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Abstract We present a randomized algorithm, called the cloning algorithm, for
approximating the solutions of quite general NP-hard combinatorial optimization
problems, counting, rare-event estimation and uniform sampling on complex regions.
Similar to the algorithms of Diaconis–Holmes–Ross and Botev–Kroese the cloning
algorithm is based on the MCMC (Gibbs) sampler equipped with an importance
sampling pdf and, as usual for randomized algorithms, it uses a sequential sampling
plan to decompose a “difficult” problem into a sequence of “easy” ones. The cloning
algorithm combines the best features of the Diaconis–Holmes–Ross and the Botev–
Kroese. In addition to some other enhancements, it has a special mechanism, called
the “cloning” device, which makes the cloning algorithm, also called the Gibbs cloner
fast and accurate. We believe that it is the fastest and the most accurate randomized
algorithm for counting known so far. In addition it is well suited for solving problems
associated with the Boltzmann distribution, like estimating the partition functions in
an Ising model. We also present a combined version of the cloning and cross-entropy
(CE) algorithms. We prove the polynomial complexity of a particular version of
the Gibbs cloner for counting. We finally present efficient numerical results with
the Gibbs cloner and the combined version, while solving quite general integer and
combinatorial optimization problems as well as counting ones, like SAT.
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1 Introduction: Randomized Algorithms for Counting and Optimization

The main idea of randomized algorithms for counting (Mitzenmacher and Upfal
2005) is to design a sequential sampling plan, where the “difficult” problem of
counting on the set X ∗ is decomposed into “easy” ones of counting the number of
elements in a sequence of related sets X1, . . . ,Xm. Typically, randomized algorithms
explore the connection between counting and sampling problems and in particular
the reduction from approximately counting the cardinality of a discrete set to
approximately sampling elements of the set, where the sampling is performed by
employing the classic MCMC method (Bezakova et al. 2007). A typical randomized
algorithm contains the following steps:

1. Formulate the counting problem as the problem of estimating the cardinality of
some set X ∗.

2. Find sets X0,X1, . . . ,Xm such that |Xm| = |X ∗|, and |X0| is known.
3. Write |X ∗| = |Xm| as

|X ∗| = |X0|
m∏

j=1

|X j|
|X j−1| , (1)

4. Develop an efficient estimator ζ̂ j for each ζ j = |X j|/|X j−1|, resulting in an
efficient estimator

|̂X ∗| = |X0|
m∏

j=1

ζ̂ j, (2)

for |X ∗| and similar for rare event estimation.

Algorithms based on the sequential Monte Carlo sampling estimator (2) are called
in the computer literature (Mitzenmacher and Upfal 2005), randomized algorithms.
For a classic references on sequential Monte Carlo methods and their relation to
Feynman–Kac formulae see (Del Moral 2004).

It is shown in Bezakova et al. (2007), Mitzenmacher and Upfal (2005), Motwani
and Raghavan (1997) that many interesting counting problems like estimating the
volume of a convex body, computing the permanent of a non-negative matrix and
counting the number of independence sets in a graph can be put into the setting
(1), (2).

Quite often randomized algorithms deal with estimation of a partition function
Z (λ) of the system at some desired temperature λ via generation samples from the
Boltzmann distribution. This can be achieved by computing the ratios of the partition
functions similar to Eq. 1 for a carefully designed sequence of temperatures 0 =
λ0 < λ1 < ... < λT = λ, also called cooling schedule, where Z (0) is trivial to compute
and the ratios Z (λi+1)/Z (λi) are easy to estimate by sampling from the distribution
corresponding to Z (λi) (Stefankovic et al. 2007). The challenging problem is to
define a “smart” cooling schedule. The best known is an adaptive one due to
(Stefankovic et al. 2007), which has length T = O∗(

√
ln Z (0)). In particular for some

well-studied problems such as estimating the partition function of the Ising model,
or approximating the number of colorings or matchings of a graph, their cooling
schedule (Stefankovic et al. 2007) is of length O∗(

√
n), where n is the size of the

problem.
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Here we present a randomized algorithm, called the cloning algorithm. Similar to
the algorithms of Diaconis–Holmes–Ross (Diaconis and Holmes 1994), Ross (2002a,
b) and Botev–Kroese (Botev and Kroese 2008) the cloning algorithm is based on
the MCMC (Gibbs) sampler equipped with an importance sampling pdf and, as
usual for randomized algorithms, it uses a sequential sampling plan to decompose
a “difficult” problem into a sequence of “easy” ones. In addition to some other
enhancements to Diaconis–Holmes–Ross (DHR) and Botev–Kroese (BK), it has a
special mechanism, called the “cloning” device, which makes it fast and accurate.
In particular, the cloning algorithm, also called, the Gibbs cloner, is well suited for
counting the satisfiability assignments in a SAT problem and for solving problems
associated with the Boltzmann distribution, like estimating the partition functions in
an Ising model and for sampling random variables uniformly distributed on different
convex bodies.

In all optimization and counting problems discussed in this paper we have applied
Gibbs simpler. For some complex function the Gibbs sampler might not be appro-
priate. In this case one might use more sophisticated MCMC samplers discussed in
Botev and Kroese (2008), Rubinstein and Kroese (2007), Ghate and Smith (2008)
and in particular the hit and run method pioneered by Smith (1984) and generalized
by Diaconis and Andersen (2007) could be used.

To proceed, consider estimation of the following rare event probability

�(m) = E f
[
I{S(X)≥m}

]
. (3)

Here S(X) is the sample performance, X ∼ f (x) and m is fixed.
To estimate �(m), similar to Eq. 1 we shall use the well known chain rule (nested

events) and write �(m) as

�(m) = E f [I{S(X)≥m0}]
T∏

t=1

E f [I{S(X)≥mt}|I{S(X)≥mt−1}] = c0

T∏

t=1

ct. (4)

Note that �(m) can be also written as

�(m) = E f [I{S(X)≥m0}]
T∏

t=1

Eg∗
t−1

[I{S(X)≥mt}] = �0

T∏

t=1

�t

�t−1
= c0

T∏

t=1

ct, (5)

where �(mt) = E f
[
I{S(X)≥mt}

]
,

ct = E f [I{S(X)≥mt}|I{S(X)≥mt−1}] = Eg∗
t−1

[I{S(X)≥mt}] (6)

and c0 = �0 = E f [I{S(X)≥m0}]. Here {mt, t = 0, 1, . . . , T} is a fixed grid satisfying
−∞ < m0 < m1 < · · · < mT = m; f denotes the proposal pdf f (x); and

g∗
t−1 = g∗(x, mt−1) = �(mt−1)

−1 f (x)I{S(x)≥mt−1}, (7)

where �(mt−1)
−1 is the normalization constant. Observe that g∗

t−1 = g∗(x, mt−1) is a
zero variance importance sampling (IS) pdf at iteration (t − 1), but not at iteration t.
Note that the part Eg∗

t−1
[I{S(X)≥mt}] of Eq. 6 is obtained directly by substituting Eq. 7

into ct. Note finally that c0 = �0 = �(m0) = E f
[
I{S(X)≥m0}

]
can be written in notations

involving g∗ as c0 = �0
�−1

= Eg∗
−1

[
I{S(X)≥m0}

]
, where �−1 = �(m−1) ≡ 1 and g∗

−1 ≡ f .
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Thus, �(mt) can be written as the product of conditional expectations
(probabilities)

E f [I{S(X)≥mt}|I{S(X)≥mt−1}], t = 0, 1, . . . , T

under f , or as the product of the unconditional ones

ct = Eg∗
t−1

[I{S(X)≥mt}]
under g∗

t−1. Its estimator can be written in analogy to Eq. 2 as

�̂(m) =
T∏

t=0

ĉt = 1

NT+1

T∏

t=0

Nt, (8)

where

ĉt = 1

N

N∑

i=1

I{S(X i)≥mt} = Nt

N
(9)

and X i ∼ g∗
t−1.

Observe that

1. Although g∗
t−1 is a zero variance pdf at level mt−1, it is readily seen that

the estimator ĉt of ct = Eg∗
t−1

[I{S(X)≥mt}] is not a zero variance estimator, since
mt−1 �= mt.

2. The estimator ĉt would be a zero variance one if we could replace the pdf g∗
t−1 in

Eg∗
t−1

[I{S(X)≥mt}] by g∗
t , that is at iteration t to sample from g∗

t .
3. If the proposal density f (x) is uniformly distributed on the entire set X =

{x : S(x) ≥ m−1}, (with m−1 typically being m−1 = 0), then g∗
t−1 is uniformly

distributed on the reduced set Xt = {x : S(x) ≥ mt}. That is the main goal of g∗
t−1

is to sample uniformly on the set Xt, similar as the goal of f (x) is to sample
uniformly on X .

In summary, when we say that g∗
t−1 is a zero variance, or optimal IS pdf at the level

mt−1, we mean that it is uniformly distribution on the reduced set (space) Xt. It is

crucial to note that the sequence {̂ct} and the associated estimators �̂ in the product
form (8) will be required only for rare events and for some particular cases of counting
problems, but it will be never required in optimization.

It follows from Eq. 8, that in order for the estimator �̂(m) to be use-
ful, the levels mt should be chosen such that each conditional probability ct =
E f [I{S(X)≥mt}|I{S(X)≥mt−1}] is not too small, say approximately equal to 10−2. Note only
we assume that the levels mt are chosen such that each ct is not too small, but we shall
also require existence of at least one sequence {m0, m1, . . . , mT = m}, which insures
that all ct, t = 0, 1, . . . , T values are not too small.

In both counting and optimization problems we shall generate an adaptive
sequence of tuples

{(m0, g∗(x, m−1)), (m1, g∗(x, m0)), (m2, g∗(x, m1)), . . . , (mT , g∗(x, mT−1))}, (10)

where as before g∗(x, m−1) = f (x). This is in contrast to CE where we generate a
sequence of tuples

{(m0, v0), (m1, v1), . . . , (mT , vT)}, (11)
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where {vt, t = 1, . . . , T} is a sequence of parameters in the parametric family of
fixed distributions f (x, vt). The crucial difference is, of course, that in our approach,
{g∗(x, mt−1) = g∗

t−1, t = 0, 1, . . . , T} is a sequence of non-parametric IS distributions,
rather than is a sequence of parametric IS ones { f (x, vt), t = 1, . . . , T}. Otherwise
the CE and the cloning algorithms are the same, beside the fact that, as we shall see
below, CE has the desirable property that the samples are independent, whereas in
cloning they are not. Note that a sequence of tuples with non-parametric updating
like in Eq. 10, was earlier introduced in the MinxEnt method (see Rubinstein
2008a, b). The main problem with the MinxEnt method is that it is extremely
difficult to generate sample from its non-parametric pdfs. So, eventually one needs
to sample from the corresponding marginals distributions, which is equivalent to
using a sequence of tuples similar to Eq. 11. Similar to DHR and BK methods
(and in contrast to MinxEnt), we will be able to sample here from the joint IS pdf
g∗(x, mt−1) = g∗

t−1 using the MCMC machinery and in particular the Gibbs sampler.
By doing so we will update the parameters ct and mt adaptively. Finally, we will
show numerically that the cloning method typically outperforms its CE counterpart,
especially for rare-event estimation and counting. The main reason is that sampling
from a sequence of pdfs g∗

t−1 (or even from their approximations) is more beneficial
than sampling from sequence of a parametric family, like f (x, vt). In other words the
sequence (10) is more informative than the one in Eq. 11.

As mentioned, the chain rule approach (1), (4) has been extensively used in
randomized algorithms (Mitzenmacher and Upfal 2005; Motwani and Raghavan
1997) for estimating counting quantities associated with some graphs. Their sampling
mechanism is, however, completely different from ours.

For a quick glance at our sampling mechanism consider

� = E f
[
I{∑n

i=1 Xi≥m}
]
,

where all Xi’s are iid Ber(1/2) random variables. Assume for concreteness that
we want to count the number of outcomes on the set X ∗ = {x : ∑n

i=1 Xi ≥ m}. Let
for simplicity n = m = 3. Although it is obvious that the cardinality |X ∗| = 1, as
mentioned our goal is to demonstrate the sampling mechanism.

Figure 1 presents a possible dynamic of the evolution of the sequence

{(m−1, |X−1|), (m0, |X0|), . . . , (m, |Xm|)},
where mt and |Xt| denote the level reached and cardinality (the number of
points) of the corresponding sample space at each iteration t, respectively. Clearly
(m−1, |X−1|) = (0, 23 = 8).

According to Fig. 1 we obtain m0 = 2 after the first iteration, which means that
while flipping three symmetric coins

∑3
i=1 Xi = m0 = 2, (two coins resulted to one

and one coin resulted to 0). As soon as we obtain m0 = 2 we reduce the original
sample space X−1 containing eight points to the one X0 containing four points.
This is done by eliminating 4 outcomes corresponding to events

{∑3
i=1 Xi = 0

}
and{∑3

i=1 Xi = 1
}

from the space X−1 = {
X : ∑3

i=1 Xi ≥ 0
}
. In other words, as soon as

we obtain an outcome, such that
∑3

i=1 Xi = 2 we truncate the sample space X−1 by
excluding from it all points corresponding to the event

{∑3
i=1 Xi ≤ 1

}
. We proceed

to the next iteration by sampling from the IS pdf g∗
0 = g∗(x, m0) (see Eq. 7), which

is proportional to I{∑3
i=1 Xi≥2

}, that is we sample uniformly on the reduced space
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Fig. 1 Three-dimensional
balls
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X0 = {X : ∑3
i=1 Xi ≥ 2}, which contains now four points (three points corresponding

to the outcome
∑3

i=1 Xi = 2 and one point corresponding to the outcome
∑3

i=1 Xi =
3). Following Fig. 1 we see that at the second iteration we obtain m1 = 2. This means
that in the reduced space X0 the outcome is again as

∑3
i=1 Xi = 2. Clearly, that

|X1| = |X0| = 4 and g∗(x, m0) = g∗(x, m1). Proceeding to the third (final) iteration
we see from Fig. 1 that m2 = 3 and |X2| = 1, that is we converged to the desired
quantities m = 3 and |X ∗| = 1. Observe that in this case g∗(x, m2) corresponds to a
degenerate pdf, that is all of its mass is concentrated at point X = (1, 1, 1).

As we shall see below, one of the main challenges of this work will be to
obtain a sequence of reduced (nested) spaces X0,X1, . . . ,XT = X ∗ starting from
the original one X−1 and then to generate points uniformly distributed on each set
Xt, t = 0, 1, . . . , T.

The rest of our paper is organized as follows. Section 2 deals with the method
of Diaconis-Holmes-Ross, from which we adopted some basic ideas, while Section 3
deals with the method of Botev–Kroese, from which our motivation and inspiration
comes. Section 4 introduces the cloning mechanism, which essential for our opti-
mization and counting algorithms. Sections 5 and 6 are the main ones. In particular,
the former presents the main cloning algorithm for unconstrained and constrained
combinatorial optimization including TSP, while the latter presents the main cloning
algorithm for rare events and counting, also called the Gibbs cloner. In addition, we
present in Section 6 application of the cloning algorithm for counting multiple events,
like counting the number of feasible solution on the sets associated with linear integer
programs and counting the number of satisfiability assignments in a SAT problem.
In particular, consider a set containing both equality and inequality constraints of an
integer program, that is

n∑

k=1

aikxk = bi, i = 1, . . . , m1,

n∑

k=1

a jkxk ≥ bj, j = m1 + 1, . . . , m1 + m2,

x ≥ 0, xk integer ∀k = 1, . . . , n. (12)
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It is shown in Section 6 that in order to count the number of points (feasible solutions)
of the set (12) one can consider the following associated rare-event probability
problem

� = Eu

[
I{∑m

i=1 Ci(X)≥m}
]
, (13)

where the first m1 terms Ci(X)’s in Eq. 13 are

Ci(X) = I{∑n
k=1 aik Xk=bi}, i = 1, . . . , m1, (14)

while the remaining m2 ones are

Ci(X) = I{∑n
k=1 aik Xk≥bi}, i = m1 + 1, . . . , m1 + m2. (15)

Thus, in order to count the number of feasible solution on the set (12) we shall
consider an associated rare event probability estimation problem (13), involving a
sum of dependent Bernoulli random variables. We shall see below that representation
(13) is crucial for a large set of counting problems. A particular emphasis in Section 6
will be paid to a modified version of the cloning algorithm involving, what we call
a direct estimator for counting. We shall show that the direct estimator is extremely
useful and more accurate than the one in Eq. 8 based on the products of ĉt’s in Eq. 9.
Finally, we introduce in Section 6 a cloning algorithm to handle counting problems
associated with the Boltzmann distribution. We call this algorithm, the Boltzmann
cloning algorithm. We show that it is easy to switch from the Boltzmann cloning
algorithm to the main cloning one and vise-versa. This, for example, means that
the classic Ising model can be treated by using the main cloning algorithm rather
than via the Boltzmann cloning one. Section 7 discusses how to sample uniformly
on different convex regions with the Gibbs cloner. Section 8 presents a combined
version of the cloning and the cross-entropy (CE) algorithms, which we call the
CLONCE algorithm and discuss the range of it possible applications, in particular
to combinatorial optimization. In addition to the main cloning algorithm it contains
one more step involving CE for an adaptive choice of the parameter vector in the
IS pdf. In Section 9 we present some possible applications of the cloning method,
while in Section 10 we prove the polynomial complexity of a particular version of
the Gibbs cloner for counting. Section 11 presents some numerical results with the
cloning algorithms for combinatorial and integer optimization and counting. Finally,
in Section 12 conclusions and some final remarks are given.

2 The Method of Diaconis–Holmes–Ross for Counting

In the method of Diaconis and Holmes (1994) and Ross (2002a, b), called Diaconis–
Holmes–Ross (DHR) method assume the set of levels {mt, t = 0, . . . , T} is given
in advance. Each quantity E f [I{S(X)≥mt}|I{S(X)≥mt−1}] is estimated separately and in-
dependently by using the MCMC, in particular, the Gibbs sampler. Ross (2002a, b)
presents several interesting applications using Gibbs sampler. His original algorithm
for estimating ct is recapitulated for convenience in the Appendix.

The main idea of DHR algorithm, while estimating each conditional probability
E f [I{S(X)≥mt}|I{S(X)≥mt−1}] is to run Markov Chain Monte Carlo (MCMC) and count
the proportion of values satisfying {S(X) ≥ mt}.
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More formally, their algorithm can be written as

Algorithm 2.1 (DHR Algorithm)
Given a sequence of levels m0 < m1 < . . . < mT = m and the sample size N, execute
the following steps

1. Acceptance–Rejection Set a counter t = 1. Initialize by generating a sample

X1, . . . , X N from the proposal density f (x). Let X̃0 = {X̃1, . . . , X̃ N0} be the
largest subset of the population {X1, . . . , X N} (elite samples) for which S(X i) ≥
m0. Note that X̃1, . . . , X̃ N0 ∼ g∗(x, m0) and that

ĉ0 = �̂(m0) = 1

N

N∑

i=1

I{S(X i)≥m0} = N0

N
(16)

is an unbiased estimator of �(m0).
2. MCMC step. Find a feasible point X such that S(X) ≥ mt−1. Starting from

X, run the MCMC sampler, such that after some burn-in period, each vector
X = (X1, . . . , Xn), of the new population denoted as X = {X1, . . . , X N} is ap-
proximately distributed as g∗(x, mt−1).

3. Estimating ct Let X̃t = {X̃1, . . . , X̃ Nt } be the subset of the population
{X1, . . . , X N} for which S(X i) ≥ mt. Take ĉt in Eq. 9 is an estimator of ct in Eq. 6.
Note that X̃1, . . . , X̃ Nt is distributed approximately g∗(x, mt). Note also that as a
feasible point X satisfying S(X) ≥ mt one can take, for example, any point from
the subset {X̃1, . . . , X̃ Nt }

4. Stopping rule If t = T go to step 5, otherwise set, set t = t + 1 and repeat from
step 2.

5. Final Estimator Deliver �̂(m) in Eq. 8 as an estimator of �(m).

For convenience we also present below the basic versions of the Gibbs sampler.

