
Proceedings of the Workshop

Inference and Estimation in
Probabilistic Time-Series Models

18 June to 20 June 2008

Isaac Newton Institute for
Mathematical Sciences,

Cambridge, UK

Workshop Organisers:
David Barber, Ali Taylan Cemgil, Silvia Chiappa



Table of Contents
Page Author(s), Title

1 Esmail Amiri, Bayesian study of Stochastic volatility models with STAR volatil-
ities and Leverage effect

10 Katerina Aristodemou,And Keming Yu, CaViaR via Bayesian Nonparametric Quan-
tile Regression

18 John A. D. Aston,Michael Jyh-Ying Peng,Donald E. K. Martin, Is that really the
pattern we’re looking for? Bridging the gap between statistical uncertainty and
dynamic programming algorithms in pattern detection

26 Yuzhi Cai, A Bayesian Method for Non-Gaussian Autoregressive Quantile Func-
tion Time Series Models

28 Adam M. Johansen, Nick Whiteley, A Modern Perspective on Auxiliary Particle
Filters

36 Xiaodong Luo, Irene M. Moroz, State Estimation in High Dimensional Systems:
The Method of The Ensemble Unscented Kalman Filter

44 Geoffrey J. McLachlan, S.K. Ng, KuiWang, Clustering of Time Course Gene-
Expression Data via Mixture Regression Models

50 Valderio A. Reisen, Fabio A. Fajardo Molinares, Francisco Cribari-Neto, Sta-
tionary long-memory process in the presence of additive outliers. A robust model
estimation

58 Teo Sharia, Parameter Estimation Procedures in Time Series Models

67 Yuan Shen, Cedric Archambeau, Dan Cornford, Manfred Opper, Variational
Markov Chain Monte Carlo for Inference in Partially Observed Nonlinear Dif-
fusions

79 Xiaohai Sun, A Kernel Test of Nonlinear Granger Causality

90 Adam Sykulski, Sofia Olhede, Grigorios Pavliotis, High Frequency Variability
and Microstructure Bias

98 Michalis K. Titsias, Neil Lawrence, Magnus Rattray, Markov Chain Monte Carlo
Algorithms for Gaussian Processes

107 Richard E. Turner, Pietro Berkes, Maneesh Sahani, Two problems with varia-
tional expectation maximisation for time-series models

ii



Bayesian study of Stochastic volatility models with
STAR volatilities and Leverage effect.

Esmail Amiri ∗
Member of faculty at IKIU International University

Departmrnt of Statistics Imam Khomeini International University
Ghazvin, Iran.

e amiri@yahoo.com, e amiri@ikiu.ac.ir

Abstract

The results of time series studies present that a sequence of returns on some
financial assets often exhibit time dependent variances and excess kurtosis in the
marginal distributions. Two kinds of models have been suggested by researchers
to predict the returns in this situation: observation-driven and parameter driven
models. In parameter-driven models, it is assumed that the time dependent vari-
ances are random variables generated by an underlying stochastic process. These
models are named stochastic volatility models(SV). In a Bayesian frame work we
assume the time dependent variances follow a non-linear autoregressive model
known assmooth transition autoregressive(STAR)model and also leverage effect
between volatility and mean innovations is present. To estimate the parameters
of the SV model, Markov chain Monte Carlo(MCMC) methods is applied. A
data set of log transformed Pound/Dollar exchange rate is analyzed with the
proposed method. The result showed that SV-STAR performed better than SV-AR.

keywords :Stochastic volatility, Smooth transition autoregressive, Markov chain
Monte Carlo methods, Bayesian , Deviance information criterion, Leverage effect.

1 Introduction

There is overwhelming evidence in study of financial time series that a sequence of returns{yt}
on some financial assets such as stocks cannot be modeled by the linear models, because of time
dependent variances and excess kurtosis in the marginal distributions.

Based on time dependent variances two classes of models have been suggested by researchers,
namely GARCH(Generalized Autoregressive Conditional Heteroskedasticity ) and SV(Stochastic
Volatility). Both of these models estimate volatility conditional on past information and are not
necessarily direct competitors but rather the complements of each other in certain respects.

The class of GARCH models, builds on the fact that the volatility is time varying and persistent
and, also current volatility depends deterministically on past volatility and the past squared returns.
GARCH models are easy to estimate and quite popular since it is relatively straight forward to
evaluate the likelihood function for this kind of models. A standardGARCH(1, 1), for instance,
takes the following form to explain the varianceht at timet:

yt =
√
htεt

ht = β0 + β1y
2
t−1 + β2ht−1

(1)

whereyt is the return on an asset at timet = 1, ..., T . {εt} is independent Gaussian white noise
processes. Given the observation up to timet−1, the volatilityht at timet is deterministic, once the
parameters(β0, β1, β2) are known, Bollerslev(1986). For the class of SV models, the innovations to

∗http://www.ikiu.ac.ir.
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the volatility are random and the volatility realizations are therefore unobservable and more difficult
to be covered from data. However, it is impossible to write the likelihood function of SV models
in a simple closed form expression. Estimating an SV model involves integrating out the hidden
volatilities.

In the literature to estimate SV models there are several methods, one method is MCMC.

Markov Chain Monte Carlo methods(MCMC) is, a promising way of attacking likelihood estimation
by simulation techniques using the computer intensive Markov Chain Monte Carlo methods to draw
samples from the distribution of volatilities conditional on observations. Kim and Shephard(1994)
and Jacuier et al.(1994) are among the first pioneers who applied MCMC methods to estimate SV
models.

The aim is to inference on a class of stochastic volatiliy models known asStochastic volatility with
smooth transition autoregressive(SV-STAR) in a Bayesain framework via MCMC , as in Jacquier et
al.(1994, 1999), while assuming leverage effect between volatility and mean innovations is present.
MCMC permits to obtain the posterior distribution of the parameters by simulation rather than ana-
lytical methods.

In section 2 and 3 the class of Stochastic volatility with smooth transition is introduced, section 4 is
devoted to MCMC methods, in section 5 deviance information criterion and in section 6 conditional
posterior distributions is presented, in section 7 an algorithm is proposed, in the two final sections
an application is displayed and an illustrating discussion is presented.

2 Smooth transition autoregressive models(STAR)

A popular class of non-linear time series models is the threshold autoregressive models(TAR), which
is probably first proposed by Tong(1978). A TAR model is a piece-wise linear model which is reach
enough to generate complex non-linear dynamics. These models are suitable to model periodic time
series, or produce asymmetric and jump phenomena that can not be captured by linear time series
models, Ziwot and Wang(2006). Let observation at timet is denoted byλt, then a TAR model with
k − 1 threshold values can be presented as follows:

λt = Xtφ
(j) + σ(j)ηt if rj−1 < zt ≤ rj (2)

whereXt = (1, λt−1, λt−2, · · · , λt−p), j = 1, 2, · · · , k, −∞ = r0 < r1 < · · · < rk = ∞,
η ∼ N(0, 1), φ(j) = (1, φ(j)

1 , φ
(j)
2 , · · · , φ(j)

p ), zt is the threshold variable andr1, r2, . . . , rk−1 are
the threshold values. These values divide the domain of the threshold variablezt into k different
regimes. In each different regime, the time seriesλt follows a differentAR(p) model. When the
threshold variablezt = λt, with the delay parameterd being a positive integer, the regimes ofλt is
determined by its own laged valueλt−d and the TAR model is calledself exiting TAR or SETAR
model.

In the TAR models, a regime switch happens when the threshold variable crosses a certain threshold.
In some cases it is reasonable to assume that the regime switch happens gradually in a smooth
fashion. If the discountinuity of the threshold is replaced by a smooth transition function, TAR
models can be generalized tosmooth transition autoregressive(STAR) models. Two main (STAR)
models arelogisticandexponential.

2.1 Logistic and Exponential STAR models

In a two regime SETAR model, the observationsλt are generated either from the first regime when
λt−d is smaller than the threshold, or from the second regime whenλt−d is greater than the threshold
value. If the binary indicator function is replaced by a smooth transition function0 < F (zt) < 1
which depends on a transition variablezt (like the threshold variable in TAR models), the model is
called smooth transition autoregressive (STAR) model. A general form of STAR model is as follows,

λt = Xtφ
(1)(1− F (zt)) +Xtψ(F (zt)) + ηt ηt ∼ N(0, σ2) (3)

whereψ = (1, ψ1, · · · , ψp). For practical computation, letφ(2) = ψ−φ(1), then equation (3)can be
rewritten as

λt = Xtφ
(1) +Xtφ

(2)(F (zt)) + ηt (4)
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Model (4) is similar to a two regime SETAR model. Now the observationsλt switch between two
regimes smoothly in the sense that the dynamics ofλt my be determined by both regimes, with one
regime having more impacts in sometimes and the other regime having more impacts in other times.

