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Abstract

We show that the original classic randomized algorithms for approximate
counting in NP-hard problems, like for counting the number of satisfiability
assignments in a SAT problem, counting the number of feasible colorings in a
graph and calculating the permanent, typically fail. They either do not con-
verge at all or are heavily biased (converge to a local extremum). Exceptions
are convex counting problems, like estimating the volume of a convex poly-
tope. We also show how their performance could be dramatically improved by
combining them with the classic splitting method, which is based on simulating
simultaneously multiple Markov chains. We present several algorithms of the
combined version, which we simple call the splitting algorithms. We show that
the most advance splitting version coincides with the cloning algorithm sug-
gested earlier by the author. As compared to the randomized algorithms, the
proposed splitting algorithms require very little warm-up time while running
the MCMC from iteration to iteration, since the underlying Markov chains are
already in steady-state from the beginning. What required is only fine tuning,
i.e. keeping the Markov chains in steady-state while moving from iteration to
iteration. We present extensive simulation studies with both the splitting and
randomized algorithms for different NP-hard counting problems.

Keywords. Combinatorial Optimization, Counting, Cross-Entropy, Gibbs Sam-
pler, Importance Sampling, Rare-Event, Randomized Algorithms, Splitting.
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1 Introduction: Randomized Algorithms for Count-
ing

In this work we show that the original classic randomized algorithms for approxi-
mate counting in NP-hard problems (Mitzenmacher and Upfal, 2005; Motwani and
Raghavan, 1997) typically fail. We also show how their performance could be dra-
matically improved by combining them with the classic splitting method (Garvels,
2000), which is based on simulating simultaneously multiple Markov chains. We
present several algorithms of the combined version and we show that the most ad-
vance algorithm coincides with the cloning algorithm suggested earlier in Rubinstein
(2008).

Below we present some background on randomized algorithms. The main idea of
randomized algorithms for counting (Mitzenmacher and Upfal, 2005; Motwani and
Raghavan, 1997) is to design a sequential sampling plan, with a view to decomposing
a “difficult” counting problem defined on the set X ∗ into a number of “easy” ones
associated with a sequence of related sets X0,X1, . . . ,Xm and such that Xm =
X ∗. Typically, randomized algorithms explore the connection between counting and
sampling problems and in particular the reduction from approximate counting of a
discrete set to approximate sampling of elements of this set, where the sampling is
performed by the classic MCMC method (Rubinstein and Kroese, 2007). A typical
randomized algorithm comprises the following steps:

1. Formulate the counting problem as that of estimating the cardinality |X ∗| of
some set X ∗.

2. Find a sequence of sets X0,X1, . . . ,Xm such that X0 ⊃ X1 ⊃ · · · ⊃ Xm = X ∗,
|Xm| = |X ∗| and |X0| is known.

3. Write |X ∗| = |Xm| as

|X ∗| = |X0|
m∏

t=1

|Xt|
|Xt−1| . (1)

Note that the quantity

` =
|X ∗|
|X0|

is very small, like ` = 10−100, while each ratio

ct =
|Xt|
|Xt−1| (2)

should not be small, like ct = 10−2 or greater. As we shall see below in
typical applications such ct will be available. Clearly, estimating ` directly
while sampling in X0 is meaningless, but estimating each ct separately seems
to be a good alternative.

4. Develop an efficient estimator for each ct = |Xt|/|Xt−1|.
5. Estimate |X ∗| by

|̂X ∗| = |X0|
m∏

t=1

ĉt =
m∏

t=1

|X̂t|
|X̂t−1|

, (3)

where |X̂t|, t = 1, . . . , m is an estimator of |Xt|, ĉt = | bXt|
| bXt−1| , and similarly for

the rare-event probability `.
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Algorithms based on the sequential Monte Carlo sampling estimator (3) are called
in computer literature (Mitzenmacher and Upfal, 2005; Motwani and Raghavan,
1997), randomized algorithms. We shall call them simply, the RAN algorithms.

It is readily seen that in order to deliver a meaningful estimator of |X ∗|, we have
to solve the following two major problems:

(i) Put the well known NP-hard counting problems into the framework (1) by
making sure that X0 ⊃ X1 ⊃ · · · ⊃ Xm = X ∗ and each ct is not a rare-event
probability.

(ii) Present a low variance unbiased estimator of each ct = |Xt|/|Xt−1|, such that
the resulting estimator of ` is of low variance and unbiased.

We shall see below that task (i) is not difficult and shall proceed with it in this
section. Task (ii) is quite complicated and is associated with uniform sampling
separately at each sub-region Xt. This will be done by combining the Gibbs sampler
with the classic splitting method (Garvels, 2000) and will be considered in the
subsequent sections. Note that some alternative MCMC samplers and in particular
the hit-and-run sampler can be used as well.

It readily follows that as soon as both tasks (i) and (ii) are resolved one can
obtain an efficient estimators for each ct, and, thus a low variance estimator |̂X ∗| in
(3). We therefore proceed with task (i) by considering several well- known NP-hard
counting problems.

Example 1.1 (Independent Sets) Consider a graph G = (V, E) with m edges
and n vertices. Our goal is to count the number of independent node (vertex) sets
of this graph. A node set is called independent if no two nodes are connected by
an edge, that is, no two nodes are adjacent; see Figure 1 for an illustration of this
concept.

Figure 1: The black nodes form an independent set since they are not adjacent to
each other.

Consider an arbitrary ordering of the edges. Let Ej be the set of the first j
edges and let Gj = (V,Ej) = (V, {e1, . . . , ej}) be the associated sub-graph. Note
that Gm = G, and that Gj+1 is obtained from Gj by adding the edge ej+1, which
is not in Gj . Denoting by Xj the set of independent sets of Gi we can write
|X ∗| = |Xm| in the form (1). Here |X0| = 2n, since G0 has no edges and thus
every subset of V is an independent set, including the empty set. Note that here
X0 ⊃ X1 ⊃ · · · ⊃ Xm = X ∗.

Example 1.2 (Vertex Coloring) Given a graph G = (V, E) with m edges and n
vertices, color the vertices of V with given q colors, such that for each edge (i, j) ∈ E,
vertices i and j have different colors. Note that in an optimization problem one
has to find the minimum number of colors to color the vertices of V such that for
each edge (i, j) ∈ E, vertices i and j have different colors. The procedure for vertex
coloring while applying the randomized algorithm is the same as for independent
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sets. Indeed, we again consider an arbitrary ordering of the edges. Let Ej be the
set of the first j edges and let Gj = (V, Ej) be the associated sub-graph. Note that
Gm = G, and that Gj+1 is obtained from Gj by adding the edge ej+1. Denoting by
|Xi| the cardinality of the set Xi corresponding to Gi we can write again |X ∗| = |Xm|
in the form (1), where X0 ⊃ X1 ⊃ · · · ⊃ Xm = X ∗. Here |X0| = qn, since G0 has no
edges.

Again, application of the splitting algorithm for the vertex coloring problem is
similar to independent set and thus, to multiple events. The parameters n and m
are the numbers of vertices and nodes in the graph G, respectively.

Example 1.3 (Hamiltonian Cycles) Given a graph G = (V, E) with m edges,
each of length 1 and n vertices, find all Hamiltonian cycles, that is, those corre-
sponding to the tours of length n.

Figure 2 presents a graph with 8 nodes and several Hamiltonian cycles, one of
which is marked in bold lines.

Figure 2: A Hamiltonian graph. The bold edges form a Hamiltonian cycle.

The procedure for Hamiltonian cycles is similar to independent sets. As before,
consider an arbitrary ordering of the edges of length 0, that is, those without con-
nection between the vertices. Define a sub-graph Gj = (V,Ej), where the first j
edges of length 0 remain the same while the other n(n − 1)/(2 −m − j) edges of
length 0 are replaced by 1. Note that Gm = G, and Gj+1 is obtained from Gj

by replacing 1 by 0 for the edge ej+1. Denoting by |Xi| the cardinality of the set
Xi corresponding to Gi we can write again |X ∗| = |Xm| in the form (1), where
X = (n− 1)!

Example 1.4 (Knapsack Problem) Given items of sizes a1, . . . , am > 0 and a
positive integer b ≥ mini ai, find the numbers of vectors x = (x1, . . . , xn) ∈ {0, 1}n,
such that

n∑

i=1

ai xi ≤ b.

The integer b re-presents the size of the knapsack, and xi indicates whether or not
item i is put into the knapsack. Let X ∗ denote the set of all feasible solutions, that
is, all different combinations of items that can be placed into the knapsack without
exceeding its capacity. The goal is to determine |X ∗|.

To put the knapsack problem into the framework (1), assume without loss of
generality that a1 ≤ a2 ≤ · · · ≤ an and define bj =

∑j
i=1 ai, with b0 = 0. Denote

by Xj the set of vectors x that satisfy
∑n

i=1 ai xi ≤ bj , and let m be the largest
integer such that bm ≤ b. Clearly, Xm = X ∗. Thus, (1) is established again.
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Example 1.5 (Counting the Permanent) The permanent of a general n × n
binary matrix A = (aij) is defined as

per(A) = |X ∗| =
∑

x∈X

n∏

i=1

aixi , (4)

where X is the set of all permutations x = (x1, . . . , xn) of (1, . . . , n). It is well-known
that calculation of the permanent of a binary matrix is equivalent to the calculation
of the number of perfect matchings in a certain bipartite graph. A bipartite graph
G(V, E) is a graph in which the node set V is the union of two disjoint sets V1 and
V2, and in which each edge joins a node in V1 to a node in V2. A matching of size
m is a collection of m edges in which each node occurs at most once. A perfect
matching is a matching of size n.

To see the relation between the permanent of a binary matrix A = (aij) and the
number of perfect matchings in a graph, consider the bipartite graph G = (V, E)
where V1 and V2 are disjoint copies of {1, . . . , n}, and (i, j) ∈ E if and only if
aij = 1, for all i and j. As an example, let A be the 3× 3 matrix

A =




1 1 1
1 1 0
0 1 1


 . (5)

The corresponding bipartite graph is given in Figure 3. The graph has 3 perfect
matchings, one of which is displayed in the figure. These correspond to all permu-
tations x for which the product

∏n
i=1 aixi = 1.

1

3

1’

2’

3’

2

Figure 3: A bipartite graph. The bold edges form a perfect matching.

For a general binary matrix A let Xi denote the set of matchings of size i in the
corresponding bipartite graph G. Assume that Xn is non-empty, so that G has a
perfect matching of nodes V1 and V2. We are interested in calculating |Xn| = per(A).
Taking into account that |X0| = |E| we obtain (1).

Let us write |X ∗| as
|X ∗| = `(m)|X |,

where as before `(m) = |X∗|
|X | is the rare-event probability. It can be also written as

`(m) = Ef

[
I{S(X)≥m}

]
. (6)

Here X ∼ f(x), f(x) is a uniform distribution on the set of points of X , as before,
m is a fixed parameter, like the total number of edges in a coloring graph, and S(X)
is the sample performance.

To proceed, write `(m) similar to (1) as

`(m) = c0

T∏
t=1

ct, (7)

where c0 = Ef [I{S(X)≥m0}] and, as before

ct = |Xt|/|Xt−1| = Eg∗t−1
[I{S(X)≥mt−1}]. (8)
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Here
g∗t−1 = g∗(x, mt−1) = `(mt−1)−1f(x)I{S(x)≥mt−1}, (9)

`(mt−1)−1 is the normalization constant and similar to (1) the sequence mt, t =
0, 1, . . . , T represents a fixed grid satisfying −∞ < m0 < m1 < · · · < mT = m.
Note that in contrast to (1) we use in (7) a product of T terms instead of m terms.
As we shall see below, one can typically make T ≤ m. In addition, T might be
a random variable. The later case is associated with adaptive choice of the level
sets {m̂t}T

t=0. This in turn involves an additional parameter denoted by ρ, which
is called the rarity parameter. For more details see (Botev and Kroese, 2008 and
Rubinstein, 2008). Unless stated otherwise, we assume without loss of generality
that T = m.

Since for counting problems the pdf f(x) should be uniformly distributed on X ,
which we denote by U(X ), it follows from (9) that the pdf g∗(x,mt−1) should be
uniformly distributed on the set Xt = {x : S(x) ≥ mt−1}, that is, g∗(x,mt−1) must
be equal to U(Xt). As mentioned, generating points uniformly distributed on each
sub-region Xt = {x : S(x) ≥ mt−1} is one the main issues of this paper and will be
addressed in the further sections.

Once sampling from g∗t = U(Xt) becomes feasible, the final estimator of `(m)
(based on the estimators of ct = Eg∗t−1

[I{S(X)≥mt−1}], t = 0, . . . , T ), can be written
as

̂̀(m) =
T∏

t=1

ĉt =
1

NT+1

T∏
t=0

Nt, (10)

where

ĉt =
1
N

N∑

i=1

I{S(Xi)≥mt−1} =
Nt

N
, (11)

Nt =
∑N

i=1 I{S(Xi)≥mt−1}, Xi ∼ g∗t−1 and g∗−1 = f .
The estimator (10) is often called the product estimator (Mitzenmacher and

Upfal, 2005).
We next show how to cast the problem of counting the number of feasible solu-

tions of the set defined by integer programming constraints into the framework (6)-
(9).

Example 1.6 Counting on the set of an integer programming constraints
Consider a set X ∗ containing both equality and inequality constraints of an integer
program, that is,

∑n
k=1 aikxk = bi, i = 1, . . . , m1,

∑n
k=1 ajkxk ≥ bj , j = m1 + 1, . . . , m1 + m2,

x = (x1, . . . , xn) ≥ 0, xk is integer ∀k = 1, . . . , n.

(12)

Our goal is to count the number of feasible points of the set (12). We assume that
each component xk, k = 1, . . . , n may have d different values, labeled 1, . . . , d. Note
that the SAT problem represents a particular case of (12) with inequality constraints
and where x1, . . . , xn are binary components.

It is easy to show (see Rubinstein, 2008) that in order to count the number of
points of the set (12) one can associate it with the following rare-event probability
problem

` = Ef

[
I{Pm

i=1 Ci(X)=m}
]
, (13)

where the first m1 terms Ci(X)’s in (13) are

Ci(X) = I{Pn
k=1 aikXk=bi}, i = 1, . . . ,m1, (14)
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while the remaining m2 ones are

Ci(X) = I{Pn
k=1 aikXk≥bi}, i = m1 + 1, . . . , m1 + m2. (15)

Thus, in order to count the number of feasible solution on the set (12) one can
consider an associated rare-event probability estimation problem (13) involving a
sum of dependent Bernoulli random variables Ci i = m1 + 1, . . . , m. A rare-event
probability estimation framework similar to (13) can be readily established for all
the above NP-hard counting problems. It follow from the above while using the
product estimator (3) for counting on X ∗ our main goal will be still estimating
efficiently the rare event probability ` in (13).

In this paper we show how using the above product estimators for ` and |X ∗|
to improve the performance of the classic randomized algorithms for counting in
NP-hard problems, like counting the number of satisfiability assignments in a SAT
problem, counting the number of valid colorings in a graph and calculating the per-
manent, by combining them with the classic splitting method. We present several
algorithms of the combined versions, which we simply call the splitting algorithms.
We show that the most advanced splitting version coincides with the cloning algo-
rithm suggested earlier by the author (Rubinstein, 2008).

The basic idea of splitting is due to Kahn and Harris (1951). The idea is
to partition the state-space of the system into a series of nested subsets and to
consider the rare-event as the intersection of a nested sequence of events. When
a given subset is entered by a sample trajectory during the simulation, numerous
random retrials are generated with the initial state for each retrial being the state
of the system at the entry point. By doing so, the system trajectory is split into
a number of new sub-trajectories, hence the name splitting. For references on the
splitting method see (Frederic Cerou, et al (2005), Del Moral (2004), Garvels and
D.P. Kroese (1998), Garvels, Kroese and van Ommeren (2000), Garvels (2000),
Glasserman, et al (1997), (1999) and Del Moral, (2004). For a nice recent paper on
splitting see L’Ecuyer, Demers, and Tuffin (2007).