2.1 The Gibbs Sampler

There are two basic version of the Gibbs sampler (Rubinstein and Kroese 2007):
systematic and random. In the former one the components of the vector X =
(X1, . . . , Xn) are updated in a fixed, say increasing order: 1, 2, . . . , n, 1, 2, . . . while in
the latter, they are chosen randomly, that is according to a discrete uniform n-point
pdf. Below we present the systematic Gibbs sampler algorithm. In a systematic Gibbs
sampler, for a given vector X = (X1, . . . , Xn) ∼ g(x), one generates a new vector
X̃ = (X̃1, . . . , X̃n) with the same distribution ∼ g(x) as follows:

Algorithm 2.2 (Gibbs Sampler)

1. Draw X̃1 from the conditional pdf g(x1|X2, . . . , Xn).
2. Draw X̃i from the conditional pdf g(xi|X̃1, . . . , X̃i−1, Xi+1, . . . , Xn), i =

2, . . . , n − 1.

3. Draw X̃n from the conditional pdf g(xn|X̃1, . . . , X̃n−1).

Note that in Gibbs sampler it is assumed that generating samples from the
conditional pdfs g(xi|X1, . . . , Xi−1, Xi+1, . . . , Xn), i = 1, . . . , n is simple.
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Example 2.1 Sum of Independent Random Variables
Consider application of the Gibbs sampler to estimate � with S(x) = ∑n

i=1 Xi,
that is

� = E f

[
I{∑n

i=1 Xi≥m}
]
. (17)

In this case generating random variables Xi, i = 1, . . . , N for a fixed value m can be
easily performed by using the Gibbs sampler based on the following conditional pdf

g(xi, m|x−i) = ri(m) fi(xi)I{
xi≥m−∑ j�=i x j

}, (18)

where |x−i denotes conditioning on all random variables but excluding the i-th
component and ri(m) denotes the normalization constant.

Note also that each of the n conditional pdfs g(xi, m|x−i) presents a truncated
version of the proposal marginal pdf fi(xi) with the truncation point at m −∑

j�=i x j.
In short, the random variable X̃ from g(xi, m|x−i) presents a shifted original ran-
dom variable X ∼ fi(xi). Generation from such truncated single dimensional pdf
g(xi, m|x−i) is easy and can be typically performed by using the inverse-transform
method, provided the inverse-transform method can be applied to fi(xi).

For example, sampling a Ber(p) random variable X̃i from truncated pdf (18) can
be performed as follows:

Generate Y ∼ Ber(p). If Y = 1 and

Y ≥ m −
∑

j�=i

Xj,

set X̃i = 1, otherwise set X̃i = 0.

Remark 2.1 It is important to note that the above Bernoulli model is crucial for the
rest of this paper, since we shall show that a large set of binary integer optimization
and counting problems can be

1. Reduced to estimation of the rare event probability (13), that is to � =
E f

[
I{∑m

i=1 Ci(X)≥m}
]
, where the Ci’s are dependent Bernoulli random variables.

2. The complexity properties for such associated counting problems can be treated

via the rare event probability � = E f

[
I{∑n

i=1 Xi≥m}
]
, where all Xi’s are distributed

Bernoulli with independent components.

Example 2.2 Sum of Bernoulli Random Variables in Pairs
Consider application of Gibbs sampler for estimating

� = E f

[
I{∑n

i=1

∑n
j=1 aij XiYj≥m

}
]

, (19)

where Xi and Yj are each iid distributed Ber(1/2).
In this case we write � with respect to each coordinate Xk and Yk as

� = E f

[
I{∑n

i=1 Xi
∑n

j=1 aijYj ≥m
}
]

= E f

[
I{

Xk≥ m−∑n
i �=k

∑n
j=1 aij XiYj

∑n
j=1 akjYj

}

]
(20)
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and

� = E f

[
I{∑n

j=1 Yj
∑n

i=1 aij Xi ≥m
}
]

= E f

[
I{

Yk≥ m−∑n
i=1

∑n
j�=k aij XiYj

∑n
i=1 aki Xi

}

]
, (21)

respectively. In this case, in analogy to Eq. 18, for a for a fixed value m and a fixed
tuple vector (X, Y) = (X1, . . . , Xn, Y1, . . . , Yn) ∼ g(x), a new tuple vector (X̃, Ỹ) =
(X̃1, . . . , X̃n, Ỹ1, . . . , Ỹn) with the same distribution g(x) can be generated using the
systematic Gibbs sampler based on the following conditional pdfs

g(xk, m|x−k, y) = cxk(m) fk(xk)

[
I{

xk≥ m−∑i �=k
∑n

j=1 aijxi y j∑n
j=1 akj y j

}

]
, (22)

and

g(yk, m|y−k, x) = cyk(m) fk(yk)

[
I{

yk≥ m−∑n
i=1

∑
j�=k aijxi y j∑n

i=1 aki xi

}

]
, (23)

respectively. Here as before |x−k, y denotes conditioning on all random variables x
but excluding its k-th component and cxk(m) denotes the normalization constant and
similar |y−k, x.

Note that when aij = aibj, we obtain

� = E f

⎡

⎣I{
Xk≥ m−(

∑
i �=k ai Xi)

(∑n
j=1 bjYj

)

ak
∑n

j=1 bjYj

}

⎤

⎦ (24)

and

� = E f

[
I{

Yk≥ m−(
∑

j�=k bjYj)(
∑n

i=1 ai Xi )

bk
∑n

i=1 ai Xi

}

]
, (25)

respectively. In this case the conditional pdfs g(xk, m|x−k, y) and g(yk, m|y−k, x) can
be written similar to Eqs. 22 and 23, respectively.

3 The Method of Botev and Kroese for Counting

The main drawback of DHR (Diaconis and Holmes 1994) Algorithm 2.1 is that for
each fixed level mt it starts basically from scratch. That is, at each iteration, starting
at some feasible point x, it runs a single Markov chain before the entire sample
X1, . . . , X N becomes distributed approximately stationary, that is approximately
g∗

t−1(x, mt−1). The time to reach the stationarity (the burn-in period) might be quite
long, however. Note, finally that since DHR Algorithm 2.1 always starts with a single
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(elite) sample and the samples between different levels are independent, it requires
not only quite a long burn-in period for the samples X1, . . . , X N to become at
approximately stationary, but as a result of that the ĉt’s are typically biased estimators
of their true parameters ct’s.

To overcome this difficulty, Botev and Kroese (2008) introduced several impor-
tant enhancements into the DHR Algorithm 2.1.

The main enhancement of Botev and Kroese (2008) is that their algorithm has
an additional step, called the bootstrap resampling step. It reuses iteratively all the
elite samples X̃1, . . . , X̃ Nt ∼ g∗(x, mt) from the previous Markov chain runs and, thus
it runs many Markov chains in parallel. By doing so, the elite samples at different
levels become dependent, but the stationarity in terms of sampling from the optimal
importance sampling pdf g∗

t−1(x, mt) is preserved. To define the level sets {m̂t}T
t=0,

Botev and Kroese make an additional (pilot) run. Note that in Botev and Kroese the
level sets {m̂t}T

t=0 are defined adaptively, while in the DHR Algorithm 2.1 they are
assumed to be fixed in advance. Note that the level sets {m̂t}T

t=0 in the latter case are
chosen similarly to the CE method, in the sense that they involve a rarity parameter
ρ. The adaptive choice of m̂t seems to be more natural and more flexible than the
fixed one.

It is crucial to note that in contrast to the CE and the MinxEnt algorithms
(Rubinstein and Kroese 2007) both algorithms, Botev–Kroese (Botev and Kroese
2008) and DHR (Diaconis and Holmes 1994) possesses the following properties:.

1. Sample from the non-parametric IS distribution g∗(x, m̂t) rather than from the
parametric one f (x, p̂t). The latter is associated with the original (proposal) pdf
f (x, u).

2. Do not involve any optimization procedure, like the MinxEnt program, which
minimizes the Kulback–Liebler divergence, subject to some constraints. They
are based solely on the samples from g∗(x, m̂t), t = 0, 1, . . . , T, or their
approximations.

Before presenting Botev–Kroese algorithm we summarize its main features.

• It requires a pilot run to define a sequence {m̂t} such that m̂0 < m̂1 < . . . <

m̂T = m.
• It samples recursively from the sequence of IS pdfs: {g∗

t−1} = {g∗(x, m̂t−1)}. The
recursive process of sampling from g∗(x, mt) is continued until eventually the
level m is reached and, thus one can generate from the desired IS pdf g∗(x) =
g∗(x, m).

• The exact sampling from g∗
0 = g∗(x, m̂0) is obtained from the original distribution

f (x) by using the acceptance–rejection method (with the acceptance probability
ρ), that is coincides with step 1 of the DHR Algorithm 2.1. The goal of the
sample from g∗

0 (or from an associated kernel density approximation based on
that sample) is to help generating exact samples at the next iteration from g∗

1.
• The estimators of ct are dependent and thus the entire estimator of �(m) given

in Eq. 8, which is based on the product of dependent random variables ĉt is
biased.
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The resulting Botev–Kroese (Botev and Kroese 2008) algorithm for rare events
estimation can be written as

Algorithm 3.1 (Botev–Kroese Algorithm for Rare Events)
Given a sequence of levels m̂0 < m̂1 < . . . < m̂T = m and the sample size N, execute
the following steps

1. Acceptance–Rejection Set a counter t = 1. Initialize by generating a sample
X1, . . . , X N from the proposal density f (x). Let X̃0 = { X̃1, . . . , X̃ N0} be the
largest subset of the population {X1, . . . , X N} (elite samples) for which S(X i) ≥
m̂0. Note that X̃1, . . . , X̃ N0 ∼ g∗(x, m̂0) and that �̂(m̂0) in Eq. 16 is an unbiased
estimator of �(m0).

2. Bootstrap step. Sample uniformly with replacement N times from the population
X̃t−1 = {X̃1, . . . , X̃ Nt−1} to obtain a new (bootstrap) population {X∗

1, . . . , X∗
N}.

Note that X∗
1, . . . , X∗

N ∼ g∗(x, m̂t−1).
3. MCMC step. For each vector X∗ = (X∗

1 , . . . , X∗
n) of the population {X∗

1, . . . , X∗
N}

generate, say by using the Gibbs sampler, a new vector X̃
∗ = (X̃

∗
1, . . . , X̃

∗
n). Note

that the new population {X̃∗
1, . . . , X̃

∗
N} of X̃

∗
’s is distributed again as g∗(x, m̂t−1).

Denote the new population thus obtained by {X1, . . . , X N}.
4. Estimating ct Let X̃t = {X̃1, . . . , X̃ Nt } be the subset of the population

{X1, . . . , X N} for which S(X i) ≥ m̂t. Take ĉt in Eq. 9 as an estimator of ct given
in Eq. 6. Note again as that X̃1, . . . , X̃ Nt is distributed g∗(x, m̂t).

5. Stopping rule If t = T go to step 6, otherwise set, set t = t + 1 and repeat from
step 2.

6. Final Estimator Deliver �̂(m) given in Eq. 8 as an estimator of �(m).

The pilot run algorithm of Botev–Kroese for selection of the levels mt, t =
1, . . . , T can be find in (Botev and Kroese 2008). Note that an earlier version of
Algorithm 3.1 contained no pilot run.

Remark 3.1 Reducing Dependency Note that although the MCMC step in Algo-
rithm 3.1 assumes a burn-in period = 1 at each iteration, in practice (Botev and
Kroese 2008) suggest using, a burn-in period ≥ 1. By doing so one can reduce
the dependence between the vectors X1, . . . , X N at different iterations t. In their
modified MCMC step one

1. Generates at the MCMC step instead of X̃
∗
1, . . . , X̃

∗
N a larger new population,

namely {X̃∗
1, . . . , X̃

∗
rN}, r > 1.

2. Takes only the last N samples from {X̃∗
1, . . . , X̃

∗
rN} (discarding the first (r − 1)N

ones) and denote these, as before, by X1, . . . , X N .

It is not difficult to see that if the size of the elite sample X̃1, . . . , X̃ Nt equals 1 at
every iteration t, and if these single elites are independent for all t, (t = 1, . . . , T),
then we automatically obtain the DHR Algorithm 2.1.

The rest of this paper deals with the cloning algorithms and their applications to
optimization, counting, and uniform sampling on different sets. As mentioned the
proposed cloning algorithms adopt the best features of the DHR Algorithm 2.1 and
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BK Algorithm 3.1. They can be viewed as enhancements of both. Below we mention
several major enhancements introduced in the cloning algorithms:

• A new mechanism, called the cloning.
• A new screening step.
• An adaptive choice of ρ.
• A combined algorithm based on CE and cloning.
• A new estimator, called the direct estimator, for counting.

Recall again as that neither pilot run no bootstrap step is used in the proposed
algorithms.

Before presenting the cloning algorithms we introduce the cloning mechanism.

4 The Cloning Mechanism

The goal of the cloning mechanism is to find a good balance in the Gibbs sampler,
in terms of bias-variance, between the number of elite samples and the length of
the burn-in period, denoted by b . Note that DHR Algorithm 2.1 and Botev–Kroese
Algorithm 3.1 correspond to b = N and b = 1, respectively.

For fixed N and b , we can define at iteration (t − 1), for example, the following
adaptive cloning parameter ηt−1

ηt−1 =
⌈

N
bNt−1

⌉
− 1 =

⌈
Ncl

Nt−1

⌉
− 1. (26)

Here Ncl = N/b is called the cloned sample size and, as before, Nt−1 denotes the
number of elites at iteration t − 1. Note that �·� denotes rounding to the largest
integer. The goal of ηt−1 is to reproduce ηt−1 times the Nt−1 elites.

As an example, let N = 1,000, b = 10. Consider two cases: Nt−1 = 21 and Nt−1 =
121. We obtain ηt−1 = 4 and ηt−1 = 0 (no cloning).

Our numerical studies show that it is quite reasonable to choose 1 ≤ b ≤ 3 to
have manageable bias-variance balance. In this case, the Gibbs sampler is applied
b times to each vector X of the cloned samples of size Ncl = b−1 N.

As for an alternative to Eq. 26 one can use the following strategy in defining b and
η: find bt−1 and ηt−1 from bt−1ηt−1 ≈ N

Nt−1
and take bt−1 ≈ ηt−1. In short, one can take

bt−1 ≈ ηt−1 ≈
(

N
Nt−1

)1/2

. (27)

Consider again as the two cases: Nt−1 = 21 and Nt−1 = 121 and let as before
N = 200. We have bt−1 ≈ ηt−1 = 3 and bt−1 ≈ ηt−1 = 1, respectively.

With this at hand we now introduce the cloning step, which will be essential in all
the cloning algorithm below.

Cloning step Given the size Nt−1 of elite samples at iteration (t − 1), find the
cloning and the burn-in parameters ηt−1 and bt−1 either according Eq. 26 or ac-
cording to Eq. 27. Reproduce each vector X̃k = (X̃1k, . . . , X̃nk) of the elite sample
{X̃1, . . . , X̃ Nt−1} ηt−1 times, that is, take ηt−1 identical copies of each vector X̃k

obtained at the (t − 1)-th iteration. Denote the entire new population (ηt−1 Nt−1

cloned vectors plus the original screened elite sample {X̃1, . . . , X̃ Nt−1}) by Xcl =
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{(X̃1, . . . , X̃1), . . . , (X̃ Nt−1 , . . . , X̃ Nt−1)}. To each of the cloned vectors of the popu-
lation Xcl apply the MCMC (and in particular the Gibbs sampler) for bt−1 burn-
in periods. Denote the new entire population by {X1, . . . , X N}. Observe that each
member of {X1, . . . , X N} is distributed approximately g∗(x, m̂t−1).

5 The Cloning Algorithm for Combinatorial and Integer Programming

It shown in Rubinstein and Kroese (2004) and Rubinstein and Kroese (2007) that
many interesting combinatorial optimization problems including the maximum cut,
TSP and scheduling can be reduced to equivalent unconstrained ones and treated
efficiently by the CE and MinxEnt methods by employing an efficient trajectory
generation mechanism (Rubinstein and Kroese 2004). When this is not feasible the
penalty function approach can be used (Rubinstein and Kroese 2004).

The goal of this section is to introduce the cloning algorithm for optimization as
an efficient counterpart to the standard CE and MinxEnt algorithms.

5.1 Unconstrained Optimization

As for unconstrained problem we consider here the maximal cut and the TSP.

The Max-Cut Problem The maximal cut or max-cut problem in a graph can be
formulated as follows. Given a graph G = G(V, E) with a set of nodes V = {1, . . . , n}
and a set of edges E between the nodes, partition the nodes of the graph into two
arbitrary subsets V1 and V2 such that the sum of the weights (costs) cij of the edges
going from one subset to the other is maximized. Note that some of the cij may be
0 — indicating that there is, in fact, no edge from i to j.

A cut can be conveniently represented via its corresponding cut vector x =
(x1, . . . , xn), where xi = 1 if node i belongs to same partition as 1, and 0 else. For each
cut vector x, let {V1(x), V2(x)} be the partition of V induced by x, such that V1(x)

contains the set of indices {i : xi = 1}. If not stated otherwise we set x1 = 1 ∈ V1.
Let X be the set of all cut vectors x = (1, x2, . . . , xn) and let S(x) be the corre-

sponding cost of the cut. Then,

S(x) =
∑

i∈V1(x), j∈V2(x)

cij. (28)

We shall assume below that the graph is undirected. Note that for a directed graph
the cost of a cut {V1, V2} includes both the cost of the edges from V1 to V2 and from
V2 to V1. In this case the cost corresponding to a cut vector x is therefore

S(x) =
∑

i∈V1(x), j∈V2(x)

cij + c ji . (29)

The use of the Gibbs sampler to generate cut vectors in a graph based on Ber(1/2)

is straight forward.

The Travelling Salesman and Hamiltonian Cycles Problem The TSP can be for-
mulated as follows. Consider a weighted graph G with n nodes, labeled 1, 2, . . . , n.
The nodes represent cities, and the edges represent the roads between the cities.
Each edge from i to j has weight or cost cij, representing the length of the road. The
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problem is to find the shortest tour that visits all the cities exactly once and such that
the starting city is also the terminating one.

Let X be the set of all possible tours and let S(x) the total length of tour
x ∈ X . We can represent each tour via a permutation x = (x1, . . . , xn) with x1 = 1.
Mathematically the TSP reads as

min
x∈X

S(x) = min
x∈X

{
n−1∑

i=1

cxi,xi+1 + cxn,1

}
. (30)

To apply the Gibbs sampler for TSP we adopt the following heuristics introduced
in Botev and Kroese (2008). Given a tour x of length mt generated by the pdf
g(x, mt), the conditional Gibbs sampling updates the existing tour x to x̃, where x̃
is generated from g(x̃, mt) and where x̃ is the same as x with one exception that the
cities xi and x j in x̃ are reversed. We accept the tour x̃ with probability I{S(X̃)≤mt},
otherwise we leave the tour x the same. If x̃ is accepted we update the cost function
S(x) (for j > i) as follows

S(x̃ ) = S(x) − cxi−1,xi − cx j,x j+1 + cxi−1,x j + cxi,x j+1 , (31)

provided the graph is symmetric and similarly if it is not symmetric. The 2-opt
acceptance–rejection single move step can be summarized as follows.

1. Given a tour (permutation) X = (X1, . . . , Xn), draw a pair of indices (I, J) such
that I �= J and both I and J are uniformly distributed on the integers 1, . . . , n.

