficient when large samples of observations
distributed according to the distribution to be estimated are available.
Following these lines the simulation of the state and observation vari-
ables of a dynamical system from a given initial state distribution,
through the system noise simulation, allows to build up several types
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Table I. Case 1 : vt ∼ N(0, 1) and wt ∼ N(0, 0.12)

Nb of particles MCF IPF IPF-R CF R-CF

N=20 ∅ ∅ ∅ ∅ 17.39

N=50 ∅ ∅ ∅ 16.80 10.27

N=100 ∅ ∅ ∅ 14.70 9.26

N=200 ∅ ∅ ∅ 13.98 8.93

N=500 ∅ ∅ ∅ 12.92 8.09

N=5000 ∅ ∅ ∅ 13.26 7.58

Table II. Case 2 : vt ∼ N(0, 1) and wt ∼ N(0, 1)

Nb of particles MCF IPF IPF-R CF R-CF

N=20 27.57 32.52 25.90 24.53 24.33

N=50 22.60 19.63 15.84 19.55 15.70

N=100 19.73 13.54 11.67 16.26 12.43

N=200 17.88 11.77 10.91 15.98 11.39

N=500 16.19 10.94 10.70 14.76 10.89

N=1000 14.66 10.60 10.64 14.29 10.65

N=5000 12.55 10.56 10.54 13.90 10.46

Table III. Case 3 : vt ∼ N(0, 10) and wt ∼ N(0, 1)

Nb of particles MCF IPF IPF-R CF R-CF

N=20 60.76 53.95 50.21 46.69 38.55

N=50 53.14 33.60 31.08 41.31 27.99

N=100 47.31 25.96 25.55 36.50 24.75

N=200 46.30 24.16 23.70 37.76 23.89

N=500 44.23 22.96 22.59 34.60 23.07

N=1000 41.62 22.20 22.26 36.27 22.31

N=5000 37.45 21.71 21.69 36.72 21.68

of convergent estimate of the optimal filter of the system, given an
observed trajectory. This new convolution-based filtering approach can
take place within the particle filter family. However besides the estima-
tor construction itself, it differs from these filters by several important
traits such as the required assumptions (no use of the observation
likelihood), the structure of the noises (additive or not), the intrinsic
regularization of the distribution estimate (a density), the estimation
stability (enhanced robustness to small noise) and even no restriction
about system without observation noise. Moreover, one can notice the
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rather simple form taken by the convolution filter algorithms proposed,
in particular that of the R-CF filter which achieved the best perfor-
mances in all our case studies. The analytical study of the convergent
properties of these new filters, quite different from that of the usual
particle filters, takes advantage of general results from kernel estima-
tion theory. Finally, no attention was paid in this paper to issues of
more practical than theoretical importance as the choice of the type of
convolution kernel to use and that of the kernel bandwidth parameter.
A deeper recourse to nonparametric density estimation theory could
help in improving these choices.

Appendix

A. Elements of kernel estimation theory

DEFINITION A.1. A kernel K is a bounded, positive, symmetrical ap-
plication from IRd → IR, such that

∫

Kdλ = 1, where λ is the Lebesgue
measure.

Example: the simple Gaussian kernel K(x) =
( 1√

2π

)d

exp
(

− ||x||2
2

)

.

DEFINITION A.2. A Parzen-Rosenblatt kernel is a kernel such that

lim
‖x‖→∞

‖x‖dK(x) = 0

DEFINITION A.3. Let X1, · · · ,Xn be i.i.d. random variables with com-
mon density f . The kernel estimator of f , fn, associated with the kernel
K is given by

fn(x) =
1

nhd
n

n
∑

i=1

K(
x − Xi

hn
) = (Khn

∗ µn)(x) x ∈ IRd

where the bandwidth parameter hn > 0 and µn = 1
n

∑n
i=1 δXi

is the
empirical measure associated to X1, · · · ,Xn.

We often use the practical notation Khn
(x) = 1

hd
n
K( x

hn
) x ∈ IRd.

LEMMA A.1 ( Bochner). Let K be a Parzen-Rosenblatt kernel and
g ∈ L1(IRd), then for all x where g is continuous

lim
h→0

(g ∗ Kh)(x) = g(x)
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Proof : see (Bosq & Lecoutre, 1987).

THEOREM A.1. For any f ∈ L2, if fn is associated with a Parzen-
Rosenblatt kernel, we have

hn → 0, nhd
n → ∞ =⇒ IE[fn(x) − f(x)]2 → 0

Proof : Theroem proved by (Parzen, 1962) for d = 1 and by (Cacoullos,
1966) for d > 1 .