We show numerically that

1. For counting in NP-hard problems the original randomized algorithms typi-
cally fail. They either do not converge at all or are heavily biased (converge
to a local extremum). Exceptions are convex counting problems, like esti-
mating the volume of a convex plytope. By contrast, the splitting algorithm,
which simulates simultaneously multiple Markov chains, performs nicely, that
is, typically converges to the true counting quantity.

2. As compared to the randomized algorithms, the proposed splitting algorithms
require very little warm-up time while running the MCMC from iteration to
iteration, since the underlying Markov chains are already in steady-state just
from the beginning. What required is only fine tuning, i.e. keeping the Markov
chains in steady-state while moving from iteration to iteration. As a result
we obtain dramatic variance reduction and thus, dramatic speedup compared
to the randomized algorithms.

The remaining sections are organized as follows. In Section 2 we discuss applica-
tion of the Gibbs sampler for generating samples uniformly distributed on the sub-
spaces Xj , j = 1, . . . m. In Section 3 we show how to combine the MCMC method
and in particular the Gibbs sampler with the classical splitting method (Garvels,
2000) and in particular how to incorporate the splitting method into the random-
ized algorithms and substantially improve their performance. More precisely, we
present several combined versions of randomized algorithms with splitting, one of
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which coincides with the cloning algorithm introduced. Section 4 represents nu-
merical results with the original randomized algorithms and several of its combined
versions with splitting, including the cloning algorithm. As mentioned, we show
numerically that the original randomized algorithms typically fail; they are either
trapped at some local extremum or, more often, stacked at some intermediate level
mt, that is, unable to deliver any meaningful estimator of |X ∗|. By contrast, the
splitting algorithm delivers quite reliable estimators of the true global extremum. In
Section 5 conclusions and some directions directions for further research are given.
Finally, in Appendix some mathematical grounding is given of the complexity of
the randomized algorithms (recapitulated from (Mitzenmacher and Upfal, 2005))
and of the product estimator (10)-(11).

2 Gibbs Sampler and Randomized Algorithms

In this section we show how to sample from a given joint pdf g(x1, . . . , xn) us-
ing Gibbs sampler. In the latter, instead of sampling from g(x1, . . . , xn) directly,
which might be very difficult, one samples from the one-dimensional conditional pdfs
g(xi|X1, . . . , Xi−1, Xi+1, . . . , Xn), i = 1, . . . , n, which is typically much simpler.
Under some mild conditions (see Rubinstein and Kroese, 2007), the Gibbs sampler
generates a sample distributed g(x1, . . . , xn). Two basic version of the Gibbs sam-
pler (Rubinstein and Kroese, 2007) are available: systematic and random. In the
former one the components of the vector X = (X1, . . . , Xn) are updated in a fixed,
say increasing order, while in the latter, they are chosen randomly, that is, according
to a discrete uniform n-point pdf. Below we present the systematic Gibbs sampler
algorithm. In the systematic version, for a given vector X = (X1, . . . , Xn) ∼ g(x),
one generates a new vector X̃ = (X̃1, . . . , X̃n) with the same distribution ∼ g(x)
as follows:

Algorithm 2.1 (Systematic Gibbs Sampler)

1. Draw X̃1 from the conditional pdf g(x1|X2, . . . , Xn).

2. Draw X̃i from the conditional pdf g(xi|X̃1, . . . , X̃i−1, Xi+1, . . . , Xn), i = 2, . . . , n−
1.

3. Draw X̃n from the conditional pdf g(xn|X̃1, . . . , X̃n−1).

We denote for convenience each conditional pdf g(xi|X̃1, . . . , X̃i−1, Xi+1, . . . , Xn)
as g(xi|x−i), where |x−i denotes conditioning on all random variables except the
i-th component. Below we present a random Gibbs sampler taken from Ross, 2006)
for estimating each ct = Eg∗t−1

[I{S(X)≥mt−1}], t = 0, 1, . . . , T separately according
to (11), that is,

ĉt =
1
N

N∑

i=1

I{S(Xi)≥mt−1} =
Nt

N
.

Algorithm 2.2 (Ross’ Acceptance-Rejection Algorithm for Estimating ct)

1. Set Nt = N=0.

2. Choose a vector x such that S(x) ≥ mt−1.

3. Generate a random number U ∼ U(0, 1) and set I=Int(nU) + 1.

4. If I = k, generate Yk from the conditional one-dimensional distribution g(xk|x−k)
(see Algorithm 2.1).
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5. If S(X̃1, . . . , X̃k−1, Yk, Xk+1, . . . , Xn) < mt−1, return to 4.

6. Set N = N + 1 and Yk = X̃k.

7. If S(x) ≥ mt, then Nt = Nt + 1.

8. Go to 3.

9. Estimate ct as ĉt = Nt

N .

Note that Algorithm 2.2 (see step 5) is based on the acceptance-rejection method.
For many rare-events and counting problems, generation from the conditional pdf
g(xi|x−i) can be performed directly, that is, skipping step 5 in it. We present
several relevant examples.

Example 2.1 Sum of Independent Random Variables
Consider estimation of ` with S(x) =

∑n
i=1 Xi, that is,

` = Ef

[
I{Pn

i=1 Xi≥m}
]

. (16)

In this case, generating random variables Xi, i = 1, . . . , n for a fixed value m can
be easily performed by using the Gibbs sampler based on the following conditional
pdf

g∗(xi,m|x−i) =∝ fi(xi)I{xi≥m−Pj 6=i xj} , (17)

where ∝ means proportional to.
Note also that each of the n conditional pdfs g∗(xi,m|x−i) represents a trun-

cated version of the proposed marginal pdf fi(xi) with the truncating point at
m − ∑

j 6=i xj . In short, the random variable X̃ from g∗(xi,m|x−i) represents a
shifted original random variable X ∼ fi(xi). Generation from a such truncated
single dimensional pdf g∗(xi,m|x−i) is easy and can be typically performed by the
inverse-transform method.

Sampling a Bernoulli random variable X̃i from (17) using the Gibbs sampler can
be performed as follows. Generate Y ∼ Ber (p). If

Y ≥ m−
∑

j 6=i

Xj ,

then set X̃i = Y , otherwise set X̃i = 1− Y .

Example 2.2 Counting on the set of an integer program: Example 1.6
continued

Consider the set (12). It readily follows (see also Rubinstein, 2008), that in order
to count on the set (12) with given matrix A = {aij}, one only needs to sample
from the one-dimensional conditional pdfs

g∗(xi, m̂t−1|x−i) =∝ U(1/d)I{Pr∈Ri
Cr(X)≥(bmt−1−c−i)−

P
r 6∈Ri

Cr(X)} , (18)

where Ri = {j : aij 6= 0} and c−i = m − |Ri|. Note that Ri represents the set of
indexes of all the constraints that are affected by xi, and c−i counts the number of
all those unaffected by xi.

Remark 2.1 The goal of the set Ri is to avoid calculation of every Cr. It is used
mainly for speedup. The speedup could be significant for sparse matrices A, where
matrix calculations are performed in loops and when one uses low level programming
languages, unlike MatLab. The latter operates with matrices very fast and it has
its own inner optimizer.
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Sampling a random variable X̃i from (18) using the Gibbs sampler is simple. In
particular for the Bernoulli case with x ∈ {0, 1}n this can be performed as follows.
Generate Y ∼ Ber (1/2). If

∑

r∈Ri

Cr(x1, . . . , xi−1, Y, xi+1, . . . , xn) ≥ m̂t−1, (19)

then set X̃i = Y , otherwise set X̃i = 1− Y .

Example 2.3 Vertex coloring: Example 1.2 continued It follows from Ex-
ample 1.2 that the number of levels m required by for vertex coloring equals to the
number of edges in the graph. Also note that in order to implement (3), a ran-
domized algorithm assumes running a separate MCMC (Gibbs) sampler for each
sub-graph Gj , j = 1, . . . , m. The samples thus obtained must eventually (after some
warm-up period) be distributed uniformly over the set Xj of all feasible states, that
is, we must sample uniformly on all feasible sets of q colorings associated with the
sub-graph Gj . In other words, in order to sample uniformly on Xj we need to con-
struct an irreducible and aperiodic Markov chain (MC) with the state space defined
on {ζ ∈ [1, . . . q]n : ζ is feasible}, where n is the number of vertices.

The underlying Markov chain for generating proper coloring is very simple: at
each step, choose a vertex v ∈ V uniformly at random and also a color r uniformly
at random. Recolor the v with r if the new coloring is proper, that is, if the two
end points of every edge acquire two different colors.

More formally, the Gibbs sampler algorithm for proper q-coloring (see also Al-
gorithm 2.2) can be written as follows.

Algorithm 2.3 Gibbs Sampler for Vertex Coloring
Let X0 be an arbitrary q-coloring in Gj . To generate Xt+1

1. Choose a vertex v ∈ V uniformly at random from the set of n vertices.

2. Choose Xt+1 according to the uniform distribution over the set of colors that
are not assigned at any neighbor of v.

3. Leave the colors unchanged at all other vertices, i.e., set Xt+1 = Xt for all
vertices w ∈ V except v.

Note that in contrast to Algorithm 2.2, the acceptance - rejection step is skipped
in Algorithm 2.3.

Remark 2.2 For clarity of the presentation, we still provide details on how to
estimate ct = |Xt|

|Xj−1| in (1), (8) for the vertex coloring problem. Denote by at and
bt the end vertices of the edge et, which is in Gt but not in Gj−1. By definition,
|Xt| is the number of q- colorings of the sub-graph Gt. Note that the q- colorings of
Gt are exactly those configurations ζ ∈ {1, . . . , q}n that are in q- colorings of Gj−1

and that in addition satisfy ζ(at) 6= ζ(bt). Hence the ratio |Xt|
|Xj−1| in (1) is exactly

the proportion of q-colorings of Gt that satisfy ζ(at) 6= ζ(bt). In other words, |Xt|
|Xj−1|

equals the probability of a random coloring ζ of Gj−1, chosen according to the
uniform distribution UGj−1 , satisfying ζ(at) 6= ζ(bt). The crucial point here is that
each probability ct = |Xt|

|Xj−1| could be estimated separately and independently while
running Algorithm 2.3 (for τ(ε) steps, see Theorem 6.2 of the Appendix) until it
reaches steady-state, provided that we condition on the events ζ(at) 6= ζ(bt).

Similar Gibbs sampling algorithms can be written for some other combinatorial
problems. In particular, for the independent sets problem we have (Mitzenmacher
and Upfal, 2005)
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Algorithm 2.4 Gibbs Sampler for Independent Sets
Let X0 be an arbitrary independent set in Gj . To generate Xt+1

1. Choose a vertex v ∈ V uniformly at random from the set of n vertices.

2. If v ∈ Xt, then Xt+1 = Xt \ {v}.
3. If v is not in Xt and if adding v to Xt still preserves its independency, then

Xt+1 = Xt ∪ {v}.
4. Otherwise, Xt+1 = Xt.

Note that in Algorithm 2.4 the neighbors of a state Xt are all independent sets that
differ from Xt by one vertex.

We call the algorithms, like the coloring Algorithm 2.3 and the independent sets
Algorithm 2.4, where each ct is estimated separately - the RAN algorithms. As
will follow from our numerical results below the original RAN algorithms have two
problems: (i) they are quite slow, since one needs to run the Gibbs sampler m times
from scratch while estimating each ct, t = 0, 1, . . . , m; (ii) they are typically either
stacked at some intermediate level mt or generate a heavily biased estimator of X ∗
and thus converge to a local extremum.

We next proceed by introducing the original cloning algorithm from (Rubinstein,
2008), which overcomes the difficulties of RAN algorithms.

3 Randomized Algorithms Combined with Split-
ting

To speed up convergence and improve the statistical properties of the RAN al-
gorithms, we shall combine them with the classic splitting algorithms (Asmussen
and Glynn, 2007), Garvels, 2001). We call such combined algorithms randomized
splitting or simply splitting algorithms.

In splitting algorithms one runs the MCMC sampler, like the Gibbs sampler or
the hit-and-run one, by simulating simultaneously many Markov chains instead of
a single one as in Algorithm 2.1. For details see Algorithm 3.1 below, where we use
the Gibbs sampler. We found that for counting and optimization problems based
on the rare event probabilities of type (13) the Gibbs sampler is very useful. Here
we outline the main steps of the splitting algorithm.

1. We start by generating a sample X1, . . . , XN uniformly on X0. We denote by
X̃0 = {X̃1, . . . , X̃N0} the largest subset of the population {X1, . . . , XN} and
call it the elite sample. The elite sample corresponds to the ordered statistics
values of S(X1), . . . , S(XN ) for which S(Xi) ≥ m̂0. Here m̂0 corresponds
to the (1 − ρ) sample, ρ being the rarity parameter. Typically we set 0.01 ≤
ρ ≤ 0.25. In short, X̃0 = {X̃1, . . . , X̃N0} corresponds to the largest subset of
the population {X1, . . . , XN}, for which S(Xi) ≥ m̂0. It is crucial to note
that the elite sample X̃1, . . . , X̃N0 ∼ g∗(x, m̂0), where g∗(x, m̂0) is a uniform
distribution on the set X1 = {x : S(x) ≥ m̂0}. In other words, the elite
sample X̃1, . . . , X̃N0 ∼ g∗(x, m̂0) can be viewed as the one in steady-state.

2. We split each elite sample X̃1, . . . , X̃N0 η0 times, that is, we take η0 copies
of each of them, with η chosen such that η0N0 ≈ N .

3. At the next iteration we apply the Gibbs Algorithms 2.1 for burn-in periods to
each of the above N ≈ η0N0 samples. It is crucial to note that after applying
the Gibbs sampler each vector in the new sample X1, . . . , XN is distributed
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approximately uniformly on the same set X1 = {x : S(x) ≥ m̂0}. This is
so since after the first iteration all elite samples X̃1, . . . , X̃N0 are exactly
in steady-state (uniformly distributed on X1), and by applying the Gibbs
sampler (for one-two loops) will ensure that the new sample X̃1, . . . , X̃N

remains distributed nearly uniformly on X1.

4. We keep iterating as above (applying the Gibbs sampler simultaneously to
N splitted elites) until convergence. We call this procedure, the fine tuning
procedure. As mentioned, its goal is to keep the resulting sample X̃1, . . . , X̃N

at each iteration t in the steady-state.

Unless stated otherwise the reader should bear in mind either the coloring or
the SAT problem.

We consider the following 4 splitting versions:

(i) Splitting of the sub-graphs Gj , j = 1, . . . , m with strictly fixed topology
configurations and with levels mj , j = 1, . . . ,m strictly fixed in advance.

(ii) Splitting of the sub-graphs Gj , j = 1, . . . , m with strictly fixed topology
configurations, but with adaptive levels mj , j = 1, . . . , m.

(iii) Splitting of the sub-graphs Gj , j = 1, . . . , m with adaptive choice of the
topology configurations and with levels mj , j = 1, . . . , m strictly fixed in
advance.

(iv) Splitting of the sub-graphs Gj , j = 1, . . . , m with both adaptive choice of the
topology configurations and of levels mj , j = 1, . . . , m.

We shall call the above four versions Split1, Split2, Split3 and cloning, respectively.
Investigation of their performance and their comparison with RAN is one of the
main tasks in this work.

Note also that

• When we say that the sub-graphs Gj , j = 1, . . . , m are strictly fixed in ad-
vance, like in RAN, Split1 and Split2 - we mean that their corresponding
edges j = 1, . . . , m (say, in the graph coloring problem) are labeled in ad-
vance. When we say that they are chosen adaptively, like in Split3 and in the
cloning method, we mean that there is no labeling of the edges j = 1, . . . , m
in Gj in advance, that is, we accept all samples from the sub-space Xj rather
than those restricted by labeling.

In short, in RAN, Split1 and Split2 the configurations Gj are fixed in advance,
that is, Gj contains exactly j edges labeled in advance, while in Split3 and in
cloning, the edges are not fixed (controlled) in advance. As we shall see below,
labeled and unlabeled sub-graphs involve one of the crucial convergence issues.