Two popular choices for the smooth transition function are thelogistic functionand theexponential
functionas follows, respectively.

F (zt, γ, c)) = [1 + e−γ(zt−c)]−1, γ > 0 (5)
F (zt, γ, c)) = 1− e−γ(zt−c)2 , γ > 0 (6)

the resulting model is referred to as logistic STAR or LSTAR model and exponential STAR or
ESTAR, respectively. In the equations (5)and (6) the parameterc is interpreted as the threshold as
in TAR models, andγ determines the speed and smoothness of the transition.

3 Stochastic volatility models with STAR volatilities

The following lognormal SV model is well known in the stochastic volatility litreature(e.g, Harvey
and Shephard (1996)),

yt =
√
htεt

log ht+1 = α+ δ log ht + σηηt+1

(7)

whereyt is the return on an asset at timet = 1, ..., T . {εt} and{ηt} are independent Gaussian
white noise processes,ση is the standard deviation of the shock tolog ht and log ht has a normal
distribution. We take the approach of Yu(2005) and assumecorr(εt, ηt+1) = ρ , then the covariance
matrix of vector(εt, ηt+1)′ is Ω,

Ω =
(

1 ρ
ρ 1

)
(8)

the parameterρ measures the leverage effect. The leverage effect refers to the negative correlation
between{εt} and{ηt+1}(eg. Yu(2005)), which could be the result of increase in volatility following
a drop in equity returns.

Different models have been proposed for generating the volatility sequenceht in the literature, (Kim,
Shephard, & Chib (1998)).

Our aim is in a Bayesian approach to allow the volatility sequence to evolve according to the equation
of a STAR(p) model as model (4), and also assume the leverage effect is present in the model. Then
we name the SV model, stochastic volatility model with STAR volatilities (SV-STAR) and leverage
effect. The equation of a SV-STAR with leverage effect model is as follows,

yt =
√
htεt εt ∼ N(0, 1) ηt ∼ N(0, 1)

λt+1 = Xtφ
(1) +Xtφ

(2)(F (γ, c, λt−d)) + σηt+1

(9)

whereλt = log ht, φ(1) andφ(2) arep+ 1 dimensional vectors,
corr(εt, ηt+1) = ρ, andF (γ, c, λt−d) is a smooth transition function. We assume, without loss
of generality that,d ≤ p always. Whenp = 1, the STAR(1) reduces to an AR(1) model. In
F (γ, c, λt−d), γ > 0, c andd are smoothness, location (threshold) and delay parameters, respec-
tively. Whenγ → ∞, the STAR model reduces to a SETAR model, and whenγ → 0, the standard
AR(p) model arises. We assume that λ−p+1, λ−p+2, · · · , λ0 are not known quantities.

For the sake of computational purposes, the second equation of the (9) is presented in a matrix form,
λt+1 = W ′θ + σηt+1 (10)

whereθ′ = (φ(1), φ(2)) andW ′ = (Xt, XtF (γ, c, λt−d)). Also letΘ = (θ, γ, c, σ2, ρ). Then we
rewrite (9) as follows:

yt = eλt/2εt εt ∼ N(0, 1) ηt ∼ N(0, 1)

λt+1 = W ′θ + σηt+1

(11)

where (
εt
ηt+1

)
∼

(
1 ρ
ρ 1

)
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4 Markov chain Monte Carlo methods (MCMC)

Markov chain Monte Carlo methods (MCMC) have virtually revolutionized the practice of Bayesian
statistics. Early work on these methods pioneered by Hastings (1970) Geman and Geman (1984)
while recent developments appears in Gelfand and smith (1990) and Chib and Greenberg (1996).

When sampling from some high-dimensional posterior densities are intractable, MCMC methods
provide us with the algorithms to achieve the desired samples. Lettingπ(θ) be the interested target
posterior distribution, the main idea behind MCMC is to build a Markov chain transition kernel

P (z, C) = Pr{θ(m) ∈ C|θ(m−1) ∈ z}M
m=1 (12)

Starting from some initial stateθ(0), with limiting invariant distribution equal toπ(θ). It has been
proved that(see Chib and Greenberg (1996)) under some suitable conditions, one can build such a
transition kernel generating a Markov chain{θ(m)|θ(m−1)} whose realizations converge in distribu-
tion toπ(θ)). Once convergence is happened, a sample of serially dependent simulated observation
on the parameterθ is obtained, which can be used to perform Monte Carlo inference. Much effort
has been devoted to the design of algorithms able to generate a convergent transition kernel. The
Metropolis-Hastings(MH) and the Gibbs sampler are the among most famous algorithms which are
very effective in buildings the above mentioned Markov chain transition kernel.

5 The deviance information criteria

Following the original suggestion of Dempster(1974), recently a model selection criteria in the
Bayesian framework is developed, Spiegelhalter et al.(2002). This criteria is namedDeviance Infor-
mation Criterion(DIC) which is a generalization of well known AIC(Akaike, information criterion).
This criteria is preferred to, BIC(Bayesian information criterion) and AIC, because, unlike them,
DIC needs to effective number of parameters of the model and applicable to complex hierarchical
random effects models. DIC is defined based on the posterior distribution of the classical deviance
D(Θ), as follows:

D(Θ) = −2 log f(y|Θ) + 2 log f(y) (13)
wherey andΘ are vectors of observations and parameters, respectively.

DIC = D̄ + pD (14)

D̄ = EΘ|y[D] andpD = EΘ|y[D]−D(EΘ|y[Θ]) = D̄ −D(Θ̄). Also DIC can be presented as

DIC = D̂ + 2pD (15)

whereD̂ = D(Θ̄)

6 Conditional posterior distributions.

Equation (11) implies a bivariate normal foryt|λt, ρ and
λt+1|λt, θ, γ, c, σ

2, ρ. By writing this bivariate normal density as the product of the density of
λt+1|λt, θ, γ, c, σ

2 and conditional density ofyt|λt+1, λt, θ, γ, c, σ
2, ρ it is easily seen that

λt+1|λt, θ, γ, c, σ
2 ∼ N(W ′θ, σ2) (16)

yt|λt+1, λt, θ, γ, c, σ
2, ρ ∼ N [

ρ

σ
eλt/2(λt+1 −W ′θ), eλt(1− ρ2)] (17)

assuming, the above conditional distributions are independent foryt, t = 1, · · · , T , therefore

f(y1, y2, · · · , yT |Θ, λ) =
∏T

i=1
1

(2π)1/2eλt/2(1−ρ2)1/2

e
− 1

2eλt (1−ρ2)
[yt− ρ

σ eλt/2(λt+1−W ′θ)]2
(18)

then,
f(y1, y2, · · · , yT |Θ, λ) = 1

(2π)T/2(1−ρ2)T/2

e
− 1

2(1−ρ2)
{

T∑
t=1

[yte
−λt/2− ρ

σ (λt+1−W ′θ)]2+(1−ρ2)λt}
.

(19)
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Equation (19)is the likelihood.

Let assumep andd are known. Applying Lubreno’s(2000) formulation, we assume the following
priors ,

p(γ) =
1

1 + γ2
, γ > 0

wherep(γ) is a truncated cauchy density.

c ∼ U [c1, c2]

where c has a uniform density,c ∈ [c1, c2], c1 = F̂ (0.15), c2 = F̂ (0.85) and F̂ is the emprical
cumulative distribution function(cdf) of the time series.

p(σ2) ∝ 1
σ2

ρ is assumed to be uniformly distributed,ρ ∈ (−1, 1).

