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Abstract

This paper describes and analyzes the interdealer broker market for Credit Default Swaps

(CDSs). Using data on 18 single-name 5-year CDSs, we find that CDSs exhibit reverse

J-shaped patterns for trading and quoting activity in the U.S., and U-shaped patterns

in Europe and in Japan. We also find that CDSs trade at most 4.6 times a day, which

is comparable to corporate bonds. We develop a methodology based on a state-space

model of bid and ask quotes adapted to thinly traded securities. The model deals with

(i) price discreteness, (ii) data errors, (iii) heterogeneity of quotes, and (iv) jumps in the

efficient CDS spreads. We estimate the model using particle filtering and the Monte Carlo

EM algorithm. Our main empirical conclusions are that a) the volatility of the efficient

CDS spread is highest at the beginning of the trading day and declines subsquently, b)

transaction costs exhibit a reverse J-shaped pattern across all CDSs, c) heterogeneity in

dealers’ private costs (e.g., urgency to hedge, private needs to trade) is associated with the

magnitude of transaction costs.

Keywords : Credit Default Swap, Intra-daily patterns, Stochastic transaction costs,

Volatility, Interdealer market.

JEL Classification Numbers: C22, G12



1 Introduction

The market for credit derivatives has experienced a tremendous growth in the last decade

becoming one of the leading markets. This market grew to $38 trillion by 2008, from a

total notional amount of $600 billion in 1999.1 Despite the strategic position of the market

for credit derivatives, very little is known about the liquidity of credit derivative contracts,

and, in particular, about the main regularities observed in the credit default swap (CDS)

market, which accounts for around 85% of the credit derivatives market. This paper tries

to fill this gap by documenting intra-daily variations in the volatility and transaction costs

using a sample of single-name CDSs over a period of 24 months.2

An analysis of intraday patterns in trading activity and volatility is useful for un-

derstanding the way participants behave in the credit derivatives market, and thus the

informational content of CDS prices in different periods of the trading day. Our analysis

is based on data provided by GFI, a leading interdealer broker, which provides voice- and

electronic brokerage. The dataset contains time-stamped information on intraday trade

and quote for corporate CDSs traded on the electronic platform, but does not include

information on volume (quoted depth or traded volume). Our sample consists of the 18

most active CDSs, whose underlying reference entity may be North American, European

or Japanese.

Across all CDSs, the overnight trading activity is close to insignificant. Trading activity

thus mainly occurs during local business hours, with a daily peak in the frequency of quotes

and trades early during the morning (8.00). The trading activity then subsides slowly for

North American contracts. Trading frequency and quoting frequency exhibit a U-shape

1Source: The 2009 ISDA Operations Benchmarking Survey, International Swaps and Derivatives Asso-

ciation, Inc.
2A single-name CDS is a derivative contract whose payoff depends on whether there is a default (“credit

event”) in an underlying obligation in a given time interval. Settlement can take two forms, physical and

cash. In the case of physical settlement, the protection buyer can deliver the defaulted security for its

par value, while for cash settlement he receives the difference between the par value and the after-default

market price. In exchange the protection seller receives an upfront insurance fee and/or a regular insurance

payment that lasts to the maturity of the CDS contact or the default of the underlying.
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for European and Japanese CDSs. We also observe that the relative quoting frequency is

higher than the trading frequency during the morning (filling the order book), and then

turns to be lower in the afternoon.

We find that the most traded corporate CDS - Telecom Italia - trades in average 4.6

times a day, and has around 25 bid and ask quotes per day. More generally, U.S. CDSs

trade on a par with European contracts (around 3 trades a day), while Japanese CDSs

trade less (1.7 trades a day). Trading activity is thus comparable to their counterparts

in the corporate bond market. The quoting activity is also low: we observe an average

of 15 bid and ask pairs for European CDSs and less for U.S. and Japanese contracts (in

average, 5 bid and ask pairs). Limit order books are thus very thin. Accordingly, the

cost of immediacy turns out to be significant in this market: the cost of turning around

a position is, in average, around 70 cents for an investment with a notional of $100. In

comparison, Biais and Declerck (2007) find that the costs of a round trip in the European

corporate bond market is 30 cents.

In order to go deeper in the analysis, we develop a methodology based on a state-space

model of bid and ask quotes, which is suited to the illiquidity of order books. We use

Hasbrouck’s model (1999) as a workhorse to build a dynamic model, in which bid and ask

quotes are rounding transformation of an implicit efficient CDS premium and stochastic

transaction costs, whose mean can be time-varying. The dynamics of the efficient premium

allow for deterministic time-varying volatility and jumps. Further, we allow for data errors

to deal with outliers. To solve the resulting non-linear filtering task we employ particle

filters and we use the Monte Carlo EM algorithm to estimate the model parameters.

In this framework, we document that the (fundamental) volatility of the efficient CDS

premium reaches a peak during the preopening period (6.30-8.00) across all CDSs contracts.

European and Japanese CDSs exhibit a small increase in volatility during the post-close

(15.00-18.00), unlike U.S. CDSs whose fundamental volatility remains low and flattened.

We observe a very clear J-shaped pattern for transaction costs across all CDSs, although

not all U.S. CDSs have a significant increase in transaction costs at the end of the day.

A clear pattern for heterogeneity in dealers’ private values emerges to be a small but
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significant increase during lunch hours and another one during the post-close for European

and Japanese CDSs, but not for U.S. CDSs. Overall, the results seem to corroborate

the hypothesis of large information asymmetry during the preopening period for all CDS

contracts. For European and Japanese CDSs, the increase of transaction costs, along with

the one in the dispersion of dealers’ private costs tend also to provide some support for

the hypothesis of CDS dealers trying to control their inventory position by the end of the

trading day. For U.S. CDSs, we fail, however, to find any evidence in favor of U.S. dealers

using IDB platforms for inventory motives.

We uncover evidence that mean transaction costs are positively correlated to the fun-

damental variance and highly positively correlated with heterogeneity in dealers’ private

costs, in accordance with models of limit order book (e.g., Foucault, 1999 or Roşu, 2009).

We also find a high negative correlation between transaction costs and the number of

quotes, consistent with larger transaction costs when the book is thinner; the correlation

is also highly positive between the number of trades and the number of quotes, confirming

that dealers consume liquidity when the book is the least empty.

Does the ongoing crisis affect these intraday variations? We check whether our results

are robust to the subprime mortgage crisis which became apparent end of July 2007. We

find a drop in the daily number of trades and an increase in fundamental volatility after

the credit crisis was revealed. However, intraday patterns, though weaker, seem robust to

the onset of the credit crisis.

Our paper makes three distinct contributions. First, to our knowledge, this is the first

paper to document intra-daily patterns in the volatility and trading costs of single-name

CDSs, whose underlying country of issuance may be European, Japanese or North Amer-

ican. The second contribution is to provide a methodology suited to estimate transaction

costs in illiquid markets. In particular, the model deals with jumps in the efficient CDS

premium and outliers, which are a prevalent feature of infrequent high frequency data.

Third, the paper contributes to the literature on IDB markets. Reiss and Werner (1998),

Bjønnes and Rime (2005) or Reiss and Werner (2004) find strong evidence supporting that

dealers mainly use the IDB to rebalance their inventory at the end of the day. In contrast,
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our results show that CDS dealers might trade in the IDB for private information and

inventory control motives.

Our paper belongs to the nascent literature dealing with liquidity in the CDS market.

Using five different measures of liquidity, Tang and Yan (2007) find that the more liquid

a CDS is, the lower its premium gets. Bongaert, de Jong and Driessen (2007) find that

expected liquidity generates a liquidity premium for the protection seller. Ashcraft et

Santos (2009) define liquidity in the CDS market by the number of daily quotes posted

by dealers-contributors. The authors find that firms whose CDSs become more liquid,

benefit from a reduction in the cost of their bank loans. Another important role that

the CDS market has come to play is in the price discovery process. Blanco, Brennan and

Marsh (2005) find a significant lead for CDS premia over credit spreads in the bond market

in the price discovery process. Hull, Predescu and White (2005) report evidence on the

informational efficiency of the CDS market, by showing that CDS premium changes predict

rating changes. Acharya and Johnson (2007) uncover evidence of significant information

revelation in the credit default swap (CDS) market, consistent with the occurrence of

insider trading. Our paper complements these results by documenting the period of the

day during which, most presumably, informed traders play.

This paper is organized as follows. Section 2 presents and analyzes some salient features

of the credit default swap market. Section 3 describes the data used in this study and

provides preliminary evidence on intradaily patterns in market activity for CDS trading.

Section 4 presents the econometric model and discusses the filtering and estimation method.

Section 5 reports the model estimates and contains robustness checks. Section 6 concludes

the paper.

2 Overview of the CDS market

This section presents the principal trading features of the market for single-name CDSs

and also discusses why traders trade CDSs. It aims to give a comprehensive view of the

forces that may govern intraday volatility and price dynamics in this market.
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2.1 Market organization

Credit derivatives are traded over-the-counter (OTC), which means that there is no phys-

ical location and no central organized exchange on which orders are matched. Instead,

the CDS market operates 24 hours a day through an electronic network of banks, hedge

funds and other institutional investors. In particular, the CDS market is organized as a

decentralized dealer market. Trading is conducted in bilateral non-anonymous communi-

cation over the telephone: dealers trade directly with clients, and among themselves. In

the CDS market, dealers are not required explicit continuous presence (unlike dealers on

the NASDAQ). Nor do they face rules limiting the size of the bid-ask spread they choose

to post, or limiting changes in their prices (unlike the specialist on the NYSE, or desig-

nated market-makers on traditional exchanges). Dealers usually provide quotes only on

request, and these quotes are not publicly available. Therefore, there is a low level of

pre- and post-trade transparency on the trading process.3 Assessing the level of implicit

transaction costs is thus a sensitive issue, as in any other opaque fragmented OTC market.

Although customer-dealer trading is crucial, trading between dealers represents the

most important part with more than 80% of total trading volume across all single-name

CDSs.4 Interdealer trading may occur through direct negotiation between dealers, or indi-

rectly through voice/electronic brokers. This indirect trading through interdealer brokers

(IDBs), which involves voice-based systems and/or electronic platforms (e.g., GFI, Credi-

tex, or Tullett Prebon), plays an increasing role. According to the International Swaps and

Derivatives Association (ISDA), interdealer brokerage represents 34% of trades in 2004.

