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Smoothing Algorithms for State-Space Models
Mark Briers, Arnaud Doucet, and Simon Maskell

Abstract

A prevalent problem in statistical signal processing, applied statistics, and time series analysis is the calculation of the smoothed
posterior distribution, which describes the uncertainty associated with a state, or a sequence of states, conditional on data from the
past, the present, and the future. The aim of this paper is to provide a rigorous foundation for the calculation, or approximation, of
such smoothed distributions, to facilitate arobustandefficient implementation. Through a cohesive and generic exposition of the
scientific literature we offer several novel extensions such that one can perform smoothing in the most general case. Experimental
results for: a Jump Markov Linear System; a comparison of particle smoothing methods; and parameter estimation using a particle
implementation of the EM algorithm, are provided.

Index Terms

State space smoothing, Hidden Markov Model, Kalman filter, Kalman smoother, Jump Markov Linear System, Particle filter,
Particle smoother, Parameter estimation.

I. I NTRODUCTION

One is often interested in quantifying the uncertainty associated with an unobserved variable,X, given some information
pertaining to that variable,Y . In a sequential context, this relates to the calculation of the posterior density,1 p(x1:T |y1:T ),
wherex1:T = {x1, . . . , xT }, y1:T = {y1, . . . , yT }, are generic points in path space of the signal and observation processes,
and the discrete time indext ∈ N+. To facilitate sequential estimation, a first order Markovian state space model is often
assumed[46]. Furthermore, the observations are assumed to be conditionally independent given the stateXt = xt. One thus
has mathematical expressions for the state transition and observation densities, as follows:

Xt|Xt−1 = xt−1 ∼ f(·|xt−1); (1)

Yt|Xt = xt ∼ g(·|xt), (2)

with an appropriately defined prior density,X1 ∼ µ (·).
For many state-space applications (e.g. tracking[4]) it is more convenient to compute the marginal posterior distribution of

the state at a particular time instance conditional on a sequence of data,p(xt|y1:l). If l < t then this process is known as
prediction; if l = t then it is commonly referred to asfiltering; and if l > t then one is conducting the process ofsmoothing.
The main objective of this article is to present a generic exposition of the vast array of literature available in the scientific
research community that attempt to solve the ‘smoothing’ problem. Moreover, we are able to offer several novel improvement
strategies for the techniques available by identifying and solving problems which were previously ignored. We illustrate these
novel algorithms on several examples.

The smoothing problem is commonly segmented into three problems: fixed-interval smoothing, where one is interested in
calculatingp(xt|y1:T ) for all time indicest = 1, . . . , T ; fixed lag smoothing, where one calculatesp(xt|y1:t+L) whereL > 0
is some fixed value (this density is calculated on-line); and fixed point smoothing, wherep(xt|y1:D) is calculated for a fixed
value t with D > t increasing.

• The most common application of smoothing is the (off-line) fixed-interval smoothing algorithm. The authors assert that it
is possible to employ a single smoothing scheme, based on fixed-interval smoothing, to solve all three problems. Details
of this proposition are now provided.

• Several schemes have been suggested to solve the fixed-lag smoothing problem, with a favoured technique being the
augmentation of the states over the lagL. In general, however, one then has a computational cost which is exponential
in the dimension of the state space,nx. A more suitable technique would be to store the latest filtering distribution
p(xT−1|y1:T−1), and calculate the new filtering distributionp(xT |y1:T ) on the receipt of a new measurement. One is then
able to employ a (traditionally considered) fixed-interval smoothing algorithm to calculatep(xT−L|y1:T ). This gives rise
to a computational cost which is linear in the length of the lag.

• A similar situation occurs with fixed point smoothing, in that it is possible to calculate a distributionp(xt|y1:D) on
the receipt of a new measurement by calculating a new filtering distribution at the latest time instance and stepping
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back through the lag. However, one can calculate a revised smoothed distribution without the need for recursing through
the intermediate history of the states, using the same fixed-interval type smoothing algorithm repository by calculating
a distribution over the joint state(Xt, XD). Note that while this method is computationally attractive and allows the
methodology to be presented in a generic framework, particle based methods for fixed point smoothing would exhibit
degeneracy as the number of data increased[11]. However, in most cases, the fixed-lag smoothing distribution converges
exponentially fast to a fixed distribution so it is possible to stop including new data.

It is noted that one is also often interested in calculating the joint smoothing distribution, particularly in the fixed-interval
(p(x1:T |y1:T )) and fixed-lag(p(xT−L:T |y1:T )) scenarios, and we are able to perform such calculations by exploiting the
sequential nature of the problem, which is discussed in the sequel.

The format of the paper is as follows: the following section identifies the filtering and smoothing recursions for general state
space models and suggests a rigorous framework on which one can base smoothing algorithms. The subsequent five sections
then discuss the algorithmic implementation of such recursions under differing scenarios: finite state space hidden Markov
models, linear Gaussian state space models, jump Markov linear systems, analytic approximations for general state models,
and sequential Monte Carlo approximations for general state space models, respectively. Simulation results are presented in
Section VIII, with conclusions drawn in Section IX.

II. F ILTERING AND SMOOTHING FOR GENERAL STATE SPACE MODELS

The derivations of the recursions used in the filtering, forward-backward smoothing, and two-filter smoothing procedures for
general state space models are now described. Note that by replacing the integrals with summations, and the notation used to
denote a probability density function with an appropriate term to denote a probability mass function, one arrives at expressions
for both the continuous and discrete state space case.

A. Filtering

Filtering is the term used to describe the process of recursively calculating the marginal posterior distribution, and is a pre-
requisite in all of the algorithms discussed herein. We therefore summarise the filtering procedure in each of the subsequent
sections. The filtering recursion can be derived as follows:

p(xt|y1:t) =
p(yt|xt, y1:t−1)p(xt|y1:t−1)

p(yt|y1:t−1)
∝ g(yt|xt)p(xt|y1:t−1), (3)

where:
p(xt|y1:t−1) =

∫
f(xt|xt−1)p(xt−1|y1:t−1)dxt−1.

One can see that this algorithm is recursive in nature; equation (3) relies solely upon the state transition and observation
densities, and the posterior density from the previous time instance.

B. Forward-backward smoothing

It is possible to deduce the ‘standard’ forward-backward recursive expression for the marginal smoothed posterior distribution,
p(xt|y1:T ), as follows[1]:

p(xt|y1:T ) =
∫

p(xt, xt+1|y1:T )dxt+1

=
∫

p(xt+1|y1:T )p(xt|xt+1, y1:T )dxt+1

=
∫

p(xt+1|y1:T )p(xt|xt+1, y1:t)dxt+1

= p(xt|y1:t)
∫

p(xt+1|y1:T )f(xt+1|xt)
p(xt+1|y1:t)

dxt+1. (4)

It is thus possible to compute the filtered and predicted distributions in a forward (filtering) recursion of the algorithm (by
calculatingp(xt|y1:t)), and then execute a backward recursion with each smoothed distribution(p(xt|y1:T )) relying upon the
quantities calculated and the previous (in reverse time) smoothed distribution(p(xt+1|y1:T )).
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C. Two-filter smoothing

One can compute the marginal smoothed posterior distribution by combining the output of two (independent) filters, one
that recurses in the forwards time direction and calculatesp(xt|y1:t−1), the other in the backward time direction calculating
p(yt:T |xt), to give the required distributionp(xt|y1:T )[6], [31], [32]. This is constructed as follows:

p(xt|y1:T ) = p(xt|y1:t−1, yt:T )

=
p(xt|y1:t−1)p(yt:T |y1:t−1, xt)

p(yt:T |y1:t−1)
∝ p(xt|y1:t−1)p(yt:T |xt). (5)

∝ p(xt|y1:t)p(yt+1:T |xt)

This form of smoothing reduces the complexity of the smoothing procedure for certain modelling assumptions.
A Backward Information Filter[37] can be used to calculatep(yt:T |xt) sequentially fromp(yt+1:T |xt+1):

p(yt:T |xt) =
∫

p(yt, yt+1:T , xt+1|xt)dxt+1

=
∫

p(yt+1:T |xt+1)f(xt+1|xt)g(yt|xt)dxt+1. (6)

Note thatp(yt:T |xt) is not a probability density function (pdf) in argumentxt and thus its integral overxt might not be finite.
However, it is often more convenient in practice to propagate a pdf. Moreover, particle based methods can only be used to
approximate finite measures. To cater for these cases, and thus ensure thatp(yt:T |xt) is integrable overxt, we introduce an
artificial prior distribution over xt denotedγt(xt). This concept is now described.