With the assumption of independence ofγ, c, σ2, ρ andφ(1) and also an improper prior forφ(1),

p(φ(1), γ, σ2, c, ρ) ∝ (1 + γ2)−1σ−2

(φ(2)|σ2, γ, ρ) ∼ N(0, σ2eγIp+1)

Then, the joint prior density is,

p(Θ) ∝ σ−3(1 + γ2)−1 exp{−1
2
(γ + σ−2e−γφ′(2)φ(2))} (20)

A full Bayesian model consists of the joint prior distribution of all unknown parameters, here,Θ,
and the unknown states,λ = (λ−p+1, · · · , λ0, λ1, · · · , λT ), and the likelihood. Bayesian inference is
then based on the posterior distribution of the unknowns given the data. By successive conditioning,
the prior density is

p(Θ, λ) = p(Θ)p(λ0, λ−1, · · · , λ−p+1|σ2, ρ)×
T∏

t=1
p(λt|λt−1, · · · , λt−p,Θ) (21)

where, we assume
(λ0, λ−1, · · · , λ−p+1|σ2) ∼ N(0, σ2Ip)

and
(λt+1|λt, λt−1, · · · , λt−p+1,Θ) ∼ N(W ′θ, σ2)

Therefore
p(Θ, λ) ∝ σ−(T+3+p)(1 + γ2)−1

e
− 1

2σ2 {(σ
2γ+e−γφ′(2)φ(2))+

−p+1∑
t=0

λ2
t+

T∑
t=1

(λt+1−W ′θ)2} (22)

Using the Bayes theorem, the joint posterior distribution of the unknowns given the data is propor-
tional to the prior times the likelihood, i.e,

π(Θ, λ|y1, · · · , yT ) ∝ (1 + γ2)−1σ−(T+p+3)(1− p2)−T/2×

exp{− 1
2σ2 [σ2γ + e−γφ′(2)φ(2) +

−p+1∑
t=0

λ2
t +

T∑
t=1

[(λt −W ′θ)2]]

− 1
2(1−ρ2){

T∑
t=1

[yte
−λt/2 − ρ

σ (λt+1 −W ′θ)]2 + (1− ρ2)λt}}

(23)

In order to apply MCMC methods, full conditional distributions are necessary, the full conditionals
are as follows:

π(Θ|λ) ∝ σ−(T+6)/2

(1 + γ2)
exp{− 1

σ2
[γσ2 + e−γφ′(2)φ(2) +

T∑
t=1

(λt −W ′
tθ)

2]} (24)
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λt|λ−t ∼ N(W ′θ, σ2),
λ−t = (λ−p+1, · · · , λ0, λ1, · · · , λt−1, λt+1, · · · , λT ) (25)

(θ|λt, γ, c) ∼ N{[
∑
WtW

′
tσ

−2 +M ](
∑
Wtλtσ

−2),
(
∑
WtW

′
tσ

−2 +M)} (26)

whereM = diag(0, σ2e−γIp+1).

(σ2|λ,Θ) ∼ IG[
T + p+ 1

2
, (eγφ′(2)φ(2) +

∑
(λt −W ′θ)2)/2] (27)

whereIG denotes inverse gamma density function.

f(γ, c|λ, θ) ∝ σ−(T+6)/2

1 + γ2
exp{− 1

2σ2
[γσ2 + e−γφ′(2)φ(2) +

T∑
t=1

(λt −W ′θ)2]} (28)

f(λt|λ−t,Θ, y) ∝ f(yt|λt)
p∏

i=0

f(λt+i|λt+i−1, · · · , λt+i−p; Θ)

= g(λt|λ−t,Θ, y)
(29)

If p andd are not known, their conditional posterior distributions can be calculated as follows.

Let p(d) be the prior probability of thed ∈ {1, 2, · · · , L}, whereL is a known positive integer.
Therefore the conditional posterior distribution ofd is

π(d|λ, θ) ∝ f(d|λ, θ)p(d) ∝ σ−(T )/2

(2π)T/2
exp{− 1

σ2

T∑
t=1

(λt −W ′
tθ)

2} (30)

Let p(p) be the prior probability of thep ∈ {1, 2, · · · , N}, whereN is a known positive integer,
multiplying the prior by the likelihood and integrating out theθ, the conditional posterior distribution
of p is

π(k|λ, γ, c, d, σ2) ∝ (2π)(k+1)/2[σ2eγ ]−
k+1
2 |

T∑
t=1

WtW
′
tσ

−2 +M |1/2

exp{− 1
2 (σ−2λ′λ− [

T∑
t=1

Wtλtσ
−2]

[
T∑

t=1
WtW

′
tσ

−2 +M ]′[
T∑

t=1
WtW

′
tσ

−2 +M ]−1

[
T∑

t=1
WtW

′
tσ

−2 +M ][
T∑

t=1
Wtλ

′
tσ

−2])}

(31)

7 Algorithm

In our applicationy, λandΘ are the vector of observation, the vector of log volatilities and the vector
of identified unknown parameters, respectively. following kim et al.(1998)
π(y|Θ) =

∫
π(y|λ,Θ)π(λ|Θ)dλ is the likelihood function, the calculation of this likelihood func-

tion is intractable.

The aim is to sample the augmented posterior density(λ,Θ|y) that includes the latent volatilitiesλ
as unknown parameters.

To sample the posterior densityπ(λ,Θ|y) following Jacquier et al.(1994) full conditional distribu-
tion of each component ofπ(λ,Θ|y)is necessary. The sampling strategy whenp andd are known is
as follows

1. Initialize the volatilities and the parameter vector at someλ(0) andΘ(0) respectively.
2. Simulate the volatility vectorλi from the following full conditional
f(λt|λ(i)

−p+1, · · · , λ
(i)
1 , · · · , λ(i)

t−1, λ
(i−1)
t+1 , · · · , · · · , λ(i−1)

T ,Θ(i−1), y)

3. Sampleθ from (θ|λ(i+1), γ(i), c(i), σ2(i)
)

4. Sampleσ2 from (σ2|λ(i+1), θ(i+1))
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5. Sampleγ andc from f(γ, c|λ(i+1), θ(i+1)) using MH algorithm.

6. If i ≤ m go to 2.

wherem is the required number of iterations to generate samples fromπ(λ,Θ|y).
If p andd are not known, the following steps could be inserted before the algorithm’s final step.

6. Sampled from π(d|λ(i+1), θ(i+1))

7. Samplek from π(k|λ(i+1), γ(i+1), c(i+1), d(i+1)) using MH algorithm.

8 Application

We apply the method and estimation technique described above to a financial time series. The data
consist of a time series of the daily Pound/Dollar exchange rates from 01/10/1981 to 28/6/1985. This
data set has been previously studied by Harvey et al.(1994)and other authors. The series is daily log
transformed, mean corrected returns{yt} given by the transformation

yt = log xt − log xt−1 −
1
T

T∑
t=1

(log xt − log xt−1), t = 1, · · · , T (32)

where{xt} is daily exchange rates.

Ox and BRugs softwares is used to facilitate programming of simulation. In the examples smooth
transition function is logistic function, but the exponential function can be easily replaced. Also to
ease the comparison of our results with the results in the literature, see (Meyer and Yu(2000)), the
parameters of the following form of AR(p) model in each regime is estimated

λt = µ+
p∑

i=1

φi(λt−i − µ) + ηt, ηt ∼ N(0, σ2) (33)

For the convergence control, as a rule of thumb the Monte Carlo error(MC-error) for each param-
eter of interest should be less than5%of the sample standard deviation. Unfortunately because of
page limitation, we are unable to present all of the results, therefore we present here only the final
simulation results.

Parameters of a SV-AR(1) model is estimated, the result is as follows:

Table 1: DIC criterion for SV-AR(1).

D̄ D̂ DIC pD
y 1756 1706 1805 49.35

total 1756 1706 1805 49.35
Table 2:Estimated parameters for model SV-AR(1),β = exp(µ/2).

par. mean sd MC-error 2.5pc median 97.5pc start sample
β 0.6983 0.10490 0.0041120 0.5469 0.6789 0.95430 4002 29998
µ -0.7390 0.28230 0.0110400 -1.2070 -0.7746 -0.09345 4002 29998
φ 0.9775 0.01117 0.0004986 0.9509 0.9790 0.99470 4002 29998
σ 0.1617 0.03018 0.0018200 0.1108 0.1574 0.23010 4002 29998
ρ -.2017 0.05018 0.0018200 -0.1908 -0.1874 -0.11010 4002 29998

Parameters of a SV-STAR(1) withd = 2 is estimated the result is as follows:

Table 3: Dic criterion for a SV-STAR(1) withd = 2.