• The number of levels (iterations) in Split1 and Split3 is fixed and equal to m,
while in Split2 and cloning it is chosen adaptive and denoted by T . Clearly,
in the latter cases typically T < m.

• Although the cloning version, where both the levels mj and the sub-graphs Gj

are chosen adaptively, is the most natural one - our numerical results suggest
that Split3 also nicely converges to |X ∗|. We observed that the crucial issue
for global convergence to |X ∗| is not the number of iterations (fixed m versus
adaptive m), but rather labeled Gj versus adaptive Gj . More on this below.

We shall also show below that
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1. The RAN and Split1, Split2, Split3, can be viewed as particular cases of the
cloning Algorithm 3.1 below.

2. The RAN algorithm can be viewed as a particular case of Split1, when the
number of elite samples equal unity (no splitting).

3. By contrast to RAN, there is no need in any of the 4 splitting versions for
a warm up (see, for example, Theorem 6.2 of Appendix), since it will follow
directly from the cloning Algorithm 3.1 below that the underlying model is
in steady state from the very first iteration. What is required from the 4
algorithms is fine tuning only, that is keeping the corresponding Markov chains
(MC’s) in steady state, while moving from iteration to iteration. As a result,
we obtain dramatic variance reduction (speed up) while estimating |X ∗| in
(1).

4. With the algorithms arranged in the sequence

RAN → Split1 → Split2 → Split3 → cloning

the statistical properties of the counting estimators of |X ∗| substantially im-
prove. The main performance breakthrough occurs at the link Split2→ Split3.

We next present two versions of the cloning algorithm: the so-called basic version
and the enhanced version.

3.1 Basic Cloning Algorithm

Let N , ρt and Nt be the fixed sample size, the adaptive rarity parameter (see
Rubinstein, 2008 for details) and the number of elites at iteration t, respectively.
Note that the number of elites equals Nt = dNρte, where d·e denotes rounding to
the largest integer.

In the basic version at iteration t we split each elite sample ηt =
⌈
ρ−1

t

⌉
times.

By doing so we generate
⌈
ρ−1

t Nt

⌉ ≈ N new samples for the next iteration t + 1.
Our rationale is based on the fact that if all ρt are not small, say ρt ≥ 0.01, we have
enough stationary elite samples and all the Gibbs sampler has to do is to continue
with these stationary Nt elites and generate N new stationary samples for the next
level.

Algorithm 3.1 (Basic Splitting Algorithm for Counting) Given the initial
parameter ρ0, say ρ0 ∈ (0.01, 0.25) and the sample size N , say N = nm, execute
the following steps:

1. Acceptance-Rejection Set a counter t = 1. Generate a sample X1, . . . , XN

uniformly on X0. Let X̃0 = {X̃1, . . . , X̃N0} be the largest subset of the pop-
ulation {X1, . . . , XN}, the elite samples for which S(Xi) ≥ m̂0, where m̂0 is
the (1−ρ0) sample quantile of the ordered statistics values of S(X1), . . . , S(XN ).
Take

ĉ0 = ̂̀(m̂0) =
1
N

N∑

i=1

I{S(Xi)≥bm0} =
N0

N
(20)

as an unbiased estimator of c0. Note that X̃1, . . . , X̃N0 ∼ g∗(x, m̂0), where
g∗(x, m̂0) is a uniform distribution on the set X1 = {x : S(x) ≥ m̂0}.

2. Splitting Let X̃t−1 = {X̃1, . . . , X̃Nt−1} be the elite sample at iteration (t−
1), that is the subset of the population {X1, . . . , XN} for which S(Xi) ≥
m̂t−1. Reproduce ηt−1 =

⌈
ρ−1

t−1

⌉
times each vector X̃k = (X̃1k, . . . , X̃nk)

of the elite sample {X̃1, . . . , X̃Nt−1}, that is take ηt−1 identical copies of
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each vector X̃k. Denote the entire new population (ηt−1Nt−1 cloned vectors
plus the original elite sample {X̃1, . . . , X̃Nt−1}) by Xcl = {(X̃1, . . . , X̃1), . . . ,
(X̃Nt−1 , . . . , X̃Nt−1)}. To each of the cloned vectors of the population Xcl

apply the MCMC (and in particular the random Gibbs sampler) for a single
period (single burn-in). Denote the new entire population by {X1, . . . , XN}.
Note that each vector in the sample X1, . . . , XN is distributed g∗(x, m̂t−1),
where g∗(x, m̂t−1) has approximately a uniform distribution on the set Xt =
{x : S(x) ≥ m̂t−1}.

3. Estimating ct Take ĉt = Nt

N (see (11)) as an estimator of ct in (9). Note again
that each vector of X̃1, . . . , X̃Nt

of the elite sample is distributed g∗(x, m̂t),
where g∗(x, m̂t) has approximately a uniform distribution on the set Xt+1 =
{x : S(x) ≥ m̂t}.

4. Stopping rule If mt = m go to step 5, otherwise set t = t + 1 and repeat
from step 2.

5. Final Estimator Deliver ̂̀(m) given in (10) as an estimator of `(m) and
|X̂ ∗| = ̂̀(m)|X | as an estimator of |X ∗|.

In the Appendix we derive (under certain simplifying assumptions), some analyt-
ical results on the complexity of the product estimator (10). More on the complexity
of the cloning Algorithm 3.1 can be found in (Rubinstein, 2008).

To provide more insight on the splitting Algorithm 3.1, consider a toy example
associated with a 6-sided polytope. Let N = 6 and ρ = 1/3. This corresponds
to a number of elite samples equal two. Figures 4- 10 present typical dynamics (3
iterations) with the splitting Algorithm 3.1 for the polytope (marked as bold lines)
with m = 6 inequality constraints (see (12)). It follows from Figures 4- 10 that

• At iterations 1, 2 and 3, we have m1 = 4, m2 = 5 and m3 = 6, respectively.
The corresponding two elite values of S(X) after iterations 1, 2 and 3 are
(S = 4, S = 5), (S = 5, S = 5) and (S = 6, S = 6), respectively.

• The last two elite samples in Figure 10 (both corresponding to S(X) = m = 6)
hit the desired polytope, which means that Algorithm 3.1 converged after 3
iterations.

The purpose of Figures 4- 10 is also to demonstrate that Algorithm 3.1 is a global
search one in the sense that at each iteration the generated random vectors Xi, i =
1, . . . , 6 are randomly distributed inside their corresponding sub-spaces. Consider,
for example, the 4 non-elite samples in Figure 4 (after the first iteration), corre-
sponding to S(X) = 3. One can clearly see that they are spread quite randomly in
the two-dimensional space, and similarly for the other elite and non-elite samples
at iterations 2 and 3.
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Figure 4: Iteration 1 of splitting Algorithm for 6-sided polytope.

Figure 5: Iteration 1: the sub-region corresponding to the elite point with S = 5.

Figure 6: Iteration 1: the sub-region corresponding to the elite point with S = 4.
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Figure 7: Iteration 2 of splitting Algorithm for 6-sided polytope.

Figure 8: Iteration 2: the sub-region corresponding to the elite point with S = 5.

Figure 9: Iteration 2: the sub-region corresponding to the elite point with S = 5.
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Figure 10: Iteration 3 of splitting Algorithm for 6-sided polytope.

Figure 11 presents a typical dynamics of the splitting algorithm, which termi-
nates after two iterations. The set of points denoted ? and • is associated with these
two iterations. In particular the points marked by ? are uniformly distributed on
the sets X0 and X1. (Those, which are in X1 correspond to the elite samples). The
points marked by • are approximately uniformly distributed on the sets X1 and X2.
(Those, which are in X2 = X ∗ likewise correspond to the elite samples).

Figure 11: Dynamics of Algorithm 3.1

3.2 Enhanced Cloning Algorithm for Counting

Here we introduce an improved version of the basic cloning Algorithm 3.1, which
contains (i) an enhanced cloning (splitting) step instead of the original one as in
Algorithms 3.1 and a (ii) new screening step.

(i) Enhanced cloning step Its purpose is to find a good balance, in terms of
bias-variance of the estimator of |X ∗|, between the cloning (splitting) parameter ηt,
and the length of the burn-in parameter bt, provided the number of samples N is
given. Recall that the purpose of ηt is to reproduce the Nt elites ηt times.

Let us assume for a moment that bt = b is fixed. Then for fixed N , we can define
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the adaptive cloning parameter ηt−1 at iteration t− 1 as follows

ηt−1 =
⌈

N

bNt−1

⌉
− 1 =

⌈
Ncl

Nt−1

⌉
− 1. (21)

Here Ncl = N/b is called the cloned sample size, Nt−1 = ρt−1N denotes the number
of elites and ρt−1 is the adaptive rarety parameter at iteration t−1 [see (Rubinstein,
2008)] for details).

As an example, let N = 1, 000, b = 10. Consider two cases: Nt−1 = 21 and
Nt−1 = 121. We obtain ηt−1 = 4 and ηt−1 = 0 (no splitting), respectively.

As an alternative to (21) one can use the following heuristic strategy in defining
b and η: find bt−1 and ηt−1 from bt−1ηt−1 ≈ N

Nt−1
and take bt−1 ≈ ηt−1. In short,

one can take

bt−1 ≈ ηt−1 ≈
(

N

Nt−1

)1/2

. (22)

Consider again the same two cases for Nt−1 and N We have bt−1 ≈ ηt−1 = 7 and
bt−1 ≈ ηt−1 = 3, respectively. Unless stated otherwise we shall use (22).

(ii) Screening step. Since the IS pdf g∗(x,mt) must be uniformly distributed
for each fixed mt, the cloning algorithm checks at each iteration whether or not
all elite vectors X̃1, . . . , X̃Nt are different. If this is not the case, we screen out
(eliminate) all redundant elite samples. We denote the resulting elite sample as
X̂1, . . . , X̂Nt and call it, the screened elite sample. Note that this procedure pre-
vents (at least partially) the empirical pdf associated with X̂1, . . . , X̂Nt from devi-
ating from the uniform.

With this to hand, we can recapitulate from (Rubinstein, 2008) the cloning
algorithm.

Algorithm 3.2 (Cloning Algorithm for Counting) Given the parameter ρ, say
ρ ∈ (0.01, 0.25) and the sample size N , say N = nm, execute the following steps:

1. Acceptance-Rejection - the same as in Algorithm 3.1.

2. Screening Denote the elite sample obtained at iteration (t− 1) by
{X̃1, . . . , X̃Nt−1}. Screen out the redundant elements from the subset {X̃1, . . . , X̃Nt−1},
and denote the resulting (reduced) one as {X̂1, . . . , X̂Nt−1}.

3. Cloning (Splitting) Given the size Nt−1 of the screened elites {X̂1, . . . , X̂Nt−1}
at iteration (t − 1), find the cloning (splitting) and the burn-in parame-
ters ηt−1 and bt−1 according to (22). Reproduce ηt−1 times each vector
X̂k = (X̂1k, . . . , X̂nk) of the screened elite sample {X̂1, . . . , X̂Nt−1}, that is,
take ηt−1 identical copies of each vector X̂k obtained at the (t−1)-th iteration.
Denote the entire new population (ηt−1Nt−1 cloned vectors plus the original
screened elite sample {X̂1, . . . , X̂Nt−1}) by Xcl = {(X̂1, . . . , X̂1), . . . , (X̂Nt−1 , . . . , X̂Nt−1)}.
To each of the cloned vectors of the population Xcl apply the MCMC (and
in particular the Gibbs sampler) for bt−1 burn-in periods. Denote the new
entire population by {X1, . . . , XN}. Note that each vector in the sample
X1, . . . , XN is distributed approximately g∗(x, m̂t−1), where g∗(x, m̂t−1) is
a uniform distribution on the set Xt = {x : S(x) ≥ m̂t−1}.

4. Estimating ct - the same as in Algorithm 3.1.

5. Stopping rule -the same as in Algorithm 3.1.

6. Final estimator - the same as in Algorithm 3.1.
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Note that the basic Algorithm 3.1 (with b = 1 and without screening) presents
a particular case of the enhanced Algorithm 3.2. Note also that RAN algorithm
presents a particular case of the enhanced Algorithm 3.2 without splitting (η = 1)
and thus, with burn-in b = N . Note, finally, that although with a good balance
between η and b, like in (22) and by adding the screening step, we can get a more
accurate estimator of |X ∗|, while using the enhanced Algorithm 3.2, nevertheless to
keep things simple we shall use below the basic cloning Algorithm 3.1.

3.3 Direct Estimator

The direct estimator below can be viewed as an alternative to the estimator |X̂ ∗|
obtained by Algorithm 3.1. This estimator is based on direct counting of the num-
ber of screened samples obtained immediately after crossing the level m. Such a
counting estimator, denoted by |X̂ ∗dir|, is associated with the empirical distribution
of the uniform distribution g∗(x,m). We found numerically that |X̂ ∗dir| is extremely
useful and very accurate. Note that it is applicable only for counting problems with
|X ∗| not too large. Specifically |X ∗| should be less than the sample size N , that is
|X ∗| < N . Note also that counting problems with values small relative to |X | are
the most difficult ones and in many counting problems one is interested in the cases
where |X ∗| does not exceed some fixed quantity, say N . Clearly, this is possible
only if N ≥ N . It is important to note that |X̂ ∗dir| is typically much more accurate
than its counterpart, the standard estimator |X̂ ∗| = ̂̀|X |. The reason is that |X̂ ∗dir|
is obtained directly by counting all distinct values of Xi, i = 1, . . . , N satisfying
S(Xi) ≥ m, that is it can be written as

|X̂ ∗dir| =
N∑

i=1

I{S(X
(d)
i )≥m}, (23)

where X
(d)
i = Xi, if Xi 6= Xj , ∀j = 1, . . . , i − 1 and X

(d)
i = 0, otherwise. Note

that we set in advance X
(d)
1 = X1. To increase further the accuracy of |X̂ ∗dir| we

can take a larger sample at the last step of Algorithm 3.1, that is after reaching the
level m.

Since we shall extensively use the direct estimator |X̂ ∗dir| in our numerical results,
we present next the relevant algorithm.

Algorithm 3.3 ( Direct Splitting Algorithm for Counting) Given the rarity
parameter ρ, say ρ = 0.1, the parameters a1 and a2, say a1 = 0.01 and a2 = 0.25,
such that ρ ∈ (a1, a2), and the sample size N , execute the following steps:

1. Acceptance-Rejection - the same as in Algorithm 3.1.

2. Adaptive choice of ρ - the same as in Algorithm 3.1.

3. Screening - the same as in Algorithm 3.2.

4. Cloning - the same as in Algorithm 3.1.

5. Estimating mt - the same as in Algorithm 3.1.

6. Stopping rule - the same as in Algorithm 3.1.

7. Final Estimator For mT = m, take a sample of size N , and deliver |X̃ ∗dir| in
(23) as an estimator of |X ∗|.
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Note that there is no need to calculate ĉt in Algorithm 3.3 at any step. Note
also that the counting Algorithm 3.3 can be readily modified for combinatorial
optimization, since an optimization problem can be can be viewed as a particular
case of counting, where the counting quantity |X ∗| = 1. For details see (Rubinstein
2008).

3.4 Split1 Estimator and its Convergence

Although Algorithms Split1-Split3 directly follow from the splitting Algorithm 3.1,
for clarity we will elaborate a little more on the Split1 version, which can be also
viewed as an extended version of the RAN algorithm, for which the number of elite
samples =1, (no splitting, η = 1). Unless stated otherwise we shall have in mind
the coloring problem.

Consider a configuration Gj−1 which, as before, has a fixed number (equal to
j−1) vertices. Assume for a moment that we have a feasible q-coloring in Gj−1 and
we run Algorithm 3.1 until it reaches steady state as per Definitions 6.2 and 6.3 and
Theorem 6.2 of the Appendix. This means that after τ(ε) transitions we can start
collecting the samples, since according to Theorem 6.2 they will be approximately
distributed uniformly on the set Xj−1. Clearly, part of these samples will satisfy
ζ(aj) 6= ζ(bj), that is, will also be uniformly distributed on the next sub-graph Gj .
Denoting by N the total sample size generated in steady state for the graph Gj−1

and by Nj the size of the sample, called the elite sample, we can estimate

ct =
|Xj |
|Xj−1|

by

c̃t =
Nj

N
.