THEOREM A.2. If fn is associated with a positive bounded Parzen-
Rosenblatt kernel, we have

hn → 0,
nhd

n

log n
→ ∞ =⇒ fn(x) → f(x) a.s.

whenever f is continuous at x.

Proof : see (Rao, 1983).

THEOREM A.3 (Glick). If {fn} is a sequence of density estimates
converging almost everywhere to a density in probability (or almost
surely), then

∫

|fn − f | → 0 in probability (or almost surely).

Proof : see (Glick, 1974) or (Devroye, 1987)

THEOREM A.4 (rate of convergence). Let f ∈ W s,1 be a probability
density. Suppose that K ∈ L1(IR

d) is a kernel of class s ≥ 1. Assume
further that for some ε > 0 we have

∫

‖x‖d+εK(x)2dx < ∞ and
∫

(1 +
‖x‖d+ε)f(x)dx < ∞. Then,

IE[

∫

|fn − f |] = O(hs
n) + O(1/

√

nhd
n)

Proof : see (Holmstrm & Klemel, 1992).

B. Proofs

B.1. Proof of Theorem 4.1 (quadratic mean convergence
of the CF filter)

The expectations are defined with respect to all the simulated (x̃i
t, ỹ

i
t),

conditional on the observed y1:t.
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pn(xt|y1:t) − p(xt|y1:t) =
pn(xt|y1:t)

IE[pn
Y (y1:t)]

(

IE[pn
Y (y1:t)] − pn

Y (y1:t)
)

+
pn

XY (xt, y1:t)

IE[pn
Y (y1:t)]

− p(xt|y1:t)

=
pn(xt|y1:t)

IE[pn
Y (y1:t)]

(

IE[pn
Y (y1:t)] − pn

Y (y1:t)
)

+
pn

XY (xt, y1:t) − pXY (xt, y1:t)

IE[pn
Y (y1:t)]

+
(pXY (xt, y1:t)

IE[pn
Y (y1:t)]

− pXY (xt, y1:t)

pY (y1:t)

)

According to Lemma A.1 (Bochner) one has

lim
n→∞

hn → 0, lim
n→∞

nhtq
n → ∞ ⇒ lim

n→∞
IE[pn

Y (y1:t)] = pY (y1:t)

which implies

lim
n→∞

(pXY (xt, y1:t)

IE[pn
Y (y1:t)]

− pXY (xt, y1:t)

pY (y1:t)

)

= 0.

In addition, Theorem A.1 ensures that

lim
n→∞

hn → 0, lim
n→∞

nhtq+d
n → ∞ ⇒ IE[pn

XY (xt, y1:t)−pXY (xt, y1:t)]
2 = 0

which implies

lim
n→∞

IE[
pn

XY (xt, y1:t) − pXY (xt, y1:t)

IE[pn
Y (y1:t)]

]2 → 0.

It only remains to study the behavior of

IE
[ pn(xt|y1:t)

IE[pn
Y (y1:t)]

(IE[pn
Y (y1:t)] − pn

Y (y1:t))
]2

.

By construction

pn(xt|y1:t) =

∑n
i=1 Kx

h(xt − x̃i
t)K

ȳ
h(y1:t − ỹi

1:t)
∑n

i=1 K ȳ
h(y1:t − ỹi

1:t)
=

∑n
i=1 WiK

x
h(xt − x̃i

t)
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where

Wi =
K ȳ

h(y1:t − ỹi
1:t)

∑n
i=1 K ȳ

h(y1:t − ỹi
1:t)

i = 1, · · · , n.

and by applying Jensen inequality

pn(xt|y1:t)
2 ≤

n
∑

i=1

WiK
x
h(xt − x̃i

t)
2

then

IE
[

pn(xt|y1:t)(IE[pn
Y ] − pn

Y )|ỹ1
1:t, . . . , ỹ

n
1:t

]2

≤
n

∑

i=1

Wi

(

IE[pn
Y ] − pn

Y

)2
IE

[

Kx
h(xt, x̃

i
t)

2|ỹi
1:t

]

=
n

∑

i=1

Wi

(

IE[pn
Y ] − pn

Y

)2
∫

Kx
h(xt − x̃i

t)
2p(x̃i

t|ỹi
1:t)dx̃i

t

=
1

hd
n

n
∑

i=1

Wi

(

IE[pn
Y ] − pn

Y

)2
∫

Kx(u)2p(xt − uh|ỹi
1:t)du

≤ M

hd
n

(

IE[pn
Y ] − pn

Y

)2
∫

Kx(u)2du

where M = supxt,y1:t
p(xt|y1:t).