D̄ D̂ DIC pD
y 1745 1695 1795 49.61
total 1745 1695 1795 49.61
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Table 4: Estimated parameters of a SV-STAR(1) withd = 2.
Par. mean sd MC-error 2.5pc median 97.5pc start sample
c 0.26610 0.29830 0.0115400 -0.50570 0.36640 0.5825 4002 39998
γ 15.23000 4.43500 0.0831300 7.00000 15.00000 24.0000 4002 39998
µ1 0.04261 0.53400 0.0255300 -0.96540 0.036340 1.1030 4002 39998
µ2 0.07591 0.05138 0.0024440 -0.00853 0.070130 0.1920 4002 39998
φ1 0.98080 0.01333 0.0005524 0.94730 0.983300 0.9985 4002 39998
φ2 0.01028 0.05222 0.0025420 -0.08373 0.007779 0.1274 4002 39998
σ 0.17140 0.03654 0.0020990 0.11650 0.165400 0.2514 4002 39998
ρ -0.2300 0.04350 0.002313 -0.26000 -0.2000 -0.15000 4002 39998

9 Discussion

A SV model is comprised of two equations, the first equation is called observation and the second
one is named state. In the literature linear and nonlinear equations are proposed for the state equa-
tion. In a Bayesian approach a nonlinear model called smooth transition autoregressive(STAR)is
used as state equation. Then the new SV model is named SV-STAR, also the leverage effect be-
tween conditional volatility mean and return is assumed. To estimate parameters of SV-STAR with
leverage effect model, likelihood is constructed. The likelihood is intractable and parameter estima-
tion is performed using MCMC methods. A financial data set is examined. Applying DIC criterion,
the result of examination shows that the SV-STAR with leverage effect models perform better than
traditional SV-AR with leverage effect model for this data set. Assuming parametersp andd are
unknown the convergence was very slow. For the future work in this context, we propose three
directions:
 
1. Investigating new simulation algorithms to make convergence of samplers faster.
2. Assuming different variance of the error term in each regime.
3. Assuming the change between two regimes is made via a step transition function.
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Abstract

The Conditional Autoregressive Value at Risk (CAViaR) model introduced by En-
gle and Manganelli (2004) is a very popular time series model for estimating the
Value at Risk in finance. Value at Risk (VaR) is one of the most common mea-
sures of market risk and its measurement has many important applications in the
field of risk management as well as for regulatory processes. In statistical terms,
VaR is estimated by calculating a quantile of the distribution of the financial re-
turns. Given a series of financial returns, Y , VaR is the value of y that satisfies
P (Y ≤ y) = θ, for a given value of θ. Our aim in this paper is to demonstrate
how non-parametric Bayesian quantile regression can be used for the inference
and forecast of CAViaR by constructing a flexible dependence structure for the
model and taking account of parameter uncertainty.

1 Introduction

Value at Risk (VaR) is one of the most common measures of market risk. Market risk is defined as
the possibility of a decrease in the value of an investment due to movements in the market (Hull,
2000). The measurement of VaR has many important applications in the field of risk management
and it is also equally useful for regulatory processes. An example for the latter is that Central Bank
regulators use VaR to determine the capital that banks and other financial institutions are obliged to
keep, in order to meet market risk requirements.

The calculation of VaR aims at representing the total risk in a portfolio of financial assets by using a
single number. It is defined as the maximum possible loss, for a specific probability, in the value of
a portfolio due to sudden changes in the market.

The investigation of different methodologies for the calculation of VaR is motivated by the distinct
characteristic of financial data:

• Financial return distributions are leptokurtotic, i.e. they have heavier tails and a higher peak
than a normal distribution.
• Equity returns are typically negatively skewed
• Squared returns have significant autocorrelation, this means that volatilities of market fac-

tors tend to cluster, i.e. the market volatilities are considered to be quasi-stable (stable in
the short period but changing in the long run)

Several researchers have applied different methodologies by taking into consideration as many of
the above factors as possible. All of the proposed models have a similar structure with the main
differences relating to the way the distribution of the portfolio returns is estimated. The choice
of the most appropriate methodology depends on the understanding of the assumptions underlying
the data and on the comprehension of the mathematical models and the corresponding quantitative
techniques (Manganelli and Engle, 2001).

∗www.carisma.brunel.ac.uk.
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This paper aims to demonstrate how non-parametric Bayesian quantile regression can be used for the
inference and forecast of CAViaR by constructing a flexible dependence structure for the model and
taking account of parameter uncertainty. The rest of the paper is structured as follows. In Section
2 we present the existing methodology for calculating VaR using Quantile Regression. In Section 3
we describe the CAViaR model as presented by Engle and Manganelli (2004). In Section 4 we give
a brief introduction to Bayesian Quantile regression and in Sections 5 and 6 we present the proposed
methodology, including Bayesian model setting and proper posterior discussion. In Section 7 we
carry out some simulations and then in Section 8 we present a comparison of techniques using
empirical data. The paper is finally concluded with a discussion.

2 Methodologies for the calculation of VaR

According to Yu et al. (2003), in statistical terms, VaR is estimated by calculating a quantile of
the distribution of the financial returns. Given a series of financial returns, Y, VaR is the value of
y that satisfies P (Y ≤ y) = θ, for a given value of θ. Formally, the calculation of VaR enables
the following statement to be made “We are (100−θ)% certain that we shall not loose more than y
dollars in the next k days ” (Chen and Chen, 2003).

The most common methodologies for the estimation of VaR can be separated into 3 categories:
parametric models, semiparametric models and quantile regression approach.

Parametric models depend on the assumption that the log-returns follow a specific distribution and
can be described by a GARCH framework (Giot and Laurent, 2004). GARCH models are designed
to model the conditional heteroskedasticity in a time series of returns:

yt = µt + εt,

εt = σtzt.

Consider the quantile regression model:
yt = f(xt;ω) + εt, (1)

and assume that the θth regression quantile of εt is the value, 0, for which P (ε < 0) = θ , instead
of E(ε) = 0 in mean regression. The θth quantile regression model of yt given xt, is then given

by qθ(yt|xt) = f(xt;ω). That is we assume that

(
0∫
−∞

fθ(ε)dε = θ

)
, where f(•) denotes the error

density. In classical quantile regression (Koenker and Hallock, 2001), the θth regression quantile of

εt is the value of
∧
θ that minimises the problem:

∑
t
ρ
θ

(y
t
− f(xt;ω)), where ρ

θ
is the loss function

and is defined as:
ρθ(u) = θ uI[0,∞)(u)− (1− θ)uI(−∞,0)(u), (2)

where I[a,b](u) is an indicator on [a, b].

In conventional generalized linear models, the estimates of the unknown regression parameters are
obtained by assuming that: 1) conditional on xt, the random variables yt are mutually independent
with distributions f(yt;µt) specified by the values of µt = E (yt|xt) and 2) for some known link
function g, g(µt) = xTβ.

3 CAViaR

Engle and Manganelli (2004) proposed an alternative, semi-parametric approach to VaR calcula-
tion, the Conditional Autoregressive Value at Risk (CAViaR) model. The CAViaR model is a very
popular method for estimating the Value at Risk. No distributional assumptions are needed for the
application of this method as in this case instead of modeling the whole distribution, the quantile is
modelled directly. Let the θ-quantile of the distribution of portfolio returns at time t be denoted as
qt(β) ≡ (f(xt),βθ)

The very general CAViaR specification is of the form:

qt(β) = β0 +
p∑
i=1

βi qt−1(β) + l (βp+1, ..., βp+q; Ωt−1) . (3)
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Where, Ωt−1 represents all the available information at time t, qt−1 (β) is the autoregressive term
that ensures that the quantile changes smoothly over time and l(•) is used to connect qt(β) with the
observable variables in the information set.

It is important to note that the process in (3) does not explode as long as the roots of 1 − β1z −
β2z

2 − ...− βpzp = 0 satisfy the condition |z| > 1.

A special case of CAViaR model can be defined as: qt(β) = xTβ+ εt , and quantile regression can
be applied to estimate the vector of unknown parameters. The regression quantile is defined as the
value of β that minimises the form:

min
β∈<

 ∑
t∈{t:yt≥xtβ}

θ|yt − xtβ|+
∑

t∈{t:yt,<xtβ}
(1− θ)|yt − xtβ|

 .
4 Bayesian Quantile Regression

The use of Bayesian inference in generalized linear and additive models is quite standard these
days. Unlike conventional methods, Bayesian inference provides the entire posterior distribution
of the parameters under investigation and it allows the uncertainty factor to be taken into account
when making predictions. Bayesian inference is widely used nowadays, especially since, even in
complex problems, the posterior distribution can be easily obtained using Markov Chain Monte
Carlo (MCMC) methods. (Yu and Moyeed, 2001).