Since b = 1, it follows that we shall split ηj = dc̃te times each of the elites of
size Nj .

It is important to note that if we continue running in parallel the Nj Markov
chains for several additional burn-in periods b, we would obtain a sample “closer” to
the uniform distribution on Xj than that with b = 1. However, in fact the value of
b does not matter much. The crucial point here is that all elites Nj , j = 1, . . . , j− 1
at all previous configurations Gj are already in the steady state (warm up). What
follows is that using some manageable burn-in period b, we only need, iteration-wise
to keep the resulting Gibbs samples (of the size N) in the warm position, rather
than run each MC from scratch with a large b, like in RAN. In other words, in the
splitting versions, for each sub-graph Gj , we automatically derive an elite sample of
size Nj+1 from the generated sample of size N . As mentioned earlier, for coloring
all these elite samples are obtained by conditioning on ζ(aj+1) 6= ζ(bj+1), and will
be used for the next sub-graph Gj+1.

Remark 3.1 It is important to note that in contrast to Algorithm 3.1 the rarity
parameter ρ in Split1 is not explicitly defined. The reason is that the number of
elites Nj at iteration j is defined on-line. More precisely, as soon as the sample of
size N has been generated (using the Gibbs sampler), the number Nj of elites is
found by labeling the j edges, with their order 1, . . . , j strictly followed in advance,
while for the remaining m − j ones the order is arbitrary. It is readily seen that
as j approaches m the number of elites Nj may become small, since the labeling
reduces the sample space of the elites. If at some iteration Nj < k, say k = 10, we
have to increase the sample size till Nj ≥ k. A similar policy should be employed
for Split2 where the levels mt are chosen adaptively.
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Convergence of Split1

Assume for a moment that similar to RAN we use a long warm-up periods for each
of the N parallel independent Markov chains in Split1. In this case the conver-
gence theorems established for RAN (Hayes, Vera and Vigoda, 2007; Mitzenmacher
and Upfal, 2005; Motwani and Raghavan, 1997) automatically hold for Split1. The
reason is that Split1 extends RAN in the sense that in the former case we indepen-
dently run in N parallel Markov chains instead of a single one. Clearly, by taking
the best performance from N parallel simulations one can not do worse than when
using a single one.

3.5 Why Splitting Method Works

Consider ct in (8), which is used in `(m) in (7). Note that

• ct can be written as ct = P(Xt|Xt−1). That is, ct represents conditional
probability that the Markov process reaches the sub-space Xt from Xt−1, or in
other words, it presents the conditional probability that the process reaches
the level mt from level mt−1. Consider for concreteness the set of integer
program constraints as in Example 1.6 and assume without loss of generality
that T = m. Note that this implies that mt = t and mT = m, where m is the
number of constraints.

• ct = P(Xt|Xt−1) can also be viewed as the conditional probability of exactly
t arbitrary constraints being satisfied at iteration t, (t = 1, . . . ,m), provided
that at iteration t− 1 any of the t− 1 constraints have already been satisfied.
We emphasize the word arbitrary, since without labeling, as in Algorithm 3.1,
any point generated in the sub-space Xt−1 is considered as a candidate for
acceptance to Xt. This is in contrast to RAN, where because of the labeling,
either no points or a very limited number of points can be accepted to Xt from
Xt−1.

• Since ct = |Xt|
|Xt−1| is the ratio of the number of feasible points in Xt to that

in the larger sub-space Xt−1, where both sub-spaces are arbitrary, satisfying
t and t− 1 arbitrary constraints respectively - it readily follows that typically
ct is not a rare-event, say ct ≥ 10−3, hence the splitting method should work.

Note that in the continuous case |Xt| represents a volume of a body, and if we
consider, say, the constraints of linear programming, then ct is the ratio of the
volume of a convex sub-set Xt to the volume of a convex sub-set Xt−1, where the
former volume is obtained by adding an arbitrary constraints from the latter one.

Veracity of the splitting method

For certain pathological models, some of the probabilities ct, t = 1, . . . , m in the
product c1, . . . , cm can still be small, say ct < 10−4. In such a case Algorithm 3.1
stops at that intermediate level mt < m, with an announcement - “pathological
model”.

As a simple “pathological model” consider estimation of ` in the sum of inde-
pendent random variables, that is estimation of

` = Ef

[
I{Pn

i=1 Xi=m}
]
, (24)

where Xi ∼ Ber(pi). Assume for concreteness that p1 = 10−5, while the remaining
ones, pi, i = 2, . . . , n equal 1/2. Assume also that m = n. It is readily seen that if
one takes a sample, say N = 1, 000, then there is a high probability that Algorithm
3.1 will be stacked with an announcement - “pathological model”. This will happen
because of the element p1 = 10−5, which by itself presents a rare event probability.
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4 Numerical Results

Here we present numerical results on all 5 versions of counting the number of SAT
assignments, the number of valid colorings in a network and some other problems,
such as the calculating the permanent and the volume of a convex body.

As mentioned we shall show below that

• The RAN algorithm with a single Markov chain (MC), that is without split-
ting, typically performs poorly; it is either stacked at some intermediate level
mt and thus unable to deliver any value |X̃ ∗| or trapped at some local ex-
tremum, that is its estimator |X̃ ∗| of |X ∗| is heavily biased. Exceptions are
convex counting problems, like estimating the volume of a convex polytope
and when the counting quantity is a huge number. In the latter case one can
typically use the crude Monte Carlo method. The main reason for the poor
performance is that RAN is a local rather than a global search algorithm.
This is due to the absence of splitting in RAN, that is by running only a
single Markov chain instead of multiple chains in parallel. Another reason is
labeling of the sub-graphs Gj in RAN, whereby they are chosen determinis-
tically in advance instead of randomly. Note that, when simulating multiple
Markov chains in parallel at each level mt, the splitting algorithms can be
viewed as level-based multi-start algorithms. In this sense they resemble the
multi-start algorithm in multi-extremuml optimization.

• The estimator |X̃ ∗| of |X ∗| in RAN will heavily depend on a particular (de-
terministic) combination of the sequences of sub-graphs G0, G1, . . . , Gm. In
short, the statistical properties of the counting estimators |X̃0|, |X̃1|, . . . , |X̃m|
will differ for different sequences (permutations) of G0, G1, . . . , Gm. Once we
stop controlling the sequences, that is, we choose them randomly , as in Split3
and in the splitting Algorithm 3.2, the associated counting estimators |X̃0|,
|X̃1|, . . . , |X̃m| will be able to avoid local extrema. In summary, there is
not enough randomness in the RAN algorithm as compared to Split3 and the
cloning Algorithm 3.2.

Note also that

1. The Split1 and Split2 versions (performing similar to RAN in the labeled
space, but using splitting), will serve as bridges between the RAN and the
splitting Algorithm 3.1.

2. We shall also use enhanced versions of RAN, the so-called RAN1 and RAN2.
Both of them are without splitting, but otherwise they coincide with Split3
and the splitting Algorithm 2.3, respectively, that is, in contrast to RAN we
sample in them without labeling in advance. We shall see that although in
the sequence

RAN → RAN1 → RAN2

the statistical properties improve, both RAN1 and RAN2 are typically trapped
in local extremum, or sometimes even stacked at an intermediate level mt.

Remark 4.1 To find the initial sub-graph in Split3, and thus speed up its perfor-
mance, we can use the following Monte Carlo acceptance-rejection procedure:

• Generate a sample of size N of iid random vectors Xi = (Xi1, . . . , Xid) each
of size n (number of vertices). Associate each component of the n-dimensional
random vector with a vertex in the graph G.
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• For each new sample, assign randomly a color r, r = 1, . . . , d to the corre-
sponding vertex.

• Estimate c0 by using acceptance-rejection, that is as

c̃0 =
N0

N
,

where N0 is the number of elites.

In practice one can determine the initial sub-graph as follows. Pick any configura-
tion Gj corresponding to the elite sample N0. Here subscript j corresponds to the
sub-graph Gj with exactly j labeled edges. With Gj to hand, we proceed next to
Gj+1, etc, for the remaining m− j iterations until we reach G = Gm. We call this
Split3, the enhanced Split3 algorithm.

Recall, finally that we shall use the basic splitting Algorithm 3.1, that is, set the
burn-in period b = 1 and employ the random Gibbs sampler.

4.1 SAT Problem

To study the performance (variability in the solutions) of all 5 algorithms, we ran
each problem 10 times with each algorithm and report the statistics.

We took some benchmarks from
http://www.satcompetition.org and
http://fmv.jku.at/sat- race-2006/downloads.html
We present data for two different SAT models, one of a small size and the other

of a moderate size. As we shall see below, for the former case RAN delivers a local
extremum, while for the latter case it is always stacked at an intermediate level mt.
For the splitting method the results are as follows: for the former case all 4 splitting
methods are unbiased, while for the latter case Split1 and Split2 are biased (because
of the labeling issue), while Split3 and the splitting Algorithm 3.1 are unbiased.

First Model: 3-SAT with instance matrix A = (20× 80).
Tables 1-5 summarize the performance of the 5 algorithms for the for a random

3-SAT problem with an instance matrix A = (20 × 80) taken from (Rubinstein,
2008) with N = 1, 000. For the splitting algorithms we set in addition ρ = 0.1 and
b = 1 (no warm up).

One can readily see that the accuracy of the algorithm increases in the sequence
RAN → Split1 → Split2 → Split3 → cloning.
In particular one can see from Table 5 that the RAN algorithm is either stacked

at some intermediate level (6 out of 10 cases) or is trapped in a local extremum. In
the latter case, depending on on particular on particular labeling, it delivers either
6 or 9 SAT assignments instead of 15 for all 4 splitting algorithms. The increase
of the sample size from N = 1, 000, say to N = 10, 000 did not help much. In this
case, instead of 6 times, it was stacked 3 times. In the remaining 7 cases it delivered
again either 6 or 9, but never 15. We also ran both RAN1 and RAN2. They were
never stacked at some intermediate level mt, but were consistently trapped in a
local extremum, delivering again either 6 or 9 valid SAT assignments instead of 15.
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Table 1: Performance of splitting Algorithm 3.1 for SAT 20× 80 model.

Run N0 Iterations |X̃ ∗| RE of |X̃ ∗| |X̂ ∗dir| RE of |X̂ ∗dir| CPU
1 10 14.612 0.026 15 0.000 5.143
2 10 14.376 0.042 15 0.000 5.168
3 10 16.304 0.087 15 0.000 5.154
4 10 19.589 0.306 15 0.000 5.178
5 10 13.253 0.116 15 0.000 5.140
6 10 17.104 0.140 15 0.000 5.137
7 10 14.908 0.006 15 0.000 5.173
8 10 13.853 0.076 15 0.000 5.149
9 10 18.376 0.225 15 0.000 5.135
10 10 12.668 0.155 15 0.000 5.156

Average 10 15.504 0.118 15.000 0.000 5.153

Table 2: Performance of Split3 Algorithm for SAT 20× 80 model.

Run N0 Iterations |X̃ ∗| RE of |X̃ ∗| |X̂ ∗dir| RE of |X̂ ∗dir| CPU
1 11 17.515 0.168 15 0.000 5.635
2 11 15.622 0.041 15 0.000 5.652
3 11 9.024 0.398 15 0.000 5.635
4 11 15.512 0.034 15 0.000 5.650
5 11 14.372 0.042 15 0.000 5.623
6 11 15.051 0.003 15 0.000 5.652
7 11 13.607 0.093 15 0.000 6.654
8 11 11.650 0.223 15 0.000 5.668
9 11 15.968 0.065 15 0.000 5.643
10 11 11.925 0.205 15 0.000 5.648

Average 11 14.025 0.127 15.000 0.000 5.746

Table 3: Performance of Split2 Algorithm for SAT 20× 80 model.

Run N0 Iterations |X̃ ∗| RE of |X̃ ∗| |X̂ ∗dir| RE of |X̂ ∗dir| CPU
1 10 14.557 0.030 15 0.000 6.660
2 10 12.434 0.171 15 0.000 6.734
3 10 16.748 0.117 15 0.000 6.038
4 10 17.235 0.149 15 0.000 6.055
5 10 15.783 0.052 15 0.000 6.005
6 10 17.198 0.147 15 0.000 6.719
7 10 14.029 0.065 15 0.000 6.687
8 10 17.198 0.147 15 0.000 6.704
9 10 20.373 0.358 15 0.000 6.676
10 10 15.992 0.066 15 0.000 6.064

Average 10 16.155 0.130 15.000 0.000 6.434
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Table 4: Performance of Split1 Algorithm for SAT 20× 80 model.

Run N0 Iterations |X̃ ∗| RE of |X̃ ∗| |X̂ ∗dir| RE of |X̂ ∗dir| CPU
1 80 14.624 0.025 15 0.000 56.606
2 80 9.854 0.343 15 0.000 54.400
3 80 12.689 0.154 15 0.000 57.265
4 80 13.236 0.118 15 0.000 56.855
5 80 15.134 0.009 15 0.000 57.333
6 80 13.195 0.120 15 0.000 54.324
7 80 8.154 0.456 15 0.000 56.312
8 80 17.039 0.136 15 0.000 54.835
9 80 14.354 0.043 15 0.000 55.169
10 80 17.796 0.186 15 0.000 54.355

Average 80 13.608 0.159 15.000 0.000 55.745

Table 5: Performance of RAN Algorithm for SAT 20× 80 model.

Run N0 Iterations |X̃ ∗| RE of |X̃ ∗| |X̂ ∗dir| RE of |X̂ ∗dir| CPU
1 80 25.607 0.707 9 0.400 61.130
2 78 NaN NaN NaN NaN 58.638
3 76 NaN NaN NaN NaN 57.337
4 80 144.542 8.636 9 0.400 57.051
5 80 261.825 16.455 9 0.400 57.075
6 60 NaN NaN NaN NaN 43.619
7 80 11.373 0.242 9 0.400 57.229
8 80 34.684 1.312 6 0.600 57.034
9 71 NaN NaN NaN NaN 53.681
10 61 NaN NaN NaN NaN 45.714

Average 74.6 95.606 5.470 8.400 0.440 54.851

Table 6 presents the dynamics for one of the runs of the splitting Algorithm 3.1
for the same model.

Table 6: Dynamics of Algorithm 3.1 for SAT 20× 80 model.

t |X̃ ∗| |X̂ ∗dir| Nt N
(s)
t m∗

t m∗t ρt

1 1.59E+05 0 152 152 78 56 0.152
2 3.16E+04 0 198 198 78 74 0.198
3 8.84E+03 0 280 276 79 76 0.280
4 1.78E+03 3 201 190 80 77 0.201
5 229.11 6 129 93 80 78 0.129
6 15.580 15 68 15 80 79 0.068
7 15.580 15 1000 15 80 80 1.000
8 15.580 15 1000 15 80 80 1.000
9 15.580 15 1000 15 80 80 1.000
10 15.580 15 1000 15 80 80 1.000
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Here we used the following notations

1. Nt and N
(s)
t denote the actual number of elites and the one after screening,

respectively.

2. m∗
t and m∗t denote the upper and the lower elite levels reached, respectively.

3. ρt = Nt/N denote the adaptive rarity parameter.

Tables 7 and 8 present summary statistics of RAN, Split1- Split3 and the split-
ting (cloning) Algorithm 3.1 for the SAT 20 × 80 model. In particular, Table 7
presents the average statistics of |X̃ ∗| and the relative errors, denoted as ¯|X ∗| and
R̄E, respectively, while table 8 presents similar data but with |X̃ ∗| replaced by
|X̂ ∗|dir.

Table 7: Comparative studies of Algorithms RAN, Split1, Split 2, Split 3 and cloning
Algorithm 3.1 for the product estimator |X̄ ∗|.