Given the initial condition:

p̃(xT |yT ) =
g(yT |xT )γT (xT )

p(yT )

and defining the sequence of probability distributions:

p̃(xt:T |yt:T ) ∝ γt(xt)
T∏

i=t+1

f(xi|xi−1)
T∏

i=t

g(yi|xi),

wheret < T , one can see that:

p(yt:T |xt) =
∫
· · ·

∫
p(yt:T , xt+1:T |xt)dxt+1:T

=
∫
· · ·

∫
p(xt+1:T |xt)p(yt:T |xt:T )dxt+1:T

=
∫
· · ·

∫ T∏

i=t+1

f(xi|xi−1)
T∏

i=t

g(yi|xi)dxt+1:T

=
∫
· · ·

∫
γt(xt)
γt(xt)

T∏

i=t+1

f(xi|xi−1)
T∏

i=t

g(yi|xi)dxt+1:T

∝
∫
· · ·

∫
p̃(xt:T |yt:T )

γt(xt)
dxt+1:T

=
p̃(xt|yt:T )

γt(xt)
. (7)

This derivation allows one to construct a filtering-like recursion to determine the information quantity, whilst ensuring that one
propagates finite measures:

p(yt:T |xt) =
∫

p(yt+1:T |xt+1)f(xt+1|xt)g(yt|xt)dxt+1

∝
∫

p̃(xt+1|yt+1:T )
γt+1(xt+1)

f(xt+1|xt)g(yt|xt)dxt+1

=
g(yt|xt)
γt(xt)

∫
p̃(xt+1|yt+1:T )

f(xt+1|xt)γt(xt)
γt+1(xt+1)

dxt+1
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1) Prediction: The “prediction” stage can be defined as follows:

p̃(xt|yt+1:T ) ,
∫

p̃(xt+1|yt+1:T )
f(xt+1|xt)γt(xt)

γt+1(xt+1)
dxt+1. (8)

Note that (8) is only a probability measure if one defines the artificial prior as follows:

γt(xt) ,





γ1(x1) for t = 1;

∫ · · · ∫ γ1(x1)
∏t−1

t′=1 f(xt′+1|xt′)dx1:t−1 = p(xt) for t ≥ 2;
(9)

which gives the (generally time inhomogeneous) backward Markov kernel:

γ(xt|xt+1) =
f(xt+1|xt)γt(xt)

γt+1(xt+1)

where on substitution:
p̃(xt|yt+1:T ) =

∫
p̃(xt+1|yt+1:T )γ(xt|xt+1)dxt+1.

Note that the prior distributionγ1(x1) appearing in (9) is an arbitrary prior distribution and not necessarily that used in the
filtering recursion. There are certain circumstances where employing this formulationγ1(x1) 6= µ(x1) is useful. For example,
if the Markov kernelf(xt+1|xt) admits an invariant distributionπ(x) it is convenient to defineγt(xt) = π(x), even if
µ(x1) 6= π(x), as thenγt(xt) = π(x) for all t ≥ 2. Moreover,γ(xt|xt+1) = f(xt|xt+1) if f is π-reversible. If one takes the
actual (filtering) prior distributionµ(x1) then one uses the abusive notationp(xt|xt+1) = γ(xt|xt+1). The use of such a prior
distribution was (implicitly) used in references [6], [22], [35].

The calculation of (9) is not generally analytically tractable when one uses the priorµ(·). That is, in the general case the
backward Markov kernelp(xt|xt+1) may not be known or even analytic and one necessarily has to propagate a finite measure,
and so the additional degree of freedom provided by (8) is important in applications; see experimental results.

2) Update: The “update” stage is simply taken to be:

p̃(xt|yt:T ) =
g(yt|xt)p̃(xt|yt+1:T )∫
g(yt|x′t)p̃(x′t|yt+1:T )dx′t

, (10)

which has been renormalised to be a probability measure.
One can therefore see that:

p(xt|y1:T ) ∝p(xt|y1:t−1)p(yt:T |xt)

∝p(xt|y1:t−1)p̃(xt|yt:T )
γt(xt)

. (11)

Since the artificial prior distribution is introduced in (8), it needs to be removed when calculating the smoothing distribution,
hence the factorγ−1

t (xt).
For clarity, we will refer to (5) as an independent two-filter smoother, and to (11) as an artificial two-filter smoother.
3) Propagation of a probability measure:It is often algorithmically appealing to be able to propagate a probability measure,

for example in the unscented information filter (as will be discussed later in the paper), rather than a finite measure as one would
by the (general) use of equation (8). As stated, the calculation of (9) is not analytically tractable, could be computationally
infeasible, or an approximation could be insufficient. Thus, it is convenient to define the joint distribution:

p̃(xt, xt+1|yt:T ) ∝ p̃(xt, xt+1|yt+1:T )q̃(xt|xt+1, yt)
g(yt|xt)f(xt+1|xt)γt(xt)
γt+1(xt+1)q̃(xt|xt+1, yt)

, (12)

such that one is able to directly computep(yt:T |xt, xt+1) in an analogous manner to that done in (10). Further details will be
provided on the use of (12) when deemed appropriate later in the paper.

D. Joint Distribution

As mentioned, it is possible to capitalise on the sequential nature of the problem when one constructs the joint distribution,
by considering the following factorisation[15]:

p(x1:T |y1:T ) = p(xT |y1:T )
T−1∏
t=1

p(xt|xt+1:T , y1:T ). (13)
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It is possible to exploit the modelling assumptions (1)-(2) to yield the following simple result:

p(xt|xt+1:T , y1:T ) = p(xt|xt+1, y1:t)

=
p(xt|y1:t)f(xt+1|xt)

p(xt+1|y1:t)
∝ p(xt|y1:t)f(xt+1|xt).

It is thus possible to calculatep(x1:T |y1:T ) based solely onp(xt|y1:t) and the state transition densityf(xt+1|xt), which are
required for all values oft.

The authors note that alternative factorisations exist[5], which can be constructed as the symmetrical relationship of (13)
when one uses an artificial prior distribution defined by (9), as follows:

p(x1:T |y1:T ) = p(x1|y1:T )
T∏

t=2

p(xt|xt−1, y1:T ),

where

p(xt|xt−1, y1:T ) = p(xt|xt−1, yt:T )

=
p(yt:T |xt)f(xt+1|xt)

p(yt:T |xt−1)

∝ p̃(xt|yt:T )γ(xt|xt+1)
p̃(xt−1|yt:T )

,

whereγ(xt|xt+1) is the backward Markov kernel ifγt(xt) is defined through (9). These alternative factorisations, however,
do not seem to bring any advantage over (13).

III. F INITE STATE SPACE HIDDENMARKOV MODEL

Define Xt as a discrete-time, time-homogenous,nx-state, first-order Markov chain. By using a discrete analogue to the
previous section, one is able to construct the following algorithmic arguments.

A. Filtering

Let αt−1(xt−1) , p(Xt−1 = xt−1|y1:t−1). The filtering recursion based on the algorithm described by Rabiner[42] is given
as follows:

p(Xt = xt|y1:t−1) =
∑
xt−1

f(Xt = xt|Xt−1 = xt−1)αt−1(xt−1)

αt(xt) =
p(Xt = xt|y1:t−1)g(yt|Xt = xt)∑
x′t

p(Xt = x′t|y1:t−1)g(yt|Xt = x′t)

with suitably defined initial conditionsµ(X1 = x1), ∀x1 ∈ S = {1, . . . , nx}.

