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Abstract

In this paper, the problem of sequentially learning parameters governing discretely
observed jump-diffusions is explored. The estimation framework involves the introduc-
tion of m − 1 latent points between every pair of observations to allow a sufficiently
accurate Euler-Maruyama approximation of the underlying (but unavailable) transition
densities. Particle filtering algorithms are then implemented to sample the posterior
distribution of the latent data and the model parameters online. The methodology is
applied to the estimation of parameters governing a stochastic volatility (SV) model
with jumps. As well as using S&P 500 index data, a simulation study is provided.

1 Introduction

Recently, much attention has been given to diffusion driven models that incorporate
jumps. Indeed, the increasing popularity of such models can be attributed to their role
in finance; stochastic volatility (SV) models with jumps in returns have been examined
by Johannes, Polson & Stroud (2006b) and Liu, Longstaff & Pan (2001) among others,
however, Bates (1996), Duffie, Singleton & Pan (2000) and Pan (2002) find that such
models are misspecified and propose models with jumps in both returns and volatility
(see also the work by Bakshi, Cao & Chen (1997), Eraker, Johannes & Polson (2003)
and Eraker (2004)).

This paper considers the problem of sequential parameter estimation in diffusion
driven SV models with jump components in both returns and volatility. Whilst global
MCMC schemes are reasonably well developed for such models (see for example Eraker
et al. (2003), Eraker (2004) and Raggi & Bordignon (2006)) relatively little work has
addressed the filtering problem; Johannes et al. (2006b) perform sequential parameter
inference for discrete time models with jumps in returns only and Johannes, Polson &
Stroud (2006a) filter latent states in SV models with jumps whilst holding parameter
values constant.

The reason for sequential learning is clear in the financial setting. Returns data ar-
rive almost continuously and as each new data point becomes available, global MCMC
schemes must be started from scratch to include the new observation. The sequential
schemes developed here are computationally attractive and build on recent work in
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the area of sequential Monte Carlo. For fixed parameters particle filtering as been ex-
plored extensively in the context of discrete time state space models (Gordon, Salmond
& Smith 1993, Pitt & Shephard 1999, Doucet, Godsill & Andrieu 2000) whilst sequen-
tial learning for unknown static parameters and states has been examined by Storvik
(2002), Fearnhead (2002) (using sufficient statistics) and also Liu & West (2001), Gilks
& Berzuini (2001) and Johannes et al. (2006b). For applications of particle filters
to diffusion processes see Del Moral, Jacod & Protter (2002), Golightly & Wilkinson
(2006a), Golightly & Wilkinson (2006b) and Johannes et al. (2006a).

The first particle filtering algorithm we develop extends the simulation filter of
Golightly & Wilkinson (2006a) to diffusions with jump components. The methodology
uses the technique of introducing latent data points between every pair of observations
to allow the Euler-Maruyama approximation of the true transition densities (Pedersen
1995). The posterior distribution of the latent data and the model parameters is then
sampled on-line via sequential MCMC. The algorithm of Storvik (2002) is also applied
— it is found that both algorithms perform well on simulated data, however, when using
the S&P 500 index data, the simulation filter struggles to adapt to new information
arriving after the Crash of 1987. To assess the validty of each method, a simulation
study is provided and the output of each filter is compared to the output of the Gibbs
sampler of Eraker (2004).

The remainder of this paper is organised as follows. The model is formulated in
Section 2 and the general estimation framework is described. Particle filtering algo-
rithms are discussed in Section 3 and the methodology is illustrated in Section 5 before
conclusions are drawn in Section 6.

2 Models and Estimation framework

Consider inference for a stochastic volatility model of the form

{

dXt = αdt+
√
Zt dW

x
t + V x dNt

dZt = (θ + κZt) dt+ σz

√
Zt dW

z
t + V z dNt

(1)

Here Xt is the logarithm of an asset’s price (typically scaled by a factor of 100), Zt is
an unobserved volatility process, W x

t and W z
t are Brownian motions with correlation

ρ, Nt is a Poisson process with constant intensity λ, and finally V x ∼ N(µx, σx) and
V z ∼ exp(µz) are jump sizes in respective returns and volatilities. Note that this
model belongs to the affine jump diffusion family introduced in Duffie et al. (2000)
and examined by Eraker et al. (2003) and Eraker (2004). By removing the jump
components (λ = 0), (1) reduces to the square-root model of Heston (1993). The
SVJ model considered by Bates (1996) has Normally distributed jumps in returns
only whilst Eraker et al. (2003) consider the SVIJ model with independently arriving
jumps in volatility and returns. Raggi & Bordignon (2006) examine the SVCJ model
with common jump component and correlated jump sizes, V z ∼ exp(µz) and V x ∼
N(µx+ρjV

z, σ2
x). For the applications considered in Section 5, attention will be focused

on the model given by (1) with ρ = 0 (and note that this is necessary to implement
the particle filter of Storvik). Henceforth the estimation framework will be presented
in this context.