RAN Split1 Split2 Split3 Cloning
|X̄ ∗| R̄E |X̄ ∗| R̄E |X̄ ∗| R̄E |X̄ ∗| R̄E |X̄ ∗| R̄E

95.606 5.470 13.608 0.159 16.155 0.130 14.025 0.127 15.504 0.118

Table 8: Comparative studies of Algorithms RAN, Split1, Split 2, Split 3 and cloning
Algorithm 3.1 for the direct estimator |X̄ ∗|dir.

RAN Split1 Split2 Split3 Cloning
|X̄ ∗|dir R̄E |X̄ ∗dir| R̄E |X̄ ∗dir| R̄E |X̄ ∗dir| R̄E R̄E |X̄ ∗dir|
8.400 0.440 15 0.000 15 0.000 15.0 0.000 15 0.000

We also considered an extended version of the above random 20 × 80 3-SAT
model, namely one with 140 clauses instead of 80 and such that the first 80 clauses
are the same as in model 20 × 80. Table 9 presents the dynamic of Algorithm 3.1
for the extended SAT model. One can clearly see that in this case |X̃ ∗| = 0, that
is, there is no feasible solution starting from m = 140. Note that for m = 139 we
still obtain |X̃ ∗| = 1.
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Table 9: Dynamics of Algorithm 3.1 for SAT 20× 140 model.

t |X ∗| Empirical Nt,e N
(s)
t,e m∗

t m∗t ρt

1 1.39e+005 1.33e+002 133 1 133 127 0.13
2 6.97e+004 1.00e+000 1 1 129 129 0.50
3 6.97e+004 2.00e+000 2 1 130 130 1.00
4 3.49e+004 1.00e+000 1 1 131 131 0.50
5 3.49e+004 2.00e+000 2 1 131 131 1.00
6 1.74e+004 1.00e+000 1 1 133 133 0.50
7 8.72e+003 1.00e+000 1 1 134 134 0.50
8 4.36e+003 1.00e+000 1 1 137 137 0.50
9 4.36e+003 2.00e+000 2 1 137 137 1.00
10 2.18e+003 1.00e+000 1 1 139 139 0.50
11 2.18e+003 1.00e+000 2 1 139 139 1.00
12 2.18e+003 1.00e+000 2 1 139 139 1.00
13 2.18e+003 1.00e+000 2 1 139 139 1.00
14 2.18e+003 1.00e+000 2 1 139 139 1.00
15 2.18e+003 1.00e+000 2 1 139 139 1.00
16 2.18e+003 1.00e+000 2 1 139 139 1.00
17 2.18e+003 1.00e+000 2 1 139 139 1.00
18 2.18e+003 1.00e+000 2 1 139 139 1.00
19 0.00e+000 0.00e+000 0 0 140 140 0.00

Second model: Random 3-SAT with instance matrix A = (75× 325).
Our next model is the random 3-SAT with the instance matrix A = (75 ×

325) taken from www.satlib.org. Table 10 presents the dynamic of the splitting
Algorithm 3.1. We set N = 10, 000 and ρ = 0.1 for all iterations until Algorithm
3.1 has reached the desired level 325. After that we switched to N = 100, 000 for
the last iteration. The results are self- explanatory.
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Table 10: Dynamics of Algorithm 3.1 for the random 3-SAT with matrix A =
(75× 325).

t |X̃ ∗| |X̂ ∗dir| Nt N
(s)
t m∗

t m∗t ρt

1 5.4e+020 0.0 1020 1020 305 292 0.11
2 5.6e+019 0.0 1714 1714 307 297 0.14
3 6.5e+018 0.0 1070 1070 309 301 0.10
4 1.2e+018 0.0 1462 1462 310 304 0.12
5 1.7e+017 0.0 2436 2436 312 306 0.18
6 2.0e+016 0.0 2166 2166 314 308 0.14
7 6.1e+015 0.0 1501 1501 316 310 0.12
8 4.6e+014 0.0 1115 1115 316 312 0.09
9 2.5e+013 0.0 636 636 319 314 0.06
10 5.0e+012 0.0 2213 2213 320 315 0.23
11 9.5e+011 0.0 2674 2674 321 316 0.20
12 1.6e+011 0.0 1969 1969 320 317 0.19
13 2.5e+010 0.0 1962 1962 321 318 0.17
14 3.3e+009 0.0 1775 1775 322 319 0.16
15 3.9e+008 0.0 1350 1350 323 320 0.13
16 3.5e+008 0.0 1437 1437 324 321 0.12
17 3.8e+007 0.0 1270 1270 324 322 0.10
18 2.8e+006 8.0 924 924 325 323 0.08
19 1.4e+005 179.0 537 534 325 324 0.05
20 2341.0 2203.0 196 187 325 325 0.01
21 2341.0 2225.0 10472 2199 325 325 1.00

We found that the average relative error for the product estimator |X̃ ∗| it is RE
= 0.08 while for the direct estimator |X̂ ∗dir| is RE = 0.015, and the average CPU
time is about 6 minutes for each ran. We ran also this instance with the remaining
Split1-Split3 and with the RAN algorithms. We found that

1. RAN is always stacked at some intermediate level.

2. Split1 and Split2 are never stacked, but both are much slower than splitting
Algorithm 3.1. In addition, both are trapped at some local extremum. A
similar phenomenon was observed for RAN1 and RAN2. For example, Split2
delivered the following results for the direct estimator |X̂ ∗dir|:

(2092, 1504, 2184, 2092, 2063, 612, 2068, 1618, 2116, 2152).

One can see that |X̂ ∗dir| in Split2 is heavily biased as compared with |X̂ ∗dir| ≈
2225 in Algorithm 3.1.

3. Split3 performs similar to splitting Algorithm 3.1, although its CPU time is
longer by a factor of 5-6.

4.2 Coloring

Here we ran the vertex coloring models in the following two settings: (i) Condition
q ≥ 2∆ + 1 of Theorem 6.2 of the Appendix holds. (ii) The condition is violated,
that is, q is any integer number satisfying q ≥ 2. We found that

1. The RAN algorithm and its associates Split1 and Split2 still perform satisfac-
torily, as predicted by Theorem 6.2 of the Appendix for case (i), but fail for
case (ii), in particular when q is small.
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2. The splitting algorithms Split3 and the Algorithm 3.1 perform nicely irrespec-
tive of the value of q. Note that case (ii), in particular when q is small, is the
most interesting and most difficult, since |X ∗| is very small relative to |X |,
thus ` = |X∗|

|X | is a very low probability.

We consider here two coloring models: a small one and a moderate size.
First Model: n = 20 vertices, m = 62 edges, ∆ = 10, q = 21.
Tables 11- 12 present the performance of the splitting Algorithm 3.1 and RAN

respectively for the benchmark problem with n = 20 vertices, m = 62 edges, ∆ = 10,
q = 21 and the following A = 20× 20 matrix.

A =

0 1 1 0 0 0 0 1 1 1 0 0 0 1 0 0 0 0 1 0
1 0 1 1 1 1 0 0 0 0 0 0 0 1 0 0 0 1 1 0
1 1 0 1 1 1 0 1 0 1 0 0 0 0 0 1 0 0 1 0
0 1 1 0 0 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0
0 1 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0
0 1 1 1 0 0 0 1 0 0 0 1 0 0 1 0 0 0 1 0
0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0
1 0 1 0 0 1 0 0 1 0 1 0 0 0 0 0 0 0 0 0
1 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 0 1 0 0
1 0 1 0 0 0 0 0 0 0 0 1 0 0 0 1 1 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 1 1 0 1 1 1 0
0 0 0 0 0 1 0 0 1 1 0 0 1 0 0 1 0 0 1 1
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 1 0 1
1 1 0 0 0 0 1 0 0 0 1 0 0 0 1 0 1 1 0 0
0 0 0 0 1 1 0 0 0 0 1 0 0 1 0 0 1 0 1 0
0 0 1 0 0 0 0 0 0 1 0 1 0 0 0 0 0 1 0 1
0 0 0 0 0 0 0 0 0 1 1 0 1 1 1 0 0 0 1 1
0 1 0 0 1 0 0 0 1 0 1 0 1 1 0 1 0 0 0 1
1 1 1 0 0 1 1 0 0 0 1 1 0 0 1 0 1 0 0 1
0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 1 1 1 0

(25)

We set the following parameters: N = 1, 000, ρ = 0.05 and b = 1.
One can readily see that the splitting Algorithm is faster than RAN about 10

times, since the number of iterations in the former is 6 and in the latter 62, which
is equal to the number of edges.

Table 11: Performance of splitting Algorithm 3.1 for 21-coloring problem with n =
20 nodes.

Run N0 Iterations |X̃ ∗| RE of |X̃ ∗| CPU
1 6 1.18E+25 0.05 0.788
2 6 1.09E+25 0.12 0.827
3 6 1.12E+25 0.10 0.834
4 6 1.38E+25 0.11 0.793
5 6 1.33E+25 0.07 0.821
6 6 1.45E+25 0.16 0.827
7 6 1.33E+25 0.07 0.778
8 6 1.19E+25 0.04 0.824
9 6 1.09E+25 0.12 0.805
10 6 1.29E+25 0.04 0.808

Average 6 1.25E+25 0.09 0.811
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Table 12: Performance of RAN algorithm for 21-coloring problem with n = 20
nodes.

Run N0 Iterations |X̃ ∗| RE of |X̃ ∗| CPU
1 62 1.22E+25 0.01 8.441
2 62 1.22E+25 0.01 8.437
3 62 1.27E+25 0.03 8.387
4 62 1.15E+25 0.07 8.445
5 62 1.24E+25 0.00 8.443
6 62 1.41E+25 0.14 8.478
7 62 1.33E+25 0.08 8.482
8 62 1.10E+25 0.11 8.421
9 62 1.13E+25 0.09 8.533
10 62 1.29E+25 0.04 8.494

Average 62 1.24E+25 0.06 8.455

As expected, for q = 21 the probability ` = |X∗|
|X | is not a rare-event one, so even

the crude Monte Carlo (CMC) method can also be used here. Table 13 presents the
performance of the CMC estimator based on 10 independent runs, which matches
both Tables 11 and 12.

Table 13: Performance of CMC method for 21-coloring problem with n = 20 nodes.

Run N0 |X̃ ∗| RE of |X̃ ∗| CPU
1 1.24E+25 4.20E-02 1.045
2 1.24E+25 4.20E-02 1.016
3 1.16E+25 2.52E-02 1.051
4 1.17E+25 1.68E-02 1.026
5 1.16E+25 2.52E-02 1.027
6 1.15E+25 3.36E-02 1.054
7 1.15E+25 3.36E-02 1.010
8 1.22E+25 2.52E-02 1.014
9 1.17E+25 1.68E-02 1.042
10 1.24E+25 4.20E-02 1.045

Average 1.19E+25 3.03E-02 1.033

Second Model: n = 40 vertices, m = 162 edges, ∆ = 12, q = 4.
We next consider a larger and much sparser coloring model, namely one with

n = 40 vertices, m = 162 edges, ∆ = 12, q = 4 and the following 40× 40 matrix

0 1 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0
1 0 1 0 1 0 0 0 0 1 1 0 1 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 1 0 1 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 1 0 1 1 0 0 0 1 0 0
0 0 1 0 1 1 0 1 0 1 0 0 1 0 0 0 1 0 1 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 1
1 1 1 1 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 1 1 0 1 0 1 1 0 0 0 0 0 1 1 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 1 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 1 0 1 0 0 0 0 0 0 0
0 0 0 1 0 0 1 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 1 1 0 1 0 1 1 0 1 0 0 0 0 1 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 1 0 1 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 1 0 0 0 0 0 0 0 0 1 0 0
0 1 0 0 0 0 0 0 1 1 0 1 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 1 0 1 0 0 0 0 1 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 1 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 1 0 0 0 1 0 0 0 0 0 0 1 0 1 0 0 0 1 0 0 1 0 0 0 0
0 0 1 0 0 1 0 0 0 0 1 0 0 0 1 0 1 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 1 0 1 0 1 1 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 1 1 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 1 0 0 0
0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
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0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 1 0 0 1 0 1 1 0 0 0 0 0 1 0 1 1 1 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 1 0 0 1 0 0 0 0 0 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 1 0 0 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 1 1 0 1 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 1 0 0 0 0 0 0 1 0 0 1 0 0 0 0 1
0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 1 0 1 0 0 1 1
0 1 0 1 0 0 1 0 0 0 0 0 0 1 0 1 1 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 1 0 0 1 1 0 0
0 0 0 1 0 0 0 0 0 0 0 0 1 0 1 0 0 0 1 0 0 0 0 0 0 1 0 1 0 0 0 1 0 0 0 0 1 0 0 0
0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 1 1 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 1 0 1 0 0 1 0 0 1 0 0 0 0 0 0 1 0 1 1 0 0 0 1 0 1 0 1 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 1 1 0 1 0 0 0 1 0 0 1 0 1
0 1 1 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 1 1 0 1 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 1 0 0 0 1 0 1 0 0 0 0 0 0 0
0 0 1 0 0 1 1 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 0 0 0 0 1 0 1 0 1 0 0 1 1 0
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 1 1 0 0 0 1 0 1 0 0 0 0
1 0 0 0 1 0 0 0 0 0 0 0 0 1 1 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 1 0 1 0 0 0 0 0 0 1 0 1 1 0
0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 1 0 0 1 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 1 0 1 1 1 0 1
0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 1 1 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0

We set the N = 100, 000, ρ = 0.05 and b = 1. Note that we used here q = 4
colorings (instead of q = 2 × 12 + 1 = 25-colorings as Theorem 6.2 suggests). By
doing so (see tables below) |X ∗| becomes very small relative to |X | and ` = |X∗|

|X | is
a rare-event probability.

We found that for this model RAN does not work at all. It always stops before
reaching the final level m = 162. The RAN1 and RAN2 versions always reach the
level m = 162, but, because of lack of splitting, converge to a local extremum and
thus produce a heavily biased estimator of |X ∗|.

Tables 14- 16 present the performance of the splitting Algorithm 3.1, Split3 and
Split2, respectively for the above benchmark problem with n = 40 vertices. We used
the enhanced version of Split3 (see Remark 4.1) to determine the initial subgraph
Gj . We do not present simulation results for Split1 since we always found that it is
less accurate than Split2. In addition, it requires m = 162 iterations (equal to the
number of edges) and is thus time- consuming. It follows from the results of Tables
14- 16 that

• Split2 performs poorly. Because of labeling it is trapped in different local
extremum, which are typically far away from the true global one.

• Both, splitting Algorithm 3.1 and Split3 perform well. The splitting Algorithm
3.1 is faster about 3 times than Split3, since the number of iterations in
Algorithm 3.1 is about 3 times less than in Split3. It is of interest to note
that the product estimator |X̃ ∗| is slightly better in Algorithm 3.1 while vice
versa for the direct estimator |X̂ ∗dir|. This can be explained as follows: on
the one hand the product estimator |X̃ ∗| in Split3 has approximately 3 times
more terms ĉt, t = 1, . . . , T than in Algorithm 3.1, while on the other hand,
it consumes more time (iterations) and thus more samples. This makes the
direct Split3 estimator |X̂ ∗dir| more accurate.

Note that if we stop both Algorithm 3.1 and the Split3 not immediately after
they reach the final level m = 162, but continue them for 3-5 further iterations, then
the difference of their accuracy (for the direct estimator |X̂ ∗dir|) becomes negligible.
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Table 14: Performance of splitting Algorithm 3.1 for 4-coloring problem with n = 40
nodes.

Run N0 Iterations |X̃ ∗| RE of |X̃ ∗| |X̂ ∗dir| RE of |X̂ ∗dir| CPU
1 24 1415.62 0.055 1318 0.018 257.168
2 24 1194.38 0.110 1322 0.015 257.098
3 24 1356.09 0.010 1316 0.019 256.942
4 24 1596.61 0.190 1264 0.058 258.255
5 24 1348.93 0.005 1316 0.019 256.568
6 24 1627.90 0.213 1328 0.010 258.743
7 24 1353.55 0.009 1304 0.028 257.663
8 24 1293.32 0.036 1330 0.009 260.002
9 24 1229.90 0.084 1312 0.022 259.695
10 24 1590.67 0.185 1334 0.006 259.309

Average 24 1400.7 0.090 1314 0.021 258.144

Table 15: Performance of Split3 algorithm for 4-coloring graph problem with n = 40
nodes.