B. Forward-backward smoothing

A solution that enables one to conduct two passes through the data, the first (forward) pass calculatingαt(j) and the second
(backward) pass calculating the required quantity,p(Xt = xt|y1:T ), is given as:

p(Xt = xt|y1:T ) = αt(xt)
∑
xt+1

p(Xt+1 = xt+1|y1:T )f(Xt+1 = xt+1|Xt = xt)∑
x′t

αt(x′t)f(Xt+1 = xt+1|Xt = x′t)
.

Surprisingly, this formula is not used very often, not least because it avoids the need to rescale the results to prevent numerical
instabilities of the independent smoother which is used routinely in this context.



IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. XX, NO. XX, 200X 6

C. Two-filter smoothing

1) Independent smoother:Defining βt(xt) , p(yt:T |Xt = xt), one recurses in the backward direction:

βt(xt) = g(yt|Xt = xt)
∑
xt+1

βt+1(xt+1)f(Xt+1 = xt+1|Xt = xt),

with the combination step given as:

p(Xt = xt|y1:T ) =

∑
xt−1

αt−1(xt−1)f(Xt = xt|Xt−1 = xt−1)βt(xt)
∑

x′t

[∑
xt−1

αt−1(xt−1)f(Xt = x′t|Xt−1 = xt−1)βt(x′t)
] .

As previously stated, in practice one has to rescaleβt(·) otherwise the technique is numerically unstable.
The Bahl-Cocke-Jelinek-Raviv (BCJR) algorithm[3] can be used to calculate the maximuma posteriori (MAP) estimate

of the marginal stateXt based on the independent two-filter smoothing algorithm. A more recent article describes on online
version of the BCJR algorithm[41].

2) Artificial smoother: It is possible to derive a recursion for the artificial smoother as follows:

p̃(Xt = xt|yt+1:T ) =

∑
xt+1

p̃(Xt+1 = xt+1|yt+1:T )f(Xt+1 = xt+1|Xt = xt)γt(Xt = xt)

γt+1(Xt+1 = xt+1)

p̃(Xt = xt|yt:T ) =
1
ct

g(yt|Xt = xt)p̃(Xt = xt|yt+1:T ),

and wherect =
∑

xt
g(yt|Xt = xt)p̃(Xt = xt|yt+1:T ). We reiterate that̃p(Xt = xt|yt+1:T ) is not a probability measure when

one does not chooseγt(·) as in equation (9). The combination step is thus:

p(Xt = xt|y1:T ) ∝ p(Xt = xt|y1:t−1)p̃(Xt = xt|yt:T )
γt(Xt = xt)

,

which is subsequently renormalised.

D. Joint distribution

Using the factorisation (13) it is easy to compute the joint distribution. However, one is often interested in maximising it.
The Viterbi algorithm[45] is a dynamic programming tool that enables one to circumvent the need to exhaustively search all
combinations of state trajectories when calculating the MAP estimate of the distributionp(x1:T |y1:T ):

xMAP
1:T = arg max

x1:T
p(x1:T |y1:T ).

Reference [20] introduces a technique to reduce the computational complexity of the forward-backward algorithm, and Viterbi
algorithm.

IV. L INEAR GAUSSIAN STATE SPACE MODEL

The remainder of this article assumes that the stateXt and measurementYt are respectivelyRnx andRny -valued random
variables.

A. Filtering

The optimal Bayesian solution that allows exact calculation of the filtering distribution is available through the Kalman
filter[30] when one assumes linear Gaussian models. That is:

f(xt|xt−1) = N(xt;Btxt−1, Qt)
g(yt|xt) = N(yt;Htxt, Rt),

or equivalently:

Xt = BtXt−1 + εt (14)

Yt = HtXt + νt, (15)
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wherep(εt) = N(εt; 0, Qt) and p(νt) = N(νt; 0, Rt) are mutually independent, uncorrelated noise processes2; N(x; µ, P )
denotes a Gaussian density of argumentx with meanµ and covarianceP . The Kalman filter recursion can be summarised as
follows:

p(xt−1|y1:t−1) = N(xt−1; µx
t−1|1:t−1, P

x
t−1|1:t−1)

p(xt, yt|y1:t−1) = N

([
xt

yt

]
;

[
µx

t|1:t−1

µy
t|1:t−1

]
,

[
P x

t|1:t−1 P xy
t|1:t−1

P xy T
t|1:t−1 P y

t|1:t−1

] )

p(xt|y1:t) = N(xt; µx
t|1:t, P

x
t|1:t),

where:

µx
t|1:t = µx

t|1:t−1 + P xy
t|1:t−1P

y −1
t|1:t−1 (yt − µy

t|1:t−1) (16)

P x
t|1:t =P x

t|1:t−1 − P xy
t|1:t−1P

y −1
t|1:t−1 P xy T

t|1:t−1 , (17)

and with:

µx
t|1:t−1 = Btµ

x
t−1|1:t−1

P x
t|1:t−1 = BtP

x
t−1|1:t−1B

T
t + Qt

µy
t|1:t−1 = Htµ

x
t|1:t−1

P y
t|1:t−1 = HtP

x
t|1:t−1H

T
t + Rt

P xy
t|1:t−1 = P x

t|1:t−1H
T
t .

Note that the conditioningµx
l|1:l is used to denote the conditioning on the datay1:l, and by definitionEp(xl|y1:l)[Xl] = µx

l|1:t
(with an appropriate definition for the covariance). In the above equations, the transpose of a matrixM is denoted byMT ,
and the inverse is denotedM−1.

B. Forward-backward smoothing

Assuming the linear Gaussian system described by equations (14) and (15), the marginal smoothed posterior distribution
at time t also follows a Gaussian distribution, with meanµx

t|1:T and covarianceP x
t|1:T and its parameters can be determined

through (4). Simple algebraic manipulations yield the following equations[1]:

µx
t|1:T = µx

t|1:t + Γt(µx
t+1|1:T − µx

t+1|1:t)

P x
t|1:T = P x

t|1:t + Γt(P x
t+1|1:T − P x

t+1|1:t)Γ
T
t

Γt = P x
t|1:tB

T
t P x −1

t+1|1:t .

Several researchers [10], [33] have independently derived an alternative to the standard forward-backward smoothing
algorithm, to allow a more efficient and computationally stable algorithm to be produced. The algorithm is outlined below, but
the reader is referred to the aforementioned references for a thorough discussion and derivation.

xx
t|1:T = xx

t|1:t−1 + P x
t|1:t−1rt−1 (18)

P x
t|1:T = P x

t|1:t−1 − P x
t|1:t−1Wt−1P

x
t|1:t−1, (19)

where:

rt−1 = HT
t P y −1

t|1:t−1 et + LT
t

Wt−1 = HT
t P y −1

t|1:t−1 Ht + LT
t WtLt

Lt = Bt − (BtP
x
t|1:t−1H

T
t P y −1

t|1:t−1 )Ht

et = yt − µy
t|1:t−1.

A special case of the smoothing algorithm (18)-(19), known as the disturbance smoother[34], [38], has been developed, that
allows the calculation of the smoothed disturbance vector. Typically, this algorithm has the appealing property of a reduced
computational complexity, whilst being practically useful in many application domains.

2Dependent noise processes also yield solutions to the general filtering/smoothing problem, a topic that is not discussed in this article.
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C. Two-filter smoothing

The following section discusses how one can avoid integrability issues through the use of a canonical representation of a
Gaussian distribution[37]. The inclusion of an artificial smoother is therefore deemed redundant since the most general case,
under the assumptions made, has been catered for.