Let Θ denote the vector of unknown parameters in the model. Then the goal is
to infer Θ based on discrete time observations of Xt only. By adopting the Bayesian
imputation approach previously persued by Pedersen (1995), it is necessary to work
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with the discretised version of (1), given by the Euler approximation,

{

Xt+∆t = Xt + α∆t+
√
Zt ∆W x

t + V x
t+∆t Jt+∆t

Zt+∆t = Zt + (θ + κZt)∆t+ σz

√
Zt ∆W z

t + V z
t+∆t Jt+∆t

(2)

where ∆W x
t and ∆W z

t are independent N(0,∆t) random variables, and Jt+∆t is a
Bernouilli random variable with constant intensity λ∆t. Now suppose that measure-
ments x(τi) are available at evenly spaced times τ0, τ1, . . ., τT with intervals of length
∆∗ = τi+1 − τi. For weekly or monthly asset data, ∆∗ is often too large to be used as a
time step in (2). We therefore put ∆t = ∆∗/m for some positive integer m ≥ 1. Then,
choosing m to be sufficiently large ensures that the discretisation bias is arbitrarily
small, but this also introduces the problem of m − 1 missing values in between every
pair of observations.

In order to provide a framework for dealing with these missing values, the entire time
interval [τ0, τT ] is divided into mT + 1 equidistant points τ0 = t0 < t1 < . . . < tn = τT
(where n = mT ) such that Xt is observed at times t0, tm, . . . , tn. To fix the notation,
stack all augmented values (both observed and missing) of Xt and Zt in the matrix Y ,
let J contain all the jump times and V contain all the jump sizes. That is

Y =

(

xt0 Xt1 · · · xtm Xtm+1
· · · · · · xtn

Zt0 Zt1 · · · Ztm Ztm+1
· · · · · · Ztn

)

,

V =

(

V x
t1

· · · V x
tm

V x
tm+1

· · · · · · V x
tn

V z
t1

· · · V z
tm

V z
tm+1

· · · · · · V z
tn

)

,

J =
(

Jt1 · · · Jtm Jtm+1
· · · · · · Jtn

)

.

Now let Yi, Vi and Ji denote the ith columns of Y , V and J respectively. By adopting
a fully Bayesian approach, a priori beliefs about Θ, Z0, V1 and J1 are summarised via
the prior distribution π(Θ, Z0, V1, J1). Then the joint posterior density for parameters
and augmented data is given by

π(Y, V, J,Θ|Dn) ∝ π(Θ, Z0, V1, J1)
n−1
∏

i=0

π(Yi+1|Yi, Ji+1, Vi+1,Θ)

× π(Vi+1|Ji+1,Θ)π(Ji+1|Θ) (3)

where Dn = (x0, xm, . . . xn), π(Vi+1|Ji+1,Θ) is obtained from the distributional form
of the jump sizes, π(Ji+1|Θ) is the Bernouilli p.m.f. with parameter λ∆t and finally
π(Yi+1|Yi, Ji+1, Vi+1,Θ) is the Euler transition density obtained from (2) which can be
written as

π(Yi+1|Yi, Ji+1, Vi+1,Θ) = π(Xi+1|Yi, Ji+1, V
x
i+1,Θ)π(Zi+1|Zi, Ji+1, V

z
i+1,Θ) (4)

where

π(Xi+1|Yi, Ji+1, V
x
i+1,Θ) = φ

(

Xi+1;Xi + α∆t+ V x
i+1Ji+1 , Zi+1∆t

)

(5)

π(Zi+1|Zi, Ji+1, V
z
i+1,Θ) = φ

(

Zi+1;Zi + (θ − κZi)∆t+ V z
i+1Ji+1 , σ

2
zZi+1∆t

)

(6)

and φ(·, ψ,Σ) denotes the Gaussian pdf with mean ψ and variance matrix Σ.
As discussed in Tanner & Wong (1987), inference may proceed by alternating be-

tween simulation of parameters conditional on augmented data, and simulation of the
missing data given the observed data and the current state of the model parameters.
As the joint posterior (3) is usually high dimensional, a Gibbs sampler (Geman &
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Geman 1984) is a particularly convenient way of sampling from it. For the model
given by (1) with ρ = 0, closed form full conditionals are available for each Xi, Ji and
Vi, and for each parameter. A Metropolis-Hastings (M-H) step can be implemented
to sample the full conditional of each Zi (known as Metropolis within Gibbs). The
Gibbs sampling approach has been persued in the context of SV models with jumps
by Eraker et al. (2003) and Eraker (2004) whilst other global MCMC schemes have
been implemented by Raggi & Bordignon (2006) among others. Such schemes require,
however, that if new data become available, parameter samples must be discarded and
the sampler restarted to include the new information. Furthermore, computational
burden is increased with every observation and for very large datasets (common in
finance) running the algorithm may not be feasible.

Attention is therefore turned to the development of two particle filtering algorithms.
Firstly, the simulation filter of Golightly & Wilkinson (2006a) is extended to diffusions
with jump components. Finally, the particle filter of Storvik (2002) is adapted. Both
algorithms sample a new (Θ∗, Y ∗, V ∗, J∗) in three stages: first Θ∗ is sampled from a
suitable proposal and then J∗, V ∗ are sampled from J, V |Θ∗. Finally Y ∗ is sampled
from a tractable approximation to Y |V ∗, J∗,Θ∗, Dn. The latter step is performed
using a diffusion bridge construct conditional on the proposed jumps and sizes, and
the observed data. It is found that this approach is far more efficient than simply using
the Euler approximation to propose the missing values.