In addition

IE
[

IE[pn
Y ] − pn

Y

]2
= V

[

pn
Y

]

= 1
nV [K ȳ

h(y1:t − ỹ1:t)]

= 1
n [E[K ȳ

h(y1:t − ỹ1:t)
2] − E[K ȳ

h(y1:t − ỹ1:t)]
2]

= 1
nhtq

n

(

(K ȳ
h)2 ∗ pY

)

− 1
n IE[(pn

Y )]2

and according to Bochner’s lemma (A.1) applied to pY with the kernel
(K ȳ)2/

∫

((K ȳ)2),

lim
h→0

(

(K ȳ
h)2 ∗ pY

)

(y1:t) = pY (y1:t)

∫

(K ȳ(v))2dv

then

nhtq
n IE

[

IE[pn
Y (y1:t)] − pn

Y (y1:t)
]2

→ pY (y1:t)

∫

(K ȳ(v))2dv.
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Finally

nhtq+d
n IE

[ pn
X|Y

IE[pn
Y (y1:t)]

(

IE[pn
Y ] − pn

Y

)]2

≤
Mnhtq

n IE
[

IE[pn
Y (y1:t)] − pn

Y (y1:t)
]2 ∫

Kx(u)2du

IE[pn
Y (y1:t)]2

→ M
∫

Kx(u)2du
∫

K ȳ(v)2dv

pY (y1:t)

ensuring that

lim
n→∞

IE[pn
t (xt|y1:t) − p(xt|y1:t)]

2 = 0.

2

B.2. Proof of Theorem 4.2 (a.s. convergence of the CF
filter)

By construction

pn(xt|y1:t) =
pn(xt, y1:t)

pn(y1:t)

Theorem A.2 ensures that

pn(xt, y1:t) → p(xt, y1:t) a.s.
pn(y1:t) → p(y1:t) a.s.

As p(y1:t) is assumed positive, the result is proved.
2

B.3. Proof of Theorem 4.4 (L1-convergence rate of the
CF filter)

Unless specified the expectations are defined with respect to all the
simulated (x̃i

t, ỹ
i
t) and observed y1:t variables.

Let B+ = {y1:t : pY (y1:t) > 0}, we have

IE
[

∫

|pn(xt|y1:t)−p(xt|y1:t)|dxt

]

= IE(x̃i
t,ỹ

i
t),B+

[

∫

|pn(xt|y1:t)−p(xt|y1:t)|dxt

]

.
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We shall then suppose y1:t ∈ B+ in the following equations :

pn(xt|y1:t) − p(xt|y1:t) =
pn

XY (zt)

pn
Y (yt:t)

− pXY (zt)

pY (yt:t)

=
pn

XY

pn
Y

− pXY

pY

=
pn

XY pY − pXY pn
Y

pn
Y pY

=
pn

XY pY − pn
XY pn

Y + pn
XY pn

Y − pXY pn
Y

pn
Y pY

=
pn

XY (pY − pn
Y ) + pn

Y (pn
XY − pXY )

pn
Y pY

=
1

pY

[

pn
XY − pXY + (pY − pn

Y )pn
X|Y

]

then

|pn(xt|y1:t) − p(xt|y1:t)| ≤ 1

pY (y1:t)

[

|pn
XY (xt, y1:t) − pXY (xt, y1:t)|

+|pY (y1:t) − pn
Y (y1:t)|pn

X|Y (xt|y1:t)
]

∫

|pn(xt|y1:t) − p(xt|y1:t)|dxt ≤ 1

pY (y1:t)

[

∫

|pn
XY (xt, y1:t) − pXY (xt, y1:t)|dxt

+|pY (y1:t) − pn
Y (y1:t)|

∫

pn
X|Y (xt|y1:t)dxt

]

=
1

pY (y1:t)

[

∫

|pn
XY (xt, y1:t) − pXY (xt, y1:t)|dxt

+|pY (y1:t) − pn
Y (y1:t)|

]

Now

IEy1:t

[

∫

|pn(xt|y1:t) − p(xt|y1:t)|dxt

]

=
x

|pn(xt|y1:t) − p(xt|y1:t)|dxtpY (y1:t)dy1:t

≤
x

|pn
XY (xt, y1:t) − pXY (xt, y1:t)|dxtdy1:t

+

∫

|pY (y1:t) − pn
Y (y1:t)|dy1:t

or

IEy1:t
[‖pn

X|Y − pX|Y ‖L1] ≤ ‖pn
XY − pXY ‖L1 + ‖pn

Y − pY ‖L1
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then

IE[‖pn
X|Y − pX|Y ‖L1] ≤ IE[‖pn

XY − pXY ‖L1] + IE[‖pn
Y − pY ‖L1].