1) Independent smoother:If p(yt:T |xt) (with argumentyt:T ) follows a Gaussian distribution and is integrable inxt, then
p(yt:T |xt)/

∫
p(yt:T |xt)dxt also follows a Gaussian distribution (with argumentxt). In the general case, the integrability of

such functions need not be true, but it is possible to use acanonical representation of the Gaussian distribution3[37]. This
recursion is now summarised. Initialise at timeT :

τT |T :T = P x −1
T |T :T = HT

T R−1
T HT

θT |T :T = P x −1
T |T :T µx

T |T :T = HT
T R−1

T yT .

One can then recurse in the reverse-time direction (t = T − 1, . . . , 1) using the following:

∆t+1 =
[
I + ΘT

t+1τt+1|t+1:T Θt+1

]−1

τt|t+1:T = BT
t+1τt+1|t+1:T

(
I −Θt+1∆t+1ΘT

t+1τt+1|t+1:T

)
Bt+1

θt|t+1:T = BT
t+1

(
I − τt+1|t+1:T Θt+1∆t+1ΘT

t+1

)
θt+1|t+1:T

τt|t:T = τt|t+1:T + HT
t+1R

−1
t+1Ht+1

θt|t:T = θt|t+1:T + HT
t+1R

−1
t+1yt,

where theinformation vector(θt|t:T ) and information matrix(τt|t:T ) completely parameterisep(yt:T |xt) (with no need for

integrability assumptions) and the notationΘt+1 , Q
1
2
t+1. This alternative representation also evades the need to compute

any state transition matrix inversions. This recursion is the information form of the Kalman filter being used to parameterise
p(yt:T |xt); the inability to integratep(yt:T |xt) with respect toxt (under the Gaussian assumptions stated above) is equivalent
to having a diffuse prior in a reverse-time Kalman filter.

One is able to take the product of the two Gaussian distributed random variables (composed of the predicted density
p(xt|y1:t−1) andp(yt:T |xt)) as in equation (5) to obtain the first and second moments of the (Gaussian distributed) smoothed
marginal posterior distribution:

µx
t|1:T = P x

t|1:T (P x −1
t|1:t−1 µx

t|1:t−1 + θt|t:T )

P x
t|1:T = (P x −1

t|1:t−1 + τt|t:T )−1.

D. Joint distribution

Using the factorisation of the joint distribution (13), one only has to storeµx
t|1:t, P x

t|1:t, µx
t|1:t−1 andP x

t|1:t−1 (for t = 1, . . . , T ).
The construction of the joint is then a simple operation.

V. JUMP MARKOV LINEAR SYSTEM

Jump Markov linear systems are widely used in several fields of signal processing including seismic signal processing, digital
communications such as interference suppression in CDMA spread spectrum systems, target tracking, and de-interleaving of
pulse trains[16]. A derivation of a novel smoothing strategy which is mathematically rigorous is included in this section.

Following the convention in section III, we letAt denote the discrete-time, time-homogenous,na-state, first order Markov
chain with transition probabilityp(At+1 = at+1|At = at) for any at+1, at ∈ S, whereS = {1, 2, . . . , na}.

Throughout this section we consider the following Jump Markov Linear System (JMLS):

Xt = Bt(At)Xt−1 + εt(At)
Yt = Ht(At)Xt + νt(At),

with p(εt(At)) = N(εt(At); 0, Qt(At)) andp(νt(At)) = N(νt(At); 0, Rt(At)), and with the matricesBt(·) andHt(·) being
functions of the Markov chain stateat.

3The canonical representation of a Gaussian is parameterised by an information matrix(τ), with zero entries corresponding to infinite entries in the
corresponding covariance matrix, and an information vector(θ). Note that we distinguish this from a (backwards) information filter, which we define to be
p(yt:T |xt) (as a function ofxt for fixed values ofyt:T ). We explicitly avoid using the term “information filter” to describe this canonical representation of
a Gaussian. The lack of a distinction in the literature is a cause for confusion and the authors hope making the distinction is useful to the reader.
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A. Filtering

The filtering process is interested in calculating:

p(xt, at|y1:t) =
∑

a1:t−1

p(xt, a1:t|y1:t)

=
∑

a1:t−1

p(a1:t|y1:t)p(xt|a1:t, y1:t) (20)

which represents the (joint) uncertainty over the continuous state and the discrete state for the mode of the system at timet.
One is able to calculate the factorp(a1:t|y1:t) for a particular component by a simple filtering recursion:

p(a1:t|y1:t) = p(a1:t|y1:t−1, yt)
∝ p(a1:t|y1:t−1)p(yt|a1:t, y1:t−1),

where:
p(a1:t|y1:t−1) = p(a1:t−1|y1:t−1)p(at|at−1),

and, in this case:

p(yt|a1:t, y1:t−1) = N(yt; µ
y
t|1:t−1,a1:t

, P y
t|1:1−t,a1:t

).

The notationµy
t|1:t−1,a1:t

and P y
t|1:1−t,a1:t

denote the mean and covariance ofp(yt|a1:t, y1:t−1), respectively, which are both
calculated in the recursion forp(xt|a1:t, y1:t) (which can be derived using techniques from section IV, as this entity is simply
conditionally linear Gaussian).

In many practical applications, one is only interested in the distribution of the statext and so one can integrate over the
random variableA1:t as follows:

p(xt|y1:t) =
∑
a1:t

p(a1:t|y1:t)p(xt|a1:t, y1:t). (21)

Similarly, one can estimate
p(xt, a1:t|y1:t) = p(a1:t|y1:t)p(xt|a1:t, y1:t).

As time increases, the number of mixture components in the joint filtering distribution (20) grows exponentially. The use
of approximation methods is therefore paramount to retain a computationally feasible calculation. A popular technique in the
tracking literature to perform such an approximation is to use mixture reduction (potentially reducing components with the
same lagged-transition history)[4], resulting in the following:

p(xt, at|y1:t) ≈
∑

a{t−1}

p(a{t−1}|y1:t)p(xt|a{t−1}, y1:t).

The notationa{t−1} represents the joint index of the states of all the transitions of the time instances att − 1 that havenot
been approximated (through mixture reduction or another approximation method). For example, within a tracking context, the
use of the standard Generalised Pseudo-Bayes (GPB(1)) algorithm would give rise to a single component at timet (as all of
the components up to this time instance would have been approximated by moment matching). Clearly, a similar phenomenon
occurs for (21) and such approximation techniques can be further utilised.

B. Two-filter smoothing

A generic presentation of the methodology behind inference in a JMLS is now presented. It is the authors’ belief that
the material contained herein allowsany JMLS approximation scheme to be implemented, without the complication of
idiosyncrasies of such techniques. The use of an artificial smoothing algorithm is theonly method with which one can ensure
integrability ofp(yt:T |xt, at) overxt. We have therefore omitted details of any attempt at an independent two-filter smoothing
algorithm.

1) Artificial smoother:One can use the results of section II to give rise to the following:

p(xt|y1:T ) ∝
∑
at

p(xt, at|y1:t−1)p(yt:T |xt, at). (22)

One can obtain the required quantities for the first term on the right hand side of equation (22) based on the discussion given
above. All that is left to specify is the backward information quantityp(yt:T |xt, at). This can be constructed through the use
of equation (12) since the calculation of a joint prior distribution overxt andat is computationally infeasible. This substitution
(for the joint distribution ofxt, at and xt+1, at+1) is left as an exercise for the reader, to conserve space. Note that one is
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required to introduce an artificial prior distribution overxt such that one can perform approximation (be it pruning, merging,...).
This is because the information filtering quantity can be written as follows:

p(yt:T |xt, at) =
∑

at+1:T

p(at+1:T |xt, at, yt:T )p(yt:T |xt, at), (23)

where the termp(at+1:T |xt, at, yt:T ) is dependent onxt which prevents one from performing such an approximation. The use
of such a prior distribution would eliminate this problem.