3 Sampling Conditioned Diffusions with Jumps

In order to implement the particle filters of Section 4, it is crucial that we can sample
the latent data between two observations of the diffusion. Unfortunately, sampling the
missing data between two observations that are m steps apart, under the nonlinear
structure of the diffusion is difficult. An MCMC step is therefore used here and the
remainder of this section deals with the construction of an efficient proposal process.

Consider an arbitrary d-dimensional multivariate jump diffusion of the form

dYt = µ(Yt)dt+ β
1

2 (Yt)dWt + V dNt (7)

for which the Euler–Maruyama approximation is

Yt+∆t = Yt + µ(Yt)∆t+ β
1

2 (Yt)∆Wt + Vt+∆tJt+∆t (8)

after suppressing any parameter dependence to simplify the notation. Suppose that we
have observations Ytj = yj and YtM = yM (where M = j +m) and divide the interval
[tj , tM ] intom+1 points tj < tj+1 < . . . < tj+m = tM with each ti+1−ti = ∆t. Our goal
is to approximate a sample of Yt conditional on our two observations by generating a
skeleton bridge Yj+1, . . . , YM−1 conditioned to start at yj and finish at yM . We proceed
by assuming that the jump times Jj+1, . . . , JM and sizes Vj+1, . . . , VM are known and
construct a Gaussian approximation to π(Yi+1|Yi, yM , Jj+1:M , Vj+1:M ) (defined for i =
j, . . . ,M−2) and we denote the approximate density by π̃(Yi+1|Yi, yM , Jj+1:M , Vj+1:M ).
This density is derived by formulating the joint density of Yi+1 and YM (conditional
on Yi, plus the jump times and sizes) and then using MVN theory to condition on
YM = yM . We therefore start with the density of YM conditional on Y i+1 which we
obtain using a very crude Euler approximation

π̃(YM |Yi+1, Ji+2:M , Vi+2:M ) = φ

(

YM ; Yi+1 + µi+1∆
+ +

M
∑

k=i+2

VkJk , βi+1∆
+

)

(9)
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where ∆+ = (M − i− 1)∆t, and the shorthand notation of µi+1 = µ(Yi+1) is adopted.
To give a linear Gaussian structure, we approximate (9) further by noting that µ
and β are locally constant (by assumption). Estimating µi+1 and βi+1 by µi and βi

respectively, we obtain

π̃(YM |Yi+1, Ji+2:M , Vi+2:M ) = φ

(

YM ; Yi+1 + µi∆
+ +

M
∑

k=i+2

VkJk , βi∆
+

)

. (10)

The density π(Yi+1|Yi, Ji+1, Vi+1) is the one step ahead Euler transition density given
by

π(Yi+1|Yi, Ji+1, Vi+1) = φ (Yi+1; Yi + µi∆t+ Vi+1Ji+1 , βi∆t) (11)

and we can therefore combine (10) and (11) to construct the approximate joint density
of Yi+1 and YM (conditional on Y i, Ji+1:M and Vi+1:M ) using MVN conditioning results
which yield

(

Yi+1

YM

)

∼ N2d

{(

Yi + µi∆t+ Vi+1Ji+1

Yi + µi∆
− +

∑M
k=i+1 VkJk

)

,

(

βi∆t βi∆t
βi∆t βi∆

−

)}

(12)

where ∆− = (M − i)∆t. We now condition (12) on YM = yM to give

π̃(Yi+1|Yi, yM , Jj+1:M , Vj+1:M ) =

φ

(

Yi+1 ; Yi +
yM − Yi

M − i
+ Vi+1Ji+1 −

∑M
k=i+1 VkJk

M − i
,
M − i− 1

M − i
βi∆t

)

(13)

This density can then be sampled for i = j, . . . ,M − 2 to give a skeleton bridge
conditioned to start at yj and finish at yM and we use this construct as a proposal
inside an MCMC step. Note that other proposal processes are possible — the Euler-
Maruyama approximation could be used, however, it does not take into account future
jumps or the fixed end point of the process.

3.1 An Empirical Example

As an illustrative example, consider the task of sampling the univariate jump diffusion

dYt = (0.1 − 0.05Yt) dt+ 0.5
√

Yt dWt + V dNt (14)

conditioned on Y0 = 2 and Y1 = 3. Here V ∼ exp(1.0) and Nt is a Poisson process with
intensity 0.01. Following the notation of the preceding Section we split [0, 1] into m+1
time points 0 = t0 < . . . < tm = 1 with time step ∆t = 1/m. An MCMC step is used
and the jump times and sizes are then proposed by sampling J∗

i+1 ∼ Bern(0.01∆t) and
V ∗

i+1 ∼ exp(1.0) for i = 0, . . .m−1. If the Euler scheme is used to propose Y ∗
1 , . . . , Y

∗
m−1

then the acceptance probability for a move to Y ∗
1:m−1, J

∗
1:m, V

∗
1:m reduces to

min

{

1,
π(ym|Y ∗

m−1, J
∗
m, V

∗
m)

π(ym|Ym−1, Jm, Vm)

}

.

If the bridging construct given by (13) is used, then the acceptance probability is

min

{

1,

∏m−1
i=0 π(Y ∗

i+1|Y ∗
i , J

∗
i+1, V

∗
i+1)

∏m−1
i=0 π(Yi+1|Yi, Ji+1, Vi+1)

×
∏m−2

i=0 π̃(Yi+1|Yi, ym, Jj+1:m, Vj+1:m)
∏m−2

i=0 π̃(Y ∗
i+1|Y ∗

i , ym, J∗
j+1:m, V

∗
j+1:m)

}

.