Finally, according to Theorem A.4

IE[‖pn
X|Y − pX|Y ‖L1] = O(hs

n) + O(1/

√

nhtq+d
n ) + O(hs

n) + O(1/
√

nhtq
n )

= O(hs
n) + O(1/

√

nhtq+d
n )

2

B.4. Proof of Theorem 5.1

For t = 1 the result is true according to Theorem 4.3. Let us assume it
is true until time t and let us show it is still true at time t + 1.
The three following lemmas will be useful to ensure this result.

LEMMA B.1. Let u(x) and v(x) be two probability densities on IRd and
f = min(u, v). Let U and V be respectively the subsets of IRd on which

min(u, v) = u and min(u, v) = v. Let I = U ∩ V . Then f

1− 1

2

∫

|u−v|dx
is

a probability density.

Proof of the lemma
∫

f =
∫

U u +
∫

V v −
∫

I u
= 1 −

∫

Uc u +
∫

G v −
∫

I u
= 1 − [

∫

V u −
∫

I u] +
∫

V v −
∫

I u
= 1 −

∫

V u +
∫

V v
= 1 −

∫

V (u − v)
= 1 − 1

2

∫

|u − v| according to Scheffe’s lemma.

2

Now let
∆n =

1

2
‖pn

t (xt|y1:t) − pt(xt, |y1:t)‖L1 (6)

By assumption

lim
n→∞

∆n = 0 a.s

Let Sn
t = (x̄1

t , . . . , x̄
n
t ) be sampled from pn

t . We shall show that there

exists a subsample of Sn
t , x̄i1

t , . . . , x̄
iMn
t and a new sample ẋi1

t , . . . , ẋ
iNn
t ,

which together can be considered as sampled from pt. Such a device was
used by (Devroye, 1987) to study the robustness of kernel estimates.
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Let us define the three following functions:

fn =
min(pn

t ,pt)
1−∆n

gn =
pn

t −min(pn
t ,pt)

∆n

hn =
pt−min(pn

t ,pt)
∆n

Let us note that by Lemma B.1, fn, gn and hn are density functions
and that

pn
t = ∆n · gn + (1 − ∆n) · fn

pt = ∆n · hn + (1 − ∆n) · fn

This shows that each x̄i
t sampled according to pn

t is with probability
∆n sampled from gn. Let Z1, . . . , Zn be random variables such that
Zi = 1 if x̄i

t ∼ gn and Zi = 0 if x̄i
t ∼ fn. The Zi are thus Bernoulli

variables with parameter ∆n. Nn =
∑

Zi is then a binomial variable:
Nn ∼ B(n,∆n).
Mn = n − Nn is the random number of x̄i

t sampled from fn. Let

x̄i1
t , . . . , x̄

iMn
t be this subsample, 1 ≤ i1 < . . . < iMn ≤ n. Let IM =

{i1, . . . , iMn} and IN = {1, . . . , n} − IMn .
Consider now the new following random sample

x̃i
t =

{

x̄i
t if i ∈ IM

ẋi
t with ẋi

t ∼ hn, si i ∈ IN
for i = 1, . . . , n (7)

x̃1
t , . . . , x̃

n
t can then be considered as a virtual random sample from

the unknown pt which holds Mn elements common with the previous
sample Sn

t drawn from pn
t .

By applying system (1) to the actual x̄1
t , . . . , x̄

n
t and then to the virtual

x̃i
t for i ∈ IN , one gets (x1

t+1, y
1
t+1), . . . , (x

n
t+1, y

n
t+1) and (x̃i

t+1, ỹ
i
t+1) for

i ∈ IN . Thus one gets new actual and virtual samples, (x1
t+1, y

1
t+1), . . .