C. Joint distribution

The construction of the joint (state) distribution can be done in a similar manner to that outlined in sections II-D and IV-D:

p(x1:T |y1:T ) =
∑
a1:T

p(a1:T |y1:T )p(xT |a1:T , y1:T )
T−1∏
t=1

p(xt|xt+1:T , a1:T , y1:T )

where

p(xt|xt+1:T , a1:T , y1:T ) =p(xt|xt+1, a1:t+1, y1:t)
∝p(xt|a1:t, y1:t)p(xt+1|xt, at+1).

This computation is computationally infeasible for any practical value ofT , and approximation techniques will have to be
utilised.

VI. A NALYTIC APPROXIMATION FOR GENERAL STATE SPACE MODELS

The assumptions made in the previous sections restrict the analysis of many ‘real-life’ statistical signal processing problems,
and so one often has to resort to approximation methods. One popular technique is to approximate the possibly non-linear
(and/or) non-Gaussian densities to both be (locally) linear Gaussian and so obtain the Extended Kalman Filter (EKF)[1]. A
more recent development is to use a deterministic sample based approximation to ensure that the models (1)-(2) are never
approximated, only the distributions under examination[28], [29], the so-called “unscented transform”. We will describe both
of these in turn.

An exemplar system which requires such an approximation is described as:

Xt = ϕ(Xt−1, εt) (24)

Yt = φ(Xt, νt) (25)

with εt andνt are independent and identically distributed (i.i.d.) mutually independent noise processes.

A. Filtering

1) The Extended Kalman filter:The Extended Kalman filter uses a Taylor series expansion to produce a (local) linear-
Gaussian approximation of the state-transition and observation densities. A first order Taylor series expansion about the points
x̂t−1 and ε̂t for the state and noise variables, respectively, leads to an approximation of (24) as follows:

Xt ≈ ϕ(x̂t−1, ε̂t) + Ft−1(Xt−1 − x̂t−1) + Gt−1(εt − ε̂t)

where:

Ft−1 = ∂ϕ(Xt−1,εt)
∂Xt−1

∣∣∣
Xt−1=x̂t−1,εt=ε̂t

Gt−1 = ∂ϕ(Xt−1,εt)
∂εt

∣∣∣
Xt−1=x̂t−1,εt=ε̂t

and a similar expansion for the measurement equation about the pointsx̂t and ν̂t provides:

Yt ≈ φ(x̂t, ν̂t) + Mt(Xt − x̂t) + Nt(νt − ν̂t),

where again:

Mt = ∂φ(Xt,νt)
∂Xt

∣∣∣
Xt=x̂t,νt=ν̂t

Nt = ∂φ(Xt,νt)
∂νt

∣∣∣
Xt=x̂t,νt=ν̂t

.
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Based on these approximations and the assumption that the noise processes are Gaussian, one can calculate the required
moments for use in the Kalman filter equations (16) and (17):

µx
t|1:t−1 = ϕ(x̂t−1, ε̂t) + Ft−1(µx

t−1|1:t−1 − x̂t−1)−Gt−1ε̂t

P x
t|1:t−1 = Ft−1P

x
t−1|1:t−1F

T
t−1 + Gt−1QtG

T
t−1

µy
t|1:t−1 = φ(x̂t, ν̂t) + Mt(µx

t|1:t−1 − x̂t)−Ntν̂t

P y
t|1:t−1 = MtP

x
t|1:t−1M

T
t + NtRtN

T
t

P xy
t|1:t−1 = P x

t|1:t−1M
T
t

By performing the state expansion about the posterior meanx̂t−1 = µx
t−1|1:t−1, and the measurement expansion about

x̂t = µx
t|1:t−1 (and their respective noises about zero), one obtains the standard EKF prediction/update equations which are

conceptually equivalent to the Kalman filter/smoother equations discussed in section IV.
There are several strategies available to improve the posterior mode estimation by attempting to reduce the linearisation errors:

the iterated EKF[19], where one re-linearises about the one-step smoothed estimateµx
t−1|1:t until convergence is obtained,

and the use of higher order terms in the Taylor series expansion[43]. Both of these strategies, however, result in an increased
computational burden. A comparison of the EKF, iterated EKF, and EKF with second order terms is provided in reference
[47].

2) The Unscented transformation:The Unscented Transform (UT) has been used to conduct an approximation of the state
transition and observation densities, (1) and (2) respectively, though quasi-Monte Carlo sampling[28]. The resulting filter,
the Unscented Kalman Filter(UKF), considers a set of (sigma) points that are deterministically selected from the Gaussian
approximation top(xt−1|y1:t−1). These points are all propagated through the true models and the parameters ofp(xt, yt|y1:t−1)
are then estimated from the transformed samples. The UKF algorithm selects deterministicallyNs points such that:

N







xt−1

εt

νt


 ; V, Z


 ≈

Ns∑

i=1

w
(i)
t−1|1:t−1δ







xt−1

εt

νt


−




x
(i)
t−1

ε
(i)
t

ν
(i)
t





 ,

where

V =




µx
t−1|1:t−1

0
0


 Z =




P x
t−1|1:t−1 0 0

0 Qt 0
0 0 Rt


 ,

whereδ
(
xt − x

(i)
t

)
denotes the delta-Dirac mass located inx

(i)
t . One chooses the location of such points according to an

appropriate procedure[40]. The update stage is the same as the Kalman filter equations (16) and (17), with:

µx
t|1:t−1 =

Ns∑

i=1

w
(i)
t−1|1:t−1ϕ(x(i)

t−1, ε
(i)
t )

P x
t|1:t−1 =

Ns∑

i=1

w
(i)
t−1|1:t−1

[
ϕ(x(i)

t−1, ε
(i)
t )− µx

t|1:t−1

] [
ϕ(x(i)

t−1, ε
(i)
t )− µx

t|1:t−1

]T

µy
t|1:t−1 =

Ns∑

i=1

w
(i)
t−1|1:t−1φ

(
ϕ(x(i)

t−1, ν
(i)
t ), v(i)

t

)

P y
t|1:t−1 =

Ns∑

i=1

w
(i)
t−1|1:t−1

[
φ

(
ϕ(x(i)

t−1, ε
(i)
t ), ν(i)

t

)
− µy

t|1:t−1

] [
φ

(
ϕ(x(i)

t−1, ε
(i)
t ), ν(i)

t

)
− µy

t|1:t−1

]T

P xy
t|1:t−1 =

Ns∑

i=1

w
(i)
t−1|1:t−1

[
ϕ(x(i)

t−1, ε
(i)
t )− µx

t|1:t−1

] [
φ

(
ϕ(x(i)

t−1, ε
(i)
t ), v(i)

t

)
− µy

t|1:t−1

]T

,

Note that, under certain conditions, one is able to perform some calculations analytically and thus reduce the quasi-Monte
Carlo variance within the deterministic sampling scheme[7].

B. Two-filter smoother

The use of the UT in forward-backward smoothing is not straightforward or intuitive and relies on some restrictive
assumptions. Consequently, we only present the two-filter smoothing algorithm.
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1) Artificial smoother:We present a novel scheme for performing unscented smoothing. Note that we limit our discussion
to the use of (9) as the artificial prior distribution to appeal to the readers intuition, as the use of a general artificial prior
distribution requires one to approximate a finite measure, rather than a probability measure as is usually done when one employs
an unscented approximation.