Figures 1 and 2 show 20 proposed paths generated from each scheme with m = 5 and
m = 50. Empirical means and standard deviations for the acceptance probability of
each scheme are tabulated for increasing m in Table 1.
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[Figure 1 about here.]

[Figure 2 about here.]

[Table 1 about here.]

The Euler scheme is not conditioned on the end-point and consequently, as m is
increased, we see a decrease in acceptance probability. The bridging scheme, however,
is conditioned to finish at the end-point resulting in a satisfactory number of proposals
being accepted.

4 Particle Filtering

4.1 The Simulation Filter

Recall the augmented data formalism of Section 2 so that data Dj = (x0, xm, . . . , xj),
(where j is an integer multiple of m) arrive at times t0, tm . . . , tj . Therefore, at time
tj+m (denoted tM ), new data xM are accompanied by missing data Xj+1:M−1 corre-
sponding to the observed component, Zj+1:M corresponding to the unobserved com-
ponent, the jump times Jj+1:M and jump sizes Vj+1:M . As each observation becomes
available, interest lies in the online estimation of the unknown parameter vector Θ.
When xM is observed, assimilation of the information contained in xM consists of gen-

erating a sample
{(

Θ(s), Z
(s)
M

)

, s = 1, . . . , S
}

from the posterior π(Θ, ZM |DM ), which is
henceforth denoted by πM (Θ, ZM ). This distribution can be found by formulating the
posterior for parameters and all augmented data and then integrating out the latent
data. Using (3),

π(Zj:M , Xj+1:M−1, Jj+1:M , Vj+1:M ,Θ|DM ) ∝

πj(Θ, Zj)

M−1
∏

i=j

π(Yi+1|Yi, Ji+1, Vi+1,Θ)π(Vi+1|Ji+1,Θ)π(Ji+1|Θ) (15)

and we sample this density, for example, by MCMC and discard all components except
Θ and ZM to give a sample from the target posterior density. Note that since πj(Θ, Zj)
has no analytic form, the particle filter recursively approximates Θ, Zj |Dj by the swarm

of points or particles
{(

Θ(s), Z
(s)
j

)

, s = 1, . . . , S
}

with each Θ(s), Z
(s)
j having a discrete

probablity mass of w
(s)
j = 1/S. It is assumed that as S → ∞, the particles approximate

the filtering density πj(Θ, Zj) increasingly well. As the filter treats the discrete support
generated by the particles as the true (filtering) density, the simulation filter proceeds
at time tj by first selecting an integer, u, uniformly from the set {1, . . . , S} and then
drawing

(

Θ∗, Z∗
j

)′

∼ N
{(

Θ(u), Z
(u)
j

)′

, h2B
}

(16)

where B is the Monte Carlo posterior variance and the overall scale of the kernel is a
function of the smoothing parameter, h2 usually dependent on the sample size, S. The
effect of (16) is to replace πj(Θ, Zj) in (15) with its smooth kernel density form, and
this step is included to avoid sample impoverishment (when only a few particles are
propogated through each time point). Whilst this step is not entirely satisfactory (and
indeed Liu & West (2001) argue that adding random noise can lead to overdispersed
posteriors) it is found to work well for the examples considered here. Note that the
choice of h2 in (16) is equivalent to the choice of smoothing parameter in kernel density
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estimation and a trade off between under and over smoothing should therefore be made.
Standard rules of thumb for calculating a suitable h2 can be found in Silverman (1986).

Having proposed Θ∗ and Z∗
j , the latent process in (tj , tM ] is updated as follows.

For i = j, . . . ,M − 1 draw the jump times J∗
i+1 ∼ π(·|Θ∗) and the jump sizes V ∗

i+1 ∼
π(·|J∗

i+1,Θ
∗). Draw Z∗

i+1 recursively from the Euler transition density given by (6).
That is, draw Z∗

i+1 ∼ π(·|Z∗
i , J

∗
i+1, V

∗
i+1,Θ

∗). Finally, draw X∗
i+1 for i = j, . . . ,M − 2

from π̃(·|Y ∗
i , xM , J

∗
j+1:M , V

x,∗
j+1:M ,Θ

∗) given by

φ

(

X∗
i+1 ; X∗

i +
xM −X∗

i

M − i
+ V x,∗

i+1J
∗
i+1 −

∑M
k=i+1 V

x,∗
k J∗

k

M − i
,
M − i− 1

M − i
Z∗

i ∆t

)

A move to X∗
j+1:M−1, Z

∗
j:M , J

∗
j+1:M , V

∗
j+1:M ,Θ

∗ is accepted with probability

min

{

1 ,

∏M−1
i=j π(X∗

i+1|Y ∗
i , J

∗
i+1, V

x,∗
i+1,Θ

∗)
∏M−1

i=j π(Xi+1|Yi, Ji+1, V x
i+1,Θ)

×
∏M−2

i=j π̃(Xi+1|Yi, xM , Ji+1:M , Vi+1:M ,Θ)
∏M−2

i=j π̃(X∗
i+1|Y ∗

i , xM , J∗
i+1:M , V

∗
i+1:M ,Θ

∗)

}

(17)
Algorithmically, the simulation filter has the following form:

1. Initialise - Set j = 0. For s = 1, . . . , S:

• Draw Θ(s) ∼ π(Θ) and Z0
(s) ∼ π(Z0).