. . . , (xn
t+1, y

n
t+1) and (x̃1

t+1, ỹ
1
t+1), . . . , (x̃

n
t+1, ỹ

n
t+1) respectively, with Mn

common pairs.
With the first sample, let us build the R-CF estimate of the optimal
filter:

pn
t+1(xt+1|y1:t) =

∑n
i=1 Kx

h(xt+1 − xi
t+1)K

y
h(yt+1 − yi

t+1)
∑n

i=1 Ky
h(yt+1 − yi

t+1)
(8)

With the second sample, we can consider the virtual kernel estimate of
the optimal filter:

p̃n
t+1(xt+1|y1:t) =

∑n
i=1 Kx

h(xt+1 − x̃i
t+1)K

y
h(yt+1 − ỹi

t+1)
∑n

i=1 Ky
h(yt+1 − ỹi

t+1)
(9)
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built from particles x̃i
t+1 themselves born from particles x̃i

t sampled
from the true unknown pt(xt|y1:t). This virtual estimate can then be
considered as a simple convolution filter for one time step ahead.
Now we can write

‖pn
t+1(xt+1|y1:t) − pt+1(xt+1|y1:t)‖L1

≤ ‖pn
t+1(xt+1|y1:t) − p̃n

t+1(xt+1|y1:t)‖L1

+‖p̃n
t+1(xt+1|y1:t) − pt+1(xt+1|y1:t)‖L1

and according to Theorem 4.3 for CF filters, we have

{

limn→∞
nhd+q

n

log n = ∞
limn→∞ hn = 0

=⇒ lim
n→∞

‖p̃n
t+1(xt+1|y1:t)−pt+1(xt+1|y1:t)‖L1 = 0 a.s.

It thus remains to study the behaviour of

‖pn
t+1(xt+1|y1:t)−p̃n

t+1(xt+1|y1:t)‖L1
=

∫

|pn
t+1(xt+1|y1:t)−p̃n

t+1(xt+1|y1:t)|dxt+1

Let

Dn(xt+1) = pn
t+1(xt+1|y1:t) − p̃n

t+1(xt+1|y1:t)

then by definition one has

Dn(xt+1) =

∑n
i=1 Khn

(xt+1 − xi
t+1)Khn

(yt+1 − yi
t+1)

∑n
i=1 Khn

(yt+1 − yi
t+1)

−
∑n

i=1 Khn
(xt+1 − x̃i

t+1)Khn
(yt+1 − ỹi

t+1)
∑n

i=1 Khn
(yt+1 − ỹi

t+1)

=

∑n
i=1 Khn

(xt+1 − xi
t+1)Khn

(yt+1 − yi
t+1)

∑n
i=1 Khn

(yt+1 − yi
t+1)

−
∑n

i=1 Khn
(xt+1 − xi

t+1)Khn
(yt+1 − yi

t+1)
∑n

i=1 Khn
(yt+1 − ỹi

t+1)

+

∑n
i=1 Khn

(xt+1 − xi
t+1)Khn

(yt+1 − yi
t+1)

∑n
i=1 Khn

(yt+1 − ỹi
t+1)

−
∑n

i=1 Khn
(xt+1 − x̃i

t+1)Khn
(yt+1 − ỹi

t+1)
∑n

i=1 Khn
(yt+1 − ỹi

t+1)
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it implies

|Dn(xt+1)| ≤
n

∑

i=1

Khn
(xt+1 − xi

t+1)Khn
(yt+1 − yi

t+1)

×
∣

∣

∣

1
∑n

i=1 Khn
(yt+1 − yi

t+1)
− 1

∑n
i=1 Khn

(yt+1 − ỹi
t+1)

∣

∣

∣

+
1

∑n
i=1 Khn

(yt+1 − ỹi
t+1)

∣

∣

∣

n
∑

i=1

Khn
(xt+1 − xi

t+1)Khn
(yt+1 − yi

t+1)

−
n

∑

i=1

Khn
(xt+1 − x̃i

t+1)Khn
(yt+1 − ỹi

t+1)
∣

∣

∣

As (x̃i
t+1, ỹ

i
t+1) = (xi

t+1, y
i
t+1) for i ∈ IM , one gets

|Dn(xt+1)| ≤
∑n

i=1 Khn
(xt+1 − xi

t+1)Khn
(yt+1 − yi

t+1)
∑n

i=1 Khn
(yt+1 − ỹi

t+1)
∑n

i=1 Khn
(yt+1 − yi

t+1)

×
∣

∣

∣

∑

i∈IN

Khn
(yt+1 − yi

t+1) −
∑

i∈IN

Khn
(yt+1 − ỹi

t+1)
∣

∣

∣

+
1

∑n
i=1 Khn

(yt+1 − ỹi
t+1)