One can approximate the artificial prior distribution stated in equation (9) by using an unscented approximation as follows:

N

([
xt

εt

]
; V, Z

)
≈

Ns∑

i=1

w
(i)
t δ

([
xt

εt+1

]
−

[
x

(i)
t

ε
(i)
t+1

])
,

where

V =
[

µm
t

0

]
Z =

[
Pm

t 0
0 Qt+1

]

and withµm
t , Pm

t denoting the mean and covariance of the (m)arginal distribution, respectively. One is then able to calculate
the parameters of (the Gaussian approximation to) equation (9):

µm
t+1 =

Ns∑

i=1

w
(i)
t ϕ(x(i)

t , ε
(i)
t+1)

Pm
t+1 =

Ns∑

i=1

w
(i)
t

[
ϕ(x(i)

t , ε
(i)
t+1)− µm

t+1

] [
ϕ(x(i)

t , ε
(i)
t+1)− µm

t+1

]T

Pt,t+1 =
Ns∑

i=1

w
(i)
t

[
x

(i)
t − µm

t

] [
ϕ(x(i)

t , ε
(i)
t+1)− µm

t+1

]T

.

One would expect this approximation to converge to the invariant distribution in many practical applications. One can now
construct a Gaussian approximation to the (b)ackward Markov kernel,γ(xt|xt+1), using elementary statistical results:

µb
t = µm

t + Pm
t,t+1(P

m
t+1)

−1(xt+1 − µt+1)

P b
t = Pm

t − Pm
t,t+1(P

m
t+1)

−1(Pm
t,t+1)

T .

Based on this Gaussian approximation and the Gaussian approximation top̃(xt+1|yt+1:T ) one can construct a Gaussian
approximation to the joint distributionp(xt, yt|yt+1:T ) by sampling from:

N

([
xt

νt

]
; V, Z

)
≈

Ns∑

i=1

w
(i)
t|t+1:T δ

([
xt

νt

]
−

[
x

(i)
t

ν
(i)
t

])
,

where

V =
[

µb
t

0

]
Z =

[
P b

t 0
0 Rt

]
.

One thus calculates the following moments:

µx
t|t+1:T = µb

t

µy
t|t+1:T =

Ns∑

i=1

w
(i)
t|t+1:T φ

(
x

(i)
t , ν

(i)
t

)

P x
t|t+1:T = P b

t

P y
t|t+1:T =

Ns∑

i=1

w
(i)
t|t+1:T

[
φ

(
x

(i)
t , ν

(i)
t

)
− µy

t|t+1:T

] [
φ

(
x

(i)
t , ν

(i)
t

)
− µy

t|t+1:T

]T

P xy
t|t+1:T =

Ns∑

i=1

w
(i)
t|t+1:T

[
x

(i)
t − µx

t|t+1:T

] [
φ

(
x

(i)
t , ν

(i)
t

)
− µy

t|t+1:T

]T

,

such that one can then use the update equations:

µx
t|t:T = µx

t|t+1:T + P xy
t|t+1:T P y −1

t|t+1:T (yt − µy
t|t+1:T )

P x
t|t:T = P x

t|t+1:T − P xy
t|t+1:T P y −1

t|t+1:T P xy T
t|t+1:T .
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The first and second moments of the smoothed distribution can be calculated through the intermediate step:

x̃t|1:T = P̃ x −1
t|1:T

(
P x −1

t|1:t−1µ
x
t|1:t−1 + P x −1

t|t:T µx
t|t:T

)

P̃ x −1
t|1:T = P x −1

t|1:t−1 + P x −1
t|t:T ,

where one removes the artificial prior as follows:

µx
t|1:T = P x −1

t|1:T
(
P̃−1

t|1:T x̃t|1:T − Pm −1
t−1 xm

t−1

)

P x −1
t|1:T = P̃−1

t|1:T − Pm −1
t−1 .

We remark that it is possible to propagate a probability measure on the joint spacext, xt+1. This would result in a (Gaussian)
approximation ofp(xt, xt+1|yt:T ), as stated in equation (12) and would eliminate the need to approximatep(xt) as is presented
in this section, or to use an unscented approximation to a finite measure rather than a probability measure as previously discussed.

VII. M ONTE CARLO APPROXIMATION FOR GENERAL STATE SPACE MODELS

The use of Monte Carlo (MC) methods for stochastic simulation of an analytically intractable distribution has received a
great amount of attention in the past 15 years. It is the intention of this section to review a subset of the MC methodology,
known as Sequential Monte Carlo (SMC) methods, commonly referred to as particle filters (and smoothers)[13].

A. Filtering

1) Importance Sampling:If one was able to obtainN i.i.d. random samples{X(i)
1:t ; i = 1, . . . , N} drawn fromp(x1:t|y1:t),

then an estimate of the (joint) posterior density would be given by:

p̂(x1:t|y1:t) =
1
N

N∑

i=1

δ(x1:t −X
(i)
1:t).

It is typically impossible to sample fromp(x1:t|y1:t) so instead one uses instead the importance sampling identity

p(x1:t|y1:t) =
w (x1:t) q(x1:t|y1:t)∫

w (x1:t) q(x1:t|y1:t)dx1:t

whereq(x1:t|y1:t) is a so-called importance distribution whose support includes the one ofp(x1:t|y1:t) and

w (x1:t) =
p(x1:t|y1:t)
q(x1:t|y1:t)

.

Given N i.i.d random samples{X(i)
1:t ; i = 1, . . . , N},

p̂(x1:t|y1:t) =
w (x1:t) 1

N

∑N
i=1 δ(x1:t −X

(i)
1:t)∫

w (x1:t) 1
N

∑N
i=1 δ(x1:t −X

(i)
1:t)dx1:t

=

∑N
i=1 w

(
X

(i)
1:t

)
δ(x1:t −X

(i)
1:t)

∑N
i=1 w

(
X

(i)
1:t

)

=
N∑

i=1

w
(i)
t δ(x1:t −X

(i)
1:t).

It follows that

Ep(x1:t|y1:t) [ψ (x1:t)] ≈ Ep̂(x1:t|y1:t) [ψ (x1:t)]

=
N∑

i=1

w
(i)
t ψ

(
X

(i)
1:t

)
.

Note that since this is a ratio of estimates the resulting estimate is biased. However this negligible bias is of order1
N and this

estimate is still asymptotically consistent[11].
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2) Sequential Importance Sampling and Resampling:One is able to achieve a sequential update of the importance weights by
(implicitly) assuming the state at the current time is independent of future measurements, thus making the algorithm recursive:

q(x1:t|y1:t) , q(x1:t−1|y1:t−1)q(xt|xt−1, yt). (26)

Based on this importance function and the Markovian assumptions stated in Section I, it is possible to obtain a sequential
weight update equation. Unfortunately such a factorisation (26) of the importance function leads to a phenomenon known as
the degeneracy of the algorithm. That is, the unconditional variance of the importance weights increases over time; all but
one of the normalised importance weights are very close to zero. To avoid this problem, the concept of ‘resampling’ was
introduced[24] to rejuvenate the particle approximation of the posterior distribution under interest. Various schemes can be
adopted to perform resampling, with the interested reader being referred to [13] and references therein. Resampling is deemed

necessary when the number of effective samples,Neff =
(∑N

i=1

(
w

(i)
t

)2
)−1

, falls below a pre-defined threshold. After

resampling, the particles are no longer statistically independent. It has been shown, however, that under mild assumptions, the
estimates one obtains are still asymptotically consistent[9], [14].

One would like, however, to minimise the number of times that resampling has to be conducted to avoid unnecessary errors
being introduced into the algorithm. The choice of importance functionq(xt|xt−1, yt) is therefore critical, as the closer to the
posterior that this function is, the smaller is the variance of the importance weights, and the less resampling is required. The
optimal choice of importance function (in terms of minimising the variance of the importance weights, conditional onX

(i)
1:t−1

andy1:t) is p(xt|X(i)
t−1, yt). Details of the implementation of such a proposal are given in references [2], [14].

GENERIC PARTICLE FILTER

1) Initialise at time t = 1.

• For i = 1, . . . , N , sample X
(i)
1 ∼ q(·|y1).

• For i = 1, . . . , N , compute the importance weights:

w
(i)
1 ∝ µ(X(i)

1 )g(y1|X(i)
1 )

q(X(i)
1 |y1)

,

N∑

i=1

w
(i)
1 = 1.

2) For t = 2, . . . , T .