Interdealer brokers collect, post dealer limit orders in a computerized network, and

3The credit crisis has pushed regulators to propose changes to legislation governing OTC derivatives

trading in order to improve transparency. In particular, standardized CDSs will be traded with a cen-

tralized counterparty (CCP). Information on transaction prices, traded volumes and exposures will be

available, at least to regulators. In 2009, two operators (ICE/TCC and CME - Citadel) started processing

and clearing of CDS index transactions and plan to do the same for liquid single-name CDSs in the future.

More transparency in the OTC derivative market could thus be enforced in the near future.
4Source: The Depository Trust & Clearing Corporation (DTCC), Trade Information Warehouse Data

(Section I), October 2009.
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execute trades between dealers by matching buyers and sellers. Dealers are also allowed

to directly submit limit or market orders into the computerized platform, which then

matches orders. Only dealers have access to IDB systems, and they are not required to

submit quotes to IDBs. Dealers using IDB platforms place and hit quotes anonymously.

Even the size of their limit orders may not be disclosed in some IDBs.5

Compared to the direct interdealer market, IDBs are costly since dealers must pay the

broker’ s fee. IDBs provide, however, dealers that are clients of the broker with platforms

which broadcast anonymous limit prices on screens. In particular, dealers have access to

information on prices of current quotes, and direction and size of past transactions (infor-

mation on the order flow). In that respect, IDBs are more transparent, more centralized

than the current direct interdealer market, contributing thus to decrease search costs for

a matching counterparty.6 As computerized platforms, they also enhance the speed of

execution. Estimating transaction costs in these interdealer electronic platforms may thus

provide a lower bound on expected transaction costs borne by final investors.

2.2 Who trades CDSs?

Academics and practitioners point out several reasons for trading CDSs. First, participants

transfer credit risks related to clients, counterparty risk, or reduce concentration risk to

an industry, although Duffie (2007) or Minton, Stulz and Williamson (2008) report that

loan hedging and direct credit risk mitigation may not be the most important reason to

enter CDS contracts. Second, CDSs are used for regulatory capital management, where

an institution enters a CDS contract to decrease the amount of regulatory capital it needs

to hold. Finally, participants also trade for speculation and information motives. Acharya

and Johnson (2007) find evidence of insider trading on the CDS market. Fitch (2009)

reports that “[...] a very significant portion of the CDS activity of the largest banks

5The anonymity of IDB systems is a key success factor of these platforms. Dealers choose to trade

anonymously because their identity is an additional piece of information that could be exploited by com-

petitors.
6See Günduz, Lüdecke and Uhrig-Homburg (2007) for a comparison between the brokered and the

direct interdealer market for single-name CDSs.
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was influenced by trading and structuring activities and the intermediation role played

by them [...].” In summary, CDS may be traded either for liquidity reasons arising from

heterogeneity in traders’ private characteristics (target risk exposure, investment horizon)

or to profit from private information about the underlying firm (e.g. free cash flows,

credit events). Compared to some OTC markets with macroeconomic drivers (government

bonds or currencies), private information is likely to be a more critical motive to trade

corporate credit instruments. Since the corporate bond market is illiquid and difficult to

leverage and short, the CDS market may be the preferred venue for information-based

trading.7 Accordingly, Blanco, Brennan and Marsh (2005) find that the CDS market leads

the corporate bond market in terms of price discovery, consistent with informed traders

trading first single-name CDSs.

What are the likely determinants of the bid-ask spreads posted by the CDS market-

makers? First, in light of the above discussion, market-makers need to be rewarded for the

risk of trading against better informed traders. Second, dealers also face inventory risks

when their long positions do not offset perfectly with short positions. The risk to hold

suboptimal portfolios is a cost for which dealers have to be compensated. Transaction costs

for CDSs should thus reflect cost components identified by the microstructure literature:

inventory-holding costs, asymmetric information costs and order-processing costs.8 In

addition, since the CDS market is rather concentrated (the top 5 dealers provide around

50% of the total notional amount bought and sold, according to ECB, 2009), transaction

costs could also contained an extra component which would reflect the weakness of the

competition among CDS dealers (a rent component).9

7IMF (2007) reports that haircuts on high-yield bonds went above 10% on the summer 2007.
8Order-processing costs might be interpreted as the market-maker’s compensation for presence costs

such as labor, communication, transfer taxes, etc..
9According to ECB (2009), the top 5 dealers are JP Morgan, Goldman Sachs group, Morgan Stanley,

Deutsche Bank, and Barclays group.
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2.3 The role of the IDB market

The interdealer market is of paramount importance to maintain a minimum level of liquid-

ity in the market for CDSs. As mentioned above, it is very unlikely that the need of credit

protection by a dealer’s client is perfectly balanced by trades with other clients (in terms

of notional amount, or maturity of the swap traded). Dealers thus rely on their ability

to trade with other dealers to smooth over any imbalances in their books. That is the

reason why inter-dealer trading is so considerable in this market.10 The IDB market offers

in particular a unique laboratory to estimate the quality of the CDS market since this

centralized and transparent structure may be considered as free of search costs, and gives

firm (and not indicative) quoted prices. In addition, rents extracted by market-makers

should be a less sensitive concern in this anonymous inter-dealer system.

Why do dealers trade in particular in the IDB market? First, dealers might use IDBs

to unwind inventory position after trading with customers. They might also use IDBs

to build position in anticipation of some client trades. Inventory control and risk-sharing

could thus be a motive behind interdealer trading, as suggested by Ho and Stoll (1983).

Secondly, since IDB platforms guarantee anonymity of the participants and since private

information is a motive to trade CDSs, the level of information-based trading could be high

in these facilities. Huang (2002) find that anonymous platforms (ECNs) are the favored

trading venue of informed trades. However, the few empirical studies that exist on IDBs

seem to find more evidence for the inventory motive.11

In the London Stock Exchange, Reiss and Werner (1998) show that interdealer markets

are mainly used by equity dealers to share inventory risks. Bjønnes and Rime (2005)

also find evidence that, in the FX market, IDBs are used by dealers to manage inventory

10Because the number of dealers is rather small (no more than 20 dealers worldwide) and because dealers’

positions in the inter-dealer market are so large, counterparty risk (i.e. dealers’ exposure to the risk that

another dealer default) is crucial. In that perspective, implementing CCP organizations is key to enforce

the role of the CDS market in the economy.
11The most well-known IDBs of dealer markets are GovPX for the US Treasury bond market, CanPX

for the Canadian bond market (see, e.g., Boni and Leach, 2004 ; Huang et al., 2002 ; D’Souza et al., 2003),

EBS and Reuters 2000-2 for the FX market (see, e.g., Bjønnes and Rime, 2005).
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positions. Second, Reiss and Werner (2004) find that IDBs in the LSE attract uninformed

order-flow, whereas the direct non-anonymous inter-dealer market attracts informed inter-

dealer trades, contrarily to standard information-based microstructure theories. There

are two inter-related reasons. First, Reiss and Werner (2004) observe that when adverse

selection is perceived to be high, limit orders are cancelled in IDB platforms, and liquidity

dries up. Posting a limit order is thus riskier since it may not be executed. Secondly,

information leaks out when posting a limit order in the computerized trading platform.

In light of these studies, one expects to observe intraday patterns in the IDB market

for CDSs that are consistent with end-of-day inventory control by individual traders and

informed trading. First, trading activity and the number of trades should pick at the end

of the business day, to reflect the desire to close open positions before the overnight hours.

Second, if adverse selection is important in the CDS IDB market, one should also observe

an especially high level of transaction costs and volatility at the beginning of the day.

3 Data

3.1 A preliminary look at the data

3.1.1 The data

The data are from GFI, a major CDS inter-dealer broker. GFI is ranked No. 1 in credit

default swap trading in the last 8 years (Risk Magazine, 2008). According to GFI, it

represents 60% of the inter-dealer brokerage activity. GFI data are thus representative of

the interdealer market activity.

GFI is a hybrid voice-electronic execution platform for CDSs dedicated only to dealers.

Retail and institutional investors (the “buy-side”) are not eligible to use the electronic

trading platform or voice-brokers directly. The GFI electronic platform — CreditMatch

— is a continuous open limit order book. It has a minimum trade size of $1 million. Only

GFI brokers can see the identity of limit order traders, and the depth of the market. They

9



also have information on transactions (size, price, direction, and identity) for the current

and last trading days. In contrast, clients — bank dealers — can only observe anonymous

limit orders, and the last trades of the day (price, volume, and direction, but not the

identity except when counterpart of the trade). As in a standard limit order book, dealers

may be providers of liquidity (limit order traders). They may also consume liquidity when

they hit a quote or place an aggressive quote into the order book.

3.1.2 The sample

The dataset we use in this paper runs from March 31, 2006, through March 31, 2008.

Our GFI dataset contains trade and quote information on 1,944 worldwide CDS contracts,

whose seniority may be 1 to 10 years. The number of CDS contracts whose maturity is

5-year represents 87.6% of the dataset. The regional breakdown is as follows: North Amer-

ican contracts constitute 36.68% of our data, European contracts represent 30.76%, and

Asian entities 27.83%, while other worldwide CDS are minority (only 3.60% CDS contracts

are Australian, 0.46% are African, and 0.67% are South American). The dataset is also

industry clustered. Table 1 reports that the industries that are most active by number of

contracts and by percentage of quotes and trades across all CDS. Among the most active

for our sample period are industries such as Banks, Financial Services, Electricity, Real

Estate or Fixed Line Telecom.

Our sample consists of 18 5-year senior CDS contracts, which is obtained as follows.

First, we limit our study to a set of the most active corporate single-name contracts in

terms of number of bid and of ask quotes. Second, the regional diversity of the raw dataset

is represented. The final sample is made up of 6 U.S. underlying reference entities (Amer-

ican Axle & Manufacturing, Ford Motor Corp, General Motor Corp, Goodyear Tire, Lear

and Visteon), 6 European entities (Casino Guich, Deutsche Telecom, ITV Plc, Portugal

Telecom Intl, Telecom Italia and Valeo) and 6 Japanese entities (ACOM, Aiful, Orix Corp,

Promise Co, Softbank Corp. and Takefuji). There are 8 investment grade firms with rating

above and equal to “BBB” and 10 high yield firms with rating lower than “BBB”.

The data sample consists of bid quotes, ask quotes, and trade prices expressed in basis
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point. Our data is time stamped down to a second. Our local time benchmark is New York

GMT for U.S. CDSs, London GMT for European CDSs, and Tokyo GMT for Japanese

CDSs. Bid and ask quotes posted on the platform are firm and anonymous. We have

no identifiers of the dealers who post limit orders, and no orders identifiers (sequence

number), implying that we cannot track deletions or amendments of any recorded orders.