∣

∣

∣

∑

i∈IN

Khn
(xt+1 − xi

t+1)Khn
(yt+1 − yi

t+1)

−
∑

i∈IN

Khn
(xt+1 − x̃i

t+1)Khn
(yt+1 − ỹi

t+1)
∣

∣

∣

By assumption, the kernel K is a density, then

∫

|Dn(xt+1)|dxt+1 ≤

∣

∣

∣

∑

i∈IN
Khn

(yt+1 − yi
t+1) −

∑

i∈IN
Khn

(yt+1 − ỹi
t+1)

∣

∣

∣

∑n
i=1 Khn

(yt+1 − ỹi
t+1)

+

∑

i∈IN
Khn

(yt+1 − yi
t+1) +

∑

i∈IN
Khn

(yt+1 − ỹi
t+1)

∑n
i=1 Khn

(yt+1 − ỹi
t+1)

Finally we get
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∫

|Dn(xt+1)|dxt+1 ≤ 2

∑

i∈IN
Khn

(yt+1 − yi
t+1) +

∑

i∈IN
Khn

(yt+1 − ỹi
t+1)

∑n
i=1 Khn

(yt+1 − ỹi
t+1)

≤ 2Nn

n

1
Nn

∑

i∈IN
Khn

(yt+1 − ỹi
t+1) + 1

Nn

∑

i∈IN
Khn

(yt+1 − yi
t+1)

1
n

∑n
i=1 Khn

(yt+1 − ỹi
t+1)

≤
2Nnhq

Nn

nhq
n

1
Nn

∑

i∈IN

K(
yt+1−ỹi

t+1

hn
)

hq

Nn

+ 1
Nn

∑

i∈IN

K(
yt+1−yi

t+1

hn
)

hq

Nn

1
n

∑n
i=1 Khn

(yt+1 − ỹi
t+1)

According to theorem 4.2, it holds

1

n

n
∑

i=1

Khn
(yt+1 − ỹi

t+1) → p(yt+1|y1:t) a.s.

and p(yt+1|y1:t) is positive by assumption.

Let us show that 1
Nn

∑

i∈IN

K(
yt+1−ỹi

t+1

hn
)

hq

Nn

and 1
Nn

∑

i∈IN

K(
yt+1−yi

t+1

hn
)

hq

Nn

are a.s. asymptotically bounded.
Let us consider the first term and to alleviate notations let

Xi =
K(

yt+1−ỹi
t+1

hn
)

hq
Nn

, for i ∈ IN .

Let Mn = IE[Xi|Ft] and Zi = Xi −Mn with Ft the set of all generated
variables through the instant t. The variables Z1, . . . , Zn are identically
distribued and independant conditionally to Ft.
We have

IE[(
Nn
∑

i=1

Zi)
4] = NnIE[Z4

1 ] +
Nn(Nn − 1)

2
IE[Z2

1 ]2

because IE[ZiZjZkZl] = IE[IE[Zi|Ft]IE[ZjZkZl|Ft]] = 0 for all (j, k, l)
among {1, . . . , n} − i. According to Markov-Tchebychev inequality we
deduce

P (| 1

Nn

Nn
∑

i=1

Zi| > ε) ≤
| 1
Nn

∑Nn

i=1 Zi|4

ε4

≤ IE[Z4
1 ]

N3
nε4

+
IE[Z2

1 ]2

2N2
nε4

(10)
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Let us study the terms IE[Z2
1 ] et IE[Z4

1 ] :

IE[Z2
1 ] = IE[IE[Z2

1 |Ft]]
= IE[IE[X2

1 |Ft] − IE[Xi|Ft]
2]

≤ IE[IE[X2
1 |Ft]].

However

IE[X2
1 |Ft] =

∫ K(
yt+1−ỹi

t+1

hn
)2

h2q
Nn

p̃(ỹt+1|y1:t)dỹt+1

=

∫

hnK(u)2

h2q
Nn

p̃(yt+1 − hu|y1:t)du

≤
∫

K(u)2

hq
Nn

Mdu

≤ M1

hq
Nn

with M1 = M
∫

K2 and p(yt|xt) ≤ M , M exists by assumption. The in-
equality p̃(ỹt+1|y1:t) ≤ M rises from the joint-density p̃(x̃t+1, ỹt+1|y1:t)
and that the link between x̃t+1 and ỹt+1 is in conformity with the model.
Indeed, ỹt+1 is obtained by applying the equation of observation of the
system to x̃t+1. Thus we can write

p̃(ỹt+1|y1:t) =

∫

p̃(x̃t+1, ỹt+1|y1:t)dx̃t+1

=

∫

p(ỹt+1|x̃t+1)p̃(x̃t+1|y1:t)dx̃t+1

≤
∫

Mp̃(x̃t+1|y1:t)dx̃t+1

≤ M

Finally we get

IE[Z2
1 ] ≤ M1

hq
Nn

. (11)