• For i = 1, . . . , N , sample X
(i)
t ∼ q(·|X(i)

t−1, yt)
• For i = 1, . . . , N compute the importance weights

w
(i)
t ∝ w

(i)
t−1

g(yt|X(i)
t )f(X(i)

t |X(i)
t−1)

q(X(i)
t |X(i)

t−1, yt)
,

N∑

i=1

w
(i)
t = 1.

3) Resampling

• Evaluate the number of effective samples, Neff .
• If Neff is greater than a pre-specified value then resample using an appropriate

scheme[13].

B. Forward-backward smoothing

An SMC forward-backward smoothing algorithm can be derived as follows, based on the approximations to equation (4)[14]:

p̂(xt|y1:T ) =
N∑

i=1

w
(i)
t




N∑

j=1

w
(j)
t+1|T

f
(
X

(j)
t+1|X(i)

t

)
[∑N

l=1w
(l)
t f

(
X

(i)
t+1|X(l)

t

)]

 δ(xt −X

(i)
t )

,
N∑

i=1

w
(i)
t|T δ(xt −X

(i)
t ),

wherew
(i)
t|T denotes the (smoothed) weight of theith particle at timet conditioned on the datay1:T .

This particle implementation iterates recursively through the filtered posterior estimates and, without changing the support
of the distribution, modifies the particle weights.
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Note that the memory requirement isO(TN), with the complexity being quadratic in the number of particles,O(TN2).
Reference [26] introduces a rejection sampling method when constructing such an approximation using the forward-backward
algorithm.

The algorithm suffers from one major problem: its reliance on the support of the filtering distribution. If an insufficient
proposal distribution was used in the filtering operation, in so much as it did not represent the support of the filtering distribution
accurately, then one cannot necessarily expect the representation of the smoothed distribution to be accurately modelled by
these samples. This point is exemplified in the smoothing example of a non-linear time series problem examined in Section
VIII.

C. Two-filter smoothing

References [27], [32] implicitly assume that
∫

p(yt:T |xt)dxt < ∞ and develop particle methods in this context. However,
if this assumption is violated, particle methods do not apply. We advocate here the use of the artificial two-filter smoother
as by constructioñp(xt|yt:T ) defined through (7) is always a finite measure. To approximate (7) within an SMC context,
one factorises a proposal distributioñq(xt:T |yt:T ) in a similar manner to Section VII-A.2 to allow the backward information
filtering algorithm to be formed, see equation (12).

INFORMATION PARTICLE FILTER

1) Initialise at time t = T .

• For i = 1, . . . , N , sample X̃
(i)
T ∼ q̃(·|yT ).

• For i = 1, . . . , N , compute the importance weights:

w̃
(i)
T ∝ γT (X̃(i)

T )g(yT |X̃(i)
T )

q̃(X̃(i)
T |yT )

,

N∑

i=1

w̃
(i)
T = 1.

2) For times t = (T − 1), . . . , 1,

• For i = 1, . . . , N , sample X̃
(i)
t ∼ q̃(·|X̃(i)

t+1, yt).
• For i = 1, . . . , N , compute the importance weights:

w̃
(i)
t ∝ w̃

(i)
t+1

g(yt|X̃(i)
t )γt(X̃

(i)
t )f(X̃(i)

t+1|X̃(i)
t )

γt+1(X̃
(i)
t+1)q̃(X̃

(i)
t |X̃(i)

t+1, yt)
,

N∑

i=1

w̃
(i)
t = 1.

3) Resampling

• Evaluate the number of effective samples, Neff .
• If Neff is greater than a pre-specified value then resample using an appropriate

scheme[13].

Based on the particle estimates of the objects required to estimate the smoothed marginal posterior distribution, one can
easily see that:

p̂(xt|y1:T ) ≈
∫ (

N∑

i=1

w
(i)
t−1δ(xt−1 −X

(i)
t−1)

)
f(xt|xt−1)

(∑N
j=1 w̃

(j)
t δ(xt − X̃

(j)
t )

)

γt(xt)
dxt−1

∝
N∑

j=1

w̃
(j)
t

N∑

i=1

w
(i)
t−1

f
(
X̃

(j)
t |X(i)

t−1

)

γt

(
X̃

(j)
t

) δ(xt − X̃
(j)
t ).

The computational complexity of this algorithm is again quadratic in the number of particles,O(TN2), but one would expect
the smoothed distribution to be better approximated, since it does not necessarily rely on the support of the approximation
to the filtered density to be an accurate representation of the smoothed density. Approximation schemes such as rejection
sampling can be used to reduce the computational complexity of the particle smoothing algorithm.
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D. Joint Distribution

Based on the factorisation in section II, one has a particle implementation as described below[15]. An equation for the
weights is simply given as:

w
(i)
t|t+1 =

w
(i)
t f

(
X̃t+1|X(i)

t

)

∑N
j=1 w

(i)
t f

(
X̃t+1|X(j)

t

) ,

where X̃t+1 is a randomly selected particle chosen from the support of the filtering distribution with weightw
(i)
t|t+1. The

random variableX1:T is approximately distributed according top(x1:T |y1:T ). This procedure can be repeated to produce further
(independent) realisations, as required. Note that schemes to reduce the Monte Carlo variance such as Rao-Blackwellisation
have also been employed in reference [21].

It is possible to approximate the MAP sequence estimate within a particle filtering context through the use of the Viterbi
algorithm. This has been applied in the filtering case in reference [23].

E. Parameter estimation using the Expectation Maximisation (EM) algorithm

In many cases of interest, the state-space model depends on unknown parametersθ ∈ Θ. That is,

Xt|Xt−1 = xt−1 ∼ fθ(·|xt−1);
Yt|Xt = xt ∼ gθ(·|xt),

where for the sake of simplicity we assume here that the initial distributionµ is independent ofθ. To estimate this parameter
given y1:T , we propose to maximize the log-likelihood

log (pθ (y1:T )) = log (pθ (y1)) +
T∑

t=2

log (pθ (yt| y1:t−1)) .

A direct maximization of the likelihood is difficult and we instead use the standard EM algorithm[12]. This iterative algorithm
proceeds as follows: given a current estimateθ(i−1) of θ then

θ(i) = arg max
θ∈Θ

Q
(
θ(i−1), θ

)

where

Q
(
θ(i−1), θ

)
= Eθ(i−1) [ log (pθ (x1:T , y1:T ))| y1:T ]

=
∫

log (pθ (x1:T , y1:T )) pθ(i−1) (x1:T | y1:T ) dx1:T . (27)

The EM algorithm guarantees thatpθ(i) (y1:T ) ≥ pθ(i−1) (y1:T )4 making it a popular and intuitively appealing inference
technique.

When the complete data distribution is from the exponential family, then computingQ
(
θ(i−1), θ

)
only requires evaluating

expectations of the form

Eθ(i−1) [ϕ1 (xt)| y1:T ] , Eθ(i−1) [ϕ2 (xt−1, xt)| y1:T ] andEθ(i−1) [ϕ3 (xt, yt)| y1:T ] .

This can be done using any smoothing technique approximating the marginal distributionsp (xt| y1:T ) andp (xt−1:t| y1:T ). In
the particular case of general state-space models, we recommend using the two-filter formula. The maximization ofQ

(
θ(i−1), θ

)
with respect toθ can be typically performed analytically. Experimental results from the application of this technique can be
found in Section VIII.

VIII. E XPERIMENTAL RESULTS

A. Jump Markov linear system

In several problems related to seismic signal processing and nuclear science [8], [39], the signal of interest can be modelled
as the output of a linear filter excited by a Bernoulli-Gaussian (BG) process and observed in white Gaussian noise. We therefore
provide an example of the detection of a Bernoulli-Gauss process related to the aforementioned application domain. The input
sequence isνt ∼ λN(0, σ2

ν) + (1 − λ0), 0 < λ < 1, and the observation noise isε′t ∼ N(0, σ2
w). ν′t and ε′t are mutually

independent sequences. The linear filter is modelled by and AR(2) model. Thus, we haveS = {1, 2}, and the signal admits
the following state-space model:

B =
(

a1 a2

1 0

)
, H = (10)

4If Q
(
θ(i−1), θ

)
is evaluated numerically using particle methods, then we cannot ensure this property.
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Q(1) = (σ2
ν 0)T , Q(2) = (0 0)T , R = σ2

w.