Yu and Moyeed (2001) have shown that minimisation of the check function in (2) is equivalent to the
maximisation of a likelihood function formed by combining independently distributed asymmetric
Laplace densities. That is, under the framework of generalized linear models, to make Bayesian
inference for the conditional quantile qθ(yt|xt), the following assumptions must be made: f(yt;µt)
is following an asymmetric Laplace distribution with probability density function fθ(u) = θ(1 −
θ) exp {−ρθ(u)} and for some known link function g, g(µt) = xTβ(θ) = qθ(yt|xt) , for 0 < θ <
1.

Given the data yt the posterior distribution of β, p(β|y) is given by:

p(β|y) = L(y|β)p(β), (4)

where p(β) is the prior distribution of β and L(y|β) is the likelihood function defined as:

L (y|β) = θn(1− θn) exp

{
−
∑
t

ρθ(yt − xTβ)

}
. (5)

A standard conjugated prior is not available for quantile regression, but the posterior distribution of
unknown parameters can be easily obtained using Markov Chain Monte Carlo (MCMC) methods.
In theory, we could use any prior for β, but if no realistic information is available improper uniform
prior distributions for all the components of β are also suitable.

5 The Bayesian CAViaR Model

In this section we present our methodology for making inferences about the CAViaR model under
the Bayesian Quantile regression framework.

We consider the model:
yt = qt (β) + εt,

qt (β) = β0 +
p∑
i=1

βiqt−1 (β) + l (βp+1, ..., βp+q; Ωt−1). (6)

Examples of CAViaR process have been presented by Engle and Manganelli (2004). For example,
the Symmetric Absolute Value Model:
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qt (β) = β0 + β1qt−1 (β) + β2|yt−1|,

where, yt denotes the vector of observations at time t and εt denotes the model error terms whose

θth quantile is assumed to be zero,

(
0∫
−∞

fθ(ε)dε = θ

)
, where fθ (•) denotes the error density.

Our aim is to demonstrate how non-parametric Bayesian Quantile regression can be used to estimate
the unknown parameters in CAViaR models. These estimates will be then used to estimate the
one-step ahead Value at Risk forecasts for different quantile values. Kottas and Krnjajic (2005)
used a flexible nonparametric model for the prior models of the error density fθ (•)by applying a
nonparametric error distribution based on the Dirichlet Process (DP) mixture models (Fergguson,
1973, Antoniak, 1974). The only parametric family that has been proven suitable to use for quantile
regression is the asymmetric Laplace distribution (Yu and Moyeed, 2001). Kottas and Krnjajic
(2005) extended the parametric class of distribution in (5) though appropriate mixing.

A general Bayesian nonparametric setting in terms of DP mixture is given by

yt
β, σt ind∼ Kp

(
yt − qt

(
β), σt), t = 1..n.

βn ∝ 1, n = 1..p+ q (7)

σt
G iid∼ G, t = 1..n

G
M,d ∼ DP (MG0)

G0 = IG(c, d)

where, M is the precision parameter and IG denotes an Inverse Gamma distribution with mean d
c−1 .

We chose independent improper uniform priors for all the components of β, a DP prior distributions
for σt, c = 2 and d =average of the previous time series of σt.

The first step is to construct the joint posterior distribution for the unknown parameters which,
according to the theory of Bayesian inference (4), is given by:

f(β, σt|y) ∝ p(β)p(σt)
∏

f(yt|β, σt). (8)

Having defined the joint posterior distribution the next step is to specify the likelihood function
f(yt|β, σt) , define suitable prior distributions p(β) and p(σt) for the unknown parameters and then
work out the full conditional posterior distribution for each of the unknown parameters.

The likelihood function f(yt|β, σt) is given by:

f(yt|β, σt) ∝
∏

f(yt|yt−1, qt−1(β),β, σt),

where f(yt|yt−1, qt−1 (β) ,β, σt) is asymmetric Laplace probability density function (Yu and Moy-
eed, 2001, Kottas and Krnjajic, 2005) defined as:

f(yt|yt−1, qt−1 (β) ,β, σt) =
θ(1− θ)
σt

exp
{
−|yt − qt (β)|+ (2θ − 1)(yt − qt (β))

σt

}
. (9)

The full conditional for β is obtained by isolating the terms depending on β from f(β, σt|y) which
results in:

f(β|others) ∝ p(β)
∏

f(yt|yt−1, qt−1 (β) ,β, σt) ∝
∏

Kp(yt − (qt (β)), σt).
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6 Proper posterior

As we see from Section 5 above, a standard conjugate prior distribution is not available for the
CAViaR formulation, MCMC methods may be used to draw samples from the posterior distributions.
This, principally, allows us to use virtually any prior distribution. However, we should select priors
that yield proper posteriors.

In this section we show that we can choose the prior p(β) from a class of known distributions, in
order to get proper posteriors.

The likelihood f(yt|β) in (9) is not continuous on the whole real line, but has a finite or a countably
infinite set of discontinuities, thus is Riemann integrable.

First, the posterior is proper if and only if

0 <
∫
Rp+q+1

f(β|y)dβ <∞. (10)

Theorem 1: Assume that the prior for β is improper and uniform, i.e. p(β) ∝ 1 , then all posterior
moments exist.

Proof: We need to prove that∫
Rp+q+1

p+q∏
j=0

|βj |rj exp

{
−

n∑
t=1

|yt − qt (β)|+ (2θ − 1) (yt − qt (β))
σt

}
dβ (11)

is finite, where (r0, ..., rj) denote the order of the moments of β = (β0, ..., βp) and qt(β) is the
general CAViaR (3), which can be re-represented as

qt (β) = β0{1 +
∑
t

∏
k

βk11 βk22 ...β
kp+q
p+q }+ l (βp+1, ..., βp+q; Ωt−1)

where ki (i = 1, ..., p+ q) are some no-negative integers.

By making the integral transformation α = β0{1+
∑∏

βk11 βk22 ...β
kp+q
p+q }, βi = βi for i = 1, .., p+

q, we obtain qt (β) = α+ l (β1, ..., βp+q; Ωt−1)

Note that
n∑
t=1

|yt − qt (β)|+ (2θ − 1) (yt − qt (β))
σt

= c1

n∑
t=1

|yt − qt (β)|+ c2

n∑
t=1

(yt − qt (β))

= c1
∑
t∈`

(yt − qt (β))− c1
∑
t/∈`

(yt − qt (β)) + c2

n∑
t=1

(yt − qt (β))

where c1 and c2 > 0 and the set ` = {t : qt (β) > 0}.

It is sufficient to prove that
∫

Rp+q+1

p+q∏
j=0

|βj |rj exp
{
−
∑
t∈`

(yt − qt (β))
}
dβ is finite. According to

Lemmas 1 of Yu and Stander (2007) this is true if and only if∫
Rp+q+1

p+q∏
j=0

|βj |rj g (h (θ)
∑
t∈`

(yt − qt (β))dβ is finite, where h (θ) = θ (1− θ)/σt and g (T ) =

exp (− |T |), which is true according to Lemma 2 of Yu and Stander (2007).

7 Simulations

7.0.1 Symmetric Absolute Value Model

To check whether our proposed methodology is able to produce consistent estimates we have run
several Monte Carlo simulations.
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Take Symmetric Absolute Value Specification as an example:

yt = β0 + β1qt−1 (β) + β2|yt−1|+ εt.

From qt(β) = β0 + β1qt−1 (β) + β2|yt−1| and q1 = β0 this model can be reformulated as

yt = B0 +B1 |yt−2|+B2 |yt−1|+ εt

where B0 = 1 + β1 + β2
1 , B1 = β1β2, and B2 = β2

We have used the latter model to test our methodology. We considered the model:

yt = 1 + 0.05qt−1 + 0.6|yt−1|+ εt,

and assumed εt ∼ N(0, 1), for all t = 1, ..., 600.