2. MCMC - Set M = j +m. For s = 1, . . . , S:

• Propose (Θ∗, Z∗
j ) using (16). For i = j, . . . ,M − 1:

– Draw J∗
i+1 ∼ π(·|Θ∗).

– Draw V ∗
i+1 ∼ π(·|J∗

i+1,Θ
∗).

– Draw Z∗
i+1 ∼ π(·|Z∗

i , J
∗
i+1, V

∗
i+1,Θ

∗).

• For i = j, . . . ,M − 2:

– Draw X∗
i+1 ∼ π̃(·|Y ∗

i , xM , J
∗
j+1:M , V

x,∗
j+1:M ,Θ

∗).

• Accept and store a move to X∗
j+1:M−1, Z

∗
j:M , J

∗
j+1:M , V

∗
j+1:M ,Θ

∗ with proba-
bility as in (17) otherwise store the current value of the chain.

3. Pruning - For s = 1, . . . , S:

• Discard all components except (Θ(s), Z
(s)
M ).

4. Set j = j +m and return to step 2.

Note that further modifications may be made by thinning the MCMC output at the
expense of running the sampler for longer; R iterations can be performed before thin-
ning by a factor κ (such that R = κS). This is done separately for each time point,
with the final posterior sample of size S used as the prior for the next time point.

4.2 Particle Filtering with Sufficient Statistics

We now turn attention to the application of the algorithm of Storvik (2002) (see also
Fearnhead (2002)) to the model given by (1). Note that the algorithm has been applied
to discrete time Markov jump models, with jumps in returns only, by Johannes et al.
(2006a). The algorithm requires that given J1:j , V1:j , Y0:j the distribution of Θ at time
tj is analytically tractable and in particular, depends on J1:j , V1:j and Y0:j through
some low dimensional sufficient statistics.

Denote the vector of sufficient statistics at time tj by Tj = Tj(J1:j , V1:j , Y0:j) and
the distribution of Θ given Tj by π(Θ|Tj). For the model given by (1), the form of this
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distribution can be found in Appendix A. Now consider the distribution of all latent
data and parameters given data DM :

π(Y0:M\{DM}, J1:M , V1:M ,Θ|DM )

∝ π(Y0:j\{Dj}, J1:j , V1:j |Dj)π(Θ|Y0:j , J1:j , V1:j)

×
M−1
∏

i=j

π(Yi+1|Yi, Ji+1, Vi+1,Θ)π(Vi+1|Ji+1,Θ)π(Ji+1|Θ)

= π(Y0:j\{Dj}, J1:j , V1:j |Dj)π(Θ|Tj)

×
M−1
∏

i=j

π(Yi+1|Yi, Ji+1, Vi+1,Θ)π(Vi+1|Ji+1,Θ)π(Ji+1|Θ) (18)

An equally weighted particle representation of π(Y0:j\{Dj}, J1:j , V1:j |Dj) is used, though
only the sufficient statistics and the state of the unobserved volatility process need to be

stored — that is {(T (s)
j , Z

(s)
j ), s = 1, . . . , S}. Hence, the distribution in (18) is sampled

by first selecting an integer, u, uniformly from the set {1, . . . , S} and then putting T ∗
j :=

T
(u)
j and Z∗

j := Z
(u)
j . A new Θ∗ is then drawn from π(Θ|T ∗

j ) and the latent process in
(tj , tM ] is proposed as in Section 4.1. A move to X∗

j+1:M−1, Z
∗
j:M , J

∗
j+1:M , V

∗
j+1:M ,Θ

∗ is
accepted with probability given by (17) and the vector of sufficient statistics is updated
accordingly. Algorithmically,

1. Initialise - Set j = 0. Initialise T0 with the parameters indexing the prior, π(Θ).
For s = 1, . . . , S:

• Draw Θ(s) ∼ π(Θ) and Z0
(s) ∼ π(Z0).

2. MCMC - Set M = j +m. For s = 1, . . . , S:

• Sample an integer u from the set {1, . . . , S}. Put T ∗
j := T

(u)
j , Z∗

j := Z
(u)
j and

draw Θ∗ ∼ π(·|T ∗
j ) using (20)–(25). For i = j, . . . ,M − 1:

– Draw J∗
i+1 ∼ π(·|Θ∗).

– Draw V ∗
i+1 ∼ π(·|J∗

i+1,Θ
∗).

– Draw Z∗
i+1 ∼ π(·|Z∗

i , J
∗
i+1, V

∗
i+1,Θ

∗).

• For i = j, . . . ,M − 2:

– Draw X∗
i+1 ∼ π̃(·|Y ∗

i , xM , J
∗
j+1:M , V

x,∗
j+1:M ,Θ

∗).

• If the current state of the chain is Xj+1:M−1, Zj:M , Jj+1:M , Vj+1:M ,Θ, accept
and store a move to X∗

j+1:M−1, Z
∗
j:M , J

∗
j+1:M , V

∗
j+1:M ,Θ

∗ with probability as
in (17) and put

T
(s)
M = T (T ∗

j , J
∗
j+1:M , V

∗
j+1:M , Y

∗
j+1:M ).