Besides, we have no information on the size of routed orders. As a consequence, we cannot

observe the displayed “depth” of the book. Moreover, unlike standard data on electronic

trading venues (NASTRAQ, TAQ, Euronext data, etc.), we do not have information on

the best limits (the maximum bid and the minimum ask that prevail at any moment). We

thus cannot trace the inside spread (difference between the best ask and the best bid), or

reconstruct the limit order book.

Turning to data on trades, only the time-stamped transaction price is mentioned. There

is therefore no available information about traded CDS volume nor about notional.12 Be-

sides, transaction prices are not linked to underlying orders. The reasons are that (i)

there is no order identifiers as previously mentioned, and (ii) trade prices may result from

an electronic matching in CreditMatch, or from an OTC transaction negotiated over the

phone between the voice broker and the client. Consequently, we cannot trace executed

trades back to initial orders. Moreover, signing trades (determining whether it is a buy

or a sell trade) is not easy. Less than 15% of our trades could indeed possibly be signed

with the Lee and Ready algorithm.13 In addition, in this subsample, there is still the un-

certainty on the source of the matching (voice or electronic). We let this issue for further

research, and focus on an estimation of the cost of the committed liquidity based on the

displayed bid and ask quotes.

Nevertheless, before dropping trade data from the main analysis, we use the number

of trades per unit of time (the trade frequency) to analyze some stylized facts of market

12From interviews with traders, it seems that the minimum trade size is e5− 10 million in Europe. In

the U.S., CDS are only traded in relatively large slot (“granularity” of CDS contracts). For instance, a

trade on a $ 20 − 30 million for the most liquid North American CDSs is quite standard. Note also that

the most common practice is to trade contracts whose maturity is 5-year.
13We take a 30 minutes window, as suggested by Chan et al. (2002) for equity options.
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activity. We also examine another proxy of trading activity: the number of price limits

per unit of time.14

3.1.3 Introductory stylized facts

Figure 1 represents a typical week of trading for the 5-year CDS contract on Telecom

Italia. Fig. 1 plots bid quotes, ask quotes and trade prices expressed in basis point during

4 trading days (May 2, 3, 4 and 5 2006). Noticeably, for any date, quotes and trades are

irregularly spaced during the day and may be heterogeneous even when they are recorded at

the same time. The data points are sparsely located. Finally, there is almost no overnight

trading activity for the CDS on Telecom Italia during these 4 trading days.

Figure 2a represents the histogram for the trading activity (the average frequency of

price limits and of trades per unit of time) of the pooled U.S. CDSs during our sample

period, while Figure 2b and 2c respectively depict the trading activity of the pooled Euro-

pean and Japanese CDSs.15 Several interesting patterns are revealed by these histograms.

First, although trading could take place round-the-clock, the trading and quoting activ-

ity of all CDSs mainly occurs during business hours (8.00 to 17.30 local G.M.T.) of the

country of issuance. The reason may be that news concerning a CDS underlying firm is

presumably announced during the local business hours of its headquarters. Second, U.S.

CDSs exhibit slightly different trading patterns from European or Japanese CDSs.

The trading and quoting activity of U.S. CDSs is concentrated during morning hours.

The daily peak in the number of quotes occurs during the New-York preopening period

(6.30 to 8.00), then it falls steadily, ending by 18.00. The daily number of trades shoots

up around 10.00 and subsides along the trading day. Unreported results show that there is

some weak but significant trading and quoting activity when London opens (3:00 in New

York GMT hours) for Ford Motors Corp and General Motor Corp, probably because of

14We will use interchangeably price limits or quotes.
15The pooled histograms are representative of the market activity on any specific contract. Figures

representing the frequency of quotes and of trades for each contract in the sample are, however, available

from the authors upon request.
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the listing of underlying firms in London. The absence of trading activity at the end of

the business day seems to weaken the hypothesis of U.S. dealers using the IDB platform

to close or hedge open inventory position before the overnight period.

For European CDSs, the daily number of quotes and trades exhibit a clear U-shape

pattern. The number of limit orders and trades placed in the book rises rapidly at the

beginning of the trading day (6.30 in London GMT hours) and reaches a peak at 8.00.

There is high quoting and trading activity in the afternoon hours (in particular, when New

York opens at 15.00 in London GMT hours), while we observe more moderate activity

during lunch hours. Japanese CDSs trade mainly during Tokyo business hours, and also

exhibit a U-shape pattern for the frequency of price limits and of trades.16 There is a spike

in the number of limit orders placed around 10.00 and a pronounced decrease in quotes

and trades between 11.00 and 13.00, which may also be explained by the slowdown of the

trading activity during lunch time. In particular, the Tokyo Stock Exchange closes from

11.00 to 12.30. Unlike U.S. or European CDSs, we notice that the trading activity reaches

its daily spike around 15.00 while still being important during the morning.

In summary, the trading and quoting U-shape patterns of European and Japanese CDSs

resemble those documented in many other OTC markets: see, for instance, the bond market

(Fleming, 1997), or the Nasdaq stock market (Chan, Christie and Schultz, 1995, or Barclay

and Hendershott, 2003).17 U.S. CDSs have a similar trading and quoting activity except

for the end of the day. To study the intraday patterns of CDSs, we divide the trading day

into four periods: the preopen (6.30-8.00), the daytime trading (8.00-15.00), the post-close

(15.00-18.00) and the overnight (18.00-6.30) periods.

16Trade data for Japanese CDSs turn out to be mis-stamped due to vocal trading prior to 2007. We

thus show the histogram for the period from January 1, 2007 to March 31, 2008.
17The Nasdaq stock market has been approved to operate as a national securities exchange in January

2007, and was formerly an OTC market.
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3.2 Descriptive statistics

Table 2 reports descriptive statistics for the 18 5-year CDS contracts constituting the

sample for the period 2006-2008. The most heavily traded CDS contract – Telecom Italia

– trades on average 4.6 times a day. U.S. CDSs trade on a par with European CDS

contracts (around 3 trades a day), while Japanese contracts trade less (1.7 trades a day).

Therefore, the daily number of trades for CDSs is low compared to their counterparts in the

equity market, but similar to their counterparts in the corporate bond market. Edwards,

Nimalendran and Piwowar (2006) find that the sample of the more active US corporate

bonds trades in average 3.7 times per day, whereas Edwards, Harris and Piwowar (2007)

find a lower figure (1.9) for their sample which also includes less active bonds. Biais and

Declerck (2007) find that Euro-denominated corporate bonds trade on average 4 times per

day.18

Table 2 shows that even for these reputedly liquid CDS contracts, the number of quotes

(bid or ask) is quite low, compared to the equity market. For instance, the most active

contract, Telecom Italia, has around 11,700 bid/ask pairs over the period 2006-2008, or,

equivalently 25 bid and ask quotes per day. More generally, in our sample, European

CDS contracts have more than 5,500 pairs (around 17 bid/ask pairs per day), while U.S.

or Japanese entities have a smaller number of quotes: around 2,000 pairs (or less) corre-

sponding to an average of 5 bid/ask pairs per day. According to GFI brokers, U.S. names

have a smaller number of quotes compared to European names, partly because U.S. deal-

ers traditionally utilize more voice-brokers than electronic platforms (CreditMatch) to get

quotes or to trade. In contrast, the smaller quoting activity of Japanese CDSs is related

to their smaller trading activity.

Due to the scarcity of information, it is therefore important to use as much information

in the data as possible, in particular, to use the individual bid or ask observations to run

the estimation of the econometric model presented below.19

18Even if the trading frequency is similar between the bond market and the CDS market, the overall

trading volume should be higher in the CDS market as the size of individual trade is larger.
19In contrast, Huang et al. (2002) and others filter out one-sided quotes when using inter-dealer trading
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Table 2 also reports statistics on the cost faced by a trader who wishes to simultaneously

sell and buy contracts. This cost reflects the cost of immediacy, and is usually termed the

cost of a round-trip. To measure the cost of a round-trip in the CDS market, one cannot

simply use the quoted bid-ask spread as is the case in the equity or the bond market. The

reason is that entering a long position and unwinding it leaves the investor with a negative

cash-flow stream with a frequency and a duration equal to the frequency and maturity of

the CDS contract, where the amount of the individual cash-flows is equal to the bid-ask

spread. Consequently, to compute the cost of turning around a position, one needs to

take the present value of this cash-flow stream. Further, this cash flow stream stops if the

underlying defaults, one thus needs to compute a risky annuity to get the PV factor.

Assuming a constant default intensity, this can be obtained in the same way as a risk-

free annuity, but using a default-risk adjusted rate to discount the future cash-flows. In

particular, if r is the continuously compounded risk-free rate, s is the CDS premium, and

R is the assumed recovery rate, then, the risk-adjusted discount rate is approximately

r + s
1−R . For instance, for Telecom Italia, setting r = 0.05, s = 0.0069 (the average CDS

quote midpoint as a proxy of the CDS premium), R = 0.4 as it is usual for CDS pricing,

and working with quarterly payments on a 5-year CDS yields a risky annuity factor of 4.3.

This in turn implies that the cost of a round trip for an investment in Telecom Italia with

a notional of 100 euros is 16.4 cents. Table 2 reports the results for each of the 18 CDSs.

The results show that, across all CDSs, the average cost of a round-trip is around 58.4

basis points (bp). Three important features of this round trip cost are to be noted. First,

European CDSs appear to be less expensive than U.S. or Japanese CDSs. The cost of

rounding transactions for European contracts is, in average, 27 bp, while the average cost

of a round-trip amounts to 48 bp for U.S. contracts and to 76 bp for Japanese CDSs in

the sample. Analyzing a sample of Euro-denominated corporate bonds, Biais and Declerck

(2007) find an average quoted spread around 30 cents. Edwards, Harris and Piwowar

(2007) find that the effective cost is 20 cents for large trades on US corporate bonds.

Second, it is worth noticing that the cost of round-trip trades is inversely related to the

system data.
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number of trades as illustrated by Figure 3. This pattern is consistent with previous studies

documenting a negative correlation between transaction costs and liquidity proxies such

as number of trades (see, among others, Chordia, Roll and Subrahmanyam, 2001). Third,

these numbers suggest that (i) bid-ask spreads and transaction costs in the CDS market

are not lower than those in the corporate bond market ; (ii) trading frictions are likely to

be important in this market and one needs to be careful in interpreting CDS premia as a

pure measure of credit risk.

4 A dynamic model of quotes placed in illiquid order

books

This section presents a methodology adapted to the rather illiquid and weak activity of

the CDS interdealer market. In particular, we link the limit prices to an unobserved

efficient price and cast the resulting estimation task as a missing-data problem.20 Filtering

and estimation in the resulting non-linear state-space system is solved using simulation-

based methods. This modelling framework allows us to estimate intra-daily patterns of

the implicit efficient CDS premium and intra-daily patterns of the stochastic variation of

transaction costs.