Run N0 Iterations |X̃ ∗| RE of |X̃ ∗| |X̂ ∗dir| RE of |X̂ ∗dir| CPU
1 66 1984.300 0.479 1338 0.003 720.096
2 66 1999.600 0.490 1327 0.011 722.244
3 66 1694.100 0.262 1336 0.004 723.914
4 66 1774.620 0.322 1326 0.012 718.257
5 66 1891.560 0.410 1332 0.007 700.993
6 66 1873.700 0.396 1332 0.007 701.613
7 66 2028.890 0.512 1334 0.006 700.402
8 66 1745.470 0.301 1328 0.010 700.883
9 66 1839.110 0.370 1328 0.010 701.685
10 66 1767.310 0.317 1336 0.004 700.933

Average 66 1859.86 0.385 1331.7 0.008 709.102
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Table 16: Performance of Split2 for 4-coloring problem with n = 40 nodes.

Run N0 Iterations |X̃ ∗| RE of |X̃ ∗| |X̂ ∗dir| RE of |X̂ ∗dir| CPU
1 28 153.6 0.885 6 0.995 1937.2
2 26 195.8 0.853 12 0.991 1741.8
3 24 3394.9 1.549 50 0.962 1517.8
4 26 47.3 0.965 4 0.997 1652.2
5 24 2816.9 1.115 800 0.399 1588.5
6 25 1915.2 0.438 350 0.737 1584.3
7 25 418.5 0.686 52 0.961 1604.5
8 26 1771.6 0.330 250 0.812 1652.0
9 24 5220.0 2.919 114 0.914 1541.3
10 26 220.0 0.835 14 0.989 1691.5

Average 25.4 1615.4 1.057 165.2 0.876 1651.1

We also ran RAN1 and RAN2. As expected, both are trapped in a local ex-
tremum, delivering heavily biased estimators of |X ∗|.

Table 17 present the dynamics for one of the runs of the splitting Algorithm 3.1
for the same model.

Table 17: Dynamics of Algorithm 3.1 for 4-coloring graph with n = 40 nodes.

t |X̃ ∗| |X̂ ∗dir| Nt N
(s)
t m∗

t m∗t ρt

1 7.97E+22 0 6591 6591 -40 -64 6.59E-02
2 6.94E+21 0 8704 8704 -32 -54 8.70E-02
3 4.43E+20 0 6384 6384 -28 -46 6.38E-02
4 3.23E+19 0 7299 7299 -26 -40 7.30E-02
5 4.32E+18 0 13363 13363 -22 -36 1.34E-01
6 4.49E+17 0 10397 10397 -20 -32 1.04E-01
7 3.52E+16 0 7835 7835 -16 -28 7.84E-02
8 2.13E+15 0 6045 6045 -14 -24 6.05E-02
9 4.58E+14 0 21532 21531 -12 -22 2.15E-01
10 8.96E+13 0 19569 19569 -12 -20 1.96E-01
11 1.62E+13 0 18092 18092 -10 -18 1.81E-01
12 2.66E+12 0 16378 16378 -8 -16 1.64E-01
13 3.80E+11 0 14294 14291 -6 -14 1.43E-01
14 4.74E+10 0 12479 12472 -6 -12 1.25E-01
15 5.06E+09 0 10685 10675 -4 -10 1.07E-01
16 4.47E+08 0 8842 8825 -2 -8 8.84E-02
17 3.15E+07 0 7047 7003 -2 -6 7.05E-02
18 1.69E+06 1 5372 5261 0 -4 5.37E-02
19 5.99E+04 85 3537 3241 0 -2 3.54E-02
20 1.38E+03 1316 100000 1316 0 0 1.00E+00
21 1.38E+03 1326 100000 1326 0 0 1.00E+00
22 1.38E+03 1326 100000 1326 0 0 1.00E+00
23 1.38E+03 1326 100000 1326 0 0 1.00E+00
24 1.38E+03 1326 100000 1326 0 0 1.00E+00

Tables 18 and 19 present data similar to Tables 7 and 8 for RAN, Split2- Split3
and the splitting (cloning) Algorithm 3.1 for 40 node vertex coloring problem.
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Table 18: Comparative studies of RAN, Split2- Split3 and cloning Algorithm 3.1
for 40 node vertex coloring problem using product estimator |X̄ ∗|.

RAN Split2 Split3 Cloning
|X̄ ∗| R̄E |X̄ ∗| R̄E |X̄ ∗| R̄E |X̄ ∗| R̄E
NaN NaN 1615.4 1.057 1859.86 0.385 1400.7 0.090

Table 19: Comparative studies of RAN, Split2- Split3 and cloning Algorithm 3.1
for 40 node vertex coloring problem using the direct estimator |X̄ ∗|dir.

RAN Split2 Split3 Cloning
|X̄ ∗dir| R̄E |X̄ ∗dir| R̄E |X̄ ∗dir| R̄E R̄E |X̄ ∗dir|
NaN NaN 165.2 0.876 1331.7 0.008 1314 0.021

We performed extensive simulations with many other benchmark coloring mod-
els and observed consistently that reduction of the number of colors q always severely
affects the RAN, Split1 and Split2 algorithms, but not the other two, Split3 and
splitting Algorithm 3.1.

4.3 Permanent

To apply the Gibbs sampler for permanent we adopt the concept of “neighboring”
elements, (see, chapter 10 of Ross, (2002) and chapter 6 of Rubinstein and Kroese,
(2007)). In the latter reference it is called 2-opt heuristics. Given a point (tour) x
of length mt generated by the pdf gt = g(x,mt), the conditional Gibbs sampling
updates the existing tour x to x̃, where x̃ is generated from g(x̃,mt) and where x̃
is the same as x with one exception that the points xi and xj in x̃ are reversed. We
accept the tour x̃ with probability I{S( eX)≤mt}, otherwise we leave the tour x the
same. If x̃ is accepted we update the cost function S(x) (for j > i) accordingly. In
order for the tours X to be distributed approximately uniformly (at each sub-space
Xt) we use n(n− 1)/2 trials.

We consider the following A = 30× 30 matrix as our benchmark for the perma-
nent problem.

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 0 1 0 0 0 0
0 0 0 1 0 1 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 1 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 1 0 1 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
1 0 0 0 0 0 0 1 0 0 0 1 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0
1 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1

Table 20 presents the performance of splitting Algorithm 3.1 for the permanent
with A = 30× 30 matrix. We chose N = 100, 000, ρ = 0.1 and, as usual b = 1.
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Table 20: Performance of splitting Algorithm 3.1 for permanent with A = 30 × 30
matrix.

Run N0 Iterations |X̃ ∗| RE of |X̃ ∗| |X̂ ∗dir| RE of |X̂ ∗dir| CPU
1 21 261.14 0.018 266 0 115.68
2 21 254.45 0.043 266 0 115.98
3 21 268.04 0.008 266 0 115.65
4 21 272.20 0.023 266 0 117.68
5 21 261.50 0.017 266 0 118.38
6 21 255.03 0.041 266 0 117.10
7 21 261.36 0.017 266 0 116.58
8 21 266.82 0.003 266 0 115.82
9 21 264.76 0.005 266 0 115.84
10 21 254.13 0.045 266 0 116.13

Average 21 261.94 0.022 266 0 116.48

We dispense with a comparison of Algorithm 3.1 with other less efficient algo-
rithms, like RAN1-RAN2 and Split1-Split3, since the results are similar to those for
the second model of 3− SAT and the second model for coloring, respectively.

4.4 The Hamiltonian Cycles

We solve the Hamiltonian cycles problem by applying again the 2-opt heuristic used
for the permanent. While counting the Hamiltonian cycles we simulated, in fact,
an associated permanent problem by making use of the following observations:

• The set of Hamiltonian cycles of length n presents a subset of the associated
permanent trajectories set.

• The latter set is formed from cycles of length ≤ n.

It follows from the above that in order to count the number of Hamiltonian cycles
for a given matrix A one can use do the following simple procedure:

1. Run Algorithm 3.2 and calculate the estimator of |X ∗| of the associated per-
manent using the product formula (10). Denote such permanent estimator by
|X̂ ∗p|.

2. Proceed with one more iteration of Algorithm 3.2 and calculate the ratio of
the number of screened Hamiltonian elite cycles (cycles of length n) to the
number of the screened elite samples (samples of length≤ n) in the permanent.
Denote the ratio as ζ.

3. Deliver |X̂ ∗H | = ζ|X̂ ∗p| as the estimator of the number |X ∗| of Hamiltonian
cycles.

Below we present simulation results for three 30× 30 models.
First model The matrix A = 30× 30 is

0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 0 1 0 0 0 0
0 0 0 0 1 1 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 1 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
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0 0 0 0 0 0 1 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
1 0 0 0 0 0 0 1 0 0 0 0 1 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0
1 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0

Table 21 presents the performance of splitting Algorithm 3.2 for the Hamiltonian
cycle problem with A = 30× 30 matrix. We chose N = 100, 000, ρ = 0.1 and b = η.

Table 21: Performance of splitting Algorithm 3.2 for Hamiltonian cycle problem
with A = 30× 30 matrix.

Run N0 Iterations |X̃ ∗| RE of |X̃ ∗| |X̂ ∗dir| RE of |X̂ ∗dir| CPU
1 28 11.729 0.023 12 0 116.86
2 28 11.366 0.053 12 0 117.29
3 28 13.955 0.163 12 0 117.02
4 28 11.180 0.068 12 0 117.13
5 28 11.988 0.001 12 0 116.94
6 28 12.142 0.012 12 0 117.14
7 28 13.525 0.127 12 0 117.53
8 28 12.189 0.016 12 0 117.39
9 28 13.251 0.104 12 0 116.66
10 28 10.531 0.122 12 0 116.57

Average 28 12.185608 0.069 12 0 117.05

Second model The matrix A = 30× 30 is

0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 1 1 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 1 0
1 0 0 0 0 0 1 1 1 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 1 1 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
1 1 1 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 1 1 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 22 presents the performance of splitting Algorithm 3.2 for the Hamiltonian
cycle problem with A = 30× 30 matrix. We chose N = 100, 000, ρ = 0.1 and b = η.
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Table 22: Performance of splitting Algorithm 3.2 for Hamiltonian cycle problem
with A = 30× 30 matrix.

Run N0 Iterations |X̃ ∗| RE of |X̃ ∗| |X̂ ∗dir| RE of |X̂ ∗dir| CPU
1 27 17.204 0.044 18 0 117.52
2 27 18.004 0.000 18 0 116.22
3 27 20.164 0.120 18 0 116.17
4 27 20.469 0.137 18 0 117.18
5 27 18.175 0.010 18 0 118.44
6 27 18.182 0.010 18 0 118.09
7 27 19.753 0.097 18 0 117.44
8 27 17.081 0.051 18 0 116.45
9 27 17.091 0.051 18 0 116.81
10 27 18.189 0.011 18 0 116.59

Average 27 18.431 0.053 18 0 117.09

Third model The matrix A = 30× 30 is
0 1 0 1 0 0 1 0 1 1 1 0 0 1 0 1 0 1 0 0 1 1 1 0 0 1 0 1 1 1
1 0 1 1 1 0 1 0 0 0 1 0 1 1 0 1 0 0 0 0 0 1 0 1 1 1 1 0 0 0
0 1 0 1 1 0 1 1 1 1 1 0 0 0 1 1 1 0 1 1 0 0 1 0 1 0 0 1 0 1
1 1 1 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 1 0 0 0 0 0 1 0 1 1
0 1 1 1 0 1 1 1 0 1 0 0 1 1 1 1 1 0 1 1 1 1 1 0 1 0 1 1 0 1
0 0 0 0 1 0 1 1 0 0 0 0 0 1 1 0 0 1 1 1 0 0 0 0 0 0 0 1 1 0
1 1 1 0 1 1 0 1 1 0 0 1 1 0 0 0 0 0 0 0 0 0 1 1 0 1 0 0 0 0
0 0 1 0 1 1 1 0 1 1 1 1 0 0 1 0 1 0 1 0 0 0 1 1 1 0 1 0 0 0
1 0 1 0 0 0 1 1 0 1 0 0 0 0 1 0 1 1 1 1 1 1 0 1 1 0 0 0 0 0
1 0 1 0 1 0 0 1 1 0 1 1 0 0 1 0 1 1 1 0 0 1 0 1 0 0 0 1 1 1
1 1 1 0 0 0 0 1 0 1 0 1 1 0 1 1 0 0 0 1 0 1 1 1 1 0 0 0 0 0
0 0 0 0 0 0 1 1 0 1 1 0 1 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1
0 1 0 0 1 0 1 0 0 0 1 1 0 1 1 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0
1 1 0 0 1 1 0 0 0 0 0 1 1 0 1 1 0 0 0 0 0 1 1 0 1 1 0 1 0 0
0 0 1 1 1 1 0 1 1 1 1 0 1 1 0 1 1 1 0 0 0 0 1 0 1 1 0 0 1 1
1 1 1 0 1 0 0 0 0 0 1 0 0 1 1 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 1 0 1 0 0 1 1 1 0 0 0 0 1 1 0 1 1 1 0 0 1 0 0 0 0 0 0 1
1 0 0 0 0 1 0 0 1 1 0 0 0 0 1 0 1 0 1 1 1 0 1 0 0 0 0 1 0 1
0 0 1 0 1 1 0 1 1 1 0 1 0 0 0 0 1 1 0 1 0 1 1 0 1 1 1 0 0 0
0 0 1 1 1 1 0 0 1 0 1 0 0 0 0 0 1 1 1 0 1 1 0 1 0 0 0 1 1 0
1 0 0 1 1 0 0 0 1 0 0 0 0 0 0 0 0 1 0 1 0 1 0 0 0 1 0 1 0 1
1 1 0 0 1 0 0 0 1 1 1 0 0 1 0 0 0 0 1 1 1 0 1 0 1 0 1 1 1 0
1 0 1 0 1 0 1 1 0 0 1 0 1 1 1 0 1 1 1 0 0 1 0 1 1 0 1 0 1 0
0 1 0 0 0 0 1 1 1 1 1 0 0 0 0 0 0 0 0 1 0 0 1 0 1 0 0 1 1 1
0 1 1 0 1 0 0 1 1 0 1 0 0 1 1 0 0 0 1 0 0 1 1 1 0 1 1 1 0 1
1 1 0 0 0 0 1 0 0 0 0 0 0 1 1 0 0 0 1 0 1 0 0 0 1 0 1 1 1 1
0 1 0 1 1 0 0 1 0 0 0 0 1 0 0 0 0 0 1 0 0 1 1 0 1 1 0 1 1 0
1 0 1 0 1 1 0 0 0 1 0 0 0 1 0 1 0 1 0 1 1 1 0 1 1 1 1 0 1 1
1 0 0 1 0 1 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 1 1 1 0 1 1 1 0 1
1 0 1 1 1 0 0 0 0 1 0 1 0 0 1 0 1 1 0 0 1 0 0 1 1 1 0 1 1 0.

Table 23 presents the performance of splitting Algorithm 3.2 for the Hamiltonian
cycle problem with the above A = 30× 30 matrix. As before we set N = 100, 000,
ρ = 0.1 and b = η. Note that in this case the direct estimator is no longer available
since the matrix A is not sparse.
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Table 23: Performance of splitting Algorithm 3.2 for Hamiltonian cycle problem
with A = 30× 30 matrix.