2. Given (I, J) = (i, j), generate the pair (X̃i, X̃j) from the conditional bivariate pdf

g( x̃i, x̃ j, mt|x−i,− j) = cij(mt) fi(xi) f j(x j)I{S(X̃)≤mt}, (32)

where ( x̃i, x̃ j) ∈ {(xi, x j), (x j, xi)}, x−i,− j is the same as x except that the elements
i and j are reversed and cij(mt) is the normalization constant.

3. Set Xi = X̃i and Xj = X̃j. Denote X̃ = (X1, . . . , X̃i, . . . , X̃j, . . . , Xn). Note again
as that X̃ is the same as X except that the i-th and j-th positions are exchanged.

Note that sampling a pair (X̃i, X̃j) from g( x̃i, x̃ j, mt|x−i,− j) in Eq. 32 with j > i
is performed as follows. Generate Y ∼ Ber(1/2). If Y = 1 and if S(x1, . . . ,

x̃ j, . . . , x̃i, . . . , xn) ≤ mt, set X̃i = x̃ j and X̃j = x̃i, otherwise set X̃i = x̃i and X̃j = x̃ j.
We next present an alternative approach, where the Gibbs sampler can be easily

implemented as well. It is based on the trajectory generation method for TSP
described in Rubinstein and Kroese (2007) and recapitulated here. We start with
the following simple example.

Consider the permutation {1, 2, 3, 4} and assume for simplicity that the current
tour is x = {1, 2, 3, 4, 1}. To generate a new tour we start from city 1 and flip a three
sided fair device. Assume that the outcome is the city 3, then our new permutation
becomes {1, 3, 2, 4}. Next we continue from city 3 and flip a two sided fair device
(coin) with possible movements to cities 2 and 4. Assume that the outcome is the
city 4, so our next permutation becomes {1, 3, 4, 2} and our final new tour is x̃ =
{1, 3, 4, 2, 1}.

Implementing the Gibbs sampler for generating such TSP tours is easy. We
present details.

1. Given an initial tour x0 = (x1, x2, . . . , xi, xi+1, . . . , xn, x1), draw an index J0

uniformly distributed on the integers (x2, . . . , xi, xi+1, . . . , xn) containing n − 1
points and, thus excluding the point (node) x1.
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2. Given j0, apply acceptance–rejection until

S(x0 − x2, − j0) ≤ m (33)

holds, where x0 − x2,− j0 is the same as the initial tour x0 except that the
elements x2 and j0 are reversed. Denote x0 − x2, − j0 by x1. Note that S(x1) is
defined similar to Eq. 31.

3. Given the tour x1 = (x1, x̃ j0 , . . . , x̃2, xi, xi+1, . . . , xn, x1), draw an index J1 uni-
formly distributed on the remaining n − 3 points, which exclude the points x1

and j0.
4. Given j1, apply acceptance–rejection until

S( x̃1 − j0,− j1) ≤ m (34)

holds, where x̃1 − j0, − j1 is the same as x1 except that the elements x3 and j1 are
reversed. Denote x̃1 − j0, − j1 by x2. Note again that S(x2) is defined similar to
Eq. 31.

5. Continue with the steps 3 and 4 for a total of n − 2 rounds, that is until the
corresponding random variable Jn−2 becomes a degenerated one. By doing so
we shall loop automatically from the corresponding city x̃ jn−2 to the initial city x1.

5.2 Constrained Optimization via Penalty Function Approach

We shall consider here a particular case of the constrained problem (55), namely the
one with inequality constraints only, that is

maxx

n∑

k=1

ckxk

s.t.
n∑

k=1

aikxk ≥ bi, i = 1, . . . , m,

x ≥ 0, xk integer ∀k = 1, . . . , n. (35)

Assume in addition that the vector x is binary and all components bi and aik are
positive numbers. Using the penalty method approach we can reduce the original
constraint problem (35) to the following unconstrained one

min
x

{S(x) =
n∑

k=1

ckxk + M(x)}, (36)

where the penalty function M(x) is defined as

M(x) = M(x, β) = β

m∑

i=1

min

{
n∑

k=1

aikxk − bi, 0

}
. (37)

Here

β = a +∑n
k=1 ck

minik(aik − bi)
, (38)

and a is a positive number. If not stated otherwise we assume that a = 1. Note that
the penalty parameter β is chosen such that if x satisfies all constraints in Eq. 35, then
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M(x) = 0 and S(x) ≥ 0. Alternatively, if x does not satisfy all constraints in Eq. 35,
then M(x) ≤ −(a +∑n

k=1 ckxk) and S(x) ≤ −a.
Clearly, that the optimization program (35) can be again associated with the rare-

event probability estimation problem, where m ∈ (0,
∑n

k=1 ck
)

and X is a vector of
iid Ber(1/2) components. In particular, in order to employ the Gibbs sampler we can
write in analogy to Eq. 18 the conditional one dimensional pdfs as

g∗(xi, mt−1|x−i) = ri(mt−1) fi(xi)I{M(x)+pi xi≥mt−1−∑ j�=i p jx j}, (39)

where, as before, x−i denotes the vector x with the i-th component removed and
ri(mt−1) denotes the normalization constant.

Sampling a Bernoulli random variable X̃i from Eq. 39 can be performed as follows.
Generate Y ∼ Ber(1/2). If Y = 1 and S(x1, . . . , xi−1, Y, xi+1, . . . , xn) ≥ mt−1, then set
X̃i = 1, otherwise set X̃i = 0.

5.3 Cloning Algorithm for Optimization

Below we present the cloning algorithm for optimization with the objective function
given in Eq. 36. We shall use here formula (26) for choosing ηt−1 and b.

Algorithm 5.1 (The Cloning Algorithm for Optimization)
Given the proposal rarity parameter ρ, say ρ = 0.1, the sample size N, say N = m ×
n, the burn in period b , say 3 ≤ b ≤ 10 execute the following steps:

1. Acceptance–Rejection Set a counter t = 1. Generate a sample X1, . . . , X N

from the proposal density f (x, p). Let X̃0 = {X̃1, . . . , X̃ N0} corresponds to the
largest (1 − ρ)% subset of the population {X1, . . . , X N} (elite samples) for which
S(X i) ≥ m̂0. Note that X̃1, . . . , X̃ N0 ∼ g∗(x, m̂0).

2. Cloning Given the number of burn in periods b and the size Nt−1 of
elites at iteration (t − 1), find the cloning parameter ηt−1 according to ηt−1 =⌈

N
b Nt−1

⌉
− 1. Reproduce each vector X̃k = (X̃1k, . . . , X̃nk) of the elite sample

{X̃1, . . . , X̃ Nt−1} ηt−1 times, that is take ηt−1 identical copies of each vector
X̃k obtained at the (t − 1)-th iteration. Denote the entire new population
(ηt−1 Nt−1) cloned vectors plus the original elite sample {X̃1, . . . , X̃ Nt−1}) by
Xcl = {(X̃1, . . . , X̃1), . . . , (X̃ Nt−1 , . . . , X̃ Nt−1)}. To each of the cloned vectors of the
population Xcl apply the MCMC (and in particular the Gibbs sampler) for bt−1

burn-in periods. Denote the new entire population by {X1, . . . , X N}. Observe
that each member of {X1, . . . , X N} is distributed approximately g∗(x, m̂t−1).

3. Estimating mt Let X̃t = {X̃1, . . . , X̃ Nt } corresponds to the largest (1 − ρ)% subset
of the population {X1, . . . , X N} for which S(X i) ≥ m̂t. Deliver m̂t. Note again as
that X̃1, . . . , X̃ Nt is distributed approximately g∗(x, m̂t).

4. Stopping rule If for some t ≥ d, say d = 5,

m̂t = · · · = m̂t−d (40)

then stop and deliver m̂t,N as the estimator of the optimal solution; otherwise, set
t = t + 1 and return to Step 2.
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It follows that Algorithm 5.1 contains only three parameters: the rarity parameter ρ,
the sample size N, and either the cloning parameter ηt−1, or the burn-in one bt−1.
Observe that as soon as we specify one of them, say ηt−1 from Eq. 27, the other
one bt−1 is obtained automatically.

Also, as mentioned before

• The cloning optimization Algorithm 5.1 differs from its CE counterpart mainly
by the way of sampling: in the former the sampling is performed from the non-
parametric IS pdf g∗

t−1(x), while in the later from a parametric IS pdf f (x, vt).
• CE has the desirable property that the samples are independent, whereas in

cloning they are not.

6 Cloning Algorithms for Counting

Here we present two cloning algorithms for rare-events and counting assuming that
X is a discrete space. The main difference between the two is that the first is based
on the classic IS pdf (7) and is called the cloning algorithm, or Gibbs cloner, while
the second one uses the classic Boltzmann distribution and is called the Boltzmann
cloning algorithm. As we shall see below our cloning algorithms are somewhat closer
to DHR Algorithm 2.1 rather than to Botev–Kroese Algorithm 3.1. Recall again as
that neither bootstrap step nor pilot run is required in the cloning algorithms. Note
that the pilot run in Algorithm 3.1 typically takes nearly the same amount of time
as the main algorithm, provided one wants to estimate the levels mt reliably. Note,
however, that since the levels m̂t’s are random variables, the cloning algorithm will
generate only from approximate IS pdf g∗

t−1. For large samples we can neglect the
randomness of m̂t.

Before proceeding further we need the following:

Remark 6.1 Observe that for the continuous case the estimator (8) can be written
(see Botev and Kroese 2008) as

�̂(m) =
T∏

t=0

ĉt = ρT 1

N

N∑

i=1

I{S(X iT )≥m}, (41)

where the sample X iT , i = 1, . . . , N is from g∗
T−1 = g∗(x, mT−1). Formula (41) does

not hold, however, for the discrete case. The reason is that for fixed ρ, the root mt of

P(S(X) ≥ mt)|S(X) ≥ mt−1) = ρ

and, thus its sample version

1

N

N∑

i=1

I{S(X it)≥mt},

where X it ∼ g∗
t−1, may not be unique.

We can instead generate a sequence of adaptive {ρt}’s by arguing as follows. For
fixed ρ and a given ordered sequence of the sample functions S(X i), i = 1, . . . , N we
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choose mt corresponding to the closest (from the left) (1 − ρ)-th empirical value of
the elite sample of S(X i), i = 1, . . . , N. In short, since N might be larger than the
number of values of S(X i), we include in the elite sample all samples X i for which
{S(X i) ≥ mt}, and we denote the elite sample size at iteration t by Nt.

For example, assume that ρ = 0.5, N = 6 and that the ordered values of the
S(X i), i = 1, . . . , N for same iteration t are {1, 1, 2, 2, 2, 3}. Then we have mt = 2
and the new modified ρ becomes ρt = Nt/N = 5/6.

As we shall see soon that we shall further need to modify Remark 6.1 quite
substantially since the issue of proper choice of ρ is crucial in counting, especially
when dealing with counting of multiple events based on estimation of the rare event
probability (see Eq. 13)

� = E f
[
I{∑m

i=1 Ci(X)≥m}
]
,

which involves dependent Bernoulli random variables Ci(X), i = 1, . . . , m. This
is so, since the sample size N is typically larger than the number of different
values the function S(X i), i = 1, . . . , N can get. In short, each fixed value of S(X i)

typically appears more the one time in a sample of size N. This is in contrast to the
combinatorial optimization problems, where N is typically much smaller than the
number of different sample function values. For example, in a fully connected TSP
with m nodes we typically have (m − 1)! different values of S(X), while N is of order
of several thousands only. Thus, in optimization, the adaptive ρ is the same as the
proposal one.

6.1 The Simplified Algorithm

Before presenting the main cloning algorithm by introducing what we call its (1)
simplified and (2) basic version. They provide a good insight to the main counting
algorithm.

(1) The simplified version. Let as before N, ρt and Nt be the fixed sample size,
the actual rarity parameter (see Remark 6.1) and the number of elites at iteration
t, respectively. At the simplified version we set η = 1 (no cloning), that is we apply
to each of the Nt elites a burn-in period of length

⌈
ρ−1

t

⌉
. By doing so we generate⌈

ρ−1
t

⌉
Nt ≈ N samples at each level mt. The rationale of this is based on the fact that

if ρ is not small, say ρ = 0.1, then we have enough stationary elite samples and the
goal of the Gibbs sampler is merely to continue with these stationary Nt elites and
thus to generate N new stationary samples for the next level.
Note that Algorithm 6.1 presents an extension of Algorithm 2.1 in the sense that at
each iteration instead of a single elite it uses all Nt elites. Also, it can be viewed as
particular case of Algorithm 3.1 with both, the bootstrap step and pilot run being
omitted and the length of the burn-in period being equal to ρ−1.

Our numerical experience with all three algorithms: Algorithm 2.1, Algorithm 3.1
and Algorithm 6.1 suggest that none perform well. In particular, they often stop
without reaching the final level m. To overcome this difficulty we turn next to our
basic version.

(2) Basic version As compared to Algorithm 6.1 this version contains an additional
step for an adaptive choice of ρ. As we shall see below this additional step will
prevent from stopping all three algorithms before reaching the target level m.
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Algorithm 6.1 (The Simplified Algorithm for Counting)
Given the rarity parameter ρ ∈ (0, 1) and the sample size N execute the following
steps:

1. Acceptance–Rejection Set a counter t = 1. Generate a sample X1, . . . , X N from
the proposal density f (x). Let X̃0 = {X̃1, . . . , X̃ N0} be the largest subset of the
population {X1, . . . , X N} (elite samples) for which S(X i) ≥ m̂0. Take ĉ0 = �̂(m̂0)

in Eq. 16 is an unbiased estimator of c0. Note that X̃1, . . . , X̃ N0 ∼ g∗(x, m̂0).
2. MCMC For each vector X̃k = (X̃1k, . . . , X̃nk), k = 1, . . . , Nt−1 of the elite sam-

ple {X̃1, . . . , X̃ Nt−1} ∼ g∗(x, m̂t−1) obtained at the (t − 1)-th iteration apply
⌈
ρ−1

t

⌉

burn-in periods, while using the MCMC (and in particular the Gibbs) sampler
and, thus generate

⌈
ρ−1

t

⌉
new vectors (Xk1, . . . , Xk�ρ−1

t �). Note that the new

entire population {(Xs1, . . . , Xs�ρ−1
t �), s = 1, . . . , Nt−1} of length

⌈
ρ−1

t

⌉
Nt−1 ≈ N,

which is denoted as {X1, . . . , X N}, is distributed approximately g∗(x, m̂t−1).
3. Estimating ct Let X̃t = {X̃1, . . . , X̃ Nt } be the subset of the population

{X1, . . . , X N} for which S(X i) ≥ m̂t. Take ĉt in Eq. 9 as an estimator of ct given
in Eq. 6. Note again as that X̃1, . . . , X̃ Nt is distributed approximately g∗(x, m̂t).

4. Stopping rule If mt = m go to step 5, otherwise set, set t = t + 1 and repeat from
step 2.

5. Final Estimator Deliver �̂(m) given in Eq. 8 as an estimator of �(m) and |X̂ ∗| =
�̂(m)|X | as an estimator of |X ∗|.

To proceed note first that the draw back of the approach for updating ρ based
on Remark 6.1 is that one can often run into a situation, where Nt = N and thus
ρt = 1. This is the main reason that all three algorithms often stop before reaching
the desired level m. The following example provides details. Assume that N = 9 and
let the proposal (non-adaptive) ρ = 1/3. Consider the following two sample scenarios
of the ordered values of S(X i), i = 1, . . . , 9:

(1) S(X i) = (1, 1, 1, 2, 2, 2, 2, 3, 3) and (2) S(X i) = (1, 1, 1, 1, 1, 1, 1, 2, 3). Follow-
ing Remark 6.1 it is readily seen that in cases (1) and (2) the actual values of
ρ are ρ1 = 6/9 and ρ2 = 1, respectively. They are based on the elite sequences
{2, 2, 2, 2, 3, 3} and {1, 1, 1, 1, 1, 1, 1, 2, 3}, respectively. Note that both ρ1 > ρ and
ρ2 > ρ. Note, however, that we can not use ρ2 = 1 (corresponding to S(X i) = 1),
since as soon as we obtain ρ = 1 the cloning algorithm will stop and, thus the
level m will be never reached. To prevent this we modify ρ2 by moving from the
level corresponding to S(X i) = 1 to the next level of S(X i), that is to the level
S(X i) = 2. This corresponds to the elite sequence {2, 3} with the new modified
ρ2 = Nt/N = 2/9 < ρ. Based in this we shall further require that ρ should be in some
fixed interval (a1, a2), say (a1, a2) = (0.01, 0.25). This means that when the number of
elites Nt > a2 N we automatically switch from a lower elite level to a higher one; if
a1 N ≤ Nt ≤ a2 N (ρ ∈ (a1, a2))ρ ∈ (a1, a2), and thus a1 ≤ ρt ≤ a2, we accept Nt as the
size of the elites sample; and if Nt < a1 N, we proceed sampling until Nt = a1 N, that
is until we obtain at least a1 N elites.
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We summarize this as:

Remark 6.2 Adaptive choice of ρ ∈ (a1, a2) For fixed N, some fixed ρ, say ρ = 0.1,
called the proposal rarity parameter, let S�1−ρ� be the largest elite value of the
ordered sample S(X i), i = 1, . . . , N, corresponding to that fixed ρ. The adaptive
choice of ρ ∈ (a1, a2), where (a1, a2) is some fixed interval, say (a1, a2) = (0.01, 0.25)

is performed as follows:

• Include into the elite sample all additional values S�1−ρ� = Smin (see Remark 6.1),
provided that at the iteration t the number of elite samples Nt ≤ a2 N.

• Remove from the elite all values S�1−ρ� = Smin, provided the number of elite
samples Nt > a2 N. Note that by doing so we switch from a lower elite level to
a higher one. If a1 N ≤ Nt ≤ a2 N, and thus a1 ≤ ρt ≤ a2, accept Nt as the size of
the elites sample. If Nt < a1 N, proceed sampling until Nt = a1 N, that is until at
least a1 N elite samples are obtained. The above guarantees that ρ ∈ (a1, a2).

Note that the main reason that Algorithm 6.1 fails to reach the target value
m is that we used ρ based on Remark 6.1, rather than the adaptive ρ satisfying
a1 < ρ ≤ a2.

We shall call Algorithm 6.1 with this additional step, the Basic Algorithm. It is im-
portant to note that adding the above step to all three above algorithms (Algorithm
2.1, Algorithm 3.1 and Algorithm 6.1), improves substantially their performance in
the sense that all three ones were able to reach the desired level m in most of our
experiments. In particular, while estimating rare-events for the sum of iid Bernoulli
random variables we found that our Basic Algorithm outperforms Algorithm 3.1.

6.2 The Main Cloning Algorithm for Counting

To increase further the accuracy of the Basic Algorithm, we turn next to its main
version, where we introduce two additional steps.

1. Screening step. Since the IS pdf g∗(x, mt) must be uniformly distributed for each
fixed mt, the cloning algorithm checks at each iteration whether or not all elite
vectors X̃1, . . . , X̃ Nt are different. If this is not the case, we screen out (eliminate)
all redundant elite samples. We denote the resulting elite sample as X̂1, . . . , X̂ Nt

and call it, the screened elite sample. Observe that this procedure prevents (at
least partially) the empirical pdf associated with X̂1, . . . , X̂ Nt from deviation
from the uniform. Note that alternatively, one may first employ screening to
the entire sample and only then define the elite sampling. We shall use the first
alternative.