4.1 Econometric Model

We consider a model conditional on the arrival of bid and ask prices of the CDS premium

resulting from posting limit orders in the book. Let τi, i = 0, ..., T denote the joint arrivals

of these data points. Let Di denote the information set up to τi. We either have a bid or an

ask observation at τi denoted by Bτi , or Aτi respectively, or we may have both. Similarly

to Hasbrouck (1999) we assume a latent variable model for our data. In particular, we link

all observed ask and bid prices to an unobservable efficient log CDS price, Mτi .

20The implicit efficient price is the standard estimate of the full-information price based on all available

public information (proxied by the observed order flow).
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The unobserved efficient CDS price model. The efficient price innovation allows

fat-tails, a prevalent feature of our data. One potential reason for this sudden large moves

are, for instance, downgrades. Therefore, the logarithm of the unobserved efficient CDS

premium evolves as:

mτi = mτi−1
+ exp(

σ2
τi−1

2
)
√

∆τiui (1)

where mτi = log(Mτi), ∆τi = τi − τi−1, and ui is a mixture of normal distributions

MM(1;σ2
J ;λ), where λ is the probability of the component with variance 1 + σ2

J . The

log fundamental variance, σ2
τi−1

, has a deterministic diurnal pattern, modelled using a

flexible cubic spline specification. Note that this specification is on purpose more flexi-

ble compared to the one used by Hasbrouck (1999) for equities. The reason is that we

cannot lean on previous literature on CDSs to guide the choice of the expected shape, as

Hasbrouck (1999) does.

The transaction cost model. To develop an economic intuition behind the model,

suppose that dealers, who submit limit orders in the computerized platform, are exposed

to several costs and risks. These costs are assumed to reflect (i) the possibility of non-

execution (Foucault, Kadan and Kandel, 2005; or Roşu, 2009) and (ii) the valuation risk

due to public and private information (see Glosten, 1994; Foucault, 1999 or Roşu, 2009).

The mean compensations for liquidity provision on the buy (bid) or on the sell (ask)

side is denoted κτi .

ln(κτi) = µτi +mτi (2)

We model the deterministic element of the transaction costs, µ, using a flexible cubic spline

specification. We incorporate the level of the efficient premium in our model to get rid of

the artificial level effect, in accordance with the literature related to CDS spreads (e.g.,

Acharya and Johnson, 2007).

We also assume the existence of a dealer-specific independant private value for the asset.

In particular, liquidity suppliers may vary by their private needs to hedge and by their level

of impatience, thus they may value the speed of execution of their limit orders differently

(see, e.g., Foucault, Kadan and Kandel, 2005). To account for this heterogeneity in private

costs, we suppose that individual quotes can differ from the average with normal errors (in
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a proportional sense: the volatility of the private value is proportional to the level of the

spread):

cAi ∼ N(0, exp(σ2
c,τi

)× exp(2mτi)) (3)

cBi ∼ N(0, exp(σ2
c,τi

)× exp(2mτi)) (4)

A flexible cubic spline is used to model the intra-daily seasonal pattern of the hetero-

geneity in dealers’ private costs, σ2
c,τi

.

In summary, the limit order trader who determines his ask quote is assumed to be driven

by a mean cost of liquidity supply, κ, and an idiosyncratic cost reflecting his private value,

c.

We also have to deal with outliers. Thus, we allow for data errors with some probability

p. Later, in the implementation of the model, we set p = 1%, which can be interpreted as

if 1% of our data is disposed of. This yields terms of

εAi ∼ qAi N(0, σ2
ε) (5)

εBi ∼ qBi N(0, σ2
ε) (6)

where qAi and qBi are Bernoulli’s with probability p.

Finally, the bid and ask prices set in the limit order book are given by:

aτi = Mτi + κτi + cAi + εAi (7)

bτi = Mτi − κτi + cBi + εBi (8)

Then, if the tick size is K, the discrete bid and ask prices are given by

Aτi = Ceiling(aτi , K) (9)

Bτi = Floor(bτi , K) (10)

where the floor and ceiling functions round down and up respectively to the next multiple

of K.

Note that there is no nonnegativity restrictions on the costs for liquidity provision cAi

and cBi . Following the findings of Goettler, Parlour and Rajan (2007), limit buy orders
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(resp. limit sell orders) may indeed be posted above (resp. below) the efficient price due

to large private values of dealers for the asset.

4.2 Filtering and ML estimation

The previous econometric model allows an insight into the dynamics of CDS quoted prices

and transaction costs in two ways. First, given the fixed model parameters and the observed

data up to τi, Di, we are able to infer the continuous bid quote (bτi) and ask quotes

(aτi), the efficient log CDS premia, mτi , the data errors, (qAi , ε
A
i ) and (qBi , ε

B
i ), and the

jump indicator, Ni. This amounts to decomposing the innovations in the observed noisy

discrete bid and ask quotes into fundamental innovations, stochastic transaction costs and

observation noise (data errors and price discreteness). Second, by estimating the fixed

parameters of the model we are able to estimate the level of and intra-daily patterns of the

log fundamental variance, transaction costs, and heterogeneity in dealers’ private costs.

4.2.1 Filtering

The first task is to filter the unobserved dynamic states given the observed data. Our

econometric model can be cast in state-space form, where the transition equation is defined

by the movement of the efficient premia in (1) while the observation equations are in

(2)-(10). Unfortunately, the Kalman Filter cannot be used since our system is both non-

gaussian and non-linear. The transition equation (1) is non-gaussian as we allow for fat-

tailed innovations, while the data errors in (5) and (6) make the measurement equations (9)

and (10) non-gaussian. Nonlinearity is present in the measurement equations both because

the log efficient premia enters equations (7) and (8) after an exponential transformation

(Mτi = emτi ) and as the discretization in (9) and (10) is a highly nonlinear operation.

While Kalman Filtering cannot be applied in our model, we can still derive a theoretical

recursion to sequentially update the state of the system using Bayes’ rule. For simplic-

ity, assume, first, that at τi we have an ask observation.21 Second, we need to link the

21The case of a bid or having both a bid and an ask observation are similar.
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filtering distribution of the hidden states at τi, f(aτi ,mτi , Ni, qi,A, ε
A
i , Ni | Di) to the pre-

vious filtering distribution, subsumed in f(mτi−1
| Di−1). This is achieved if we obtain the

joint filtering distribution, f(aτi ,mτi , Ni, qi,A, ε
A
i , Ni,mτi−1

| Di). The target distribution

can then be obtained by marginalizing out mτi−1
. Using Bayes’ rule and the conditional

independence of the system, we obtain the following relationship

f(aτi ,mτi , Ni, qi,A, ε
A
i , Ni,mτi−1

| Di)

∝ 1{aτi∈[Aτi−K,Aτi ]}f(aτi ,mτi , Ni, qi,A, ε
A
i , Ni | mτi−1

)f(mτi−1
| Di−1)

= 1{aτi∈[Aτi−K,Aτi ]}f(aτi | mτi , q
A
i , ε

A
i )f(mτi | mτi−1

, Ni)

× p(Ni)p(qi,A)f(εAi )f(mτi−1
| Di−1) (11)

While this relationship gives a theoretical link between the subsequent filtering distribu-

tions, we still need a practical way to implement the recursion. The problem stems, first,

from the fact that f(mτi−1
| Di−1) does not belong to a known parametric distribution

function, second that we need to integrate out (aτi , Ni, qi,A, ε
A
i , Ni,mτi−1

) to arrive to the

next-period filtering distribution, f(mτi | Di). Monte-Carlo is the method of choice for

solving these high-dimensional integrals. In particular, we turn to particle filtering (for ref-

erences, see, e.g., Doucet et al., 2001) and use a swarm of simulated points to approximate

f(mτi−1
| Di−1).

22

Assume that an equal-weighted sample of M points represent f(mτi−1
| Di−1) and denote

these points by [mτi−1
](m),m = 1, ...,M . These points are propagated through (11) using

importance sampling. We extend each particle by drawing from a proposal distribution(
[aτi ]

(m), [mτi ]
(m), [Ni]

(m), [qi,A](m), [εi,A](m)
)
∼ r

(
aτi ,mτi , Ni, qi,A, ε

A
i | [mτi−1

](m)
)

To compensate for the difference between our proposal distribution and the target dis-

tribution, we need to attach importance weights, w
(m)
i , to the sampled particles. These

weights are equal to the likelihood ratio between the target and proposal distributions:

w
(m)
i =

1{[aτi ](m)∈[Aτi−K,Aτi ]}
f
(
[aτi ]

(m), [mτi ]
(m), [Ni]

(m), [qi,A](m), [εi,A](m) | [mτi−1
](m)
)

r
(
[aτi ]

(m), [mτi ]
(m), [Ni](m), [qi,A](m), [εi,A](m) | [mτi−1

](m)
)

22See Johannes et al. (2008) for a recent financial application of particle filtering on jump-diffusion

models.
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If we normalize the weights such that they sum up to 1, we get π
(m)
i =

w
(m)
i∑M

l=1 w
(l)
i

. Accord-

ingly, the weighted sample(
π

(m)
i ; [aτi ]

(m), [mτi ]
(m), [Ni]

(m), [qi,A](m), [εi,A](m), [mτi−1
](m)
)

provides a correct characterization of the target.

The last step of the particle filter is to resample the particles proportional to the weights

π
(m)
i . By doing this, we can get rid of particles with low likelihood and multiply the ones

that are more likely. Resampling is crucial to avoid the usual curse of dimensionality in

sequential importance sampling and ensures that the performance of our algorithm does

not deteriorate with time, even if we keep the number of particles, M , fixed. To reduce

Monte-Carlo variance, we use stratified sampling to draw indices ξm (m = 1, ...,M) from

a multinomial distribution with probabilities π
(m)
i . Hence, the particle set(

[aτi ]
(ξm), [mτi ]

(ξm), [Ni]
(ξm), [qi,A](ξm), [εi,A](ξm)[mτi−1

](ξm),
)
,m = 1, ...,M

provides an equal-weighted representation of the target distribution and we can proceed

to the next observation.

Under weak assumptions, the empirical distribution function of the particles converges

to the filtering distribution as M →∞ (see, e.g., Del Moral, 2004 for a textbook treatment)

and we can use the output of the algorithm to obtain any expectation over the hidden

states.

The choice of the proposal distribution, r
(
aτi ,mτi , Ni, qi,A, ε

A
i | mτi−1

)
is crucial for the

efficiency of the filtering algorithm, especially in models with outliers, like the one we use

in this paper. Appendix A describes in detail the proposal distribution we use and the

resulting particle filtering algorithm.