Let us study now IE[Z4
1 ] :

IE[Z4
1 ] = IE[IE[Z4

1 |Ft]]

= IE
[

IE[X4
1 |Ft] − 4IE[X3

i |Ft]IE[Xi|Ft] − 4IE[Xi|Ft]IE[Xi|Ft]
3

+6IE[X2
i |Ft]IE[Xi|Ft]

2 + IE[X1|Ft]
4
]

≤ IE
[

IE[X4
1 |Ft] + 6IE[X2

i |Ft]IE[Xi|Ft]
2
]
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However

IE[X2
1 |Ft] ≤

M1

hq
Nn

IE[X1|Ft] ≤
Mhq

n

hq
Nn

and

IE[X4
1 |Ft] =

∫ K(
yt+1−ỹi

t+1

hn
)4

h4q
Nn

p̃(ỹt+1|y1:t)dỹt+1

=

∫

hq
nK(u)4

h4q
Nn

p̃(yt+1 − hu|y1:t)du

≤
∫

K(u)4

h3q
Nn

Mdu

≤ M2

h3q
Nn

with M2 = M
∫

K4. We get

IE[Z4
1 ] ≤ M2

h3q
Nn

+ 6
M1

hq
Nn

M2h2q
n

h2q
Nn

(12)

The application of (11) and (12) to (10) leads to

P (| 1

Nn

Nn
∑

i=1

Zi| > ε) ≤ M2

N3
nh3q

Nn
ε4

+
6M1M

2

N3
nhq

Nn
ε4

+
M2

1

2N2
nh2q

Nn
ε4

By assumption, exists α > 0 such that Nh2q
N = O(Nα), then the serie

of general term M2

N3
nh3q

Nn
ε4

+ 6M1M2

N3
nhq

Nn
ε4 +

M2
1

2N2
nh2q

Nn
ε4

converge. According to

Borel Cantelli lemma, we deduce 1
Nn

∑Nn

i=1 Zi converge a.s. to zero as
Nn tends to infinity. Let

lim
Nn→∞

1

Nn

∑

i∈IN

K(
yt+1−ỹi

t+1

hn
)

hq
Nn

− IE[
K(

yt+1−ỹi
t+1

hn
)

hq
Nn

|Ft] = 0 a.s.

as

0 ≤ IE[
K(

yt+1−ỹi
t+1

hn
)

hq
Nn

|Ft] ≤
Mhq

n

hq
Nn
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where hn ≤ hNn . Hence 1
Nn

∑

i∈IN

K(
yt+1−ỹi

t+1

hn
)

hq

Nn

is a.s. asymptotically

bounded.

The application of the same reasoning to 1
Nn

∑

i∈IN

K(
yt+1−yi

t+1

hn
)

hq

Nn

leads

to the same result.
Thus for large Nn we have

∫

|Dn(xt+1)|dxt+1 ≤
2Nnhq

Nn

nhq
n

Mhq
n

hq

Nn

+ Mhq
n

hq

Nn

1
n

∑n
i=1 Khn

(yt+1 − ỹi
t+1)

≤ 4Nn

n

M
1
n

∑n
i=1 Khn

(yt+1 − ỹi
t+1)

And finally for large n and Nn

∫

|Dn(xt+1)|dxt+1 = O(
Nn

n
) a.s. .

However Nn

n is the empirical estimate of ∆n ∈ [0, 1], by Hoeffding’s
Inequality (Hoeffding, 1963), for any ∆n,

P (|Nn

n
− ∆n| ≥ ε) ≤ 2 exp{−2nε2}. (13)

As limn→∞ ∆n → 0 a.s., (13) implies limn→∞ ∆n = 0 a.s.. This com-
pletes the proof of the theorem.