By reformulating our model we obtained: yt = 1 + 0.03 |yt−2|+ 0.6 |yt−1|+ εt

We have generated 600 observations from this model and we estimated the parameters using the
Symmetric Absolute Value process as quantile specification. We estimated the parameters for dif-
ferent quantile values, namely, 1% 5% 25%, 75% 95% and 99% . We run the MCMC algorithm for
150,000 iterations to make sure their convergence and mixing then discarded the first 100,000. The
value recorded for each parameter was the mean of the values obtained in the last 50,000 iterations.

The results are shown in Table 1.

Table 1: Obtained Results for Symmetric Absolute Value

θ B0

∧
B0 r1 B 1

∧
B1 r2 B 2

∧
B2 r3

0.01 -1.23 -1.17(sd.0.1) 0.28 0.03 -0.08 (sd.0.04) 0.21 0.6 0.74 (sd.0.03) 0.21
0.05 -0.64 -0.53(sd.0.1) 0.22 0.03 -0.04 (sd.0.05) 0.18 0.6 0.67 (sd.0.05) 0.17
0.25 0.33 0.23 (sd.0.1) 0.23 0.03 0.08( sd.0.04) 0.16 0.6 0.59 (sd.0.05) 0.16
0.75 1.67 1.53 (sd.0.1) 0.25 0.03 0.08 (sd.0.04) 0.20 0.6 0.62 (sd.0.04) 0.18
0.95 2.64 2.71 (sd.0.1) 0.22 0.03 0.04 (sd.0.05) 0.18 0.6 0.58 (sd.0.1) 0.18
0.99 3.33 2.74 (sd.0.1) 0.27 0.03 0.28 (sd.0.03) 0.20 0.6 0.58 (sd.0.04) 0.17

As expected the worse results were obtained for the extreme quantile values, 1% and 99% , since in
a sample of 600 observations, it is very difficult to get precise estimates.

The results of the simulations for the other quantile values were pretty close to the real values. The
plots of the posterior distributions of the estimated parameters showed dominant modes close to the
real values of θ. The quality of the estimates was checked using the acceptance rate (r1, r2 and
r3 in Table 1), which for all the parameters were in the acceptable range and close to the optimal
acceptance rate (Roberts and Rosenthal, 2001).

8 Applications

8.0.2 Comparison between Classical Quantile Regression (CQR) and Bayesian Quantile
Regression (BQR

In order to make comparisons between Classical Quantile Regression (CQR) and Bayesian Quantile
Regression (BQR) we carried out analysis on real data series using both methods. Our sample
consisted of monthly prices for the NASDAQ Composite Index for the period from April 1971 to
December 1998. Daily returns were computed as 10 times the difference of the logs of the prices.
The parameters were estimated for different quantile values using the Symmetric Absolute Value
CAViaR specification. The results are shown in tables 2 and 3. As it can be seen from the results the
estimates of the parameters obtained by BQR are very similar to the results obtained using CQR for
most of the quantile values.
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Table 2: Obtained Results, CQR
VaR β0 β1 β2

5% -0.04 1.4 -0.4
10% -0.04 0.8 -0.4
25% 0.0 7 -0.03
50% 0.0 7 -0.01
75% 0.08 0.4 0.2
90% 0.17 0.2 0.3
95% 0.23 0.2 0.3

Table 3: Obtained Results, BQR
VaR β0 β1 β2

5% -0.09 1.6 -0.5
10% -0.1 1 -0.4
25% 0.03 1 -0.2
50% 0.0 6 -0.01
75% 0.08 0.4 0.2
90% 0.15 0.3 0.2
95% 0.14 0.7 0.3

9 Summary and Future Work

The aim of this paper was to demonstrate a new alternative approach for estimating the VaR for port-
folio returns. Engle and Manganelli (2004) proposed a semi-parametric approach to VaR calculation,
the Conditional Autoregressive Value at Risk (CAViaR) model, which is a very popular method of
estimation in which the quantile is modelled directly and no distributional assumptions are neces-
sary. We have demonstrated how non-parametric Bayesian quantile regression can be used for the
estimation of VaR under the CAViaR framework. We demonstrated our approach using a simulated
example for the Symmetric Absolute Value model. Furthermore we proceeded to a comparison of
our approach with classical CAViaR. The results of both the simulations and the comparison were
promising therefore our future work in this area will focus on the application of our methodology for
estimation of VaR in real data series, including exploration of prior selection and model comparison.
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Abstract

Two approaches to statistical pattern detection, when using hidden or latent vari-
able models, are to use either dynamic programming algorithms or Monte Carlo
simulations. The first produces the most likely underlying sequence from which
patterns can be detected but gives no quantification of the error, while the second
allows quantification of the error but is only approximate due to sampling error.
This paper describes a method to determine the statistical distributions of patterns
in the underlying sequence without sampling error in an efficient manner. This
approach allows the incorporation of restrictions about the kinds of patterns that
are of interest directly into the inference framework, and thus facilitates a true
consideration of the uncertainty in pattern detection.

1 Introduction

Dynamic programming algorithms such as the Viterbi algorithm (Viterbi 1967) provide the main-
stay of much of the literature on pattern recognition and classification, especially when dealing with
Hidden Markov Models (HMMs) and other related models. Patterns often consist of functions of
unobserved states and as such as not predicted directly by the model, but indirectly through analysis
of the underlying states themselves. In Viterbi analysis, a trained model is used to analyse test data,
and the most probable underlying sequence, the Viterbi sequence, is determined and then treated as
deterministically correct. This Viterbi sequence is then used to search for patterns of interest that
might or might not have occurred in the data. If the patterns occur in the Viterbi sequence, they are
deemed present in the data, otherwise not. However, there are usually restrictions on the types of
patterns that can occur, and when these restrictions are not met, possible patterns in the underlying
sequence are either discarded or altered to make them fit the known restrictions. However, this inher-
ently alters the nature of the sequence (as discarding or altering states alters the complete underlying
sequence), rendering it not only different from that predicted from the dynamic programming algo-
rithm but also destroying the feature of the underlying sequence being most probable, even amongst
those sequences that satisfy the restrictions.

An alternative approach to the problem of pattern detection is to dispense with the dynamic program-
ming algorithm and instead use approximate methods based on statistical sampling of the underly-
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ing sequence. Monte Carlo samples of the underlying sequence can be drawn, often from efficient
Markov chain algorithms (Cappé, Moulines, and Rydén 2005), and then functions of these states
used to make inferences about the presence of patterns or not. However, approximation algorithms
have the inherent disadvantage of being by nature approximate. It is also often difficult to determine
the number of samples needed to make accurate classifications for functions of the underlying states,
especially for data with a very large number of observations.

This paper describes a method which addresses the disadvantages of the methods above. It generates
statistical distributions associated with the patterns and the model which are exact (in that they are
not subject to sampling error). However, the method also allows the patterns to be explored with
reference to all the possible combinations of underlying sequence and can be easily extended to
discount any sequences that do not possess the required known restrictions. They are inherently fast
and efficient, with computational complexity only growing linearly with the size of the restriction
and the number of possible patterns present.

The paper continues as follows. Firstly a brief section outlining some notation is given. Then in
Section 3, a well known example from bioinfomatics relating to the analysis of CpG islands in DNA
nucleotide sequences is given as motivation for the techniques. The theory underlying the procedure
is then given in Section 4. Section 5 returns to the CpG island example to examine the gains of using
the new methodology, while the last section gives some discussion and ideas for extensions.

2 Notation

The methods which will be examined here can be applied to Markov switching models with the
general form:

yt ∼ f(St−r:t, y1:t−1),
P [St|S−r+1:t−1] = P [St|St−1], t = 1, . . . , n, St ∈ S (1)

The data, yt, from time 1 to time n, which can be either discrete or continuous, is distributed condi-
tional on previous data and r previous switching states St−r, . . . , St−1 in addition to the current state
St (as well as other parameters required for the model, the values of which are implicitly assumed to
be fixed). The common definition of a HMM is the special case with yt dependent on St only (in this
case r is set to 1 due to the underlying Markov chain rather than the data dependence). The notation
yt1:t2 = yt1 , . . . , yt2 is introduced and used from here on, with St1:t2 defined analogously. This
general form is equivalent to assumption Y2 in Frühwirth-Schnatter (2006, p. 317). For simplicity,
the switching states {St} are assumed to be a first-order Markov chain with finite state space S,
but extension to higher-order Markov structures is straightforward. A given initial distribution for
S−r+1:0 is also assumed. With suitable modification, the above model may also include exogenous
variables. No assumption on the distribution of the noise in the system is made other than that the
smoothed probabilities of the states conditional on the data must exist.