4.2.2 Monte Carlo EM algorithm

We now address the issue of computing the maximum likelihood (ML) estimates for the

model parameters. The particle filtering algorithm described in the preceding section can

generate the log-likelihood function for any fixed parameter values. However, it is ill-suited
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for finding the ML estimates because the log-likelihood function is inherently irregular with

respect to the parameters even with the use of common random numbers. This irregularity

arises from the resampling step required for any particle filter. We thus adopt an indirect

approach to the ML estimation via the EM algorithm of Dempster et al. (1977). The

EM algorithm is an alternative way of obtaining the ML estimates for incomplete data

models, where incomplete data refers to the situation in which the model contains some

random variables without corresponding observations. The EM algorithm involves two

steps - expectation and maximization – and hence its name. The first step consists of

writing down the complete-data log-likelihood function. Since it is not observable, one

needs to compute its expected value by conditioning on the observed data in conjunction

with some assumed parameter values. This completes the expectation step. Secondly, in

the maximization step, one finds the new parameter values that maximize the expected

complete-data log-likelihood function. The updated parameter values are then used to

repeat the E- and M-step until convergence to the ML estimates.

However, the E-step of our model is complex and computed using the the particle

filter. We are thus using a version of the Monte Carlo EM (MCEM) algorithm.23 Casting

optimization as an EM algorithm problem effectively circumvents the irregularity induced

by the particle filter, because in the M-step the parameters used in the filter are fixed.

In order to reduce the attached Monte-Carlo noise, note that we use fixed-lag smoothing

following the advice in Olsson et al. (2008). Appendix B describes the complete data

likelihood in our model and the MCEM algorithm.

Finally, it is worth noticing that, in our model, asymptotic standard error for the maxi-

mum likelihood estimate cannot be computed using the negative Hessian matrix nor using

the inner product of the individual scores.24 We thus apply the alternative estimator pro-

posed by Duan and Fulop (2009), which uses the smoothed individual scores to compute

the asymptotic error.

23For a general introduction to the MCEM algorithm, see, for instance, Wei and Tanner (1990).
24None is directly computable because the individual observed log-likelihood function is highly irregular

with respect to θ due to using the particle filter.
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5 Empirical Results

In this section we investigate the intra-daily seasonality of the fundamental variance and

transaction costs, and analyze the nature of the stochastic variation in transaction costs.

We also investigate the intra-daily pattern of the dispersion in dealers’ private waiting

costs as we believe that it is a relevant component of transaction costs in a rather illiquid

limit order book.

5.1 Intra-daily variations

In the efficient price and transaction costs models described previously, the fundamental

variance exp(σ2
τi

), the mean transaction costs exp(µτi), and the variance in dealers’ waiting

costs exp(σ2
c,τi

) are allowed to vary during the day. For the functions σ2
τi

, µτi and σ2
c,τi

, we

adopt a flexible cubic spline function as previously mentioned, with intra-day timepoints

at (6.30; 8.00; 9.30; 12.00; 15.00; 18.00) for U.S. and European CDS contracts and at (8.00;

9.00; 11.00; 12.30; 15.00; 18.00) for Japanese CDSs. We use the histograms described in

Section 3.1.3 to guide the choice of the intra-daily partition in the spline. For U.S. and

European CDSs, the first and the last timepoints correspond to the preopening (6.30-8.00)

and overnight (18.00-6.30) periods. The remaining timepoints reflect the daytime trading,

and post-close periods. For Japanese CDSs, the first timepoint is 9.00 since there is not

enough data to estimate volatility or transaction costs during the preopening period. The

Japanese partition then reflects the Tokyo Exchange rhythm: the Tokyo lunch break occurs

between 11.00-12.30, while the closing is at 15.00.

Table 3 Panel A reports estimates and asymptotic standard errors for constant param-

eters. The standard deviation of data errors in basis points (σε) is important for all the

contracts, consistent with the presence of outliers. The estimates of the other parameters

(λ and σJ) suggest fat-tailed distributions in the innovation of the efficient CDS premia.

This result is consistent with the observation that CDS premia are prone to sudden large

changes, presumably due to the arrival of important firm specific news.

Table 3 Panel B, C and D presents intra-daily estimates of the variance of the efficient
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CDS premia (σ2), the mean transaction cost (µ) and the variance of dealers’ waiting costs

(σ2
c ) for U.S., European and Japanese CDSs. Panel B reports results for the US CDSs

and Figure 4 depicts the point estimates. Note that, for U.S. CDSs, our sample period is

truncated at August 1, 2007, due to the lack of data thereafter. The results suggest that

the intra-daily fundamental variance of U.S. contracts exhibit a flattened reverse J-shape

pattern. In particular the fundamental variance spikes upward early during the preopening

period (6.30 New York GMT), diminishes over the course of the following hour. It tends

to increase very slightly during the post-close (after 15.00). This result is in accordance

with what has been documented in virtually all U.S markets (see, e.g., Fleming, 1997,

Foster and Viswanathan, 1990 or Chan, Christie and Schultz, 1995). Mean transaction

costs exhibit a very clear reverse J-shape pattern with a bump at 18.00, while the largest

spike for heterogeneity in dealers’ waiting costs occurs also during the preopen and does

not seem to increase at the end of the trading day.

Figure 5 depicts the point estimates for the European CDSs that are reported in Panel

C. The intra-daily fundamental variance, mean transaction costs and variance of deal-

ers’ waiting costs clearly exhibit a reverse J-shaped pattern during the European business

hours. Figure 5 reveals the presence of a higher fundamental variance during the preopen

(6.30) and a subsequent decline at the beginning of the trading period (8.00). The fun-

damental variance remains at this low level or even lower during the rest of the day. In

particular, there is no clear evidence of an increase in the fundamental variance at the

end of the day, unlike findings in other European equity markets (see, e.g., Hillion and

Suominen, 2004, or Michayluk and Sanger, 2006). This pattern is, however, also reported

in Niemeyer and Sand̊as (1995). Transaction costs and dispersion in dealers’ waiting costs

are also largest during the preopening (6.30), and decrease at the beginning of the trading

day (8.00). They remain relatively stable during the trading period, and increase during

the post-close although they do not reach the level of the morning peak.

The estimates for Japanese CDSs are reported in Panel C, and presented graphically

in Figure 6. The fundamental variance exhibit a reverse J-shaped pattern across the

6 Japanese CDS contracts in accordance with regularities documented in the Japanese
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equity market (see, e.g., Lehmann and Modest, 1994, or Hamao and Hasbrouck, 1995), or

in the Tokyo foreign exchange market (Ito, Lyons, and Melvin, 1998). Mean transaction

costs are also J-shaped over the trading day with a slight increase during lunch hours,

consistent with studies related to the Japanese securities market (see, e.g., Amihud and

Mendelson 1991, or Lehmann and Modest, 1994). Note that there is no very clear pattern

for heterogeneity in dealers’ private value.

Numerous papers try to explain U-shaped and J-shaped patterns in volatility and num-

ber of trades documented in securities market. The first hypothesis is informed trading. At

the beginning of the trading day, as information is not yet incorporated into prices, volatil-

ity is high, and dealers widen their spreads as protection against larger adverse selection

risks. In addition, Admati and Pfleiderer (1988) show that traders who have discretion

over the timing of their trades choose to concentrate their trades in time so as to minimize

adverse selection costs created by informed trading. As a result, trades cluster during

certain periods of time, meanwhile bid-ask spreads are reduced.

The second hypothesis is related to inventory control consideration. First, dealers at-

tempt to close exposed positions before the end of the trading day, which leads them

to trade heavily before the overnight trading halt, explaining the concentration of trades

before the close. Secondly, as argued by Brock and Kleidon (1992), the absence of oppor-

tunity to trade during the night brings about the need to reestablish optimal holdings in

portfolios as soon as the trading starts.25

The J-shaped pattern of the fundamental volatility observed across all contracts tends

to support the information asymmetry hypothesis during the preopening period, while the

small but significant increase in both transaction costs and dispersion in dealers’ waiting

costs during the post-close for European and Japanese contract seems to corroborate the

hypothesis of inventory control at the end of the day. We might fail, however, to find such

inventory motives for U.S. CDSs.

25Brock and Kleidon (1992) predict that transaction costs get larger when the number of trades clusters,

due to the presence of a monopolist specialist setting wider spreads in periods of less-elastic liquidity

demands like those at the open and at the close. IDB have a different market organization, that is

probably the reason why our findings are at odd with this prediction.
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5.2 Tests for intradaily variations

We need to test if the intra-daily patterns suggested in Figures 4, 5 and 6 are statisti-

cally significant. Therefore, we compute the difference between two adjacent intradaily

ML estimates for the fundamental variance, variance in dealers’ waiting costs and mean

transactions costs and test whether this difference is different from zero. Table 3 Panel B,

Panel C and Panel D list the successive differences to the previous intradaily timepoints

for the 18 North American, European, and Japanese CDS contracts, respectively.

Our tests confirm several broad regularities documented above. First, across most CDS

names, the fundamental variance is at its highest level during the preopening period (6.30

local time), and subsequently declines the following period, which results in a significant

negative difference at 8.00. The peak of the fundamental variance at 6.30 is consistent

with the accumulated overnight information and trading halt effect suggested by Brock

and Kleidon (1992). We fail, however, to find a systematic higher volatility at the end of

the trading day for U.S. and European CDSs, as would predict Brock and Kleidon’s (1992)

model. The fundamental variance exhibits, however, a significant increase (positive sign

at 18.00) across all Japanese CDSs.

Secondly, the reverse J-shape pattern for mean transaction costs is also confirmed:

mean transactions costs are high across all contracts during the preopening period, and

decline significantly at 8.00 for all U.S. and European contracts and at 11.00 for Japanese

contracts, when the quoting and trading activity is high in the IDB limit order book. The

J-shape pattern is flattened for U.S. contracts in the sense that only 3 contracts over 6

exhibit a significant positive difference at 18.00 (compared to 15.00). In contrast, we note

the presence of a little but significant hump during lunch hours across most of European

and Japanese CDSs, and a clear spike at the end of the trading day: all European and 5

over 6 Japanese CDSs show significant positive difference at 18.00.

Third, tests regarding the intra-daily variations in the variance of dealers’ waiting costs

reveal that, for most of CDS contracts, it decreases significantly during the morning (8.00

for U.S. CDSs, 9.30 for European CDSs, and 11.00 for Asian ). For European and Japanese
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CDSs, it increases again significantly during lunch hours (12.00 or 12.30), along with mean

transaction costs for those contracts. Finally, the dispersion in dealers’ waiting costs might

increase again at the end of the trading day for European and Japanese CDSs but not for

U.S. contracts.