In the following simulations, we set the parameters toa1 = 1.51, a2 = −0.55, and σν = 0.50, σw = 0.25. T = 250
observations are generated and the exemplar data set is shown in Figure 1.
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Fig. 1. Top: simulated signalXt (solid line) and observationsYt (dotted line). Middle: simulated sequenceν′t.. Bottom: smoothed posterior estimates
p(At = 1|y1:T ).

The results show that it is possible to employ any mixture component reduction approximation technique such that one
has a reasonable computational expense without compromising the fidelity of the estimate. The scheme employed here was
to perform mixture reduction at each time instance using the GBP methodology, which is similar in nature to that performed
in reference [25], although one can utilise any approximation scheme such as retaining theN -top weighted components or
sampling based approaches, for example, using the material presented.

B. Non-linear time series

Consider the time series problem[24], [32]:

Xt+1 =
1
2
Xt + 25

Xt

1 + X2
t

+ 8 cos(1.2t) + vt+1 (28)

Yt =
X2

t

20
+ ωt, (29)

whereνt+1 andωt+1 are independent zero mean Gaussian noise sequences respectively. As discussed by in [24], the likelihood
is bimodal when the measurements are (strictly) positive, making the inference problem difficult for Kalman filter based
algorithms. We now compare the results produced using differing proposal distributions in an SMC context, since Kalman
based methods are deemed inadequate for this example. An exemplar set of data are displayed in Figure 2.
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Fig. 2. Exemplar data from the model defined by equations (28)-(29). Simulated signalXt (solid line) and observationsYt (star)
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Method Average RMS(a) Average RMS(b)
Filter (prior) 98.87 164.10
Forward-backward (prior) 67.0 138.57
Filter (optimal) 96.9 147.42
Forward-backward (optimal) 65.59 101.07
Information filter (Gaussian mixture) 30.40 92.40
Two-filter (optimal/Gaussian mixture) 22.53 42.98

TABLE I

AVERAGE RMS VALUES FOR 100 MONTE CARLO RUNS

To enable a comparison between the two (forward-backward and two-filter) smoothing methodologies, 100 Monte Carlo
simulations were performed. Following reference [24] we used 500 particles over 50 time epochs. Two sets of experiments
were conducted with different noise variances: the process noise variance and measurement noise variance were taken to be
5.0, 0.1 and 15.0, 0.001 for experiment sets (a) and (b), respectively. The measurement noise variance was taken as 0.1 for both
experiments. Furthermore, we compared two proposal distributions (prior and ‘optimal’ - implemented using an Unscented
approximation to the proposal[44]) to test the hypothesis that the support of the filtering distribution dictates the accuracy (in
terms of root mean square (RMS) error) in forward-backward smoothing. Note that a (relatively) flat Gaussian distribution was
used as the artificial prior in this example, which is needed since the information filtering quantity is not integrable inxt.

The average RMS error values for the minimum mean square estimate (MMSE) for these simulations are displayed in
Table I. The proposal distribution used for each of the simulations appears as a bracketed term next to each method. One can
see that for experiment set (a) in the forward-backward smoothing procedure there does not appear to be any advantage of
using the optimal proposal over the prior. This suggests that there is no reliance on the support of the filtering distribution
for this particular example. Experiment set (b) was therefore conducted in conditions that one would recommend using the
(approximate) optimal distribution. The results produced allow the conclusions sought (that is, there are cases when the support
of the filtering distribution dictates the accuracy of the forward-backward smoothed estimate) to be reached. The authors suggest
that the practitioner should ensure that the most suitable proposal is used as an application specific compromise; either in terms
of computational reduction (clearly the prior distribution should be used in experiment set (a)) or state estimation accuracy
(the optimal distribution would be the authors’ choice for experiment (b)). In both sets of experiments, the two-filter smoother
outperformed the forward-backward filtering algorithm, which one would expect, since the smoothed distribution is being
approximated from two sets of realisations of the respective two-filter sweeps.

We now comment on the choice of importance function in the backward information filter: we choose to use a bimodal
importance function that incorporates information from the measurements but is independent of the previous set of particles.
Note that this is not sampling from the likelihood[36], which would involve the application of the change of variable theorem
(and would require sampling from a truncated Gamma distribution after algebraic manipulations). The authors note that if one
chooses the process noise distribution from which to sample for this example, then the normalisation constant for the weight
update cannot be calculated (since the integral is intractable).

C. Parameter estimation

Stochastic volatility models are used extensively in the analysis of financial time series data. A natural inference problem
is to estimate the parameters in such a complex model, with the EM algorithm being a popular gradient based method to
perform such inference. The application of particle smoothing methods to circumvent the non-linear estimation problem when
calculating expectations for the EM algorithm is now considered.

The stochastic volatility model can be written as follows:

Xt+1 =θ1Xt + θ2νt+1, X1 ∼
(

0,
θ2
2

1− θ2
1

)

Yt =θ3 exp (Xt/2) ωt,

whereνt+1 and ωt are two independent standard Gaussian noise processes. The initial state,X1, which is independent of
the states at all other times, is distributed according to the invariant distribution of process evolution. Moreover, this invariant
distribution is used as the pseudo-prior in the backward information particle filter. As we use the invariant distribution forµ(·),
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we cannot maximiseQ in closed form. However, we can use a gradient algorithm initialised at the value given by:

θ
(i)
1 =

∑T
t=2 Eθ(i−1) [Xt−1Xt| y1:T ]∑T−1

t=1 Eθ(i−1) [X2
t | y1:T ]

θ
(i)
2 =

(
(T − 1)−1

(
T∑

t=2

Eθ(i−1)

[
X2

t

∣∣ y1:T

]
+ θ

(i)2
1

T∑
t=2

Eθ(i−1)

[
X2

t−1

∣∣ y1:T

]− 2θ
(i)
1

T∑
t=2

Eθ(i−1) [Xt−1Xt| y1:T ]

))1/2

,

θ
(i)
3 =

(
T−1

T∑
t=2

y2
tEθ(i−1) [ exp (−Xt)| y1:T ]

)1/2

.

This initialisation corresponds to the maximum of a modifiedQ function where the initial state is discarded. It should be noted
that the sample-based approximations,p̂(xt−1, xt|y1:T ) ≈ p(xt−1, xt|y1:T ) and p̂(xt, xt+1|y1:T ) ≈ p(xt, xt+1|y1:T ), have
the peculiar property that

∫
p̂(xt−1, xt|y1:T )dxt−1 6=

∫
p̂(xt, xt+1|y1:T )dxt+1. So the expectations,Eθ(i−1) [Xt−1Xt| y1:T ],

Eθ(i−1)

[
X2

t−1

∣∣ y1:T

]
and Eθ(i−1)

[
X2

t

∣∣ y1:T

]
must all be calculated usinĝp(xt−1, xt|y1:T ) alone. In the experiences of the

authors, this is shown to have a significant impact on convergence.
This algorithm can be applied to the pound/dollar daily exchange rates; see [17], [18]. UsingN = 500 particles, the results

obtained werêθ1 = 0.877, θ̂2 = 0.1055, and θ̂3 = 0.6834, which compare favourably with those in reference [17], [18].

IX. CONCLUSIONS

This article has presented a review of the common methods used in smoothing for state space models. Consequently, the
generic exposition and creation of a rigorous mathematical framework has resulted in the production of several important
modifications and novel extensions which improve the robustness and efficiency of such algorithms.
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