3 Motivation - CpG Island Analysis

The use of HMMs to model DNA sequences with heterogenous segments was pioneered by
Churchill (1989). HMMs have been shown to be especially suitable for the analysis of CpG is-
lands. A CpG island is a short segment of DNA in which the frequency of CG pairs is higher than in
other regions. The “p” indicates that C and G are connected by a phosphodiester bond. The C in a
CG pair is often modified by methylation, and if that happens, there is a relatively high chance that
it will mutate to a T, and thus CG pairs are under-represented in DNA sequences. Upstream from a
gene, the methylation process is suppressed in a short region of length 100-5,000 nucleotides, known
as CpG islands (Bird 1987). The underlying nucleotide generating sequence can be modelled as two
different systems, one for when the sequence is in a CpG island, and one for when it is not.

As CpG islands can be especially useful for identifying genes in human DNA (Takai and Jones
2002), different methods have been developed for their detection. One method of determining is-
lands is to use HMMs for the analysis (Durbin et al. 1998). Software is readily available to imple-
ment these HMM-based methods for CpG island analysis, for example Guéguen (2005). The Viterbi
algorithm is used to segment the sequence and analysis then proceeds as indicated above using the
“deterministic” Viterbi sequence.
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Define S = {A+, C+, G+, T+, A−, C−, G−, T−}, where a superscript “+” indicates that the state
is within a CpG island and “−” that it is not, and let SY = {A,C,G, T} be the state space of the data,
which in this case is discrete. The transition probability matrix associated with the state sequence
{St} is taken to be that in Aston and Martin (2007) which was based on the transition probability
matrices given in Durbin et al. (1998). These were calculated using maximum likelihood methods
from human DNA with 48 putative CpG islands present (which were predetermined using other
methods).

If Q represents a generic nucleotide, i.e. Q ∈ {A,C,G, T}, then P (yt = Q|St = Q−) = P (yt =
Q|St = Q+) = 1. Even though the observed nucleotide is totally determined if the underlying state
is known, it is not possible to know whether an observation came from a CpG island or not. Finally,
define the initial distribution as π(A−) = π(C−) = π(G−) = π(T−) = 1

4 , i.e. the underlying
state sequence is equally likely to start in any of the non-CpG island states.

Take as an example the sequence from Human DNA, chromosome 20, locus AL133339 (Barlow
2005) with 18,058 base pairs (bps). Using the method based on the Viterbi algorithm (Durbin et al.
1998) four islands were identified, however, only two of them are at least 100 bps in length, a
requirement of the biological definition of a CpG island. This immediately raises a question. If
only sequences with islands of length at least 100 should be identified, how should this underlying
sequence be altered to account for this fact? Deleting any islands of length less than 100 may lead
to sequences that are less probable than extending those same islands so that their length is longer
than 100. This suggests that the condition on the islands being of length at least 100 should be an
integral part of the analysis rather than a postprocessing step.

4 Analysis of Runs and Patterns in HMMs and related models

A simple pattern Λi refers to a specified sequence of symbols of S, where the symbols are allowed
to be repeated. A compound pattern Λ is the union of simple patterns, i.e. Λ = ∪ηi=1Λi, where the
lengths of the simple patterns Λi may vary, Λa ∪Λb denotes the occurrence of pattern Λa or pattern
Λb, and the integer η ≥ 1.

Consider now a system Λ(1), . . . ,Λ(c) of c compound patterns, c ≥ 1, with corresponding numbers
r1, . . . , rc, where rj denotes the required number of occurrences of compound pattern Λ(j). If the
waiting time of interest is the time until the first occurrence of one of the compound patterns its
specified number of times, Λ(1), . . . ,Λ(c) are called competing patterns (Aston and Martin 2005). If
all of the patterns must occur their specified number of times, the system is called generalised later
patterns (Martin and Aston 2008).

A run of length k in state s is defined to be the consecutive occurrence of k states that are all equal
to s, i.e. St−k+1 = s, . . . , St = s for some t. Of particular interest in this paper will be this special
type of pattern and from here on, for simplicity, only runs will be considered, although all the results
are equally valid for the other types of patterns above.

4.1 Waiting time distributions for runs

DefineWs(k,m) to be the waiting time of themth run of length at least k in state s and letW (k,m)
be the waiting time for themth run of length at least k of any state, where all the runs are not required
to be of the same state.

To determine distributions associated with runs, finite Markov chain imbedding methodology (Fu
and Koutras 1994) will be used. The idea involves imbedding the {St} process into a new Markov
process Zt with a larger state space.

The state space of Zt will consist of vector states of the form ((s1, . . . , sr), j), s1, . . . , sr ∈ S ,
j = 0, . . . , k, consisting of an r-tuple giving the current and previous r − 1 states of the switching
process (i.e. St, . . . , St−r+1), and a component j that counts the current observed run length.
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The state space will change slightly depending on whether it is being used to calculate P [Ws(k, 1) ≤
t] or P [W (k, 1) ≤ t]. When calculating P [Ws(k, 1) ≤ t], for k > r, the state space Zs, for Zt, is

Zs =

( ⋃
sr∈S

· · ·
⋃
s1∈S

((s1, s2, . . . , sr), 0)

)
∪

( ⋃
sr∈S

· · ·
⋃
s2∈S

((s, s2, . . . , sr), 1)

)

∪ . . . ∪

( ⋃
sr∈S

((s, . . . , s, sr), r − 1)

)
∪

(
k−1⋃
i=r

((s, . . . , s), i)

)
∪ ((s, . . . , s), k), (2)

while it is defined similarly for k ≤ r. The state ((s, . . . , s), k) in (2) corresponds to an absorbing
state, and indicates that a run of length at least k has occurred. The notationA will be used to denote
the class of absorbing states (when k < r multiple absorbing states could be present). The state
space Z for calculating P [W (k, 1) ≤ t] is then just

Z =
⋃
s∈S
Zs. (3)

The {Zt} chain conditioned on the data is inhomogeneous, as P [St|St−r:t−1, y1:n] is time-varying.
Specifically the transition probabilities between Zt states are governed purely by the smoothed tran-
sition probabilities for the first component of the Zt vector states, which is itself an r-tuple of St
states.

For transient states in Zs or Z , there are only |S| possible transitions. The transition probabilities
for a generic state ((s1, . . . , sr), i) to a new state ((s0, s1, . . . , sr−1), j) can be determined in the
following steps. The non-zero generic transition probability in the z∗ × z∗ transition probability
matrix Mt (where z∗ denotes |Zs| or |Z|, as appropriate) for the Zt process is

P [Zt = ((s0, s1, . . . , sr−1), j)|Zt−1 = ((s1, . . . , sr), i), y1:n]
= P [St = s0|St−1 = s1, . . . , St−r = sr, y1:n] (4)

for particular values of i and j that are consistent with the possible state transitions, otherwise they
are zero. See Aston and Martin (2007) for a related construction of transition probabilities which
can be extended to this case.

The initial probability distribution ψ0 = P [Z0] is contained in a 1 × z∗ row vector. The non-zero
probabilities can be set to the initial distribution for the St process

P [Z0 = ((S0, S−1, . . . , S−r+1), 0)] = P [S0, S−1, . . . , S−r+1]. (5)

With the state space for Zt constructed in this way, the 1 × z∗ probability vector of being in any
state of Zt at time t, ψt, is given by

ψt = ψ0

t∏
j=1

Mj , (6)

which follows from the well-known Chapman-Kolmogorov equations for Markov chains. The dis-
tributions of interest P [Ws(k, 1) ≤ t] or P [W (k, 1) ≤ t] can then be calculated as

P [Ws(k, 1) ≤ t] = P [Zt ∈ A] = ψtU(A), (7)

with the analogous result holding for P [W (k, 1) ≤ t], where U(Ω) is a z∗ × 1 column vector with
ones in the locations of the members of the set Ω and zeros otherwise.