Otherwise store the current value of the chain and put

T
(s)
M = T (Tj , Jj+1:M , Vj+1:M , Yj+1:M ).

3. Pruning - For s = 1, . . . , S:

• Discard all components except (Θ(s), T
(s)
M , Z

(s)
M ).

4. Set j = j +m and return to step 2.

As with the simulation filter, this algorithm can be modified by running the scheme for
longer and thinning the output. Note also that although we store {Θ(s), s = 1, . . . , S} at
every iteration, the simulated values of Θ at time tM do not depend on those simulated
at time tj — hence sample impoverishment can be avoided without the need to resort
to ad-hoc methods such as the jittering approach discussed in Section 4.1.
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5 Applications

5.1 Simulation Study

To validate the sequential estimation schemes of Section 4, evidence on the performance
of the estimator of Θ in the SV model given by (1) is provided using synthetic data.
Data were simulated from the model with µ = 0.08, θ = 0.02, κ = −0.03, σz = 0.12,
λ = 0.01, µx = −3.1, σx = 2.7 and µz = 1.7 (calibrated to match the S&P data
of Section 5.2). The Euler scheme was implemented twice with a sample interval of
length 0.05— firstly every 20th point was recorded to give 1000 daily observations and
secondly every 100th point was recorded to give 1000 weekly observations. Volatility
paths were discarded leaving only observations on Xt.

We begin by repeating the experiments of Johannes et al. (2006a). The parameters
are assumed to be known and the particle filter is run with S = 5000 particles to recover
the unknown volatility path. The root-mean-squared error (RMSE) and mean-absolute
error (MAE) between the filtered means and the true simulated volatilities are given in
Table 2 for increasing m with daily and weekly data. Figure 3 shows filtered volatilities
and true values for diferent values of m and daily data. A similar plot obtained using
weekly data can be found in Figure 4.

[Table 2 about here.]

[Figure 3 about here.]

[Figure 4 about here.]

As expected, errors are larger when using the weekly data (as opposed to the daily
data) as the Euler method does not approximate the underlying true transition density
as well. Note that when using daily or weekly data, after an initial increase in accuracy
when going from m = 1 (no latent points between each pair of observations) to m = 5,
there is little to be gained from increasing m. An explanation can be found in Johannes
et al. (2006a) — the results are sensitive to parameter values as non-normality varies
with Θ and in particular with κ and σz. If the latter parameter values are small (as is
the case here) then discretisation bias is small when using even m = 1.

Attention is now turned to the case of unknown parameters. The particle filter of
Section 4.2 and the simulation filter of Section 4.1 are run with S = 30, 000 particles
and a thin of 150 (ie a total of 4.5×106 iterations) with m = 1, m = 5 and m = 20.
Prior distributions are taken to be those given in Appendix A. Tables 3 and 4, and
Figures 5- 7 summarise the posterior distribution obtained from the daily data. Similar
results (not reported here) are obtained for the weekly data.

[Table 3 about here.]

[Table 4 about here.]

[Figure 5 about here.]

[Figure 6 about here.]

[Figure 7 about here.]
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Tables 3 and 4 reveal substantive differences in the output of the particle filter
and the simulation filter. For example, with m = 5, the particle filter gives respective
posterior means of µx, σx and µz as -2.729, 2.235 and 2.094. The simulation filter,
on the other hand, yields -3.851, 2.585 and 1.745. Since each estimate is consistent
with the true value, we evaluate the accuracy of each sequential scheme by sampling
the posterior distribution via full MCMC. That is, we run the global MCMC scheme
of Eraker et al. (2003)with m = 5 and for 3 million iterations with a thin of 100.
Smoothed densities from the output of the MCMC scheme are compared with the
output of the particle filter in Figure 5 and the simulation filter in Figure 6. Whereas
the output of the particle filter is consistent with that of the full MCMC scheme,
there are notable inconsistencies between the output of the simulation filter and full
MCMC. In particular, the simulation filter gives jump parameter posteriors that are
over dispersed (compared to the ’truth’) which may be a symptom of the jittering
approach applied to each particle before propagation.

Figure 7 shows that both sequential algorithms recover the unknown volatility trace
fairly accurately, despite having to integrate over the uncertainty associated with not
knowing Θ. Filtered volatilities are provided for m = 5 only. Indeed, inspection of
Table 3 suggests that there is little to be gained in accuracy by using a discretisation
of m > 5 when daily data is used. This is consistent with the findings of Eraker et al.
(2003), Johannes et al. (2006a) amongst others.

5.2 S&P 500 Data

In this Section, the particle filter is applied to daily observations of the S&P 500 index
data, Jan. 3, 1986 - Jan. 3, 2000. Note that this corresponds to some 3539 observations
and will therefore exacerbate any shortcomings of the sequential algorithm. The parti-
cle filter is run with S = 30, 000 particles and a thin of 300 with parameter priors as in
Appendix A. Note that σz is fixed to a value of 0.12 (as estimated using full MCMC)
as it is well documented that the particle filter struggles to estimate the volatility of
the volatility. Although this was not found to be the case when using simulated data,
it does appear to be a problem when using the S&P 500 data. As the results of Section
5.1 suggest that there is little to be gained by using a discretisation of m > 5 for daily
data, m is set to be 5. Posterior means and standard deviations are reported in Table 5
obtained from the output of the particle filter. Note that the output of the simulation
filter is not reported — when using this method on the S&P data, propagated particles
fail to adapt after the crash of 1987 and consequently, posteriors degenerate.