2. Cloning step. This step is defined in details in Section 4.

Below we present the main cloning algorithm for counting, also called the Gibbs
cloner. If not stated otherwise we shall use below Eq. 27 for choosing ηt−1 and b.
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Algorithm 6.2 (Main Cloning Algorithm for Counting)
Given the proposal rarity parameter ρ, say ρ = 0.1, the parameters a1 and a2, say
a1 = 0.01 and a2 = 0.25, such that ρ ∈ (a1, a2), and the sample size N, say N = m × n,
execute the following steps:

1. Acceptance–Rejection—the same as in Algorithm 6.1.
2. Adaptive choice of ρ For each iteration use the adaptive choice of a1 ≤ ρ ≤ a2,

with a1 and a2 defined in Remark 6.2.
3. Screening Denote the elite sample obtained at iteration (t − 1) by

{X̃1, . . . , X̃ Nt−1}. Screen out the redundant elements of the subset {X̃1, . . . , X̃ Nt−1}
and denote the resulting one as {X̂1, . . . , X̂ Nt−1}.

4. Cloning Given the size Nt−1 of screened elites at iteration (t − 1), find the
cloning and the burn-in parameters ηt−1 and bt−1 according to Eq. 27. Repro-
duce ηt−1 times each vector X̂k = (X̂1k, . . . , X̂nk) of the screened elite sam-
ple {X̂1, . . . , X̂ Nt−1}, that is, take ηt−1 identical copies of each vector X̂k

obtained at the (t − 1)-th iteration. Denote the entire new population (ηt−1 Nt−1

cloned vectors plus the original screened elite sample {X̂1, . . . , X̂ Nt−1}) by Xcl =
{(X̂1, . . . , X̂1), . . . , (X̂ Nt−1 , . . . , X̂ Nt−1)}. To each of the cloned vectors of the
population Xcl apply the MCMC (and in particular the Gibbs sampler) for bt−1

burn-in periods. Denote the new entire population by {X1, . . . , X N}. Observe
that each member of {X1, . . . , X N} is distributed approximately g∗(x, m̂t−1).

5. Estimating ct—the same as in Algorithm 6.1.
6. Stopping rule—the same as in Algorithm 6.1.
7. Final Estimator—the same as in Algorithm 6.1.

Remark 6.3 The honesty of the algorithm If at some fixed iteration t Algorithm 6.2
can not proceed from mt to mt+1, then we can try to increase the sample size N, say
by factor of 5–10. If this does not help, then Algorithm 6.2 declares that it can not
handle the problem. We call such property of Algorithm 6.2, the honesty property.
Note that in all our numerical studies with Algorithm 6.2 it never stopped before
reaching the level m.

Remark 6.4 Improving uniformity
To reduce further the deviation from the uniform of the sample X1, . . . , X N one

can use at each iteration in parallel to the screening step an additional, the so-called
thinning step. In the thinning step we accept, say only the even samples from the total
population X1, . . . , X N , or, say only each third one. Clearly, by doing so

1. The total sample should be doubled (tripled) at each iteration.
2. The dependence between the components X2, X4, . . . , X2N (thinning using even

samples) decreases.

Remark 6.5 Alternative choice of ρ As an alternative to Remark 6.2 for choice of
ρ we can define ρ based on the maximum value of the ordered sample S(X i), i =
1, . . . , N, denoted as Smax, rather than on S�1−ρ�, which corresponds to the largest
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ρ100% elite value. This is so, since the sample size N is typically larger than the
number of levels m in the model. Thus, we expect that the number of Smax values,
denoted as #Smax will be greater than 1. The adaptive ρ in this case will correspond
to ρ = #Smax

N .
As an example consider again as the following two sample scenarios of the ordered

values of S(X i), i = 1, . . . , 9:

(1) S(X i) = (1, 1, 1, 2, 2, 2, 2, 3, 3) and (2) S(X i) = (1, 1, 1, 1, 1, 1, 1, 2, 3). We have
(i) ρ = 2/9 and (2) ρ = 1/9. Note that since in case (2) we have that #Smax = 1,
that is only a single value of Smax = 3, we can include into the elite sample all
additional smaller values, corresponding (in this case) to S = 2. By doing so we
obtain ρ = 2/9 instead of ρ = 1/9.

In summary, in the alternative ρ approach we first select some target ρ value, say
ρ = 0.01 and then we accumulate all the largest values of S(X i) until we obtain that

number of accumulated largest values of S(X i)

N ≥ 0.01.

Remark 6.6 The direct estimator As an alternative to the estimator |X̂ ∗| obtained
by Algorithm 6.2 we can use the one based on direct counting of the number
of the screened samples obtained just after crossing the level m. Such counting
estimator, denoted by |X̂ ∗

dir|, is associated with the empirical distribution of the
uniform distribution g∗(x, m). We found numerically that |X̂ ∗

dir| is extremely useful
and very accurate. Note that it can be applied only for counting problems with |X ∗|
being not too large. In particular, |X ∗| should be less than the sample size N, that is
|X ∗| < N. Note also that counting problems with values small relative to |X | are
known as the must difficult ones and in many problems one is indeed interested
to count only if |X ∗| is no greater then some fixed quantity, say N . Clearly, this is
possibly only if N ≥ N .

It is important to note that |X̂ ∗
dir| is typically much more accurate than its

counterpart, the standard estimator |X̂ ∗| = �̂|X |. The reason is that |X̂ ∗
dir| is obtained

directly by counting all distinct values of X i, i = 1, . . . , N, satisfying S(X i) ≥ m, that
is it can be written as

|X̂ ∗
dir| =

N∑

i=1

I{S(X(d)
i )≥m}, (42)

where X(d)

i = X i, if X i �= X j, ∀ j = 1, . . . , i − 1 and X(d)

i = 0, otherwise. Note that we
set in advance X(d)

1 = X1.
To increase further the accuracy of |X̂ ∗

dir| we can take a larger sample at the last
step of Algorithm 6.2, that is after reaching the level m.

Since the direct estimator |X̂ ∗
dir| is extremely useful in counting we present next

the relevant cloning algorithm.
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Algorithm 6.3 (The Direct Cloning Algorithm for Counting)
Given the proposal rarity parameter ρ, say ρ = 0.1, the parameters a1 and a2, say
a1 = 0.01 and a2 = 0.25, such that ρ ∈ (a1, a2), and the sample size N, say N = m × n,
execute the following steps:

1. Acceptance–Rejection—as in Algorithm 6.1
2. Adaptive choice of ρ—the same as in Algorithm 6.3.
3. Screening—the same as in Algorithm 6.2.
4. Cloning—the same as in Algorithm 6.2.
5. Estimating mt—the same as in Algorithm 5.1.
6. Stopping rule—the same as in Algorithm 6.2.
7. Final Estimator For mT = m, take a sample of size N, and deliver |X̃ ∗

dir| in Eq. 42
as an estimator of |X ∗|.

In Section 10.2 we discuss the complexity of the estimator |X̂ ∗
dir|.

Table 1 presents comparative studies of the performance of Algorithm 6.2 for
it different parameter configurations as well as the performance of the DHR and
Botev–Kroese (BK) algorithms while estimating

� = E f

[
I{∑n

i=1 Xi≥m}
]
,

where the Xi’s are iid Ber(1/2), n = 20 and m = 19. Table 2 presents similar data for
n = 100 and m = 99. In both experiments we set N = 1,000 and ρ = 0.05 and the
results were averaged over 100 independent runs.

Here RE and REdir denote the relative error of the estimators |X̂ ∗| and |X̂ ∗
dir|,

respectively. Observe that same values of |X̂ ∗| and |X̂ ∗
dir| in our tables, here and

below, are not integers. There reason is that they present point estimators of |X ∗|
and |X ∗

dir| averaged over 10 independent replications. Note also that in the version
No1 of Algorithm 6.2 we set a1 = 0.01 and a2 = 0.25, while we did not restrict the
remaining ones that is they were a1 = 0 and a2 = 1. In the cloning Algorithm 6.2 we
implemented the burn-in strategy (26). It follows from these table that Algorithm
6.2 with the burn-in period b = 10 is the best. Similar performance was obtained
for 3 ≤ b ≤ 10. Note that the version No2 and No3 of Algorithm 6.2 are somewhat
similar to the version No4 and No5 of DHR and BK, respectively in the sense that
the burn-in periods are b = N and b = 1, respectively. Note also that for the case
n = 100 and m = 99 Algorithm 3.1 did not converge to m = 99. It is interesting to
note that while increasing the sample size from N = 1,000 to N = 10,000 for the
Bernoulli model with n = 100 and m = 99, while leaving the remaining data the same,
we found that the performance of all five versions substantially improved and in this

Table 1 Comparative performance of the algorithms for the sum of n = 20 iid Bernoulli random
variables for m = 19, N = 1,000 and ρ = 0.05

No Algorithm b η |X̂ ∗| RE |X̂ ∗
dir| REdir CPU

1 New 10 ηt = �(N/bNt)� − 1 21.20 0.047 21.0 0 0.8
2 New N/Nt 0 21.92 0.147 21.0 0 0.9
3 New 1 N/Nt 21.78 0.063 21.0 0 0.7
4 BK 1 N/Nt 27.32 0.305 21.0 0 0.3
5 DHR N 0 20.22 0.137 21.0 0 14.5
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Table 2 Comparative performance of the algorithms for the sum of n = 100 iid Bernoulli random
variables for m = 99, N = 1,000 and ρ = 0.05

No Algorithm b η |X̂ ∗| RE |X̂ ∗
dir| REdir CPU

1 New 10 ηt = �(N/bNt)� − 1 101.7 0.041 101.0 0 33
2 New N/Nt 0 122.6 0.206 100.7 0.01 27
3 New 1 N/Nt 118.2 0.072 101.0 0 26
4 BK 1 N/Nt 220 0.576 100,1 0.05 25
5 DHR N 0 207.3 0.354 101 0.0 288

case Algorithm 3.1 also reaches the level m = 99, but the relative error is still large
as compared to the remaining algorithms. In particular the relative error RE was
decreased approximately by a factor of 5. Note that if the data would be independent
one would obtain decrease in relative error by a factor of 101/2 ≈ 3 only. Still the
relative efficiencies of the 5 versions were similar to the case of N = 1,000. Finally,
it follows from the tables, that in spite of the high relative error RE and substantial
bias of some of the versions of |X̂ ∗|, the direct estimators |X̂ ∗

dir| are very accurate for
all 5 cases. The explanation for such nice behavior of |X̂ ∗

dir| is given in Remark 6.6
below.

We also run Algorithm 6.2 for the sum of Bernoulli random variables with n = m
and obtained similar results. Clearly, in this case |X ∗| = 1.

We finally define the most naive acceptance–rejection version of Algorithm 6.2,
called the (N = 1)-policy algorithm. According to the (N = 1)-policy algorithm, at
each fixed level mt−1 we use the acceptance–rejection (single trial) method, until for
the first time we hit a higher level mt > mt−1. Using the (N = 1)-policy algorithm we
always managed to reach any level m ≤ n, even for large n, like n = 1,000.

In Section 10 we discuss the complexity of the (N = 1)-policy algorithm.
For the continuous case Algorithm 6.2 simplifies substantially. In particular

its steps 2 and 3 (adaptive ρ and screening) can be omitted. For details see
(Rubinstein 2008b).

6.3 The Boltzmann Cloning Algorithm

Many problems including the classic Ising model are based on the Boltzmann
distribution

g(x) = Z (λ)−1 f (x) exp {−λS(x)} , (43)

where Z (λ) = E f
[
exp {−λS(X)}] is called the partition function.

Note that in analogy to Eq. 4 and 5 we can write Z = Z (m) as

Z (m) = E f

[
exp

{
−

m0∑

i=1

λCi(X)

}]

×
T∏

t=1

E f

[
exp

{
−

mt∑

i=1

λCi(X)

}
| exp

{
−

mt−1∑

i=1

λCi(X)

}]
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= E f

[
exp

{
−

m0∑

i=1

λCi(X)

}]
T∏

t=1

Egt−1

[
exp

{
−

mt∑

i=1

λCi(X)

}]

= z0

T∏

t=1

zt, (44)

where

zt = E f

[
exp

{
−

mt∑

i=1

λCi(X)

}
| exp

{
−

mt−1∑

i=1

λCi(X)

}]

= Egt−1

[
exp

{
−

mt∑

i=1

λCi(X)

}]
, (45)

z0 = E f
[
exp

{−∑m0
i=1 λCi(X)

}]
and as usual, the sequence {mt, t = 0, 1, . . . , T} sat-

isfies 0 < m0 < m1 < . . . < mT = m and it is chosen on-line (adaptively), f de-
notes the original pdf f (x), and gt−1 = g(x, mt, λ = −∞) denotes the zero variance
(Boltzmann) pdf at iteration t.

The estimator of Z (m) can be written in analogy to Eqs. 8 and 9 as

Ẑ (m) =
T∏

t=0

ẑt, (46)

where

ẑt = 1

N

N∑

j=1

exp

{
−

mt∑

i=1

λCi(X j)

}
(47)

and X j ∼ g(x, λ, mt−1).
Here we present a modified version of Algorithm 6.2 for estimation of the

partition function Z (λ).
To proceed, note (Rubinstein 2008a, b) that Eq. 43 can be derived from the

solution of the following single-constrained MinxEnt program

ming D(g, h) = ming
∫

ln g(x)

f (x)
g(x)dx = ming Eg

[
ln g(X)

f (X)

]

s.t. Eg

[
m∑

i=1

Ci(X)

]
= m (48)

∫
g(x)d x = 1.

It is also important to note (Rubinstein 2008a, b) that for λ = −∞ the pdf g(x) in
Eq. 43 coincides with the zero-variance IS pdf (7), that is with

g∗(x, m) = �−1 f (x)I{S(x)≥m}. (49)

Because of this relation one can easily switch from the Boltzmann pdf (43) to the
IS zero-variance pdf (49) and thus to apply the original Algorithm 6.2 instead of the
Boltzmann type algorithm below and vise-versa, provided λ = −∞ in Eq. 43. This,
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for example, means that when λ = −∞ the classic Ising model can be treated by using
the IS zero-variance pdf (49) rather than via the original Boltzmann pdf (43).

To proceed note that similar to the parametric MinxEnt algorithm (Rubinstein
2008a, b) no acceptance–rejection step is explicitly involved in the Boltzmann cloning
algorithm below. As result neither the rarity parameter ρ nor elite sampling are
explicitly involved here. In fact, the elite sampling will be hidden, and it will become
explicitly available only after the sequence {m̂t, t = 1, . . . , T} is generated. Observe
that here m̂t corresponds to the maximal level reached so for at iteration t.

To clarify, consider a rare event probability � associated with the sample per-
formance S(X) being the sum of iid Bernoulli random variables, that is S(X) =∑m

i=1 Xi. Assume for concreteness that we took a sample N = 1,000 and while
running the simulation we obtained (at some iteration t) that all 1,000 sample values
Sk ∈ (a, b), k = 1, . . . , 1000, where, for concreteness, say a = 20 and b = 50. Since
m̂t corresponds to the maximum level reached at iteration t, we clearly have that
m̂t = b = 50 and since λ = −∞, all the terms of Sk which are less than b are
negligible in the exponent exp

{−∑m
i=1 λXik

}
. Assume, finally that the number of

terms, which we also call here, the number of elite samples, say Nt for which Sk = 50

Algorithm 6.4 (The Boltzmann Cloning Algorithm)
Given the sample size N, execute the following steps:

1. Acceptance–Rejection Set a counter t = 1. Generate a sample X1, . . . , X N from
the proposal density f (x). Let X̃0 = {X̃1, . . . , X̃ N0} be the largest subset of the
population {X1, . . . , X N} (elite samples) for which S(X i) ≥ m̂0. Take ẑ0 = ẑ(m̂0)

in Eq. 47 is an unbiased estimator of z0. Note that X̃1, . . . , X̃ N0 ∼ g(x, λ, m̂0).
2. Screening—the same as in Algorithm 6.2.
3. Adaptive choice of ρ Estimate ρ according to the adaptive implicit rule ρ̂t =

Nt/N, where Nt includes all elite samples S(X i) corresponding to the maximum
level m̂t of the entire sample S(X i), i = 1, . . . , N.

4. Cloning Given the size Nt−1 of screened elites at iteration (t − 1), find the
cloning and the burn-in parameters ηt−1 and bt−1 according to Eq. 27. Repro-
duce ηt−1 times each vector X̂k = (X̂1k, . . . , X̂nk) of the screened elite sam-
ple {X̂1, . . . , X̂ Nt−1}, that is, take ηt−1 identical copies of each vector X̂k

obtained at the (t − 1)-th iteration. Denote the entire new population (ηt−1 Nt−1

cloned vectors plus the original screened elite sample {X̂1, . . . , X̂ Nt−1}) by Xcl =
{(X̂1, . . . , X̂1), . . . , (X̂ Nt−1 , . . . , X̂ Nt−1)}. To each of the cloned vectors of the
population Xcl apply the MCMC (and in particular the Gibbs sampler) for bt−1

burn-in periods. Denote the new entire population by {X1, . . . , X N}. Observe
that each member of {X1, . . . , X N} is distributed approximately g(x, λ, m̂t−1).

5. Estimating zt Let X̃t = {X̃1, . . . , X̃ Nt } be the subset of the population
{X1, . . . , X N} for which S(X i) ≥ m̂t. Take ẑt in Eq. 47 as an estimator of zt given
in Eq. 45. Note again as that X̃1, . . . , X̃ Nt is distributed approximately g(x, λ, m̂t).

6. Stopping rule—the same as in Algorithm 6.2.
7. Final Estimator Deliver Ẑ (m) according to Eq. 46 as an estimator of Z (m) given

in Eq. 44.
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equals 25. So, as before, we can define ρ̂t = Nt/N and call it adaptive implicit ρ, (for
our case it is ρ̂t = 25

1000 = 1/40).
Note that typically we expect ρ̂t > 10−2, since we take at each iteration a sample

size N > m/ρ, where say ρ = 10−1. If however, at some iteration t, we occasionally
obtain that ρ̂t < ρ, we can reject the largest value m̂t obtained so far and take instead
the value m̂t − 1, provided N > (m̂t − 1)/ρ and so far. In our example m̂t − 1 = 49.

The Boltzmann cloning algorithm basically coincides with Algorithm 6.2. Here we
sample from the Boltzmann pdf g(x, mt, λ = −∞) (see Eq. 43) rather than from the
IS pdf g∗(x, mt) (see Eq. 7) and the step 2 of Algorithm 6.2 for choosing the adaptive
ρ ∈ (a1, a2) is replaced by the corresponding adaptive implicit one defined above.
Also, as in Algorithm 6.2 we use the term screened elites. This is regardless of the fact
that the elite samples are obtained only in an implicit way.

6.4 Counting Multiple Events

As for application of the cloning Algorithm 6.2 consider counting on the set

X ∗ = {x ∈ R
n : Si(x) ≥ bi, i = 1, . . . , m}, (50)

where Si(x), i = 1, . . . , m are arbitrary functions. We can associate with Eq. 50 the
following multiple-event probability

� = Pu

{
m⋂

i=1

[Si(X) ≥ bi]
}

= Eu

[
m∏

i=1

I{Si(X)≥bi}

]
. (51)

Here u means the uniform distribution. Note that some of the events may be given
as equalities, that is as, {Si(X) = bi}. Note also that Eq. 51 has some interesting
applications in rare-event simulation. For example, in a queueing model one might be
interested in estimating the probability of the simultaneous occurrence of two events,
{S1(X) ≥ b 1} and {S2(X) ≥ b 2}, where the first is associated with buffer overflow (the
number of customers S1 is at least b 1), and the second is associated with the sojourn
time (the waiting time of the customers S2 in the queuing system is at least b 2).

We assume that each individual event {Si(X) ≥ bi}, i = 1, . . . , m, is not rare, that is
each probability Pu{Si(X) ≥ bi} is not a rare-event probability, say Pu{Si(X) ≥ bi} ≥
10−4, but their intersection forms a rare-event probability �. We are interested in
efficient estimation of � defined in Eq. 51 and counting the number of points (volume)
on the set X ∗.