5.3 Correlation between the filtered estimates and market activ-

ity

Although the model does not include any trade variables, it is relevant to examine the cor-

relations between some filtered estimates and trade-related variables described in Section

3.1.3, i.e. the number of quotes and the number of trades. Table 5 presents the correlations

between mean transaction costs on the ask-side (a proxy for the best ask), the dispersion

in quotes on the ask side (a proxy for the ex ante expected heterogeneity in dealers’ private

costs), innovation in the efficient premia (a proxy for the fundamental volatility), and two

measures of market activity (the number of ask quotes and the number of trades).26

First, our results show that the number of trades is highly positively associated with

the number of quotes, consistent with dealers consuming liquidity when the order book is

the least thin, as reported in Biais, Hillion and Spatt (1995). Second, the number of trades

is positively correlated to the fundamental volatility as in Jones, Kaul and Lipson (1994)

or Huang and Masulis (2003). Third, the number of trades is negatively associated with

mean transaction costs, consistent with dealers concentrating their trades when the cost

of trading is lower as predicted by Admati and Pfleiderer (1988).

Results reported in Table 5 also show that mean transactions costs in the order book are

positively correlated to the fundamental volatility, which is consistent with higher adverse

selection costs7. This relation is also predicted by Foucault (1999). Transaction costs

are also highly positively correlated with the heterogeneity in dealers’ private value. This

result underlines the importance of considering investors’ heterogeneity (private trading

needs, urgency to hedge, etc.) as an important component of transaction costs, at least,

26In unreported results, we find very similar correlations by using the bid side.
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in the CDS market. In addition, mean transaction costs are negatively correlated to the

number of ask quotes, i.e. transaction costs are larger when the order book is thin or

almost empty, consistent with other findings (see, e.g., Biais, Hillion and Spatt, 1995 or

Niemeyer and Sand̊as, 1995).

5.4 What is the impact of the subprime crisis?

This section addresses the concern whether the subprime mortgage crisis which became

apparent end of July 2007 could have an impact on the stylized facts reported above.

First, we divide the period into two sub-periods according to whether data are recorded

before or after August 1, 2007 (see, e.g., Gorton (2008) for a chronology of the events of

the 2007 credit crisis). We drop U.S. and Japanese CDSs because we do not have enough

observations in the second sub-period to run clean estimations of the model. We thus use

the European CDSs to investigate whether our results are sensitive to the credit crisis.

Second, we run the model described in section 4.1 on the two different sub-periods. Third,

we compute the differences between the ML estimates we get on both sub-periods and

test whether these differences are significant. Finally, we also report differences in market

activity.

Table 5 presents the results. They show a significant reduction in the daily number of

trades after the crisis, while the daily number of quotes does not seem to be unidirection-

ally affected. There is an increase in the CDS prices volatility and in the heterogeneity

of dealers’ private costs. There is also a deterioration in mean transaction costs. In unre-

ported results, we find similar, though weaker, intra-daily patterns after the onset of the

crisis, which tends to support that the crisis does not explain or change our results.

6 Conclusion

This paper attempts to provide a comprehensive overview of the intradaily patterns of

volatility and transaction costs in the CDS interdealer market. We analyze a sample of 18
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single-name 5-year CDS contracts whose underlying reference firm may be North American,

European or Japanese during a 24-month period: March 31, 2006 through March 31, 2008.

Data are from GFI, one of the leading inter-dealer broker, from which we retrieve the most

active contracts in terms of bid and ask quotes.

The trading and quoting activity exhibit U-shaped patterns for the European and

Japanese contracts, and a J-shaped for U.S. CDSs. The number of trades does not exceed

4 times a day, the number of simultaneous bid and ask quotes is in average 17 pairs per day

for European CDSs, and lower for U.S. or Japanese (5 bid/ask pairs) contracts. We find

that the mean cost of a round-trip is 58 bp across all contracts. The market for single-name

CDSs is thus rather illiquid.

Due to data scarcity and the absence of any information on the best limits that prevail

at any moment in the IDB order book, we propose a state-space model of bid and ask

quotes based on Hasbrouck (1999) to estimate the volatility of the efficient CDS premium

and stochastic transaction costs. The framework allows for data errors, discreteness and

jumps in the efficient price. We estimate the model using particle filtering and the Monte

Carlo EM algorithm. First, we find that the volatility of the efficient CDS premium is

at its highest during the preopening period (6.30), and subsequently declines. Second,

the parameter estimates show a clear J-shaped pattern for mean transaction costs across

all contracts. The simultaneous peak in volatility and transaction costs early during the

morning is consistent with a price discovery/informed trading hypothesis. In addition, the

higher number of trades and larger heterogeneity in dealers’ private value (e.g., hedging

needs) at the end of the trading day also provide supporting, though weaker, evidence for

inventory control by dealers at the end of the trading day. The way swap dealers manage

their inventory might be an explanation of this weaker effect. We believe that, due to

the high transaction costs and thin trading in the CDS market, a swap dealer aggregates

her trades from retail clients and trades the net in a single transaction in the interdealer

market to get a position in her book close to neutral at the end of the day. She also might

use synthetic instrument such as iTraxx credit indices to offset positions on a basket of

credits through a single trade.
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We find that mean transaction costs are negatively related to the number of trades, and

positively to the fundamental volatility and to the heterogeneity in dealers’ private value,

as predicted by models of limit order book (e.g., Foucault, 1999). We also find that our

results are robust to the onset of the subprime crisis, although we find a slight drop in the

number of trades and an increase in the fundamental volatility.

Besides contributing to document trading and liquidity patterns in the market for single-

name CDSs, this paper also provides a methodology adapted to very thin limit order books

to estimate market quality measures, such as volatility and transaction costs. We think this

is a promising avenue to analyze liquidity in other thinly traded financial instruments. In

particular, it may be of interest to investigate the case of CDS indices, for which transaction

costs might be lower, liquidity higher and could encourage more hedging and inventory

management behavior and might be less sensitive to informed trading.
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Appendix A: Details of the proposal distribution and of the particle filtering

algorithm

We use a proposal distribution with three important features.

1. We sample aτi from a uniform distribution with a support [Aτi−K,Aτi ]. This ensures

that the indicator function 1{aτi∈[Aτi−K,Aτi ]
} is one.

2. We use stratified sampling for the jumps in the efficient CDS premia, Ni and the

data errors qAi . The probability of sampling from the jumps in the CDS premia is

λ̃ instead of λ, while the probability of the data errors is some p̃ instead of p. This

ensures that we sample from these events, even if their probability is low. Denote

the corresponding sampling probabilities gN(Ni) and gqA(qi,A).

3. To generate the proposal for mτi , we use a linear approximation to equation (7). In

particular consider the following relationship

aτi = emτi−1 + emτi−1 (mτi −m∗) + eµτi+mτi−1 + ci,A + εi,A,

where cAi ∼ N(0, exp(σ2
c,τi

)×exp(2mτi−1
)). This is an approximation of (7) with three

modifications: (i) we use a first order Taylor expansion around mτi−1
to linearize

Mτi = emτi ; (ii) we substitute mτi−1
in the place of mtaui in the determination of κτi

; (iii) we substitute mτi−1
in the place of mtaui in the determination of the variance of

cAi . Note that conditional on (mτi−1
, Ni, qi,A), aτi and mτi are jointly normal. We can

thus easily sample from mτi given aτi . Denote the density of the importance sampler

as gm(mτi | aτi ,mτi−1
, Ni, qi,A).

Assume that we have M particles, [mτi−1
](m) representing f(mτi−1

| Di−1). Then our

particle filter with M particles consists of the following steps:

Step 1: Draw [aτi ]
(m) from a uniform distribution with a support [Aτi −K,Aτi ].

Step 2: Enlarge the state-space with the jumps in the system by sampling from Ni and

qi,A using probabilities λ̃ and p̃ respectively.
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Step 3: Sample from mτi using a proposal derived from the linearized approximation of

the system, drawing

[mτi ]
(m) ∼ gm(mτi | [aτi ](m), [mτi−1

](m), [Ni]
(m), [qi,A](m)).

Step 4: Sample from εAi given (aτi ,mτi , qi,A) using joint normality

[εAi ](m) ∼ gε
A

(εAi | [aτi ](m), [mτi ]
(m), [qi,A](m)).

Step 5: Attach importance weights to the particles

w
(m)
i =

f
(
[aτi ]

(m), [mτi ]
(m), [Ni]

(m), [qi,A](m), [εi,A](m) | [mτi−1
](m)
)

r
(
[aτi ]

(m), [mτi ]
(m), [Ni](m), [qi,A](m), [εi,A](m) | [mτi−1

](m)
) .

Here, the proposal density takes the form

r
(
[aτi ]

(m), [mτi ]
(m), [Ni]

(m), [qi,A](m), [εi,A](m) | [mτi−1
](m)
)

= gε
A

(εAi ](m) | [aτi ](m), [mτi ]
(m), [qi,A](m))gm([mτi ]

(m) | [aτi ](m), [mτi−1
](m), [Ni]

(m), [qi,A](m))

× gN([Ni]
(m))gqA([qi,A](m)).

Step 6: Resample the particle set according to the probability π
(m)
i =

w
(m)
i∑M

m=1 w
(m)
i

to

yield M equal-weighted particles. This equal-weighted particle set is an empirical

representation of f(mτi , Ni, qi,A, ε
A
i ,mτi−1

| Di).

Note that the particle filter provides a sample on the entire past of the system up to τi.

Any quantity of interest based on the past particles can be computed and carried forward

alongside with mτi . This is true because at any time τi, mτi is sufficient for moving the

algorithm forward. Denote by Ii the quantity whose distribution is of interest; for example,

one may be interested in Ii = (mτ0 +mτ1 + · · ·+mτi)/(i+ 1). Then, in all of the preceding

derivations one can use the vector (Ii,mτi) in place of mτi . Conditional on mτi , the system’s

forward evolution is independent of Ii, and thus the algorithm remains unchanged. The

output of the filter at any time τi will be a set of particles representing the joint filtering

distribution of (Ii, ,mτi).

The case when we have a bid observation or both is very similar to the situation described

above, so to conserve space we do not spell out the details.
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Appendix B: Monte Carlo EM algorithm

First, we need a complete data representation of the fundamental innovations. Here,

the complete data space we choose consists of the asset jump indicator Ni and of the log

efficient CDS premia, mτi . The joint conditional likelihood can be written as

f(mτi , Ni | mτi−1
) = f(mτi |, Ni,mτi−1

)f(Ni).