[Table 5 about here.]

[Figure 8 about here.]

[Figure 9 about here.]

Just as in Section 5.1, parameter posteriors obtained from the output of the particle
filter are compared to those obtained by using full MCMC estimation. Inspection of
Figure 8 reveals that both algorithms lead to parameter estimates that are consistent
with one another although posterior samples of µx and σx from the particle filter
may have degenerated slightly, suggesting that a longer run (i.e. a greater number of
particles) is required to approximate the posterior sufficiently well.

Filtered volatilities are reported in Figure 9. Notice that we observe a jump in
volatility on the day of the crash of 1987. Indeed, immediately prior to the crash,
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jump sizes were relatively small with respective posterior means for µx, σx and µz of
-0.331, 2.054 and 1.955. Immediately after observing the crash, respective estimates
become -19.547, 2.968 and 1.842.

6 Conclusions

Whereas sequential estimation for discrete time stochastic volatility models with jumps
is reasonably well developed, little has been done regarding their continuous-time coun-
terparts. In this paper, we have extended the sequential parameter estimation algo-
rithm of Storvik (2002) to the continuous time stochastic volatility model with jumps
in both returns and volatility. The simulation filter of Golightly & Wilkinson (2006a)
was also considered, however, whilst both algorithms perform well on simulated data,
when applied to the S&P 500 data, the simulation filter struggles to adapt to new
information arriving after the Crash of 1987. Both algorithms rely on being able to
sample the latent diffusion path between two observations conditional on the jump
times and sizes. Whilst the Euler-Maruyama approximation can be used as a proposal
process inside an MCMC step, it is found that the linear Gaussian construct used here
is far more efficient.

It may be possible to improve the efficiency of the sequential algorithms considered
here by including a ’look-ahead’ step as used in the discrete time context by Johannes
et al. (2006a) (see also Pitt & Shephard (1999)). It is less obvious how this step might
be applied in the context of stochastic differential equations with jumps but remains
the subject of ongoing research.

A The form of π(Θ|Tj)

The particle filter of Section 4.2 requires that the distribution of Θ given data up to and
including time tj depends on the vector of sufficient statistics Tj = Tj(J1:j , V1:j , Y0:j).
Here, the form of this distribution is given for the model in (1). The following conjugate
priors are adopted for each parameter:

µ ∼ N(g0, h
−1
0 )

ψ = (θ, κ)T ∼ N(ψ0,Φ
−1
0 σ2

z)

σ2
z ∼ IG(c0, d0)

λ∆t ∼ Beta(s0, f0)

µx ∼ N(m0, k
−1
0 σx)

σx ∼ IG(a0, b0)

µz ∼ G(α, γ)

for which the posterior conditionals are given by
(

µ |Y0:j , J1:j , V
x
1:j

)

∼ N(gj , h
−1
j ) (19)

(

ψ |Z0:j , J1:j , V
z
1:j , σ

2
z

)

∼ N(ψj ,Φ
−1
j σ2

z) (20)
(

σz |Z0:j , J1:j , V
z
1:j

)

∼ IG(cj , dj) (21)
(

λ∆t |J1:j

)

∼ Beta(sj , fj) (22)
(

µx |J1:j , V
x
1:j , σ

2
x

)

∼ N(mj , k
−1
j σ2

x) (23)
(

σ2
x |J1:j , V

x
1:j

)

∼ IG(aj , bj) (24)
(

µz |J1:j , V
z
1:j

)

∼ G(αj , γj) (25)
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where

hj = h0 + ∆t

j−1
∑

i=0

Z−1
i , gj = h−1

j

[

g0h0 +

j−1
∑

i=0

(

Xi+1 −Xi − Ji+1V
x
i+1

Zi

)

]

ψj = Φ−1
j (Φ0ψ0 +HTG), H =











√

∆t
Z0

√
∆tZ0

...
...

√

∆t
Zj−1

√

∆tZj−1











, G =











Z1−Z0−J1V z
1√

∆tZ0

...
Zj−Zj−1−JjV z

j√
∆tZj











Φj = Φ0 +HTH

cj = c0 +
j

2
, dj = d0 +

1

2
(ψT

0 Φ0ψ0 +GTG− ψT
j Φjψj)

sj = s0 +

j−1
∑

i=0

Ji+1, fj = f0 + j −
j−1
∑

i=0

Ji+1

kj = k0 +

j−1
∑

i=0

Ji+1, mj = k−1
j

(

k0m0 +

j−1
∑

i=0

Ji+1V
x
i+1

)

aj = a0 +
1

2

j−1
∑

i=0

Ji+1, bj = b0 +
1

2

(

k0m
2
0 +

j−1
∑

i=0

Ji+1(V
x
i+1)

2 − kjm
2
j

)

αj = α0 +

j−1
∑

i=0

Ji+1, γj = γ0 +

j−1
∑

i=0

Ji+1V
z
i+1

Note that for the applications in Section 5, the prior parameters used by Eraker et al.
(2003) are adopted. That is, g0 = 1, h0 = 0.04, ψ0 = (0, 0)