To proceed note that under the IS pdf g∗(x) all constraints {Si(x) ≥ bi, i = 1,

. . . , m} must be fulfilled, provided the set is not empty. This is equivalent of saying
that the rare-event probability � in Eq. 51 becomes certain under g∗(x), that is,

Eg∗

[
m∏

i=1

I{Si(X)≥bi}

]
= 1. (52)

In other words, Eq. 52 states that under such ideal IS pdf g∗(x) all m indicators must
be equal to unity with probability 1. This can also be written as

Pu

{(
m∑

i=1

Ci(X)

)
= m

}
= Eg∗

[
I{C(X)=m}

] = 1, (53)
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where

C(X) =
m∑

i=1

Ci(X), (54)

and Ci(X) = I{Si(X)≥bi}. Similar to Eq. 52, formula (53) states that under g∗(x) the
probability of the sum of m indicator random variables Ci(X) being equal to m, (m is
the number of constraints) must be equal to 1.

We next deal with counting the number of feasible solutions in an integer program
with both equality and inequality constraints, which reads as

max c′x,

s.t.
n∑

k=1

aikxk = bi, i = 1, . . . , m1,

n∑

k=1

a jkxk ≥ bj, j = m1 + 1, . . . , m1 + m2,

x ≥ 0, xk integer ∀k = 1, . . . , n, (55)

where c and x are n-dimensional vectors.
In particular we shall show how to use the Algorithm 6.2 for counting on the set

containing both equality and inequality constraints defined in Eq. 55, that is, on the
set (12)

n∑

k=1

aikxk = bi, i = 1, . . . , m1,

n∑

k=1

a jkxk ≥ bj, j = m1 + 1, . . . , m1 + m2,

x ≥ 0, xk integer ∀k = 1, . . . , n.

It is readily seen that in this case the rare event probability � reduces to Eq. 13, that
is to

� = Eu

[
I{∑m

i=1 Ci(X)≥m}
]
,

where the first m1 terms Ci(X)’s in Eq. 54 can be written as in Eq. 14, that is as

Ci(X) = I{∑n
k=1 aik Xk=bi}, i = 1, . . . , m1,

while the remaining m2 ones are as in Eq. 15, that is as

Ci(X) = I{∑n
k=1 aik Xk≥bi}, i = m1 + 1, . . . , m1 + m2.

Indeed, in order to count the number |X ∗| of feasible solutions of the program (55),
that is, on the set (12), we associate with it the following rare-event probability

� = Pu{X ∈ X ∗} = Eu

⎡

⎣
m1∏

i=1

I(
∑n

k=1 aik Xk=bi)

m1+m2∏

j=m1+1

I(
∑n

k=1 a jk Xk≥bj)

⎤

⎦ , (56)

which can be also written as (see Eq. 13) � = Eu

[
I{∑m

i=1 Ci(X)≥m}
]
.
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It follows from the above that counting multiple events and in particular esti-
mating the cardinality of the set (12) can be efficiently performed using the cloning
Algorithm 6.2, that is one can estimate |X ∗| via |X̂ ∗| = �̂|X |, where �̂ by itself is an
estimator of � given in Eq. 8. Similar arguments can be applied for estimating the
volumes of bodies given by the set

X ∗ = {x ∈ R
n : Si(x) = bi, i = 1, . . . , m1; S j(x) ≥ bj, j = 1, . . . , m2}. (57)

In particular, for a polyhedron, X ∗ reduces to the set associated with the following
linear programming constraints

n∑

k=1

aikxk = bi, i = 1, . . . , m1,

n∑

k=1

a jkxk ≥ bj, j = 1, . . . , m2,

xk ∈ (a, b), ∀k = 1, . . . , n. (58)

Figure 2 presents the dynamics of the (N = 1)-policy algorithm to hit the polytope
1 → 2 → 3 → 4 → 5 → 6. The total number of samples required is M = 4. It is
readily seen that while generating

1. The first (green) sample, the (N = 1)-policy algorithm hits the polytope 1 →
2 → 3 → 4.

2. The second (black) sample, it hits the polytope 1 → 2 → 3 → 4 → 6.
3. The third (black) sample, it remains at the same polytope 1 → 2 → 3 → 4 → 6.
4. The fourth (red) sample, it hits the desired polytope 1 → 2 → 3 → 4 → 5 → 6.

Example 6.1 (SAT Example) We shall show how to apply Algorithm 3.1 for counting
the number of assignment in the following simple SAT problem

(x1 + x̄2)(x̄1 + x̄2 + x3)(x2 + x3).

Fig. 2 Dynamics of the
(N = 1)-policy algorithm to hit
the polytope

a

b c
d

ef

1

2
3

4
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Note that the associated set of linear integer constraints can be written as

x1 + (1 − x2) ≥ 1

(1 − x1) + (1 − x2) + x3 ≥ 1,

x2 + x3 ≥ 1,

where each x1, x2, x3 ∈ {0, 1}. For more details on SAT problems see Section 9.
Clearly we can write � as � = Pu(C1 + C2 + C3 = 3), where C1 = I{X1−X2≥0}, C2 =

I{X1+X2−X3≤1} and C3 = I{X2+X3≥1}.
We have

g∗(x1, m̂t−1|x−1) = f1(x1)I{x1≥m̂t−1−I{−x2≥0}−I{x2−x3≤1}−C3},

g∗(x2, m̂t−1|x−2) = f2(x2)I{x2≥m̂t−1−I{x1≥0}−I{x1−x3≤1}−I{x3≥1}},

g∗(x3, m̂t−1|x−3) = f3(x3)I{x1≥m̂t−1−C1−I{x1+x2≤1}−I{x2≥1}}, (59)

where fi(xi), i = 1, 2, 3 are independent Ber(1/2) distributions.
Note that I{X1≥0} = 1 in g∗(x2, m̂t−1|x−2).

It readily follows from the above example, that in order to count on a quite general
set of linear (integer or continuous) constraints (12) with given matrix A = {aij}, one
only needs to apply the Gibbs method, while sampling from the following simple
one-dimensional conditional pdfs

g∗(xi, m̂t−1|x−i) = Ber(1/2)I{∑
r∈Ri

Cr(X)≥m̂t−1−∑r �∈Ri
Cr(X)

}, (60)

where Ri = { j : aij �= 0}.
Recall that sampling a random variable X̃i from Eq. 60 using the Gibbs sampler

can be performed as follows. Generate Y ∼ Ber(1/2). If
∑

r∈Ri

Cr(x1, . . . , xi−1, Y, xi+1, . . . , xn) ≥ m̂t−1,

then set X̃i = Y, otherwise set X̃i = 1 − Y.
Note also that before performing the simulation one has to store the correspond-

ing set of indexes Ri associated with each conditional marginal pdf g∗(xi, m̂t−1|x−i).

7 Sampling Uniformly on Different Regions

Since the sequences produced by Algorithm 6.2 a uniform, so it should be suitable for
uniform sampling on X ∗. This means, for example, that while counting the number of
feasible solutions defined on the set of the linear integer program with the constraints
(12), one can sample according to a discrete uniform pdf inside the corresponding
region X ∗. As for another example, if we have linear programming constraints (58)
instead of Eq. 12, then the continuous version (Rubinstein 2008b) of Algorithms 6.2
can be used to sample uniformly inside the corresponding polyhedron.
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Since to sample on X ∗ only the elites at level mT = m matter, we can run the
cloning Algorithms 6.2 at all intermediate levels m0, m − 1, . . . , mT−1 with less sam-
ples, while at the final level, mT = m, we can take a larger sample. The corresponding
elites could be further employed to generate an approximate uniform sampling on
the entire region X ∗.

As a simple example, consider sampling on the region

X ∗ =
{

X :
n∑

i=1

Xi ≥ m

}
,

where the Xi’s are iid each distributed Ber (1/2). Let n = 100 and m = 99. We have
|X ∗| = 101. For this example we employed Algorithm 6.2 with N = 100, ρ = 0.1
and b = 1 for the first T − 1 iterations. By doing so we obtain at each iteration, on
average, ten uniform elites. At the last iteration we increased the sample to 1,000
using the same ρ = 0.1 and the same b = 1 and thus obtained on average, 100 truly
uniform elites. We finally run each of these 100 Markov chains (in steady-state) for a
long burn-in, say b = 50 and, thus generating a total of N = 5,000 = 100 × 50 Gibbs
samples, for which statistics was collected. For this simple example we found that

1. The direct estimator |X̂ ∗
dir| with the above sample N = 5, 000 found all 101

different Bernoulli points.
2. The resulting sample is distributed approximately uniformly on the set X ∗ ={

X : ∑100
i=1 Xi ≥ 99

}
, that is its histogram over these 101 points satisfies unifor-

mity in the sense that it passes successfully the χ -square statistical test.

For a relevant paper see Botev (2007). More research on uniform sampling on
different regions is under way.

8 Combining Cloning with CE: The CLONCE Algorithms

Here we show that the efficiency of the cloning method can be often improved while
combining it with CE.

Consider again as a fixed sequence of {ct, t = 0, 1, . . . , T}, given in Eq. 6, that is

ct = E f [I{S(X)≥mt}]
E f [I{S(X)≥mt−1}]

= Eg∗
t−1

[I{S(X)≥mt}]. (61)

Recall that g∗
t−1 = g∗(x, p, mt−1) denotes the IS pdf for fixed p in f (x, p).

We shall show next how to get better estimators of ct than these given in
Eq. 9. To do so we shall apply an additional change of measure, while estimating
the ct’s. In particular we shall introduce a sequence of parametric families {g∗

t−1( p∗
t ) =

g∗(x, p∗
t , mt−1)} instead of just g∗

t−1( p) = g∗(x, p, mt−1). Note that in the latter pdf the
parameter vector p is fixed, while in the former it varies; the parameter vector p∗

t =
p∗(mt) will be updated adaptively at each level mt, say by using the CE method. We
shall show numerically that by doing so the efficiency of Algorithm 6.2 can be often
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improved. In particular it is shown in Section 10.1.1 that for the sum of iid Bernoulli
random variables with p = 1/2 the average complexity (the average number of
samples) of the (N = 1)-policy algorithms to reach the set X ∗ = {

x : ∑n
k=m Xk ≥ m

}
,

is Rm = O(ln m) as compared to Rm = O(n ln n
n−m ) without using CE. However, in

general, one has take into account the degeneracy property (Rubinstein and Kroese
2007) of the likelihood ratios, while combining cloning with CE. In fact, in high
dimensions, the effect of CE can be even negative.

To this end, in analogy to the pdf g∗
t ( p) = g∗(x, p, mt) (see Eq. 7) define

g∗∗
t = g∗(x, p∗

t , mt) = 1

�∗
t ( p∗

t )
f (x, p∗

t )I{S(x)≥mt}, (62)

where �∗
t = Ep∗

t

[
I{S(X)≥mt}

]
denotes the normalization constant under the pdf

f (x, p∗
t−1). Thus, an estimator of �(m) can be obtained by taking again as the product

of ct’s, where

ct = Eg∗∗
t−1

[
I{S(X)≥mt}W∗∗(X, p, p∗

t−1)
]
, (63)

Eg∗∗
t−1

denotes the expectation with respect to g∗∗
t−1 = g∗(x, mt−1, p∗

t−1) and

W∗∗(X, p, p∗
t−1) = g∗(X, p, mt−1)

g∗(X, p∗
t−1, mt−1)

= �∗
t

�t

f (X, p)

f (X, p∗
t−1)

(64)

is the likelihood ratio (LR). Substituting Eqs. 64 into 63 we obtain

ct = �∗
t−1

�t−1
Eg∗∗

t−1

[
I{S(X)≥mt}

f (X, p)

f (X, p∗
t−1)

]
. (65)

But �∗
t−1

�t−1
is unknown, so ct can not be estimated directly from Eq. 65.

To overcome this difficulty we shall use the following well known trick. Taking
into account that Eg∗∗

t−1
[W∗∗(X, p, p∗

t−1)] = 1, we can write ct in Eq. 63 as

ct = Eg∗∗
t−1

[
I{S(X)≥mt}W∗∗(X, p, p∗

t−1)
]

Eg∗∗
t−1

[
W∗∗(X, p, p∗

t−1)
] . (66)

Now substituting Eq. 64 into Eq. 66 we finally obtain

ct =
Eg∗∗

t−1

[
I{S(X)≥mt}

f (X, p)

f (X, p∗
t−1)

]

Eg∗∗
t−1

[
f (X, p)

f (X, p∗
t−1)

] . (67)
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Observe that ct in Eq. 67 does not contain the term �∗
t−1

�t−1
any more, so it can be

estimated as

c̃t =
∑N

i=1 I{S(X i)≥mt}W(X i, p, p̂∗
t−1)∑N

i=1 W(X i, p, p̂∗
t−1)

=
∑Nt

i=1 W(X i, p, p̂∗
t−1)∑N

i=1 W(X i, p, p̂∗
t−1)

, (68)

where X i ∼ g∗∗
t−1, Nt is the number of elites and

W(X i, p, p̃∗
t−1) = f (X i, p)

f (X i, p̃∗
t−1)

. (69)

Finally, we can estimate �(m) as

�̃(m) =
T∏

t=1

c̃t =
T∏

t=1

∑Nt
i=1 W(X i, p, p̂∗

t−1)∑N
i=1 W(X i, p, p̂∗

t−1)
. (70)

As mentioned the sequence { p∗
t−1} and { p̃∗

t−1} can be obtained by applying the
standard CE method to Eg∗

t−1
[I{S(X)≥mt}]. In particular the components of p∗

t−1 can be
written as

p∗
t,k = Eg∗∗

t−1

[
Xk I{S(X)≥mt}W∗∗(X, p, p∗

t−1)
]

Eg∗∗
t−1

[
I{S(X)≥mt}W∗∗(X, p, p∗

t−1)
] , (71)

where, as before, X ∼ g∗∗
t−1 and p denotes the original parameter vector. Arguing

similarly to Eq. 67 it can be simplified as

p∗
t,k =

Eg∗∗
t−1

[
Xk I{S(X)≥mt}

f (X, p)

f (X, p∗
t−1)

]

Eg∗∗
t−1

[
I{S(X)≥mt}

f (X, p)

f (X, p∗
t−1)

] , (72)

The final CE estimator of Eq. 72 can be written as

p̂∗
t,k =

∑N
i=1 Xki I{S(X i)≥m̂t}W(X i, p, p̂∗

t−1)∑N
i=1 I{S(X i)≥m̂t}W(X i, p, p̂∗

t−1)
, (73)

where, as before X i ∼ g∗∗
t−1 and W(X i, p, p̂∗

t−1) is given in Eq. 69.
It is important to not that for optimization problems there is no need for the LR

W(X i, p, p̂∗
t−1) and thus Eq. 73 can be simplified as

p̃∗
t,k =

∑N
i=1 Xki I{S(X i)≥m̂t}∑N

i=1 I{S(X i)≥m̂t}
. (74)

Below we present the combined cloning-CE algorithm, which we call the CLONCE
algorithm and which differs from the original Algorithm 6.2 that it contains two
additional steps: (1) an adaptive CE step for updating the vector p̂∗ according to
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Eq. 73 and (2) the standard smoothing step with injection (Rubinstein and Kroese
2007). The essential difference is that at each step we use the Gibbs sampler to
generate from g∗(x, p̂∗

t−1, m̂t−1) rather than from g∗(x, p, m̂t−1).

Remark 8.1 Since the cloning part is the major one in the CLONCE Algorithm 8.1,
we shall further restrict the components p̃∗

t,k of the vector p̃∗
t by b 1 ≤ p̃∗

t,k ≤ b 2,
where say b 1 = 0.1 and b 2 = 0.9. This can be done by choosing say β = 0.1. Without
this constraint, that is allowing 0 ≤ p̃∗

t,k ≤ 1, the CE part might become the major
one. As result, the CLONCE Algorithm 8.1 might converge to a local optimum.

Algorithm 8.1 (The CLONCE Algorithm for Counting)
Given the proposal rarity parameter ρ, say ρ = 0.1, the parameters a1 and a2, say
a1 = 0.01 and a2 = 0.25, such that ρ ∈ (a1, a2), and the sample size N, say N = m × n,
execute the following steps:

1. Acceptance–Rejection—the same as in Algorithm 6.1.
2. Adaptive choice of p̂∗

t−1 Generate a sample X1, . . . , X N from the pdf
g∗(x, p̂∗

t−1, m̂t−1) and compute the components of p̂∗
t according to Eq. 73.

3. Smoothing Smooth out the vector p̂∗
t according to

p̃t = α p̂t + βp0 + (1 − α − β) p̃t−1, (75)

where α, (0 < α < 1) is called the smoothing parameter and β is called, the
injection parameter. Typically 0.5 ≤ α ≤ 0.9 and 0.05 ≤ β ≤ 0.2.

4. Adaptive choice of ρ—the same as in Algorithm 6.2.
5. Screening—the same as in Algorithm 6.2.
6. Cloning Given the size Nt−1 of screened elites at iteration (t − 1), find the

cloning and the burn-in parameters ηt−1 and bt−1 according to Eq. 27. Repro-
duce ηt−1 times each vector X̂k = (X̂1k, . . . , X̂nk) of the screened elite sam-
ple {X̂1, . . . , X̂ Nt−1}, that is, take ηt−1 identical copies of each vector X̂k

obtained at the (t − 1)-th iteration. Denote the entire new population (ηt−1 Nt−1

cloned vectors plus the original screened elite sample {X̂1, . . . , X̂ Nt−1}) by Xcl =
{(X̂1, . . . , X̂1), . . . , (X̂ Nt−1 , . . . , X̂ Nt−1)}. To each of the cloned vectors of the
population Xcl apply the MCMC (and in particular the Gibbs sampler) for bt−1

burn-in periods. Denote the new entire population by {X1, . . . , X N}. Observe
that each member of {X1, . . . , X N} is distributed approximately g∗(x, p̂∗

t−1, m̂t−1).
7. Estimating ct Let X̃t = {X̃1, . . . , X̃ Nt } be the subset of the population

{X1, . . . , X N} for which S(X i) ≥ m̂t. Take c̃t in Eq. 68 as an estimator of ct

given in Eq. 63. Note again as that X̃1, . . . , X̃ Nt is distributed approximately
g∗(x, p̂∗

t , m̂t).
8. Stopping rule If mt = m go to step 9, otherwise set, set t = t + 1 and repeat from

step 2.
9. Final Estimator Deliver �̃(m) given in Eq. 70 as an estimator of �(m) and |X̃ ∗| =

�̃(m)|X | as an estimator of |X ∗|.

Tables 3 and 4 presents the dynamics of the cloning Algorithm 6.2 and the
CLONCE Algorithm 8.1, respectively for the sum of n = 100 Bernoulli rv’s, with
m = 99, p = 0.5, ρ = 0.05 and N = 10,000 samples. One can clearly see that
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Table 3 Dynamics of the cloning Algorithm 6.2 for the sum of n = 100 Bernoulli rv’s, with m = 99,
p = 0.5, ρ = 0.05 and N = 10,000 samples

t |X̃ ∗| |X̃ ∗
dir| Nt N(s)

t m∗
t m∗t ρt

1 8.56e+028 6.75e+002 675 675 69 58 0.07
3 1.07e+027 1.52e+003 1,519 1,519 74 66 0.15
5 4.83e+025 2.40e+003 5,596 2,399 78 70 0.19
7 9.81e+023 1.46e+003 4,230 1,463 79 74 0.13
9 9.58e+021 9.00e+002 900 900 82 78 0.09
11 1.76e+020 2.59e+003 2,586 2,586 86 81 0.24
13 8.53e+018 2.50e+003 2,500 2,500 88 83 0.21
15 3.09e+017 2.18e+003 2,175 2,175 89 85 0.19
17 8.52e+015 1.80e+003 11,340 1,798 90 87 0.16
19 1.68e+014 1.49e+003 11,032 1,493 92 89 0.14
21 2.23e+012 1.11e+003 1,108 1,108 94 91 0.11
23 1.79e+010 8.88e+002 10,630 888 95 93 0.08
25 7.89e+007 6.11e+002 611 611 97 95 0.06
27 1.71e+005 4.48e+002 10,420 448 98 97 0.04
29 1.16e+002 8.90e+001 10,240 89 100 99 0.02
30 1.16e+002 1.01e+002 10,235 101 100 99 1.00
31 1.16e+002 1.01e+002 10,100 101 100 99 1.00

CLONCE Algorithm is faster. We also found that CLONCE is the most accurate
among the two.