The loglikelihood of the number of jumps27 is

LNi = 1{N>0} ln(λ) + 1{N=0} ln(1− λ). (12)

Accordingly, we can write the loglikelihood of the efficient premia innovation as

Lmi = 1{Ni=0} ×

−[mτi −mτi−1

]2
2e

σ2
τi−1 ∆τi

−
ln
(
e
σ2
τi−1 ∆τi

)
2


+ 1{Ni=1} ×

− [
mτi −mτi−1

]2
2e

σ2
τi−1 ∆τi (1 + σ2

J)
−

ln
(
e
σ2
τi−1 ∆τi (1 + σ2

J)
)

2

 . (13)

Second, the remaining part of the complete data loglikelihood represents the parameters

for the transaction costs (µτi and cAi ) and the data errors εAi . Introducing a scaled version

of the data error, ε̃Ai = εAi /σε, the loglikelihood of the observation is

Lai = −
[
aτi − emτi − eµτi+mτi − σεε̃Ai

]2
2σ2

ce
2mτi

− ln (σ2
c )

2
. (14)

Note that in this paper we set the probability of data errors, p, exogenously so the

probability of qi,A is not related to the parameters we estimate. Further, the loglikelihood

of ε̃Ai does not depend on unknown parameters. We can thus ignore it.

The MCEM algorithm can be summarized as follows: (1) Set some initial parameter

values, θ(0); (2) Repeat the following E- and M-steps until convergence.

E-step: Get the conditional expectation of the sufficient statistics in the complete

data loglikelihood function of the previous set of parameters. In particular we need to

27Throughout we use the convention 0× ln 0 = 0
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approximate expectations of the form

E(X | DT , θ(k−1))

where Xi is some function of the hidden random states, DT is the observed data and θk−1

is the parameter vector at the (k − 1)th iteration. The particle filter described in section

4.2 can be used to compute these quantities. We run the filter using the parameters θ(k−1)

to generate the particle set that represents the smoothed distribution for Xi. The m-th

particle is denoted by X
(m)
i|T . Accordingly, the expectation can be approximated by the

sample average as follows:

E(Xi | DT , θ(k−1)) ≈ 1

M

M∑
m=1

X
(m)
i|T

When the sample size T is large, undesirable Monte-Carlo noise will be introduced by the

use of the smoothed distribution. Intuitively, the particle filter always adapts to the newest

observation, and thus its representation of the distant past is bound to be poor. Olsson et

al. (2008) suggest to use the information only up to i + L when computing any quantity

that involves the unobserved state variable at time i. The rationale is the forgetting

property expected of the dynamic system; that is, for large enough L, the distribution

for the unobserved state variable at time i conditional on the information up to i + L

will be almost identical to that conditional on the entire sample. Olsson et al. (2008)

thus propose to use fixed-lag smoothing by using information only up to i+ L. Adopting

fixed-lag smoothing leads to our approximation as follows:

E(Xi | DT , θ(k−1))

≈ E(Xi | D(i+L)∧T , θ
(k−1))

≈ 1

M

M∑
m=1

X
(m)
i|(i+L)∧T

M-step: Maximize the conditional expected value of the complete-data log-likelihood

function obtained in the E-step. First, denote the ith complete-data loglikelihood by Li(θ)

Li(θ) = LNi (θ) + Lmi (θ) + 1(i∈IA)L
a
i (θ) + 1i∈IBL

b
i(θ). (15)
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Here, IA (IB) denotes the set where an ask (bid) is observed. Secondly, the M-step can be

written as follows

θ(k) = argmax
θ

T∑
i=1

E(Li(θ) | Di|(i+L)∧T , θ
(k−1)).

Our model belongs to the exponential family, meaning that the conditional loglikelihood

can be written as

E(Li(θ) | Di|(i+L)∧T , θ
(k−1)) = f

(
θ, E(si(Xi) | Di|(i+L)∧T , θ

(k−1))
)
,

where si(Xi) are some sufficient statistics for the parameters. This is computationally

important, because we only need to run the filter once per iteration to obtain an estimate

of E(si(Xi) | Di|(i+L)∧T , θ
(k−1)).
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Table 1 

Most representative industries 

This table reports the top 20 industries in the raw CDS dataset for the period March 31, 2007 to 
March 31, 2008, by number of CDS contracts and by percentage of quotes and trades (data points). 
The dataset is from GFI, one of the leader inter-dealer CDS broker, and consists of a total of 1,944 
CDS contracts.  

 

20 most active CDS industries 

     

Industry   
By number of CDS 

contracts  
By % of (quotes and 

trade) data 
     

Banks  294  15.12% 
Financial Services  112  5.76% 

Electricity  90  4.63% 
Sovereign  80  4.12% 

Real Estate  74  3.81% 
Major Integrated oil/gas company  65  3.34% 

Fixed Line Telecom  61  3.14% 
Municipal  57  2.93% 

Chemicals Specialty  48  2.47% 
Insurance Full Line  45  2.31% 
Wireless Telecom  39  2.01% 

Auto Manufacturers  33  1.70% 
Food Products  30  1.54% 

Electrical Equipment  28  1.44% 
Multi line Retailers (non Food)  28  1.44% 

Television  28  1.44% 
Pharmaceutical  27  1.39% 

Consumer Electronics  25  1.29% 
Railways  24  1.23% 

Publishing  24  1.23% 
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Table 2 

Summary statistics 

This table presents summary statistics for the CDS data used in this study. We use data from GFI, 
one of the main inter-dealer CDS broker, from which we retrieve time-stamped (down to the second) 
information on bid quotes, ask quotes, and transaction prices during the period from March 31, 2006 
to March 31, 2008. We use a sample of 18 5-year CDSs: 6 U.S. contracts (American Axle & 
Manufacturing, Ford Motor Corp, General Motor Corp, Goodyear Tire, Lear and Visteon), 6 
European CDSs (Casino Guich, Deutsche Telecom, ITV Plc, Portugal Telecom Intl Finance, Telecom 
Italia and Valeo), and 6 Japanese CDSs (ACOM, Aiful, Orix Corp, Promise Co, Softbank Corp. and 
Takefuji). These contracts have been selected on the highest number of data points (number of 
quotes). The table presents variables for each contract. Credit rating is retrieved from Reuters based 
on ratings of senior unsecured long term issuer as of 01/01/2007 (by S&P when available, or Moody’s). 
Number of trades is the total number of transaction prices we observed during the sample period for 
the CDS contract. Daily average number of trades is the number of trades divided by the number of 
days during which at least one trade occurs. Minimum tick is the minimum difference between two 
consecutive prices (transaction price or quotes). Number of bid (ask) quotes is the total number of bid 
(ask) quotes observed during the period. Daily average number of bid (ask) quotes is the total number 
of bid (ask) quotes divided by the number days during which at least one bid (ask) quotes is 
registered. Number of bid/ask pairs is the total number of “simultaneous” bid and ask quotes we 
observe in the limit order book. Daily average number of bid and ask pairs is the number of bid/ask 
pairs divided by the number of days during which at least one pair is registered. Average midpoint is 
(ask + bid)/2, calculated when we observe a pair of quotes, and averaged over the sample period. 
Average bid/ask spread is a “quoted” spread (ask - bid) calculated when we observe a pair of quotes, 
and averaged over the sample period. Risky annuity factor is the cost of the 5-year risky annuity for 
the 5-year CDS contract using a 5% interest rate and a 40% recovery value. Average cost of a round-
trip is the present value of the stream of individual cash-flows (equal to the bid-ask spread), whose 
frequency is the frequency of the CDS, and whose duration is the lower of the maturity of the CDS 
and the default time of the underlying reference: it is calculated by multiplying the risky annuity 
factor and the average bid/ask spread. Average relative cost of a round-trip is the average cost of a 
round-trip divided by the average midpoint. Panel A presents the summary statistics for the 6 U.S. 
CDSs. Panel B presents the summary statistics for the 6 European CDSs. Panel C presents the 
summary statistics for the 6 Japanese CDSs.  
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Panel A. U.S. CDSs 

   

American 
Axle & 

Manufactu
ring 

 
Ford 

Motor 
Corp 

 

General 
Motors 
Corp 

 
Goodyear 

Tire 

 

Lear  Visteon  Mean 

                      

Credit Ratings  BB  B  B  B+  B+  B+   
               
Number of 
trades  258  857  961  145  260  217  449,7 
               
Daily average 
number of 
trades  0,8  2,6  3,2  0,5  0,9  0,8  1,5 
               
Minimum tick  1  0,5  1  1  1  2   
               

Number of bid 
quotes  1 220  2 858  2 824  867  1 163  985  1 652,8 
               
Daily average 
number of bid 
quotes  3,9  8,6  9,3  3,2  4,0  3,7  5,5 
               

Number of ask 
quotes  1 124  2 805  2 578  763  1 102  918  1 548,3 
               
Daily average 
number of ask 
quotes  3,6  8,5  8,5  2,8  3,7  3,5  5,1 
               

Number of bid 
and ask pairs  974  2 151  2 063  674  939  786  1 264,5 
               

Daily average 
number of bid 
and ask pairs  3,1  6,5  6,8  2,5  3,2  3,0  4,2 
               
Average 
midpoint  372  612  488  321  445  530  461,3 
               

Average bid-ask 
spread  20,9  15,3  13,4  19,6  23,1  28,0  20,1 
Risky annuity 
factor  3,8  3,4  3,6  3,9  3,7  3,5   

Average cost of 
a round-trip  78,8  52,6  48,3  75,6  84,7  99,4  73,2 
               
Average 
relative cost of 
a round-trip  0,21  0,09  0,10  0,24  0,19  0,19  0,2 
                 

 



  44

 

Panel B. European CDSs 

   

Casino 
Guich  

Deutsche 
Telecom  

ITV 
Plc  

Portugal 
Telecom 

Intl 
Finance 

 
Telecom 

Italia  Valeo  Mean 

                      

Credit Ratings  BBB-   A-  BBB-   BBB-   BBB+   BBB(*)    
               
Number of trades  547  1 135  650  889  1 767  850  973.0 
               

Daily average 
number of trades  1.1  2.3  1.3  1.8  3.5  1.9  2.0 
               
Minimum tick  0.5  0.5  0.5  0.5  0.5  0.5  0.5 
               

Number of bid 
quotes  6 806  10 491  9 001  10 485  13 403  7 394  9 596.7 
               
Daily average 
number of bid 
quotes  14.0  21.0  18.7 

 21.5  26.9 
 16.4  19.7 

               