′

,Φ = diag{1}, c0 = 2.5, d0 =
0.1, s0 = 2, f0 = 40,m0 = 0, k0 = 0.1, a0 = 5, b0 = 20.
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Figure 1: 20 proposed paths of the jump diffusion defined by (14) on [0, 1], conditioned on
Y (0) = 2 and Y (1) = 3, generated using the Euler scheme with (a) m = 5 and (b) m = 50.
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Figure 2: 20 proposed paths of the jump diffusion defined by (14) on [0, 1], conditioned on
Y (0) = 2 and Y (1) = 3, generated using the diffusion bridge scheme with (a) m = 5 and (b)
m = 50.
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Figure 3: Filtered volatilities (red line) and true simulated volatilities (black line) from the
output of the particle filter (with fixed parameters) using daily data and (a) m = 5, (b)
m = 5 and (c) m = 20.
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Figure 4: Filtered volatilities (red line) and true simulated volatilities (black line) from the
output of the particle filter (with fixed parameters) using weekly data and (a) m = 5, (b)
m = 5 and (c) m = 20.
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Figure 5: Parameter posteriors for the particle filter (histogram) and full MCMC (smoothed
density) using 100 simulated daily observations and m = 5.
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Figure 6: Parameter posteriors for the simulation filter (histogram) and full MCMC
(smoothed density) using 100 simulated daily observations and m = 5.
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Figure 7: Filtered volatilities (red line) and true simulated volatilities (black line) from the
output of (a) the particle filter and (b) the simulation filter. Both algorithms used simulated
daily data with m = 5 and unknown parameters.
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Figure 8: Parameter posteriors for the particle filter (histogram) and full MCMC (smoothed
density) using daily observations on the S&P 500, Jan. 3, 1986 - Jan. 3, 2000.

21



1986 1988 1990 1992 1994 1996 1998 2000

0
5

10
15

20
25

30

Z
t

Figure 9: Filtered volatilities — 2.5 and 97.5 percentiles (red lines) and 50 percentiles (black
line) from the output of the particle filter (using daily observations on the S&P 500, Jan. 3,
1986 - Jan. 3, 2000) with m = 5.
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Scheme Mean (standard deviation)
m = 2 m = 5 m = 10 m = 50 m = 100

Euler 0.421 0.259 0.164 0.074 0.055
(0.058) (0.049) (0.040) (0.030) (0.024)

Bridging Construct 0.870 0.868 0.877 0.871 0.874
(0.042) (0.051) (0.044) (0.051) (0.051)

Table 1: Empirical means and standard deviations for the acceptance probability of each
scheme, based on 100 runs of 1000 MCMC iterations.
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m = 1 m = 5 m = 20
Daily

MAE 2.67 2.62 2.60
RMSE 3.62 3.54 3.53

Weekly
MSE 3.55 3.51 3.48
RMSE 4.82 4.77 4.77

Table 2: Mean-absolute and root-mean-squared errors between the filtering density (fixed
parameters) and the true simulated volatilities (multiplied by 10) for increasing m.
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µ θ κ σz λ µx σx µz

True Values
0.08 0.02 -0.03 0.12 0.01 -3.1 2.7 1.7

m = 1
Mean 0.108 0.032 -0.042 0.159 0.011 -3.432 2.248 2.072
S.D. (0.025) (0.009) (0.013) (0.017) (0.007) (2.141) (0.459) (0.440)

m = 5
Mean 0.114 0.036 -0.048 0.169 0.016 -2.729 2.235 2.094
S.D. (0.026) (0.013) (0.016) (0.028) (0.008) (1.961) (0.485) (0.445)

m = 20
Mean 0.113 0.035 -0.046 0.166 0.012 -3.306 2.213 2.053
S.D. (0.025) (0.012) (0.016) (0.029) (0.010) (2.011) (0.480) (0.430)

Table 3: Posterior means and standard deviations for Θ (estimated on 1000 simulated daily
observations), obtained from the output of the particle filter. Results are based on a single
run of 4.5×106 iterations with a thin of 150.
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µ θ κ σz λ µx σx µz

True Values
0.08 0.02 -0.03 0.12 0.01 -3.1 2.7 1.7

m = 1
Mean 0.116 0.048 -0.051 0.170 0.013 -3.455 2.053 1.863
S.D. (0.024) (0.029) (0.030) 0.039) (0.007) (2.160) (0.506) (0.554)

m = 5
Mean 0.121 0.033 -0.038 0.139 0.009 -3.851 2.585 1.745
S.D. (0.017) (0.011) (0.011) (0.022) (0.009) (2.571) (0.488) (0.517)

m = 20
Mean 0.082 0.053 -0.059 0.160 0.010 -3.651 2.541 2.136
S.D. (0.014) (0.016) (0.017) (0.055) (0.004) (2.295) (0.508) (0.200)

Table 4: Posterior means and standard deviations for Θ (estimated on 1000 simulated daily
observations), obtained from the output of the simulation filter. Results are based on a
single run of 4.5×106 iterations with a thin of 150.
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µ θ κ λ µx σx µz

Mean 0.076 0.018 -0.030 0.007 -3.175 2.595 1.489
S.D. (0.013) (0.002) (0.004) (0.003) (0.812) (0.321) (0.260)

Table 5: Posterior means and standard deviations for Θ (estimated using daily observations
on the S&P 500, Jan. 3, 1986 - Jan. 3, 2000), obtained from the output of the particle filter.
Results are based on a single run of 9×106 iterations with a thin of 300.
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