In Tables 3 and 4 we used the following notations

1. Nt and N(s)
t denotes the actual number of elites and the one after screening,

respectively.
2. m∗

t and m∗t denotes the upper and the lower elite levels reached, respectively.
3. ρt = Nt/N denotes the adaptive proposal rarity parameter.

Below, for completeness, we present the CLONCE algorithm for optimization
with the objective function given in Eq. 36. Unlike Algorithm 5.1 we also kept
here the screening step introduced in our counting algorithms to produce screened
samples at each step. The cloning Algorithm 5.1 follow automatically from the
CLONCE one by removing the CE and the screening steps from it. As in Algorithm
5.1 we shall use formula (26) for choosing η and b .

Table 4 Dynamics of the CLONCE Algorithm 8.1 for the sum of n = 100 Bernoulli rv’s, with m =
99, p = 0.5, ρ = 0.05 and N = 10,000 samples

t |X̃ ∗| |X̃ ∗
dir| Nt N(s)

t m∗
t m∗t ρt

1 9.19e+028 7.25e+002 725 725 68 58 0.07
2 1.21e+027 8.66e+002 866 866 76 66 0.09
3 8.66e+024 1.33e+003 1,326 1,326 82 72 0.13
4 1.15e+022 1.15e+003 1,150 1,150 88 78 0.11
5 9.36e+018 1.33e+003 1,334 1,334 90 83 0.13
6 8.85e+015 1.81e+003 1,814 1,814 96 87 0.17
7 2.31e+012 1.53e+003 1,527 1,527 97 91 0.14
8 1.42e+009 1.96e+003 1,958 1,958 99 94 0.18
9 1.86e+005 1.26e+003 3,285 1,264 100 97 0.11
10 1.12e+002 1.01e+002 1,317 101 100 99 0.13
11 1.12e+002 1.01e+002 10,100 101 100 99 1.00
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Algorithm 8.2 (The CLONCE Algorithm for Optimization)
Given the proposal rarity parameter ρ, say ρ = 0.1, the parameters b1 and b2, say
b1 = 0.1 and b2 = 0.9, such that ρ ∈ (b1, b2), the sample size N, say N = m × n, and
the burn in period b , say 3 ≤ b ≤ 10 execute the following steps:

1. Acceptance–Rejection - the same as in Algorithm 6.1.
2. Adaptive choice of p̂∗

t−1 Generate a sample X1, . . . , X N from the pdf
g∗(x, p̂∗

t−1, m̂t−1) and compute the components of p̂∗
t according to Eq. 74.

3. Smoothing Smooth out the vector p̂∗
t according to Eq. 75.

4. Screening—the same as in Algorithm 6.2.
5. Cloning Given the number of burn in periods b and the size Nt−1 of

screened elites at iteration (t − 1), find the cloning parameter ηt−1 according to

ηt−1 =
⌈

N
b Nt−1

⌉
− 1. Reproduce each vector X̂k = (X̂1k, . . . , X̂nk) of the screened

elite sample {X̂1, . . . , X̂ Nt−1} ηt−1 times, that is take ηt−1 identical copies of
each vector X̂k obtained at the (t − 1)-th iteration. Denote the entire new
population (ηt−1 Nt−1 cloned vectors plus the original screened elite sample
{X̂1, . . . , X̂ Nt−1}) by Xcl = {(X̂1, . . . , X̂1), . . . , (X̂ Nt−1 , . . . , X̂ Nt−1)}. To each of the
cloned vectors of the population Xcl apply the MCMC (and in particular the
Gibbs sampler) for bt−1 burn-in periods. Denote the new entire population
by {X1, . . . , X N}. Observe that each member of {X1, . . . , X N} is distributed
approximately g∗(x, p̂∗

t−1, m̂t−1).

6. Estimating mt Let X̃t = {X̃1, . . . , X̃ Nt } corresponds to the largest (1 − ρ)%
subset of the population {X1, . . . , X N} for which S(X i) ≥ m̂t. Deliver m̂t. Note
again as that X̃1, . . . , X̃ Nt is distributed approximately g∗(x, p̂∗

t , m̂t).
7. Stopping rule—the same as in Algorithm 6.2.

9 Applications to Optimization and Counting

Here we present several well known counting and optimization problems, for which
the cloning algorithms can be useful.

Knapsack Problem We consider here well known, so-called multiple knapsack
problem, which reads as

max
m∑

i=1

n∑

k=1

ckxik

s.t.
n∑

k=1

akxik ≤ bi, ∀i=1, . . . , m

m∑

i=1

xik ≤ 1, ∀k = 1, . . . , n

xik ∈ {0, 1}, ,∀i = 1, . . . , m; k = 1, . . . , n. (76)

Note that here all ak, bk, ck are fixed constants.
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Set Covering, Set Packing and Set Partitioning Note that set partition program
reduces to the program Eq. 55, provided A is a 0–1 matrix, xi ∈ {0, 1}, ∀i = 1, . . . , n
and the vector b = 1, provided m2 = 0 and the minimization is replaced by maxi-
mization. The set covering and set packing problems are similar to the set partition
one, provided the equality constraints Ax = 1 is replaced by Ax ≥ 1 and Ax ≤ 1,
respectively.

Consider a finite set {M = 1, 2, . . . , m} and let Mj, j ∈ N be a collection of subsets
of the set M where N = {1, 2, . . . , n}. A subset F ⊆ N is called a cover of M if
∪ j∈F Mj = M. The subset F ⊆ N is called a packing of M if Mj ∩ Mk = ∅ for all j, k ∈
F and j �= k. If F ⊆ N is both a cover and packing, then it is called a partitioning.

Suppose c j is the cost associated with Mj. Then the set covering problem is to find
a minimum cost cover. If c j is the value or weight of Mj, then the set packing problem
is to find a maximum weight or value packing. Similarly, the set partitioning problem
is to find a partitioning with minimum cost. These problems can be formulated as
zero-one linear integer programs as shown below. For all i ∈ M and j ∈ N, let

aij =
{

1 if i ∈ Mj

0 otherwise

and

x j =
{

1 if j ∈ F

0 otherwise

Then the set covering, set packing and set partitioning formulations are given by

min
n∑

j=1

c jx j

s.t.
n∑

j=1

aijx j ≥ 1 i = 1, 2, . . . , m

x j ∈ {0, 1} j = 1, 2, . . . , n,

max
n∑

j=1

c jx j

s.t.
n∑

j=1

aijx j ≤ 1 i = 1, 2, . . . , m

x j ∈ {0, 1} j = 1, 2, . . . , n,
and

max
n∑

j=1

c jx j

s.t.
n∑

j=1

aijx j = 1 i = 1, 2, . . . , m

x j ∈ {0, 1} j = 1, 2, . . . , n,

respectively.



Methodol Comput Appl Probab

The SAT Problem Because of the importance of the SAT problem we recapitulate
some material from Rubinstein et al. (2007). The most common SAT problem
comprises the following two components:

• A set of n Boolean variables {x1, . . . , xn}, representing statements that can either
be TRUE (=1) or FALSE (=0). The negation (the logical NOT) of a variable x is
denoted by x. For example, TRUE = FALSE. A variable or its negation is called
a literal.

• A set of m distinct clauses {S1, S2, . . . , Sm} of the form Si = zi1 ∨ zi2 ∨ · · · ∨ zik ,
where the z’s are literals and the ∨ denotes the logical OR operator. For example,
0 ∨ 1 = 1.

The binary vector x = (x1, . . . , xn) is called a truth assignment, or simply an
assignment. Thus, xi = 1 assigns truth to xi and xi = 0 assigns truth to xi, for each
i = 1, . . . , n. The simplest SAT problem can now be formulated as: find a truth
assignment x such that all clauses are true.

Denoting the logical AND operator by ∧, we can represent the above SAT problem
via a single formula as

F1 = S1 ∧ S2 ∧ · · · ∧ Sm,

where the {Sk} consist of literals connected with only ∨ operators. The SAT formula
is then said to be in conjunctive normal form (CNF).

The problem of deciding whether there exists a valid assignment, and,
indeed, providing such a vector, is called the SAT-assignment problem (Rubinstein
et al. 2007).

It is shown in Rubinstein et al. (2007) that the SAT-assignment problem can be
modeled via rare-events with � given in Eq. 53, that is,

� = Eu

[
I{∑m

i=1 Ci(X)=m}
]
,

where u denotes the “uniform” probability vector (1/2, . . . , 1/2). It is important to
note that here each Ci(X) = I{∑n

k=1 aik Xk≥bi} can be also written alternatively as

Ci(x) = max
j

{0, (2 x j − 1) aij}. (77)

Here Ci(x) = 1 if clause Si is TRUE with truth assignment x and Ci(x) = 0 if it is
FALSE, A = (aij) is a given clause matrix that indicate if the literal corresponds to
the variable (+1) , its negation (−1), or that neither appears in the clause (0). If for
example x j = 0 and aij = −1, then the literal x j is TRUE. The entire clause is TRUE if
it contains at least one true literal. In other words, � in Eq. 53 is the probability that
a uniformly generated SAT assignment (trajectory) X is valid, that is, all clauses are
satisfied, which is typically very small.
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Counting 0–1 Tables with Fixed Margins In this case the set {x : Ax = b} is
given by

n∑

i=1

xij = b (1)

j , j = 1, . . . , m

m∑

j=1

xij = b (2)

i , i = 1, . . . , n

xij ∈ {0, 1}, ∀i, j. (78)

The goal is, for given b (1)

j , j = 1, . . . , m and b (2)

i , i = 1, . . . , n to find the binary
matrix (xij) satisfying Eq. 78 and to count the total number of 0–1 tables. Note that
if, for example A is 20 × 20 matrix, then n = 202 = 400 and m = 2 · 20 = 40.

10 Complexity Properties

We consider in this section the complexity properties of the (N = 1)-policy algorithm
and of the direct estimator.

10.1 Complexity Properties of the (N = 1)-policy Algorithm

Recall that according to the (N = 1)-policy algorithm, at each level mt−1 we use
the Gibbs sampler until we reach for the first time the next level mt. By complexity
of the (N = 1)-policy algorithm we mean here the average complexity (the average
number of required samples), denoted as Rm = E(Nm) and the associated variance
σ 2

m = Var(Nm) to hit the desired level m. Here Nm denotes the total number of
trials required to reach the level m. We consider the complexity for the following
two basic cases: the sum of iid Bernoulli random variables and for multiple events
associated with the sample objective function S(X) = ∑m

i=1 Ci(X), where the Ci(X)’s
are given in Eqs. 14, 15. While deriving the complexity we shall assume that the Gibbs
sampler is perfect, that is at every level mt we are able to generate samples from the
corresponding IS pdf g∗

t−1 at level mt−1.

10.1.1 Sum of Independent Bernoulli Random Variables

Consider estimation of

� = E f

[
I{∑n

i=1 Xi≥m}
]
, (79)

where Xi are iid Ber(p) random variables. We have

� =
n∑

k=m

(
n
k

)
pk(1 − p)n−k. (80)

As before, let {ct, t = 0, 1, . . . , T} be a fixed sequence given in Eq. 6, which can be
also written as

ct = E f
[
I{∑n

k=1 Xk≥mt}
]

E f
[
I{∑n

k=1 Xk≥mt−1}
] . (81)
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We consider separately two cases: (1) p = 1/2 and (2) p �= 1/2.
(1) p = 1/2.

Lemma 10.1 The average number of samples Rm = E(Nm) required by the (N = 1)-
policy algorithm to reach the level m, while estimating � in Eq. 79 with p = 1/2 is
at most

Rm = (n + 1) ln
n

n + 1 − m
. (82)

Note that Rm in Eq. 82, which is also called the average complexity of the
(N = 1)-policy algorithm, means that in order to reach, say the level m ≈ n for n =
100 and n = 1,000 we need at most Rm = 460 and Rm = 6908 samples, respectively.
Our numerical results below support these numbers.

Proof To prove Eq. 82 consider a sequence of levels {m0, m1, . . . , mt, . . . , m}, where
mt denotes the number of ones at the Bernoulli trials at the iteration t. Note that for
large n, while flipping n symmetric coins we expect to obtain on average m0 = n/2
ones at the first iteration of the algorithm. We shall, however, remove the condition
m0 = n/2, assuming that m0 is any fixed integer, say m0 = 0 and, thus consider the
worst case.

We proceed by showing that while starting from any fixed m0, a typical sequence
{m0, m1, . . . , mt, . . . , m} generated by the (N = 1)-policy algorithm will be the fol-
lowing one {m0, m0 + 1, m0 + 2, . . . , m}, while any alternative sequence, like the
one {m0, m0 + r1, m0 + r2, . . . , m0 + rt, . . . , m}, where rt > 1, will be not a typical
one. To see this observe that for fixed mt, the average number of Bernoulli trials to
reach the level mt = mt−1 + 1 (see Eq. 81) is

1/ct = E f [I{∑n
k=1 Xk≥mt−1}]

E f [I{∑n
k=1 Xk≥mt−1+1}] =

∑n
k=mt−1

(
n
k

)

∑n
k=mt−1+1

(
n
k

)

=
∑n

k=mt−1

n!
k!(n−k)!∑n

k=mt−1+1
n!

k!(n−k)!

= 1 +
n!

mt−1!(n−mt−1)!∑n
k=mt−1+1

n!
k!(n−k)!

≤ 1 + mt−1 + 1

n − mt−1
. (83)

For example, for n = 100 and mt−1 = 1, 50, 97 we obtain

1/ct − 1 ≤ 2/99, 51/50, 98/3.

Observe that the probability of remaining at the same level mt−1 (rejecting the trial)
is 1 − ct.

Observe also that for mt = mt−1 + 2, (r = 2) we have

1/ct ≤ 1 + (mt−1 + 1)(mt−1 + 2)

(n − mt−1)(n − mt−1 − 1)
. (84)
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In particular, for n = 100 and mt−1 = 1, 50, 97 we obtain that

1/ct − 1 ≤ 2

99

3

98
,

51

50

52

49
,

98

3

99

2
.

Clearly, that for m close to n, the quantity 1/ct(r) in Eq. 84 is much smaller than that
ct(1) in Eq. 83 and, thus the sequence {m0, m0 + r1, m0 + r2, . . . , m0 + rt, . . . , m} is
not a typical one, provided m is close to n and rt > 1. This in turn implies that while
using the (N = 1)-policy it is much more likely that (starting at some mt−1 > n/2) we
shall climb level by level, rather than skipping some levels before we reach the level
m. Note again that by considering only the case r = 1 and by removing the all (non
typical) cases with r > 1 we can only increase the average complexity Rm.

To proceed note that the average complexity Rm can be written as

Rm =
m∑

t=m0

1

ct
≤

m∑

t=0

1

ct
, (85)

where 1/ct given in Eq. 83. Taking into account that 1/ct can be written as

1/ct = 1 + mt−1 + 1

n − mt−1
= n + 1

n − mt−1
(86)

we can rewrite Rm as

Rm ≤
m∑

t=0

n + 1

n + 1 − t
.

For large m the above sum can be approximated by the harmonic series, resulting in

Rm ≤
m∑

t=0

n + 1

n + 1 − t
≈ (n + 1) ln

n
n + 1 − m

= O
(

n ln
n

n − m

)
. (87)

��

Remark 10.1 The hazard rate approach We shall show now that the expression (87)
of Lemma 10.1 can be derived by using the classic hazard rate approach described
in Appendix. Note that for a discrete random variable the hazard rate is defined in
Eq. 116, that is

λ(t) = P{X = t|X ≥ t} = pt

1 −∑t−1
j=1 pj

, t = 0, 1, . . . , ∞. (88)

To proceed, observe the close the connection between λ(t) and 1/ct. In particular,
note that the quantity 1/ct+1 in Eq. 83 can be also written as

1/ct+1 = 1 + λ(t) = 1 + pt

1 −∑t−1
j=1 pj

, t = 0, 1, . . . ,∞. (89)

Thus, we could obtain the bound (87) by using the hazard rate λ(t) in Eq. 88
instead of 1/ct+1 − 1.
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An alternative way to obtain the bound (87) is to combine Eq. 85 with Eqs. 88 and
89. This results in

Rm ≤ n +
n∑

t=0

λ(t) = n + �(t), (90)

where �(t) is the cumulative hazard function defined in Eq. 115. It also follows from
the definitions of IFR and IFRA in Appendix that the Binomial random variable
Z = ∑n

i=1 Xi used in Lemma 10.1 is both an IFR and IFRA variable.

Lemma 10.2 The variance of the random variable Nm associated with the (N = 1)-
policy algorithm, while estimating � in Eq. 79 with p = 1/2 is at most Cnm(n + 1)2,
that is

Var(Nm) ≤ Cnm(n + 1)2, (91)

= where Cnm is a constant depending on n and m and such that Cnm ≤ π2

6 .

Proof To calculate the variance Nm of the (N = 1)-policy algorithm observe that

1. The variance of a geometric random variable X with the parameter p is

Var(X) = 1 − p
p2

(92)

2. The number of trials to hit the level mt from the level mt−1 is distributed
Geom(ct).

3. The trials in of the (N = 1)-policy algorithm are independent.

It follows from the above that the variance of the (N = 1)-policy algorithm is

Var(Nm) ≤
m∑

t=0

1 − ct

c2
t

. (93)

Taking again into account Eq. 86, that is ct = n−t
n+1 and 1 − ct = t+1

n+1 we obtain that

Var(Nm) ≤
m∑

t=0

(n + 1)t
(n + 1 − t)2

= (n + 1)2
n∑

n+1−m

1

t2
− (n + 1)

n∑

n+1−m

1

t
.

For large m the above sum can be again approximated by harmonic series. We
finally obtain

Var(Nm) ≤ (n + 1)2Cnm − (n + 1) ln
n

n + 1 − m
, (94)

where Cnm = Cn+1−m ≤ π2/6. In particular

C1 = π2/6, C2 = (π2/6) − 1, C3 = (π2/6) − 1 − (1/2)2,

C4 = (π2/6) − 1 − (1/2)2 − (1/3)1/2, . . .
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Thus,

Var(Nm) ≤ (π2/6)(n + 1)2 = O(n2). (95)

��
Again, the bound Eq. 95 could be obtained by taking into account that 1/ct =

1 + λ(t), where λ(t) is the hazard rate and then proceeding with Eq. 93 in terms of
λ(t) rather than in terms of ct. Note finally that for n = m the expressions for Rm

and Var(Nm) coincide with the expressions for the classic coupon collection problem
(Ross 2002a, b).

Using the 3σ rule we can conclude that with probability 0.99 the number of trials
required to reach the level m is at most

Rm + 3(VarNm)1/2 = n ln
n

n + 1 − m
+ 3

(
π√

6

)
(n + 1).

As an example, for n = 100 and m = 99 we have that Rm + 3(VarNm)1/2 ≈ 650.
Finally, for large n and m one can apply the CLT (central limit theorem) for the

random variable

Nm − ENm

σ(Nm)
.