Run N0 Iterations |X̃ ∗| RE of |X̃ ∗| CPU
1 14 2.38E+20 0.046 63.295
2 14 2.36E+20 0.033 62.809
3 14 2.28E+20 0.000 62.791
4 14 2.17E+20 0.049 62.714
5 14 2.35E+20 0.029 62.806
6 14 2.18E+20 0.046 62.951
7 14 2.10E+20 0.078 64.009
8 14 2.35E+20 0.032 62.790
9 14 2.23E+20 0.024 62.816
10 14 2.41E+20 0.057 62.614

Average 14 2.28E+20 0.039 62.959

4.5 Volume of a Polytope

Here we present numerical results with RAN and the splitting algorithms, on the
volume of a polytope defined as Ax ≤ b. We assume in addition that all components
xk ∈ (0, 1), k = 1, . . . , n. By doing so the polytope Ax ≤ b will be inside the unit
n-dimensional cube and therefore its volume very small (rare-event probability)
relative to the volume of the unit cube. In general, however, before implementing the
Gibbs sampler one has to find the the minimal n-dimensional box, which contains
the polytope, that is for each i, i = 1, . . . , n, one has to find the values (ci, di) of
the minimal box satisfying ci ≤ xi ≤ di, i = 1, . . . , n. This can be done by solving
for each i, i = 1, . . . , n the following two linear programs

min xi (26)
s.t. Ax ≤ b (27)

and

max xi (28)
s.t. Ax ≤ b. (29)

We shall see that in this case all our algorithms perform reasonably well, since
the polytope is a convex body, thus a single Markov trajectory (no splitting) will
typically converge to X ∗. We consider three models.

First Model We take

A =

1 0 1 0 0 0 0 0 0 0
1 0 0 0 0 0 1 0 0 0
0 1 0 0 0 1 0 0 0 0
0 0 1 0 0 1 0 0 0 1
0 1 1 0 0 0 0 0 0 0
1 0 0 0 0 1 0 1 0 0
0 1 0 0 0 0 0 0 0 1
0 0 0 0 1 0 0 0 1 0
0 0 0 0 1 0 1 0 0 0
1 0 0 0 0 0 1 1 0 0

and b =

0.7
0.7
0.7
1.4
0.7
1.4
0.7
0.7
0.7
1.4 .

(30)
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Table 24 presents the performance of the splitting Algorithm 3.1 for A and b as
in (30) with N = 10, 000 and ρ = 0.3 for 10 independent runs. We also present the
results of the CMC, for which we took a sample of N = 106.

Table 24: Performance of splitting Algorithm 3.1 for A and b as in (30) with
N = 10, 000 and ρ = 0.3.

Run number |X̃ ∗| CMC
1 0.0019 0.0018
2 0.0019 0.0019
3 0.0018 0.0018
4 0.0017 0.0019
5 0.0018 0.0018
6 0.0018 0.0018
7 0.0018 0.0018
8 0.0018 0.0019
9 0.0018 0.0018
10 0.0018 0.0018

Average 0.0018 0.0018

Table 25 presents the dynamics of one of the runs of the splitting Algorithm 3.1.
The results are self explanatory.

Table 25: Dynamics of a run of splitting Algorithm 3.1.

t Nt N
(s)
t m∗

t m∗t ρt

1 2377 2377 10 5 0.2377
2 3770 3770 10 7 0.2643
3 1485 1485 10 9 0.1313
4 2654 2654 10 10 0.2234
5 10616 10616 10 10 1
6 10616 10616 10 10 1
7 10616 10616 10 10 1
8 10616 10616 10 10 1

Note that the other RAN versions, RAN1 and RAN2, and the other splitting
versions, Split1-Split3, also perform quite well, that is, similar to the splitting Al-
gorithm 3.1.

Second Model The following table presents a 41 × 40 matrix, where its first
part, (40 × 40) corresponds to the first 40 column vectors of matrix A with 0-1
entries while the second part, the vector b, corresponds to the last column.

0 0 1 1 1 0 0 0 0 0 0 0 0 0 1 1 0 0 1 0 0 0 1 1 0 0 0 1 0 0 0 1 1 0 0 0 1 0 0 1 2.24
0 1 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1.60
1 1 1 0 0 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 2.24
0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 2.36
0 0 1 0 0 0 0 0 1 0 1 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1.98
0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 1 0 0 1 0 0 0 0 1 0 2.87
1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1.60
0 0 0 0 0 1 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 1 0 0 1 0 1 0 1 1 0 0 0 0 0 0 0 0 0 1.22
0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 1 0 0 0 0 0 1 1 0 0 0 1 0 1 0 1 1 0 0 0 0 0 0 0 2.36
1 1 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 2.24
0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 1 0 1 0 0 0 0 0 0 1.98
0 1 0 0 0 0 0 0 0 1 0 1 0 0 0 0 1 0 1 0 1 0 1 0 0 0 0 0 0 0 1 0 0 1 0 1 0 0 0 0 2.49
0 0 1 0 0 0 1 0 0 0 1 0 1 0 0 0 0 1 0 0 1 0 1 0 1 0 0 0 1 0 0 1 1 1 0 0 0 1 0 0 2.36
0 0 0 0 1 0 0 0 1 1 1 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 1 0 0 1 0 1.98
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 1 0 0 1 0 0 0 0 0 0 0 1 0 1.73
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 1 1 0 0 0 0 0 0 0 1 0 0 0 1 1 1 0 1 0 0 1 1 2.49
0 0 1 1 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1.73
0 0 0 0 0 0 0 1 0 0 0 1 0 1 0 1 0 0 0 0 0 0 1 1 0 1 0 0 0 1 0 0 0 1 0 0 0 0 1 1 3.13
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0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 1 1.85
0 1 0 1 1 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 1.85
0 1 1 0 1 1 0 1 0 0 0 0 0 1 0 1 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 2.62
0 0 0 0 1 0 0 0 0 0 0 1 0 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 2.11
1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 1 1 0 0 0 0 0 0 1 0 0 0 0 0 1 3.25
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 1 0 1 1 0 0 1 0 1 0 1 0 0 0 0 0 0 1 0 1 1 0 0 0 3.00
0 1 0 0 0 1 1 0 0 0 0 1 1 0 0 1 1 0 0 0 0 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 2.75
0 0 0 0 0 1 1 0 0 1 0 0 0 0 1 0 1 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1.60
1 1 0 0 0 0 1 0 0 0 1 0 1 0 0 1 0 0 0 0 0 0 1 1 0 0 0 1 0 0 0 0 1 0 1 0 0 0 0 1 2.87
1 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 1 0 0 0 0 0 0 0 1 0 0 1 0 1 1.47
0 0 0 1 0 0 0 0 0 0 0 1 1 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 1 0 1 0 0 0 1 1 0 0 0 1.85
0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1.73
1 1 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 1.35
0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 1 1 0 0 1 1 0 0 0 0 0 2.36
0 0 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 1 1.35
0 0 0 0 0 1 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1.98
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 1 1 1 0 0 0 0 0 1.35
0 1 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1.98
0 1 0 0 0 0 0 1 1 1 0 0 1 1 0 0 0 0 0 0 0 1 0 1 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 2.11
0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 1 0 2.49
1 0 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 1 0 0 1 0 0 0 0 0 0 0 0 2.49
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 1 1 0 0 1 0 0 1 0 0 0 0 1 0 0 0 0 1 1 2.49

We took again N = 10, 000 and ρ = 0.3. The number of unit elements in each
row of the matrix A was chosen randomly on the interval 2, . . . , 20 and the vector
b was chosen by trail and error, insuring that every constraint is active and that
the estimator of the volume |X ∗| is very small (rare-event).

Running the splitting Algorithm 3.1 for 10 independent runs, we obtained the
following values of the product estimator |X̃ ∗|.

7.8E−19, 7.8E−19, 9.5E−19, 9.9E−19, 7.5E−19, 7.5E−19, 8.1E−19, 7.9E−19, 9.1E−19, 9.2E−19, 8.8E−19.

Table 26 presents the dynamics of one of the runs of the splitting Algorithm 3.1
for the A = (40× 40) matrix.

Table 26: Dynamics of one of the runs of splitting Algorithm 3.1 for A = (40× 40)
matrix.

t Nt N
(s)
t m∗

t m∗t ρt

1 2661 2661 14 4 0.2661
2 2545 2545 18 6 0.2391
3 2077 2077 16 8 0.2040
4 2338 2338 20 10 0.1876
5 2627 2627 23 12 0.1873
6 1921 1921 23 14 0.1828
7 2120 2120 28 16 0.1839
8 2368 2368 29 18 0.1862
9 2575 2575 28 20 0.1812
10 1744 1744 31 22 0.1693
11 1768 1768 33 24 0.1690
12 1640 1640 34 26 0.1546
13 1905 1905 35 28 0.1452
14 1388 1388 36 30 0.1214
15 1261 1261 37 32 0.1136
16 3055 3055 38 33 0.3028
17 3260 3260 38 34 0.2668
18 3154 3154 39 35 0.2419
19 2602 2602 39 36 0.2062
20 1743 1743 39 37 0.1675
21 1239 1239 40 38 0.1185
22 836 836 40 39 0.0675
23 355 355 40 40 0.0354
24 10650 10650 40 40 1.0000
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As mentioned, we found that all RAN and all splitting versions perform well
for estimating the volume of convex bodies. For example, RAN2 in 10 independent
runs yielded the following values of the product estimator |X̃ ∗|:

9.6E−19, 7.5E−19, 8.5E−19, 8.6E−19, 7.8E−19, 7.7E−19, 7.6E−19, 7.9E−19, 10.1E−19, 10.2E−19, 8.6E−19.

which is quite similar to the splitting Algorithm 3.1.
Table 27 presents dynamics of one of the runs of RAN2.

Table 27: Dynamics of a run of RAN2 for A = (40× 40) matrix.

t Nt N
(s)
t m∗

t m∗t ρt

1 2616 2616 17 4 0.2616
2 2354 2354 14 6 0.2354
3 2047 2047 17 8 0.2047
4 1893 1893 21 10 0.1893
5 1882 1882 22 12 0.1882
6 1895 1895 24 14 0.1895
7 1915 1915 26 16 0.1915
8 1830 1830 29 18 0.1830
9 1838 1838 32 20 0.1838
10 1831 1831 31 22 0.1831
11 1629 1629 31 24 0.1629
12 1590 1590 33 26 0.1590
13 1473 1473 34 28 0.1473
14 1243 1243 37 30 0.1243
15 3293 3293 37 31 0.3293
16 3087 3087 37 32 0.3087
17 2918 2918 38 33 0.2918
18 2715 2715 38 34 0.2715
19 2453 2453 38 35 0.2453
20 2037 2037 39 36 0.2037
21 1592 1592 40 37 0.1592
22 1217 1217 40 38 0.1217
23 701 701 40 39 0.0701
24 369 369 40 40 0.0369
25 10000 10000 40 40 1

Third Model This model is a little larger than the Second Model. The
following table presents a 61× 30 matrix, where its first part, (60× 30) corresponds
to the first 60 column vectors of matrix A with 0-1 entries while the second part,
the vector b, corresponds to the last 61-th column.
0 0 1 1 1 0 0 0 0 0 0 0 0 0 1 1 0 0 1 0 0 0 1 1 0 0 0 1 0 0 0 1 1 0 0 0 1 0 0 1 0 0 1 0 0 1 0 0 0 0 0 0 0 0 1 1 1 0 0 1 2.46
0 1 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 1 0 1.76
1 1 1 0 0 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 2.46
0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 1 0 2.60
0 0 1 0 0 0 0 0 1 0 1 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 0 1 1 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 2.18
0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 1 0 0 1 0 0 0 0 1 0 1 1 0 1 1 1 0 0 0 0 0 1 0 1 0 0 0 0 0 0 3.16
1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 1 0 0 0 0 0 1 0 1.76
0 0 0 0 0 1 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 1 0 0 1 0 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1.34
0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 1 0 0 0 0 0 1 1 0 0 0 1 0 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 0 2.60
1 1 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 1 0 0 1 1 0 1 0 0 0 0 0 0 0 0 1 1 0 0 0 2.46
0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 1 0 1 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 1 0 1 1 0 0 0 0 0 1 0 2.18
0 1 0 0 0 0 0 0 0 1 0 1 0 0 0 0 1 0 1 0 1 0 1 0 0 0 0 0 0 0 1 0 0 1 0 1 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 2.74
0 0 1 0 0 0 1 0 0 0 1 0 1 0 0 0 0 1 0 0 1 0 1 0 1 0 0 0 1 0 0 1 1 1 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 1 0 0 1 0 0 2.60
0 0 0 0 1 0 0 0 1 1 1 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 2.18
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 1 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 1 0 1 0 0 0 0 0 0 0 1 0 0 0 1.90
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 1 1 0 0 0 0 0 0 0 1 0 0 0 1 1 1 0 1 0 0 1 1 1 0 1 0 0 0 0 0 0 1 1 0 0 0 1 0 0 0 0 0 2.74
0 0 1 1 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1.90
0 0 0 0 0 0 0 1 0 0 0 1 0 1 0 1 0 0 0 0 0 0 1 1 0 1 0 0 0 1 0 0 0 1 0 0 0 0 1 1 1 0 0 1 1 1 0 0 1 1 1 0 0 0 0 1 0 1 0 0 3.44
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 2.04
0 1 0 1 1 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 1 2.04
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0 1 1 0 1 1 0 1 0 0 0 0 0 1 0 1 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 2.88
0 0 0 0 1 0 0 0 0 0 0 1 0 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 1 0 1 0 0 2.32
1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 1 1 0 0 0 0 0 0 1 0 0 0 0 0 1 0 1 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 3.58
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 1 0 1 1 0 0 1 0 1 0 1 0 0 0 0 0 0 1 0 1 1 0 0 0 0 0 1 1 0 0 1 0 0 0 0 1 1 0 0 0 1 1 1 1 3.30
0 1 0 0 0 1 1 0 0 0 0 1 1 0 0 1 1 0 0 0 0 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 1 0 0 0 1 3.02
0 0 0 0 0 1 1 0 0 1 0 0 0 0 1 0 1 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 1 0 0 0 0 0 1 0 0 1.76
1 1 0 0 0 0 1 0 0 0 1 0 1 0 0 1 0 0 0 0 0 0 1 1 0 0 0 1 0 0 0 0 1 0 1 0 0 0 0 1 0 0 0 0 1 0 1 0 0 0 0 1 0 0 0 1 0 0 0 0 3.16
1 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 1 0 0 0 0 0 0 0 1 0 0 1 0 1 1 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 1.62
0 0 0 1 0 0 0 0 0 0 0 1 1 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 1 0 1 0 0 0 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 2.04
0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1.90.

Recall again that we use here only a single (randomly chosen) elite.
Running the splitting Algorithm 3.1 for 10 independent runs, each with N =

10, 000 and ρ = 0.3 we obtained the following values of the product estimator |X̃ ∗|.

1.40E−29, 9.89E−30, 1.06E−29, 1.34E−29, 1.23E−29, 9.81E−30, 1.25E−29, 1.10E−29, 8.67E−30, 1.17E−29.

Table 28 presents dynamics of one of the runs of the splitting Algorithm 3.1 for
the A = (60× 30) matrix.

Table 28: Dynamics of one of the runs of splitting Algorithm 3.1 for A = (60× 30)
matrix.

t Nt N
(s)
t m∗

t m∗t ρt

1 910 910 3 1 0.091
2 369 369 4 2 0.0369
3 392 392 5 3 0.0392
4 681 681 6 4 0.0681
5 870 870 8 5 0.087
6 830 830 10 6 0.083
7 964 964 10 7 0.0964
8 1030 1030 11 8 0.103
9 1122 1122 14 9 0.1122
10 1329 1329 14 10 0.1329
11 1525 1525 16 11 0.1525
12 1590 1590 17 12 0.159
13 1735 1735 17 13 0.1735
14 1831 1831 18 14 0.1831
15 1957 1957 20 15 0.1957
16 1830 1830 20 16 0.183
17 1859 1859 23 17 0.1859
18 1844 1844 22 18 0.1844
19 1819 1819 23 19 0.1819
20 1738 1738 24 20 0.1738
21 1633 1633 24 21 0.1633
22 1606 1606 25 22 0.1606
23 1434 1434 26 23 0.1434
24 1314 1314 27 24 0.1314
25 1223 1223 28 25 0.1223
26 1055 1055 29 26 0.1055
27 877 877 30 27 0.0877
28 775 775 29 28 0.0775
29 535 535 30 29 0.0535
30 210 210 30 30 0.021
31 10000 10000 30 30 1
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5 Conclusions and Further Research

We showed that the performance of the classic randomized (RAN) algorithms for
counting NP-hard problems, like counting the number of satisfiability assignments in
a SAT problem, counting the number of feasible colorings in a graph and calculating
the permanent, can be dramatically improved by combining them with the classic
splitting method. We presented 4 combined algorithms, which we called splitting
algorithms. The most advanced splitting version is Algorithm 3.1, called also the
cloning algorithm, suggested in (Rubinstein, 2008). We showed numerically that

• In the sequence

RAN → Split1 → Split2 → Split3 → cloning

the statistical properties of the counting estimators of |X ∗| substantially im-
prove. Two main breakthroughs occur when one moves from from RAN to
Split1 and then from Split2 to Split3. The first is associated with the intro-
duced splitting while second one is due to removing labeling at each sub-space
Xj . We showed that without splitting, as in RAN the algorithm is typically
stacked at some intermediate level mt, while enforcing labeling (even with
splitting), as in Split1 and Split2, the algorithm is typically trapped in a local
extremum. In short, both splitting and the not labeling issues must adopted
simultaneously.