2

B.5. Proof of Theorem 5.2

To alleviate notations let us denote transitorily
pY = p(yt|y1:t−1), pXY = p(xt, yt|y1:t−1), pX|Y = p(xt|y1:t).
pn

Y = pn(yt|y1:t−1), pn
XY = pn(xt, yt|y1:t−1), pn

X|Y = pn(xt|y1:t),

estimated from couples (xi
t, y

i
t) born from particles x̄i

t−1 generated from
pn(xt−1|y1:t−1).
p̃n

Y = p̃(yt|y1:t−1), the virtual estimate of pY from particles x̃i
t−1 sampled

from p(xt−1|y1:t−1) the true optimal filter distribution, as given by (7).
p̃n

XY = p̃n(xt, yt|y1:t−1), the virtual estimate of pXY from the same
particles x̃i

t.
Then by definition
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pn
X|Y − pX|Y =

pn
XY

pn
Y

− pXY

pY

=
pn

XY pY − pXY pn
Y

pn
Y pY

=
pn

XY pY − pn
XY pn

Y + pn
XY pn

Y − pXY pn
Y

pn
Y pY

=
pn

XY (pY − pn
Y ) + pn

Y (pn
XY − pXY )

pn
Y pY

=
1

pY

[

pn
XY − pXY + (pY − pn

Y )pn
X|Y

]

.

|pn
X|Y − pX|Y | ≤ 1

pY

[

|pn
XY − pXY | + |pY − pn

Y |pn
X|Y

]

.

We deduce

|pn
X|Y − pX|Y | pY ≤ |pn

XY − pXY | + |pY − pn
Y | pn

X|Y .

We easily have

IEyt|y1:t−1
[‖pn

X|Y − pX|Y ‖L1] ≤ ‖pn
XY − pXY ‖L1 + ‖pn

Y − pY ‖L1

and

IE[‖pn
X|Y − pX|Y ‖L1] ≤ IE[‖pn

XY − pXY ‖L1] + IE[‖pn
Y − pY ‖L1].

Now

IE[‖pn
XY − pXY ‖L1] ≤ IE[‖pn

XY − p̃n
XY ‖L1] + IE[‖p̃n

XY − pXY ‖L1]

and

IE[‖pn
Y − pY ‖L1] ≤ IE[‖pn

Y − p̃n
Y ‖L1] + IE[‖p̃n

Y − pY ‖L1].

As the virtual x̃i
t are generated according to the optimal filter pX|Y , by

Theorem A.4 it holds
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IE[‖p̃n
XY − pXY ‖L1] = O(hs

n) + O(1/

√

nhq+d
n )

and also

IE[‖p̃n
Y − pY ‖L1] = O(hs

n) + O(1/
√

nhq
n)

Now, let us turn to the term IE[‖pn
XY − p̃n

XY ‖L1] and consider again the
quantity ∆n (6) previously introduced:

∆n =
1

2
‖pn

t−1(xt−1|y1:t−1) − pt−1(xt−1, |y1:t−1)‖L1

Let us notice that pn
XY and p̃n

XY are built from Mn = n − Nn com-
mon couples (xi

t, y
i
t) born from Mn common particles x̄i

t−1, with Nn ∼
B(n,∆n). Then

‖pn
XY − p̃n

XY ‖L1 =
1

n

∫

|
∑

i∈IN

Kx
hn

(xt − xi
t)K

y
hn

(yt − yi
t)

−Kx
hn

(xt − x̃i
t)K

y
hn

(yt − ỹi
t)|dxtdyt

≤ 2Nn

n .

As IE[Nn

n |∆n] = ∆n, it holds

IE[‖pn
XY − p̃n

XY )‖L1
] ≤ 2IE[∆n]

and by the same arguments

IE[‖pn
Y − p̃n

Y ‖L1
] ≤ 2IE[∆n].

Finally

IE[‖pn
X|Y − pY |Y ‖] ≤ 4IE[∆n] + O(hs

n) + O(1/

√

nhq+d
n )

namely

IE
[

‖pn(xt|y1:t) − p(xt|y1:t)‖L1

]

≤ 2IE[‖pn
t−1(xt−1|y1:t−1) − pt−1(xt−1, |y1:t−1)‖L1

+O(hs
n) + O(1/

√

nhq+d
n ).

Furthermore for t = 1, according to Theorem A.4, it holds

IE
[

‖pn(x1|y1) − p(x1|y1)‖L1

]

≤ O(hs
n) + O(1/

√

nhq+d
n )

which by ascending recursion leads to

IE
[

‖pn(xt|y1:t) − p(xt|y1:t)‖L1

]

≤ (2t − 1)
(

O(hs
n) + O(1/

√

nhq+d
n )

)

2
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