(2) p �= 1/2. Let us extend now the complexity analysis to the case where p �= 1/2.
We consider here two cases (a) p < 1/2 and (b) p > 1/2. Note that b = a + 1. (a)

p < 1/2. Assume that p is small. In particular, assume that p = (1/n)a. In this case
similar to Eqs. 86 and 87 analyses yield that as

1/ct ≤ na n + 1

n − mt−1
(96)

Rm ≤ na+1 ln
n

n + 1 − m
. (97)

If, for example, p = 1/n we have that

Rm ≤ n2 ln
n

n + 1 − m
. (98)

Also, in analogy to Eq. 95 we obtain that

Var(Nm) ≤
m∑

t=0

1 − ct

c2
t

= O(n2(a+1)). (99)

This means, that in order to reach the level m = n = 100 with p = 1/100 using the
(N = 1)-policy one needs on average at most Rm = 46,000 samples and in order to
reach the level m = n = 1,000 with p = 1/1,000 one needs on average at most Rm =
6.9 · 106 samples. Note that in the last case a huge sample is needed due to the fact
that the probability p is small (rare event).

It is also not difficult to show that if 1/2 ≤ p ≤ 1/n then we obtain in analogy to
Eqs. 98 and 99

Rm ≤ nb ln
n

n + 1 − m
. (100)
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and

Var(Nm) = O(n2b ), (101)

where1 ≤ b = b(p) ≤ 2 and again, b(p) = 1 for p = 1/2; b(p) = 2 for p = 1/n. Note
that for m = n, Eqs. 100 and 101 reduce to

Rm ≤ mb ln m. (102)

and

Var(Nm) = O(m2b ), (103)

respectively. (b) p > 1/2. Assume that p is large. In particular, assume that p =
(n − 1/n). In this case similar analyses yield

Rm ≤ ln
n

n + 1 − m
. (104)

This means, that in order to reach the level m = n = 100 with p = 99/100 using the
(N = 1)-policy one needs on average at most Rm = 4.6 samples and in order to reach
the level m = n = 1,000 with p = 999/1000 one needs on average at most Rm = 10
samples.

Also in analogy to Eq. 94 the resulting variance is

Var(Nm) ≤ Cnm. (105)

That is the variance is bounded by the constant Cnm.
Consider now the complexity of the (N = 1)-policy algorithm, while estimating

the following extended version of Eq. 79

� = E f

[
I{∑n

i=1 ai Xi≥m}
]
, (106)

where ai are fixed coefficients and Xi are again iid Ber(p) random variables. Assume
for concreteness that all ai’s are positive and p = 1/2. Denote a∗ = mini=1,...,n ai and
assume that a∗ ≥ 2/n. Then it is readily seen that the complexity of the (N = 1)-
policy algorithm coincides with Eqs. 100, 101, where the parameter b in Eqs. 100, 101
depends on a∗. In particular, we have b = 1, if all ai = 1 and b = 2, if all ai = 2/n.
Note that if a∗ is small, say a∗ < 2/n, that is the corresponding p∗ = E(a∗ X∗) < 1/n,
then the (N = 1)-policy algorithm becomes much less efficient, since its complexity
is defined by Eqs. 98 and 99.

Consider next the case of dependent Bernoulli random variables. It is difficult to
define the complexity for general distribution f (x) = f (x1, . . . , xn). We shall provide
details in Section 10.1.2 while considering multiple events, while imposing some
restrictions of the mode of dependency between the Bernoulli random variables.

Consider finally the complexity of the CLONCE version using the (N = 1)-policy.
To see the benefit of CE consider for example the case p = 1/2. Let each parameter
p∗

k, k = 1, . . . , n of the optimal CE parameter vector p∗ be > 1/2. Assume for
concreteness that while applying CE we obtain that each p∗

k = (n−1)

n . In this case
we have again the results (104), (105), that is Rm ≤ ln n

n+1−m and Var(Nm) ≤ Cnm.
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This is in contrast to Rm ≤ (n + 1) ln n
n+1−m and Var(Nm) ≤ Cnm(n + 1)2, which was

obtained for the (N = 1)-policy without CE. Thus, by using CE the complexity can
be substantially reduced.

10.1.2 Multiple Events

Consider now the average complexity Rm = E(Nm) and the associated variance
σ 2

m = Var(Nm) of the (N = 1)-policy algorithm to hit the desired level m, while
estimating (see Eq. 13)

� = Eu

[
I{∑m

i=1 Ci(X)≥m}
]

for multiple events. Here Ci, i = 1, . . . , n are given in Eqs. 14, 15 and the components
Xj, j = 1, . . . , n are iid Ber(1/2) random variables.

We shall prove that under some mild conditions the complexity (the average
number of trials and the associated variance) of the (N = 1)-policy algorithm, while
estimating � is given by Eqs. 102, 103, that is

Rm = E(Nm) ≤ mb ln m, and Var(Nm) = O(m2b ), (107)

where the parameter b = b(n) satisfies 1 ≤ b ≤ 2.
To obtain Rm we shall introduce an auxiliary variable Z = ∑m

i=1 Xi, where the
Xi’s are iid Ber(p), with p defined below, and such that

Rm(Z ) ≥ Rm(Y).

Here Y = ∑m
i=1 Ci. Note that Rm(Z ) will be available from the results of Section

10.1.1, since Z = ∑m
i=1 Xi and since the Xi’s are iid Ber(p). Thus, instead of working

directly with dependent random variables Ci’s we shall work with iid Xi’s ensuring
that Rm(Z ) ≥ Rm(Y) and therefore (see Eq. 102)

Rm ≤ mb ln m.

The part Var(Nm) = O(m2b ) of Eq. 107 will be established similarly.
To this end note that in order for Eq. 102 to hold we need to impose some

conditions on the parameters pi = E(Ci), i = 1, . . . , m and on the dependency
between the random variables Ci, i = 1, . . . , m. These conditions should be such
that a in 1/ct ≤ ma m+1

m−mt−1
(see Eq. 96 for n = m) satisfies 0 ≤ a ≤ 1. (Recall that

b = a + 1 and that the case a = 0 and a = 1 correspond to iid Bernoullis with p = 1/2
and p = 1/m, respectively). Note that as soon as a in Eq. 96 satisfies 0 ≤ a ≤ 1 we
automatically obtain the part (103) of (107) as well, that is we obtain (by taking into
account (102)) that Var(Nm) = O(m2b ). Thus, the proof of Eq. 107 reduces, in fact,
to finding conditions on the random variables Ci, under which a in Eq. 96 satisfies
0 ≤ a ≤ 1.
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It is not difficult to see that in order for a ∈ (0, 1) we need to impose the following
two basic conditions on the indicator random variables Ci’s:

(1) The probability pi = E(Ci) of each indicator random variables Ci is not small.
In particular it should be larger than p = 1/m (see below).

(2) The dependency (correlation) between the random variables Ci should not be
too strong (see below).

We next specify the basic conditions (1) and (2) by pointing out a couple of typical
(large) sets of Ci’s under which 0 ≤ a ≤ 1 holds. Our conditions on the sets of Ci’s
assume that

(a) All probabilities pi = E(Ci) are bounded from below by same p, say by p = 1/2,
regardless of the value of m. The maximum number of non-zero terms aik

(aik �= 0) at each Ci, i = 1, . . . , m, denoted by r , is small, say it is less than 10
regardless of m. To see that in this case a satisfies 0 ≤ a ≤ 1, note first that for
r = 1, which corresponds to iid Ber(1/2), we have b = 1 and thus a = 0. Using
now direct calculation for 1/ct (with small parameter r and with pi = E(Ci) =
1/2) and taking into account that mt = mt−1 + 1 we readily obtain that a in
Eq. 96 satisfies 0 ≤ a ≤ 1. This is also intuitively clear since while assuming that
r is small we automatically impose weak correlation between the Ci’s. Note that
this is regardless of the actual location of each non-zero coefficients aij at their
corresponding indicator Ci. Note also that it readily follows that 0 ≤ a ≤ 1 will
be still satisfied if instead of p = 1/2 we assume, say that p ≥ 1/10.

(b) All probabilities pi = E(Ci) are large relative to 1/m, say all satisfy pi ≥
(1/m)1/2. The number r of non-zero terms aik (aik �= 0) at each Ci, i = 1, . . . , m
is again small, say, as before, we assume that r ≤ 10, regardless of m. To see
that in this case a satisfies again 0 ≤ a ≤ 1, note first that for r = 1, which
corresponds to iid Ber((1/m)1/2) we have in Eq. 107 that b < 2, and thus
a < 1 (recall that the case b = 2 corresponds to p = 1/m). Using again direct
calculation for 1/ct with a small value r and taking into account that mt =
mt−1 + 1 we readily obtain that for pi ≥ (1/m)1/2 the parameter a in Eq. 96
satisfies 0 ≤ a ≤ 1.

Since the case (b) generalizes the case (a), we can summarize the above by the
following

Theorem 10.1 The complexity of the (N = 1)-policy algorithm to hit the level m, while
estimating � in Eq. 13 is defined by the expressions (102), (103), where the parameter
b satisfies 1 ≤ b ≤ 2, provided the following conditions hold:

1. All probabilities pi = E(Ci) are large relative to 1/m, say all satisfy pi ≥ (1/m)1/2.
2. The number r of non-zero terms aik (aik �= 0) at each Ci, i = 1, . . . , m is small,

say, r ≤ 10, regardless of m.

Note that to prove Eq. 102 we could employ our general expression (90) for Rm

in terms of the cumulative hazard function (CHF) �(t) (see Appendix), that is

Rm ≤ m +
m∑

t=0

λ(t) = m + �(t), (108)
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rather than in terms of ct and similarly for VarNm.

Remark 10.2 Since

1

ct
= |Xmt−1 |

|Xmt |
(109)

the results of Theorem 10.1 are directly applicable for counting on the set X ∗ defined
be the constraints of continuous and integer programs.

This in particular means that in order for the expressions (102), (103) to hold,
while calculating a volume of a polytope defined on the set X ∗ of linear constraints,
one should assume no outliers constraints in the sense that pmin = mini=1,...,m E(Ci)

should be not too small relative to n. In other words, for Eqs. 102, 103 to hold the
contribution of each indicator Ci should be similar while considering all possible
combinations of volumes of polyhedrons containing mt−1 and mt−1 + 1 constraints.
Also, similar conditions should be imposed while counting the number of points
defined on the set X ∗ of integer constraints.

All the above results on complexity of the (N = 1)-policy algorithm to hit any
desired level mt can be extended for the cloning Algorithm 6.2, provided the sample
size N and ρ are fixed. In the extended version instead of the Geom(ct) distribution
for the number of trials to hit the level mt from the level mt−1 one needs to apply the
order statistic theory. In particular, one needs to find the distribution of the number
of trials (to hit the level mt from the level mt−1) associated with the order statistic
S�1−ρ�, that is to find the distribution of the number of trials of the largest elite value
of the ordered sample S(X i), i = 1, . . . , N. The above clearly presents a natural
extension of the Geom(ct) distribution for the number of trials of the (N = 1)-policy
algorithm. This subject is under current investigation.

Note finally, that as soon as formulas (86) for 1/ct and the corresponding formulas
(93) and (94) related to Var(Nm) are available, we can compute the complexity of
our estimator �̂(m) = ∏T

t=0 ĉt in Eq. 8 based on the product of ĉt’s given in Eq. 9. We
shall rather consider here the complexity of the direct estimator |X̂ ∗

dir|, considering
the complexity of the standard estimator |X̂ ∗| in some further works.

10.2 The Complexity of the Direct Estimator

By the complexity of |X̂ ∗
dir| we mean here the required sample size M of the cloning

Algorithm 6.2 to identify all different points in |X ∗| with high probability as soon as it
hits the level m. As before, we assume that Gibbs sampler is perfect in the sense that
it produces indeed a uniform distribution over |X ∗|. In our calculations we shall adopt
the classic coupon collection problem (Ross 2002a, b) according to which there are
ζ different types of coupons, and that it is equally likely that each time one obtains
a coupon of any of these types. The problem is to calculate the average number of
different coupons E(M) and the associated variance Var(M). Observe that instead
of the coupon model one can consider an urn one with replacement containing ζ

different balls. In this case one needs to calculate the average number of draws in
order to have at least one of each type of the balls and the associated variance.
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The solution of the problem is given in Ross (2002a, b). It is E(M) ∼ ζ ln(ζ ) and
Var(M) ∼ ζ 2π2

6 .

Using the 3σ rule we can conclude that in order to allocate all different coupons
with probability 0.99 the total number of samples Ntotal required is at most

Ntotal = E(M) + 3Var(M)1/2 = ζ ln(ζ ) + 3

(
ζπ√

6

)
= ζ

(
ln(ζ ) + 3

π√
6

)
. (110)

Thus, in order to sample all different points of the set X ∗ with probability 0.99 the

total number of samples required is at most
(

ln(ζ ) + 3 π√
6

)
times larger than ζ . This

means that if, for example, |X ∗| = ζ = 100 we need a total of at most Ntotal = 900
samples and if |X ∗| = 1,000 we need a total of at most Ntotal = 12,000 samples.

But, in our case the parameter ζ = |X ∗| (the number of coupons) is unknown.
We shall show next that |X ∗| can be easily estimated from simulation by taking into
account the 3σ rule (110), while arguing as follows.

We assume that the range of |X ∗| is |X ∗| ∈ (0, K), where K is a known number.
Let us limit K by a larger number, say K = 1,000. Then in order to estimate |X ∗| ∈
(0, K) we can proceed by using the following “bisection” method.

1. For K = 1,000 start with ζ0 = 500. According to Eq. 110 this corresponds to
Ntotal,0 = 6, 000 trials. This means that while taking Ntotal,0 = 6, 000 samples, we
can estimate reliably the unknown number |X ∗|, provided |X ∗| ≤ 500. In short,
if |X ∗| is indeed any number ≤ 500, we can estimate it with |X̂ ∗

dir| using a sample
Ntotal,0 = 6, 000 and stop, otherwise we go to next step.

2. Employ the “bisection” method for ζ ∈ (500, 1,000), that is we set ζ1 = 750. In
this case the corresponding sample (see Eq. 110) is at most Ntotal,1 = 9, 000. If
according to Algorithm 6.2 we obtain that |X̂ ∗

dir| is any number ≤ 750, deliver it
as an estimator of |X ∗| and stop, otherwise go to next bisection level, that is to
the level ζ2 = 875, which corresponds to Ntotal,2 = 10, 500 samples, etc. In short,
in order to find a proper estimator |X̂ ∗

dir| of |tX ∗| we need to find the first index
k, for which given ζk and given the sample size N = Ntotal,k calculated according
to Eq. 110, that is according

Ntotal,k = ζk

(
ln(ζk) + 3

π√
6

)
(111)

our Algorithm 6.2 delivers |X̂ ∗
dir| ≤ ζk.

Remark 10.3 A related coupon collection problem is to find the expected value and
variance of the number of distinct types, denoted as R, in a collection of N coupons.
For our case this problem reads as: given a uniform sample of size N on |X ∗|, find the
expected value and variance of R, presenting the number of distinct points on |X ∗|.
In other words, taken a uniform sample of size N in |X ∗|, what would be the average
number and the variance of distinct points one might expect? This problem can be
considered as kind of dual to the former coupon collection problem.
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The answer can be found again in Ross (2002a, b). It is

E(R) = ζ

[
1 −

(
ζ − 1

ζ

)N
]

(112)

and

Var(R) = ζ

[(
ζ − 1

ζ

)N
]

+ ζ(ζ − 1)

[(
ζ − 2

ζ

)N
]

− ζ 2

[(
ζ − 1

ζ

)2N
]

. (113)

Based on Eqs. 112 and 113 we can use again the 3σ rule and estimate the most
appropriate ζ and thus, the most appropriate estimator |X̂ ∗

dir| of |X ∗|, for a given
budget (sample size) N.

11 Numerical Results

We present here numerical results with the proposed algorithms for counting and
optimization.

A huge collection of instances (including real-world) is available on sites :

• http://people.brunel.ac.uk/~mastjjb/jeb/orlib/scpinfo.html
• http://www.nlsde.buaa.edu.cn/~kexu/benchmarks/set-benchmarks.htm
• http://www.mat.univie.ac.at/~neum/glopt/test.html
• http://www.caam.rice.edu/~bixby/miplib/miplib.html
• For multiple-knapsack on http://hces.bus.olemiss.edu/tools.html,

http://elib.zib.de/pub/Packages/mp-testdata/ip/sac94-suite/index.html,
http://www.diku.dk/~pisinger/codes.html

• SAT problems is given on SATLIB website www.satlib.org

To study the variability in the solutions we run each problem 10 times and report the
statistic. We used the following notations:

1. “Mean, max and min |X̃ ∗|” denote the sample mean, maximum and minimum
and minimal values of the 10 estimates of |X ∗|.

2. “Mean, max and min |X̂ ∗
dir| ” denote the sample mean, maximum and minimum

values of the direct estimator (see Remark 6.6) found in each of the 10 samples
of size N. Note that the maximum value of the “direct estimator” can be viewed
as the lower bound of the true unknown quantity |X ∗|.

3. RE denotes the mean relative error for |X̃ ∗|, averaged over the 10 runs.
4. CPU denotes the mean relative error for |X̃ ∗|, averaged over the 10 runs.

11.1 Counting

The SAT Problem Table 5 presents the performance using the 2–0 pt method of
Algorithm 6.2 for a random 3-SAT problem with an instance matrix A = (20 × 80)

for N = 1,000 and ρ = 0.05. We found that the average relative error is RE = 0.08
and the average CPU time is 67 sec.

http://people.brunel.ac.uk/~mastjjb/jeb/orlib/scpinfo.html
http://www.nlsde.buaa.edu.cn/~kexu/benchmarks/set-benchmarks.htm
http://www.mat.univie.ac.at/~neum/glopt/test.html
http://www.caam.rice.edu/~bixby/miplib/miplib.html
http://hces.bus.olemiss.edu/tools.html
http://elib.zib.de/pub/Packages/mp-testdata/ip/sac94-suite/index.html
http://www.diku.dk/~pisinger/codes.html
http://www.satlib.org
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Table 5 Performance of Algorithm 6.2 for 3-SAT with the matrix A = (20 × 80)

t |X̃ ∗| |X̂ ∗
dir| mt

Mean Max Min Mean Max Min

1 8,753.0 1.0e+004 7,077.9 0.6 2.0 0.0 75
2 1,879.8 2,126.3 1,501.9 1.9 4.0 0.0 77
3 219.2 250.7 195.1 7.2 12.0 4.0 78
4 15.1 16.9 11.5 14.9 15.0 14.0 79
5 15.1 16.9 11.5 15.0 15.0 15.0 80
6 15.1 16.9 11.5 15.0 15.0 15.0 80

The results are self- explanatory. Table 6 presents the dynamics for one of the runs
of Algorithm 6.2 for the same model.

As before, we used the following notations

1. Nt and N(s)
t denotes the actual number of elites and the one after screening,

respectively.
2. m∗

t and m∗t denotes the upper and the lower elite levels reached, respectively.
3. ρt = Nt/N denotes the adaptive proposal rarity parameter.

In addition we found numerically that

• The naive (N = 1)-policy algorithm always reaches the target level m = 80. It,
however, converges to a local extrema, delivering |X ∗

dir| = 9 instead of |X ∗
dir| = 15

obtained in Table 6 for N = 1,000. Note that the result |X ∗
dir| = 9 we obtained

by slightly modifying the (N = 1)-policy algorithm as follows: until it reaches the
level m we indeed used the (N = 1)-policy, but after reaching the level m we used
a sample of size N = 1,000 (implementing the cloning and burn-in parameters
according to Eq. 27) instead of N = 1.

• For N ≥ 150 the cloning Algorithm 6.2 always delivers |X ∗
dir| = 15, while for N <

150 it converges to a local minima, delivering |X ∗
dir| < 15.

Tables 7 and 8 present data similar to Tables 5 and 6, respectively for the random
3-SAT problem with the instance matrix A = (75 × 325) taken from www.satlib.org.
We set N = 10,000 and ρ = 0.1 for all iterations until Algorithm 6.2 reached the
desired level 325. After that we switched to N = 100, 000 for the last iteration. The
results are self- explanatory.