• For most of our case studies the original RAN algorithm typically fails; it either
does not converge at all [is stacked at some intermediate level mt, (mt < m)],
or is heavily biased (converges to a local extremum). Exceptions are convex
counting problems, like estimating the volume of a convex plytope. Split3
and the splitting Algorithm 3.1 converge to the true counting quantity. In
particular, within the limit of, say CPU = 0.5 hour, each of the parameters n
and m should not exceed the value 100.

• As compared to the randomized algorithms, the proposed splitting algorithms
require very little warm-up time when running the Gibbs sampler from iter-
ation to iteration, since the underlying Markov chains are already in steady-
state from the beginning. The only purpose remaining for them is fine tuning-
to keep the Markov chains in steady-state while moving from iteration to iter-
ation. The fine tuning is performed by introducing the splitting and burn-in
parameters η and b, respectively. As result we obtain dramatic variance reduc-
tion and thus, dramatic speedup as compared to the randomized algorithms.

As for further research we intend to

• Establish solid mathematical grounding based on the splitting method (Garvels,
2000) and on use of the Feynman-Kac formulae and on interacting particle
systems (Del Moral, 2004). We argue that since the splitting algorithms and
in particular the basic Algorithm 3.1 need only fine tuning (in order for the
associated Markov processes to be kept in the steady-state from iteration to
iteration), the prove of its convergence and (polynomial) speed of convergence
for quite general counting problems could be established by using arguments
similar to these we used in Appendix under simplifying assumptions.

• Find the total sample size and the size of the elites at each iteration of the
splitting Algorithm 3.1, while estimating the rare-event probability (13), that
is

` = Ef

[
I{Pm

i=1 Ci(X)≥m}
]
,

which involves a sum of dependent Ber(1/2) random variables Ci(X), i =
1, . . . , m. Recall that the goal of estimator of ` is to insure approximate
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uniformity of the sample at each sub-region Xt via formula |X ∗| = `|X |, where
` is given in (7)-(9). Note that both, the CE and the exponential change of
measure have limited applications in this case.

• Investigate the convergence properties of same alternatives to the Gibs split-
ting method, like the discrete hit-and-run (Baumert et al, 2008) combined
with splitting.

6 Appendix

6.1 Complexity of Randomized Algorithms

A randomized algorithm is said to give an (ε, δ)-approximation for a parameter z if
its output Z satisfies

P(|Z − z| ≤ εz) ≥ 1− δ, (31)

that is, the “relative error” |Z − z|/z of the approximation Z lies with high proba-
bility (> 1− δ) below some small number ε.

One of the main tools in proving (31) for various randomized algorithms is the
so-called Chernoff bound, which states that for any random variable Y and any
number a

P(Y ≤ a) ≤ min
θ>0

eθa E[e−θY ] . (32)

Namely, for any fixed a and θ > 0 define the functions H1(z) = I{z≤a} and H2(z) =
eθ(a−z). Then, clearly H1(z) ≤ H2(z) for all z. As a consequence, for any θ,

P(Y ≤ a) = E[H1(Y )] ≤ E[H2(Y )] = eθa E[e−θY ] .

The bound (32) now follows by taking the smallest such θ.
An important application is the following.

Theorem 6.1 Let X1, . . . , Xn be iid Ber(p) random variables, then their sample
mean provides an (ε, δ)-approximation for p, that is,

P

(∣∣∣∣∣
1
n

n∑

i=1

Xi − p

∣∣∣∣∣ ≤ εp

)
≥ 1− δ, (33)

provided n ≥ 3 ln(2/δ)/(pε2).

For prove see, for example, (Rubinstein and Kroese, 2007).

Definition 6.1 (FPRAS) A randomized algorithm is said to provide a fully poly-
nomial randomized approximation scheme (FPRAS) if for any input vector x and
any parameters ε > 0 and 0 < δ < 1 the algorithm outputs an (ε, δ)-approximation
to the desired quantity z(x) in time that is, polynomial in ε−1, ln δ−1 and the size
n of the input vector x.

Note that the sample mean in Theorem 6.1 provides a FPRAS for estimating p.
Note also that the input vector x consists of the Bernoulli variables X1, . . . , Xn.

There exists a fundamental connection between the ability to sample uniformly
from some set X and counting the number of elements of interest. Since exact
uniform sampling is not always feasible, MCMC techniques are often used to sample
approximately from a uniform distribution.
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Definition 6.2 ε- uniform sample Let Z be a random output of a sampling al-
gorithm for a finite sample space X . We say that the sampling algorithm generates
an ε-uniform sample from X if, for any Y ⊂ X

∣∣∣∣P(Z ∈ Y)− |Y|
|X |

∣∣∣∣ ≤ ε. (34)

Definition 6.3 Variation distance The variation distance between two distribu-
tions F1 and F2 on a countable space X is defined as

||F1 − F2|| = 1
2

∑

x∈X
|F1(x)− F2(x)|. (35)

It is well-known, (Mitzenmacher and Upfal, 2005) that the definition of variation
distance coincides with that of an ε- uniform sample in the sense that a sampling
algorithm returns an ε- uniform sample on X if and only if the variation distance
between its output distribution F and the uniform distribution U satisfies

||F − U|| ≤ ε.

Bounding the variation distance between the uniform distribution and the em-
pirical distribution of the MC obtained after some warm-up period is a crucial issue
while establishing the foundations of RA since with a bounded variation distance
one can produce efficient approximation for |X ∗|.

Definition 6.4 (FPAUS) A sampling algorithm is called a fully polynomial al-
most uniform sampler (FPAUS) if, given an input vector x and a parameter ε > 0,
the algorithm generates an ε-uniform sample from X (x) and runs in a time that is,
polynomial in ln ε−1 and the size of the input vector x.

An important issue is to prove that given an FPAUS for a combinatorial problem,
one can construct a corresponding FPRAS.

Example 6.1 (FPAUS and FPRAS for Independent Sets ) An FPAUS for
independent sets takes as input a graph G = (V,E) and a parameter ε > 0. The
sample space X consists of all independent sets in G with the output being an ε-
uniform sample from X . The time to produce such an ε-uniform sample should be
polynomial in the size of the graph and ln ε−1. Based on the product formula (1)
Mitzenmacher and Upfal, (2005) prove that given an FPAUS one can construct a
corresponding FPRAS.

We present next a theorem (based on the coupling arguments of MC), taken from
Mitzenmacher and Upfal, (2005).

Theorem 6.2 Given an n-vertex graph with maximum degree ∆ (maximal number
of neighbors for any v ∈ V ), the mixing time τ(ε) of the graph coloring Algorithm
2.3 satisfies

τ(ε) ≤ nq

q − 2∆
ln(

n

ε
),

provided q ≥ 2∆ + 1.

Recently (Hayes, Vera and Vigoda, 2007) improved the results of Theorem 6.2 for
coloring of planar graphs. In particular they proved that one can still get polynomial
mixing time of the MCMC by taking the number of colors q less than the maximum
degree ∆.
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6.2 Complexity of Splitting Method under Simplifying As-
sumptions

As before, we denote
`- the rare-event probability.
m - number of levels. mt, t = 0, 1, . . . , T - intermediate levels (m0 = 0,mT = m).
ct - probability of hitting mt, starting from mt−1.
Nt - number of successful hits of level mt (elite sample).
N (t) - total sample from level mt (here, unlike (10)-(11) we assume that the

sample size depends on t).
Our main goal is to present a calculation for Var̂̀, where ̂̀ is given in (10)-(11)

(with N replaced by N (t)) and to show how much variance can be obtained with
splitting versus the crude Monte Carlo (CMC). To do so we shall cite some basic
results from (Garvels 2000).

Let us write Nt (the number of elite samples) as

Nt =
N(t)∑

i=1

I
(t)
i ,

where each I
(t)
i , i = 1, . . . , N (t); t = 1, . . . , T represents the indicator of successes

at the t-th stage, that is, I
(t)
i is the indicator that the process reaches the level mt

from level mt−1. We assume that

1. The indicators I
(t)
i , i = 1, . . . , N (t); t = 1, . . . , T are generated using splitting

Algorithm 3.1 or the enhanced one, Algorithm 3.2.

2. For fixed mt the indicators I
(t)
i are iid and EI

(t)
i = ct. In addition, we assume

that for all combinations (i, j) and for t 6= k, they are also independent level-
wise, that is, EI

(t)
i I

(k)
j = ctck. Clearly, this is a simplified assumption, since

in practice we generate only approximately uniform samples at each sub-
space Xt. As a result, each estimator of ct might be slightly biased. Recall
that ct = P(Xt|Xt−1), that is, it represents the conditional probability of the
process (particle) reaching the sub-space (event) Xt from Xt−1, or in other
words of it reaching the level mt from level mt−1. Moreover, the indicators
I
(t)
i and I

(k)
j might be slightly correlated as well, in particular when k is

close to t, say k = t ± 1. We use the phrases “slightly biased” and “slightly
correlated” being aware that our elites samples remain in “near” steady-state
(warm-up) position in each sub-space Xt. Recall that we do so by introducing
the splitting and the burn-in parameters, b and η, respectively.

With this on hand, we have

Var̂̀= Ề2 − `2 = E
T∏

t=1

ĉ2
t − `2. (36)

Taking into account that

Varĉt =
1

N (t)
ct(1− ct), (37)

we obtain

Var̂̀=
T∏

t=1

{
ct(1− ct)

N (t)
+ c2

t

}
− `2 = `2

(
T∏

t=1

{
1− ct

ctN (t)
+ 1

}
− 1

)
. (38)
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As a simple example consider estimation of ` in (24), that is estimation

` = Ef

[
I{Pn

i=1 Xi=m}
]
,

where the Xi’s are iid, each Xi ∼ Ber(1/2). Assume that T = m and Nt = N, t =
1, . . . , m. It is readily seen that in this case ct = 1/2 and thus (38) reduces to

Var̂̀= `2
(

1 +
1
N

)m

− `2. (39)

For large m and N = m we obtain that

Var̂̀≈ `2(e− 1). (40)

We proceed next with (38). To find the optimal parameters T , and (N1, . . . , NT )
in (38) we solve the following minimization problem

minVar̂̀= min `2

(
T∏

t=1

{
(1− ct)
ctN (t)

+ 1
}
− 1

)
(41)

with respect to T , and (N1, . . . , NT ), subject to the following constraint

T∑
t=1

N (t) = M. (42)

It is not difficult to show that for fixed T , the solution of (41)-(42) (see Garvels,
2000) is ct = c = `

1
T and N (t) = M

T , ∀ k = 1, . . . , T . Mote that we assumed that∑T
t=1 N (t) is large and in solving (41)-(42) we used a continuous approximation

for the true discrete program (41)-(42). It follows that for fixed T , the minimal
variance (under ct = c = `

1
T and N (t) = M

T , ∀ k = 1, . . . , T ) equals
{

`2T 2(1− `
1
T )

`
1
T M

}
.

It remains to solve

min
T

Var̂̀= min
T

{
`2T 2(1− `

1
T )

`
1
T M

}
. (43)

It is readily seen that under the above simplifying assumptions the optimal values of
T and c, the minimal variance, optimal squared relative error and optimal efficiency,
denoted Tr, cr, Varr

̂̀, κ2
r, and εr are

Tr = − ln `

2
, (44)

cr = e−2, (45)

Varr
̂̀=

(e` ln `)2

4M
, (46)

κ2
r =

M−1Varr
̂̀

`2
≈ (e ln `)2

4
, (47)

and

εr =
M−1Varr

̂̀
`(1− `)

≈ `(e ln `)2

4
, (48)
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respectively. Confidence intervals and central limit theorems can be also readily
established.

Even though the assumptions are indeed simplifying, they provide good insight
into the polynomial complexity of splitting Algorithm 3.1 and in particular into
the relative error κ2

r. Note that for general counting problem, our numerical data
in Section 4 are in agreement with these results and in particular with κ2

r in (47).
Note finally, that for the Bernoulli model with Var̂̀≈ `2(e−1) (see (40)) we obtain
(under the above simplifying assumptions) that κ2

r = e − 1 and thus, bounded
relative error.
Acknowledgments

I would like to thank Radislav Weissman, and Alexander Libster for performing
the computational part of the paper.

References

[1] Asmussen S. and P.W. Glynn, Stochastic Simulation: Algorithms and Analyses,
Springer, 2007.

[2] S. Baumert, A. Ghate, S. Kiatsupaibul, Y. Shen, R. L. Smith and Z. B. Zabin-
sky, ”Discrete Hit-and-Run for Sampling Points from Arbitrary Distributions
over Subsets of Integer Hyper-rectangles,” Operations Research, 2009.

[3] Z. I. Botev and D. P. Kroese, “An Efficient Algorithm for Rare-event Prob-
ability Estimation, Combinatorial Optimization, and Counting”. Methodology
and Computing in Applied Probability, 2008.

[4] Del Moral, P., Feynman-Kac formulae, genealogical and interacting particle
systems with applications. New York: Springer, 2004.

[5] M.J.J. Garvels, The splitting method in rare-event simulation, Ph.D. thesis,
University of Twente, 2000.

[6] P. Del Moral, Feynman-Kac Formulae Genealogical and Interacting Particle
Systems, Springer, 2004.

[7] T. Hayes, J. Vera and E. Vigoda. “Randomly coloring planar graphs with fewer
colors than the maximum degree”. STOC 2007.

[8] Kahn H and T.E. Harris, Estimation of Particle Transmission by Random
Sampling, Mational Bureau of Standards Applied Mathematics Series, 1951.

[9] P. L’Ecuyer, V. Demers, and B. Tuffin, “Rare-Events, Splitting, and Quasi-
Monte Carlo”, ACM Transactions on Modeling and Computer Simulation, 17,
2, 2007.

[10] M. Mitzenmacher and E. Upfal. Probability and Computing : Randomized Al-
gorithms and Probabilistic Analysis. Cambridge University Press, New York
(NY), 2005.

[11] R. Motwani and R. Raghavan. Randomized Algorithms Cambridge University
Press, 1997.

[12] S. M. Ross Simulation, Academic Press, 4rd Edition, 2006.

[13] R. Y. Rubinstein. “ The Gibbs Cloner for Combinatorial Optimization, Count-
ing and Sampling” Methodology and Computing in Applied Probability, (to ap-
pear), 2008.

49



[14] R. Y. Rubinstein. “Entropy and Cloning Methods for Combinatorial Optimiza-
tion, Sampling and Counting Using the Gibbs Sampler”. (To be published in
Information Theory and Statistical Learning, Springer, 2008a).

[15] R. Y. Rubinstein and D. P. Kroese, The Cross-Entropy Method: a Unified Ap-
proach to Combinatorial Optimization, Monte-Carlo Simulation and Machine
Learning, Springer, 2004.

[16] R. Y. Rubinstein and D. P. Kroese, Simulation and the Monte Carlo Method;
Second Edition, Wiley, 2007.

50