Number of ask 
quotes  6 206  9 816  8 319  9 955  12 824  7 018  9 023.0 
               
Daily average 
number of ask 
quotes  12.8  19.7  17.3  20.4  25.7  15.5  18.6 
               

Number of bid and 
ask pairs  5 514  8 808  7 530  8 923  11 663  6 233  8 111.8 
               

Daily average 
number of bid and 
ask pairs  11.4  17.7  15.6  18.3  23.4  13.8  16.7 
               
Average midpoint  82  48  111  107  69  94  85.2 
               

Average bid-ask 
spread  5.8  3.4  9.7  7.4  3.8  7.5  6.3 
Risky annuity 
factor  4.2   4.3   4.2   4.2   4.3   4.2   4.2 

Average cost of a 
round-trip  24.8  14.7  40.7  31.0  16.4  31.5  26.5 
               

Average relative 
cost of a round-trip  0.30  0.30  0.37  0.29  0.24  0.33  0.3 
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Panel C. Japanese CDSs 

   
ACOM  Aiful  Orix 

Corp 
 Promise 

Co 
 Softbank 

Corp. 
 Takefuji   Mean 

                      

Credit Ratings  BBB+  BBB+   A-  BBB+   BB-  BBB    
               
Number of trades  143  380  182  136  79  210  188.3 
               

Daily average 
number of trades  0.3  0.9  0.4  0.3  0.3  0.5  0.5 
               
Minimum tick  0.5  0.5  0.25  0.25  0.5  0.25  0.4 
               

Number of bid 
quotes  2 645  4 726  2 530  2 567  2 240  3 455  3027.2 
               
Daily average 
number of bid 
quotes  6.3  10.6  6.1  6.4  7.2  8.6  7.5 
               

Number of ask 
quotes  2 343  4 417  2 114  2 257  1 949  2 948  2671.3 
               
Daily average 
number of ask 
quotes  5.6  9.9  5.1  5.6  6.3  7.3  6.6 
               

Number of bid and 
ask pairs  1 899  3 682  1 719  1 808  1 676  2 506  2215.0 
               

Daily average 
number of bid and 
ask pairs  4.5  8.3  4.1  4.5  5.4  6.2  5.5 
               
Average midpoint  82  149  75  79  324  115  137.3 
               

Average bid-ask 
spread  13.2  17.0  11.3  12.7  39.6  17.0  18.5 
Risky annuity 
factor  4.2   4.1   4.3   4.3   3.8   4.2   4.2 

Average cost of a 
round-trip  56.0  70.1  48.1  54.0  152.3  71.2  75.3 
               

Average relative 
cost of a round-trip  0.68  0.47  0.64  0.68  0.47  0.62  0.6 
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Table 3 

Estimation results for the efficient CDS price and transaction costs 
models 

This table presents the ML estimates of the state-space model (1) and (9)-(10) based on bid and ask 
quotes of 18 5-year CDS contracts for March 31. 2006 through March 31. 2008. Panel A presents the 
ML estimates for the constant parameters (σЄ, λ, σJ) for all CDS contracts. Panel B (resp. Panel C and 
Panel D) contains time-varying ML estimates for the fundamental variance (σ2). the mean transaction 
costs (µ) and the quote dispersion ( ) for each intraday timepoint for the U.S. (resp. European and 
Asian) CDS contracts. Panel B reports also the difference between two adjacent ML estimates for each 
timepoint, and the number of contract for which the difference is significantly positive (at 1%) and 
significantly negative.  

 

 

Panel A. Estimates for constant parameters (cont.) 
         

    
pooled U.S. 

CDSs   pooled European 
CDSs   pooled Japanese 

CDSs   

σЄ  39.43  18.82   47.38  
         

λ  0.06  0.05   0.06  
         

σJ  23.42  28.16   31.10  
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Panel B. Estimates for varying parameters - U.S. CDSs 
                    
  Time  
 6:30  8:00  9:30  12:00  15:00  18:00 
            
Fundamental variance 0,070  0,023  0,030  0,021  0,030  0,032 
Pooled difference to previous timepoint    -0,047  0,007  -0,009  0,009  0,001 
Nb of contracts with a positive diff   0  2  0  3  0 
Nb of contracts with a negative diff   3  0  2  0  0 
            
Quote dispersion 0,019  0,010  0,010  0,010  0,011  0,010 
Pooled difference to previous timepoint    -0,009  0,000  0,000  0,001  -0,001 
Nb of contracts with a positive diff   0  2  1  2  1 
Nb of contracts with a negative diff   5  2  1  1  1 
            
Mean transaction costs 0,033  0,020  0,019  0,017  0,017  0,019 
Pooled difference to previous timepoint    -0,013  -0,002  -0,002  0,000  0,002 
Nb of contracts with a positive diff   0  0  1  1  3 
Nb of contracts with a negative diff   6  4  5  1  1 
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Panel C. Estimates for varying parameters - European CDSs 
            
  Time 
 6:30 8:00  9:30  12:00  15:00  18:00
     
Fundamental variance 0,140  0,040  0,037  0,031  0,030  0,025 
Pooled difference to previous timepoint    -0,100  -0,002  -0,006  -0,001  -0,005 
Nb of contracts with a positive diff   0  1  0  2  0 
Nb of contracts with a negative diff   4  3  2  2  2 
            
Quote dispersion 0,028  0,019  0,018  0,020  0,018  0,020 
Pooled difference to previous timepoint    -0,009  -0,001  0,002  -0,001  0,001 
Nb of contracts with a positive diff   1  0  5  0  4 
Nb of contracts with a negative diff   3  5  1  4  1 
            
Mean transaction costs 0,060  0,029  0,025  0,027  0,024  0,028 
Pooled difference to previous timepoint    -0,031  -0,004  0,002  -0,003  0,004 
Nb of contracts with a positive diff   0  0  5  0  6 
Nb of contracts with a negative diff   6  6  0  6  0 
                    



  49

 

 

Panel D. Estimates for varying parameters - Japanese CDSs 
            
  Time 
 8:00  9:00  11:00  12:30  15:00  18:00
      
Fundamental variance 0,217  0,020  0,027  0,030  0,022 0,048 
Pooled difference to previous timepoint    -0,197  0,007  0,002  -0,008  0,026 
Nb of contracts with a positive diff   0  2 2 0  6 
Nb of contracts with a negative diff   3  1 1 3  0 
          
Quote dispersion 0,036  0,038  0,031  0,033  0,031 0,035 
Pooled difference to previous timepoint    0,002  -0,007  0,002  -0,002  0,003 
Nb of contracts with a positive diff   1  0 4 1  3 
Nb of contracts with a negative diff   0  5 1 3  0 
            
Mean transaction costs  0,086  0,080  0,055  0,060  0,049 0,054 
Pooled difference to previous timepoint    -0,006  -0,024  0,005  -0,012  0,005 
Nb of contracts with a positive diff   0  0 4 0  5 
Nb of contracts with a negative diff   1  6 1 6  0 
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Table 4  

Correlations between some smoothed quantities and market activity 

The table presents the cross-sectional medians of firm-specific correlations based on the model and parameter 
estimates given in Tables 2 and 3. These correlations are computed for each CDS contract using weekly non-
overlapping data. Correlations are defined as follows: mean transaction costs on the ask side are calculated as 
the weekly mean of the smoothed mean transaction costs on the ask-side. Quote dispersion is the weekly 
standard deviation of the smoothed mean transaction costs on the ask side. Fundamental variance is the 
weakly mean of the smoothed squared innovations in the efficient premia. N(ask) is the weekly number of 
asks. N(trades) is the weekly number of trades. 

 

  

Mean 
transaction 

costs 

Quote 
dispersion

Fundamental 
variance N(ask) N(trades)

      

Mean transaction costs  1.00     
Quote dispersion 0.39 1.00    
Fundamental variance 0.32 0.31 1.00   
N(ask) -0.07 0.27 0.16 1.00  
N(trades) -0.24 0.03 0.08 0.50 1.00
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Table 5  

Impact of the subprime crisis on market activity variables 
 and parameter estimates  

The table presents the cross-sectional medians of firm-specific correlations based on the model and parameter estimates given in Table 2 and 3. These 
correlations are computed for each CDS contract using weekly non-overlapping data. defined as follows 

 

Variables  Telecom 
Italia

   

Portugal 
Telecom 

Intl 
Finance

   Deutsche 
Telecom 

   ITV 
Plc

   Valeo    Casino 
Guich

  

              

Change in the daily number of 
trades  -1,91 ***  -1,16 ***  -0,21   -0,67 ***  -1,05 ***  -0,14  

              

Change in daily number of quotes  -4,00   -15,41 ***  9,67 *** -4,25 *  -2,30   10,74 *** 

              

Change in the average fundamental 
variance  0,010 ***  0,003   0,023 *** 

-
0,036   0,102 ***  0,013 * 

              

Change in the average heterogeneity 
of dealers' private costs  0,007 ***  0,004 ***  0,006 *** 0,012 ***  0,010 ***  0,010 *** 

              

Change in mean transaction costs  0,010 ***  0,005 ***  0,007 *** 0,019 ***  0,017 ***  0,019 *** 
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Figure 1: Bid quotes. ask quotes and trade prices expressed in basis point during 4 trading days 
(May 2. 3. 4 and 5 2006) for the 5-year CDS contract on Telecom Italia 
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Figure 2a: Pooled frequency of trades and frequency of quotes for the 6 U.S. 5-year CDSs 

 

Figure 2b: Pooled intradaily frequency of trades and quotes for the 6 European 5-year CDSs 
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Figure 2c: Pooled intradaily frequency of trades and quotes for the 6 Asian 5-year CDSs  
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Figure 3: Trading activity and average cost of a round-trip for the CDSs sample 

The figure presents the total number of trades and the average cost of a round-trip in basis point for each of 
the 18 5-year CDS in the sample over the sample period (March 31. 2006 — March 31. 2008) 
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Figure 4: Intra-daily patterns for the 6 U.S. 5-year CDS contracts  

From top to bottom. the graphs show the point estimates of the fundamental volatility. the dispersion of 
dealers’ waiting costs and mean transaction costs from 6.30 to 18.00. measured in percentage. 
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Figure 5: Intra-daily patterns for the 6 European 5-year CDS contracts  

From top to bottom. the graphs show the point estimates of the fundamental volatility. the dispersion of 
dealers’ waiting costs and mean transaction costs from 6.30 to 18.00. measured in percentage.  
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Figure 6: Intra-daily patterns for the 6 Japanese 5-year CDS contracts 

 From top to bottom. the graphs depict the point estimates of the fundamental volatility. the dispersion of 
dealers’ waiting costs and mean transaction costs from 8.00 to 18.00. measured in percentage.  

 

 