We found that the average relative error is RE = 0.08 and the average CPU time
is 10 minutes for each run. It is readily seen that at iteration 21 we obtained ρ = 1

Table 6 Dynamics of Algorithm 6.2

t |X̃ ∗| |X̂ ∗
dir| Nt N(s)

t m∗
t m∗t ρt

1 8753 0.0 68 68 78 75 0.07
2 1879 1.0 146 146 80 77 0.11
3 219.0 7.0 292 266 80 78 0.22
4 14.0 14.0 118 91 80 79 0.13
5 14.0 15.0 78 15 80 80 0.08
6 14.0 15.0 1080 15 80 80 1.00

http://www.satlib.org
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Table 7 Performance of Algorithm 6.2 for the random 3-SAT with the clause matrix A = (75 × 325),
N = 10,000 and ρ = 0.1

t |X̃ ∗| |X̂ ∗
dir| mt

Mean Max Min Mean Max Min

1 5.4e+020 5.6e+020 5.1e+020 0.0 0.0 0.0 292
2 5.6e+019 6.0e+019 5.1e+019 0.0 0.0 0.0 297
3 6.5e+018 6.9e+018 6.0e+018 0.0 0.0 0.0 301
4 1.2e+018 1.3e+018 1.1e+018 0.0 0.0 0.0 304
5 1.7e+017 1.9e+017 1.6e+017 0.0 0.0 0.0 306
6 2.0e+016 2.2e+016 1.8e+016 0.0 0.0 0.0 308
7 6.1e+015 6.8e+015 5.7e+015 0.0 0.0 0.0 310
8 4.6e+014 5.2e+014 4.1e+014 0.0 0.0 0.0 312
9 2.5e+013 2.8e+013 2.2e+013 0.0 0.0 0.0 314

10 5.0e+012 5.7e+012 4.4e+012 0.0 0.0 0.0 315
11 9.5e+011 1.1e+012 8.2e+011 0.0 0.0 0.0 316
12 1.6e+011 1.8e+011 1.4e+011 0.0 0.0 0.0 317
13 2.5e+010 2.8e+010 2.1e+010 0.0 0.0 0.0 318
14 3.3e+009 3.9e+009 2.7e+009 0.0 0.0 0.0 319
15 3.9e+008 4.7e+008 3.2e+008 0.0 0.0 0.0 320
16 3.5e+008 4.7e+008 4.2e+007 0.0 0.0 0.0 321
17 3.8e+007 4.6e+007 3.1e+007 0.4 1.0 0.0 322
18 2.8e+006 3.4e+006 2.4e+006 8.9 12.0 5.0 323
19 1.4e+005 1.7e+005 1.1e+005 179.2 230.0 148.0 324
20 2,341.2 2,924.0 1,749.9 2,203.5 2,224.0 2,181.0 325
21 2,341.2 2,924.0 1,749.9 2,225.0 2,247.0 2,197.0 325

Table 8 Dynamics of Algorithm 6.2 for the random 3-SAT with the clause matrix A = (75 × 325)

t |X̃ ∗| |X̂ ∗
dir| Nt N(s)

t m∗
t m∗t ρt

1 5.4e+020 0.0 1,020 1,020 305 292 0.11
2 5.6e+019 0.0 1,714 1,714 307 297 0.14
3 6.5e+018 0.0 1,070 1,070 309 301 0.10
4 1.2e+018 0.0 1,462 1,462 310 304 0.12
5 1.7e+017 0.0 2,436 2,436 312 306 0.18
6 2.0e+016 0.0 2,166 2,166 314 308 0.14
7 6.1e+015 0.0 1,501 1,501 316 310 0.12
8 4.6e+014 0.0 1,115 1,115 316 312 0.09
9 2.5e+013 0.0 636 636 319 314 0.06
10 5.0e+012 0.0 2,213 2,213 320 315 0.23
11 9.5e+011 0.0 2,674 2,674 321 316 0.20
12 1.6e+011 0.0 1,969 1,969 320 317 0.19
13 2.5e+010 0.0 1,962 1,962 321 318 0.17
14 3.3e+009 0.0 1,775 1,775 322 319 0.16
15 3.9e+008 0.0 1,350 1,350 323 320 0.13
16 3.5e+008 0.0 1,437 1,437 324 321 0.12
17 3.8e+007 0.0 1,270 1,270 324 322 0.10
18 2.8e+006 8.0 924 924 325 323 0.08
19 1.4e+005 179.0 537 534 325 324 0.05
20 2,341.0 2,203.0 196 187 325 325 0.01
21 2,341.0 2,225.0 10,472 2,199 325 325 1.00
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for mt = 324; after that Algorithm 6.2 switches automatically from ρ = 0.05 to ρ =
0.01. This in turn results in switching from mt = 324 to mt = m = 325. Note again
that without the adaptive ρ mechanism Algorithm 6.2 would terminate at mt = 324
without reaching the final destination m = 325. In addition we found numerically
that

• The naive (N = 1)-policy algorithm always reaches the target level m = 325.
It, however, converges to a local extrema, delivering |X ∗

dir| = 1,400 instead of
|X ∗

dir| = 2, 225 obtained in Table 8 for N = 10,000.
• The cloning Algorithm 6.2 with the adaptive ρ as per Remark 6.5 performs

similar to the one with the standard adaptive ρ as per Remark 6.2, which is,
in fact, implemented in the cloning Algorithm 6.2 including also the above SAT
models. In particular, we found some speed up, while using ρ as per Remark 6.5
versus ρ as per Remark 6.2. For example, using ρ as per Remark 6.5 we found
for the SAT model with A = (75 × 325) that the Mean, Max, and Min values
of the direct estimator |X̂ ∗

dir| are (2,215, 2,242, 2,193) instead of (2,225, 2,247,
2,197) as per Table 7, respectively. That is, although, the former version is a little
faster than the latter, but at the same time it is a little less exact. The reason
for that is that in the latter version we use a more conservative ρ, namely it is
0.25 ≥ ρ ≥ 0.01, as compared to ρ ≈ 0.01.

We also applied the CLONCE Algorithm 8.1 to a broad variety of SAT problems.
We found that for small and moderate sizes, like the above problem with the matrix
A = (20 × 80), CLONCE is faster and more accurate than the cloning Algorithm
6.2, while for large sizes, like the above problem with the matrix A = (75 × 325),
CLONCE is slower and less accurate than the cloning Algorithm 6.2. As we men-
tioned, the reason for such inaccurate behavior of CLONCE is the degeneracy of the
likelihood ratio term W in p∗, especially for large n.

Counting 0–1 tables Table 9 presents dynamics of the cloning Algorithm 6.2 to
count the number of 0–1 tables for the data set given in Table 4.3 from Lui (2001),

Table 9 Dynamics of Algorithm 6.2 for counting 0–1 tables the A = (12 × 17) binary matrix

t |X ∗| Empirical Nt,e N(s)
t,e m∗

t m∗t ρt

1 6.09e+060 6.00e+002 2,370 2,370 −68 −92 0.24
3 3.18e+059 1.13e+003 2,474 2,474 −62 −78 0.22
5 8.97e+057 1.20e+003 2,093 2,093 −56 −68 0.20
7 1.83e+056 1.04e+003 4,222 1,497 −48 −60 0.13

10 3.07e+053 1.90e+003 2,461 2,461 −42 −50 0.24
13 2.71e+051 1.80e+003 11,350 2,167 −36 −44 0.19
16 1.04e+049 1.30e+003 10,884 1,498 −32 −38 0.14
19 1.59e+046 1.05e+003 10,926 1,158 −24 −32 0.11
22 7.61e+042 6.70e+002 10,272 716 −22 −26 0.07
29 2.01e+032 1.48e+002 10,314 150 −10 −12 0.01
33 2.07e+023 2.40e+001 10,070 24 −4 −4 0.00
34 2.05e+020 1.00e+001 10,080 10 −2 −2 0.00
35 8.11e+016 4.00e+000 10,120 4 0 0 0.00
36 8.11e+016 4.00e+000 10,032 4 0 0 1.00
37 8.11e+016 4.00e+000 10,080 4 0 0 1.00
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Table 10 Performance of Algorithm 6.2 for the permutation example

t |X̃ ∗| |X̂ ∗
dir| mt

Mean Max Min Mean Max Min

1 3.76E+05 3.83E+05 3.64E+05 8.6 15 4 339
2 40,698 43,345 36,778 104.1 119 91 362
3 4,881.6 5,444.8 3,898.9 647.1 749 574 373
4 2,873.8 3,146.2 2,674 2,504.9 2,621 2,415 375
5 2,873.8 3,146.2 2,674 2,903 2,903 2,903 375
6 2,873.8 3,146.2 2,674 2,903 2,903 2,903 375
7 2,873.8 3,146.2 2,674 2,903 2,903 2,903 375

presenting a A = (12 × 17) binary matrix. We set ρ = 0.1 and N = 10,000. Note
that full enumeration results into 6.71 × 1016 different 0–1 tables. We found that the
relative error based on 10 independent runs is about 20% and the CPU time for each
run is about 5 minutes.

Counting Permutations Consider the problem of estimating the number |X ∗| of
permutations in X , presenting the set of all permutations x = (x1, . . . , xn) of integers
1, . . . , n, for which

∑n
i=1 ixi ≥ m, that is estimating the size |X ∗| of the set (see also

Botev and Kroese 2008)

X ∗ =
{

x ∈ X :
n∑

i=1

ixi ≥ m

}
.

As an example consider the case n = 10 and m = 375. For this case using full
enumeration gives |X ∗| = 2903.

Table 10 presents the performance of using the 2–0pt method Algorithm 6.2 based
on 10 independent runs with N = 10,000 and ρ = 0.1. As expected direct estimator
|X̂ ∗

dir| is much more accurate than the standard one |X̂ ∗|. In fact, we found that |X̂ ∗
dir|

is exact, that is |X̃ ∗
dir| = 2,903, while the standard one is quite variable. Note that to

obtain |X̂ ∗
dir| = 2,903 we took a sample of N = 50,000 instead of N = 10,000 when

Algorithm 6.2 reached the level m = 375. Table 11 presents the dynamics for one of
the runs of Algorithm 6.2

Table 11 Dynamics of Algorithm 6.2 for the permutation example

t |X̃ ∗| |X̂ ∗
dir| Nt N(s)

t m∗
t m∗t ρt

1 3.76E+05 8.6 1,034.8 1,033.6 380.3 339 0.10348
2 40,698 104.1 1,344.3 1,310.9 383 362 0.10836
3 4,881.6 647.1 1,283 1,096.5 384.3 373 0.11971
4 2,873.8 2,504.9 7,252 2,504.9 384.8 375 0.59455
5 2,873.8 2,903 54,008 2,903 385 375 1
6 2,873.8 2,903 58,060 2,903 385 375 1
7 2,873.8 2,903 58,060 2,903 385 375 1
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11.2 Optimization

The Max-Cut problem Here we considered the max-cut problems taken from http://
dimacs.rutgers.edu/Challenges/Seventh/Instances/lib.ps.

In particular we run the problems (1) TorusSetg-3-8 (TSg38) and (2) TorusSetpm-
3-8-50 (TSpm3850) with both, the cloning Algorithm 6.2 and CLONCE Algorithm
8.2. Since the size of the problems are quite large we applied parallel computation
with ten computers. We found that the relative error of both algorithms does not
exceed 1%, but the CLONCE Algorithm is faster two to three times than the cloning
algorithm. The reason is that in optimization CE is useful since we do not use
likelihood ratios while updating p.

TSP We run the cloning Algorithm 6.2 for the TSP models taken from http://www.
iwr.uni-heidelberg.de/groups/comopt/software/TSPLIB95/atsp/.

We run Algorithm 6.2 with N = 10,000 and ρ = 0.1 using systematic and random
Gibbs sampler based on the 2 − opt heuristics. We found that the performance of the
cloning Algorithm 6.2 in terms of the accuracy and the CPU time is similar to that of
the CE algorithm. Below we present the solutions found by Algorithm 6.2 based on
ten independent runs for the ftv33 model with the best known solution equal 1286
and n = 34 nodes using the 2–0pt method.

1,286, 1,329, 1,286, 1,302, 1,311, 1,323, 1,286, 1,311, 1,302, 1,311.
It takes approximately 40 iterations for each run. Using the alternative to the 2–

0pt method we obtained 1,286 for most of the runs.

Knapsack Problem As a particular problem consider the Sento1.dat knapsack
problem given in http://people.brunel.ac.uk/mastjjb/jeb/orlib/files/mknap2.txt.

The problem has 30 constraints and 60 variables. We ran the cloning Algorithm
5.1 and the CLONCE 8.2 for 10 independent runs with ρ = 0.1, N = 1,000, b = 5
and we found that both always found the best known solution. We also run it for
different integer problems and the results were exact, that is they coincided with the
best known solution.

Table 12 presents a typical dynamics of the CLONCE Algorithm 5.1 with N =
1,000 ρ = 0.05 for the problem pb7 taken from the website with the best known
solution equal to 1035.

As one can see Algorithm 5.1 finds the best known solution after 8 iterations.

Table 12 A typical dynamics
of the cloning Algorithm 5.1
with N = 1,000 ρ = 0.05 for
the problem pb7

t Nt N(s)
t m∗

t m∗t

1 51 51 130 769
2 51 51 693 859
3 51 51 808 920
4 51 51 884 955
5 51 41 939 986
6 65 32 972 1,014
7 58 21 1,006 1,035
8 52 1 1,035 1,035
9 1,000 1 1,035 1,035

10 1,000 1 1,035 1,035

http://dimacs.rutgers.edu/Challenges/Seventh/Instances/lib.ps
http://dimacs.rutgers.edu/Challenges/Seventh/Instances/lib.ps
http://www.iwr.uni-heidelberg.de/groups/comopt/software/TSPLIB95/atsp/
http://www.iwr.uni-heidelberg.de/groups/comopt/software/TSPLIB95/atsp/
http://people.brunel.ac.uk/mastjjb/jeb/orlib/files/mknap2.txt
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12 Conclusion and Further Research

In this paper we presented several randomized algorithms for approximating the
solutions of quite general NP-hard combinatorial optimization problems, counting,
rare-event estimation and uniform sampling on complex regions. As usual for
randomized algorithms, they use a sequential sampling plan such that the original
“difficult” problem is decomposed into a sequence of “easy” ones. We showed that
the main difference between the existing algorithms and the proposed ones is the
latter have a special mechanisms, called the “cloning” device, which makes them very
fast and accurate. In particular, they are well suited for solving problems associated
with the Boltzmann distribution, like estimating the partition functions in an Ising
model and for sampling random variables uniformly distributed on different convex
bodies. We

1. Showed that all the cloning algorithms contain only three parameters: the rarity
parameter ρ, the sample size N, and either the cloning parameter η, or the burn-
in one b .

2. Presented a combined version of the cloning and cross-entropy (CE) algorithms,
called the CLONCE algorithm and we discussed its efficiency.

3. Considered the complexity properties of a particular case of the cloning al-
gorithm, the so-called (N = 1)-policy algorithm, and proved its polynomial
complexity in the sense of reaching a designed level m, while estimating the rare
event probability �(m) = E f

[
I{S(X)≥m}

]
.

4. Discussed the complexity properties of the direct estimator obtained from Gibbs
cloner.

5. Presented numerical results with both the cloning and the CLONCE algorithms
and we showed that for optimization problems CLONCE typically outperforms
the cloning algorithm, while for counting it is vise versa because of the degener-
acy of the likelihood ratios. Note, however that for optimization problems CE is
faster than both the cloning and the CLONCE algorithms. The main reason is
that the calculation of the sample function in CE is less time consuming.

Further Research As for further research, we suggest considering the following
issues:

1. Establish rigorous mathematical foundations for the general version of the
cloning algorithm, providing rigorous proofs on the polynomial complexity and
the speed of its convergence for rare-event probability estimation, counting and
optimization. In particular, to extend the complexity results for the (N = 1)-
policy algorithm to the cloning Algorithm 6.2 in the sense that in the extended
version instead of the Geom(ct) distribution one needs to apply the order
statistic theory for S�1−ρ�, presenting the largest elite value of the ordered sample
S(X i), i = 1, . . . , N.

2. Apply the cloning algorithms to a broad variety of optimization and counting
problems, like Hamiltonian cycles, self-avoiding walks, counting problems asso-
ciated with graph coloring, cliques and counting the number of multiple extrema
in a multi-extremal function.
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3. Apply the cloning Algorithm 6.2 for rare event probability estimation in queue-
ing models with heavy tails, like estimation of the probability of buffer overflow
in the GI/G/1 queue.

4. Present rigorous statistical treatment on the performance of the cloning
Algorithm 6.2 for generating samples uniformly distributed on different convex
regions X ∗.

Acknowledgements I would like to thank Thomas Taimre from the University of Queensland,
Brisbane, Australia for many valuable suggestions on the earlier draft, Andrey Dolgin and Alexander
Libster for performing the computational part of the paper and to Ishay Wessman and Leonid
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13 Appendix

13.1 Ross’ Algorithm

Algorithm 13.1 (Ross’ Algorithm)
1. Set J=N=0.
2. Choose a vector x such that S(x) ≥ mt−1.
3. Generate a random vector U ∼ U(0, 1) and set I=Int(nU) + 1.
4. If I = k, generate X given the conditional distribution of Xk, given that Xj =

x j, j �= k.
5. If S(x1, . . . , xk−1, X, xk+1, . . . , xn) < mt−1, return to 4.
6. N = N + 1, xk = X.
7. If S(x) ≥ mt, then J = J + 1.
8. Go to 3.

13.2 Hazard Rate

Definition: Hazard Rate The hazard rate or the failure rate of a random variable X
is denoted by λ(t) and is defined as

λ(t) = f (t)/(1 − F(t)) = f (t)/F̄(t), (114)

where F̄(t) = 1 − F(t) and F(t) is the cumulative distribution function (cdf).
If we let

�(t) =
∫ t

0
λ(u) du (115)

be the cumulative hazard function, we then have F(t) = 1 − e−�(t). Two other useful
identities that follow from these formulas are:

λ(t) = −d ln F̄(t)/dt; �(t) = − ln F̄(t).

From �(t) = − ln F̄(t) we see that �(t) increases without bound as t tends to
infinity (assuming F̄(t) tends to zero). This implies that λ(t) must not decrease too
quickly, since the cumulative hazard diverges. For example, e−t is not the hazard
function of any survival distribution, because its integral converges to 1.
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Definition: Hazard Rate for a Discrete Random Variable Similar to Eq. 114 the
hazard rate for an integer (countable) random variable X is defined as

λ(t) = P{X = t|X ≥ t} = f (t)
R(t − 1)

= pt

1 −∑t−1
j=1 pj

, t = 1, . . . ,∞, (116)

where f (t) = P{X = t}. Note that λ(0) = f (0). It is readily seen that

f (t) = λ(t)
t−1∏

j=0

(1 − λ( j )), t ≥ 1.

Definition: IFR Distribution We say that the cdf (cumulative distribution function)
F(t) is an increasing failure rate (IFR) distribution if λ(t) is an increasing function in
t. Similarly, we say that F(t) is an decreasing failure rate (DFR) distribution if λ(t) is
a decreasing function in t.

For example the Weibull distribution f (x) = ab (bx)a−1 e−(bx)a
is IFR when a ≥ 1

and DFR when 0 < a ≤ 1. When a = 1, we obtain the exponential pdf, which is both
IFR and DFR.

Definition: IFRA distribution A distribution is said to have an increasing failure rate
on average (IFRA) if

�(t)
t

=
∫ t

0 λ(u) du

t
(117)

increases in t. Similarly, if �(t)
t decreases in t we say that the distribution F(t) has

decreasing failure rate on average (DFRA).
It is well known that if S(x) is a monotone function with independent components

and each component xk in S(x) has an IFRA distribution, then the distribution of the
random variable S(X) itself is IFRA.
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