A class of states C, called continuation states, are added to Zs and Z , and the definition of z∗ is
updated to include the continuation states. The role of the continuation states is that once the ith run
of length at least k has occurred, i = 1, . . . ,m−1, (where it is necessary form runs to occur), a new
Markov chain {Z(i+1)

t } is started to determine the probabilities associated with the next occurrence
of a run of the desired length. The continuation states serve to initialise the new chain {Z(i+1)

t },
and indicate that run i is still in progress and that the run needs to end before the (i + 1)st run can
possibly begin.
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The continuation states correspond in an one-to-one fashion with the absorbing states. The (less
than full rank) z∗ × z∗ matrix Υ, defined on the redefined state space Zs or Z which have been
augmented with the continuation states, with elements

Υ (z1, z2) =
{

1 if z1 ∈ A and z2 ∈ C is the corresponding state
0 otherwise (8)

is used to map probabilities of being in the states of A into probabilities for being in the correspond-
ing states in C.

The transition probability matrices Mt are revised to account for the continuation states. Contin-
uation states may only be entered from other continuation states. The general non-zero transition
probabilities beginning in a continuation state ((s1, . . . , sr),−1) ∈ C where the −1 indicates the
previous run is still in progress, and conditional on the data are of the form

P [Zt = ((s0, s1, . . . , sr−1), j)|Zt−1 = ((s1, . . . , sr),−1), y1:n]
= P [St = s0|St−1 = s1, . . . , St−r = sr, y1:n], (9)

for appropriate values of j ∈ {−1, 0, 1} depending on the value of s0. The transition probabilities
for the other states in either Zs or Z are unchanged.

Let Ψ0 be a m × z∗ initial matrix consisting precisely of ψ0 stacked upon m − 1 row vectors of
zeros, and define the m× z∗ matrix Ψt = [ψ(1)′

t . . . ψ
(m)′

t ]′ where ′ denotes transpose of the 1× z∗

row vectors ψ(i)
t . The Markov transition, used in (6), is updated to an algorithm, which at each time

t, t = 1, . . . , n, has the following two steps:

Ψt = Ψt−1Mt, (10)

ψ
(i)
t ← ψ

(i)
t + ψ

(i−1)
t−1 (Mt − I)Υ, i = 2, . . .m, (11)

where ψ(i)
t is the ith row of Ψt and the second term in (11) increments each row with the probability

that a run has occurred at that time point. For more information on the derivation of this algorithm
in the case of the common definition of HMMs and finite output states see Aston and Martin (2007).

The marginal distributions can then be found easily as

P [W (k, i) = ti + k − 1] = (ψ(i)
ti+k−1 − ψ

(i)
ti+k−2)U(A), (12)

and similarly for P [Ws(k, i) = ti + k − 1].

In addition, using the continuation state C, it is possible to determine the distribution of when the
system leaves a run P [W e

s (k, i) = t], i = 1, . . . ,m − 1. The waiting time W e
s (k, i) is defined to

be the time that the ith run in state s ends, with W e(k, i) being analogously defined for the ith run
in any state. A run is in progress while Zt is in the continuation states, and as such when the chain
leaves the states, the run is over. Thus the waiting time distribution for the end of a run to occur at
time t is given by

P [W e
s (k, i) = t] = ψ

(i)
t (I −Mt+1)U(C), i = 1, . . . ,m− 1. (13)

This allows for a complete set of distributions to be given for the start and finish of any particular
run. Again the analogous result for P [W e(k, i) = t] also holds.

Using the chains given above, it is also possible to determine the distribution of the number of runs
P [Ns(k) = i] into a particular state, or the number of runs P [N(k) = i] which occurred in the data.
This distribution is given by

P [Ns(k) = i] = P [Ws(k, i) ≤ n]− P [Ws(k, i+ 1) ≤ n], i = 0, . . . , bn/(k + 1)c, (14)

where bn/(k + 1)c indicates the integer part of n/(k + 1). In practice, the value at which
P [Ws(k, i) ≤ n] becomes negligible will be i� bn/kc. This is similarly true for P [N(k) = i], by
considering P [W (k, i) ≤ n] for i = 0, . . . , bn/kc.

4.2 Computational Considerations

Given the prevalence of Bayesian techniques in the analysis of Markov switching models (see
Frühwirth-Schnatter (2006) for the latest on these techniques), it is of interest to compare the com-
putational cost of calculating the waiting time distributions through the exact scheme above versus
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drawing samples from the conditional distribution of states given observations. Of course in terms
of error, for fixed parameters, the two approaches cannot be compared as the exact distribution is
not subject to any sampling error.

For both methodologies, drawing conditional samples of the underlying states and the techniques
above, a pass through a Markov chain is necessary. Every state in either approach has at most
|S| possible transition destinations, so all that needs to be compared is the size of the state spaces
associated with the two techniques.

For drawing conditional samples, a state space of size |S|r is needed. For the presented computations
given above, if k > r then the state space Zs is of size

r∑
i=0

|S|i + (k − r + 1) =
1− |S|r+1

1− |S|
+ (k − r + 1) < |S|r|S|+ (k − r + 1)

(the number of states given in (2) plus one for the continuation state) while for Z , the size needed is
at most

|S|r +
1− |S|r+1

1− |S|
+ |S|(k − r + 1) < |S|r(|S|+ 1) + |S|(k − r + 1).

Thus when k > r, if k � |S|r, at most |S|m (and often less) equivalent sample computations are
needed to calculate the marginal waiting time distributions for all m runs. Of course as k increases,
the number of states will increase, but this is only at a linear rate proportional to k.

For k < r, the size of state space Zs needed is

(
r∑

i=r−k

|S|i) + |S|r−k

while for Z

|S|r + (
r∑

i=r−k+1

|S|i) + |S|r−k+1.

All these calculations presume that the state space of the model is of a general finite structure.
Models such as the change point model of Chib (1998) would require significantly less computation
for the exact distributional method given the structure in the model.

5 CpG Islands - revisited

Returning to the example sequence AL133339, CpG islands can be seen as sequences of +’s (since
+ denotes A+ ∪ C+ ∪ G+ ∪ T+). The maximal length and the number of islands in total in the
sequence is of interest, in addition to the locations of islands of length at least 100. The definition
of runs given above can easily be extended to this case.

The state space for the auxiliary {Zt} chain is given by⋃
Q∈{A,C,G,T}

{
(Q+, 1), (Q+, 2), . . . , (Q+, k − 1), Q−, (Q+, k)

}
, (15)

where k is a specified run length, (Q+, i) gives the value of St and the current length of the run of
+’s, and (Q+, k) are absorbing states to indicate that k consecutive +’s have occurred. The desired
run occurs by time t if and only if Zt ∈ (Q+, k), and thus theorems from Section 4 may be used to
compute probabilities. The chain is initialised in the Q− states.

As can be seen in Figure 1, the maximal length of CpG islands is most likely to be in the region of
200 bps for this data set under the settings of the model. However, the Viterbi sequence contains a
CpG island of 362 bps, significantly longer than the maximal number likely present. This is because
the Viterbi sequence only considers the whole underlying sequence rather than any function of states
that leads to particular patterns, and thus does not necessarily lead to the most likely patterns. As
can also be seen in Figure 1b, computing probabilities for states unconditional on the data to predict
the number of CpG islands of length at least 100 bps present, so that the biological restrictions
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(a) PMF of maximal CpG island length. (b) PMF of number of CpG islands of length ≥ 100.

Figure 1: CpG island distributions for the 18,058 nucleotide gene sequence locus AL133339 from
Human Chromosome 20. The first plot shows the probability mass function (PMF) of the maximal
CpG island length using the entire data sequence. The second plot depicts the PMF of the number of
CpG islands of length at least 100 using the entire observed data sequence, as well as unconditional
on the data.

Figure 2: CpG island distributions for the 18,058 nucleotide gene sequence locus AL133339 from
Human Chromosome 20. The first plot shows the probability mass function (PMF) of starting (blue)
and finishing (red) position of the first CpG island, while the second graph gives the position of the
second etc., until the position of the fourth. The final plot (the sum of the plots above) graphs the
probability at each point of either the start or finish of any CpG island at that position.

Figure 3: CpG island distributions for the 18,058 nucleotide gene sequence locus AL133339 from
Human Chromosome 20. Zoom of the distribution of the position of the first CpG island around the
sequence positions 4400-4800.
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are satisfied, gives a similar distribution to that conditional on the actual data. However it does
underestimate the likely number of CpG islands present.

Figures 2 and 3 give examples of the actual distributions of the patterns (runs of length at least 100
bps) obtained from the algorithm. Figure 2 shows the location distributions of particular occurrences
of CpG islands, while the final graph shows the pointwise probabilities of CpG islands starting or
finishing at various locations. While the distributions in Figure 2 seem to contain atoms at certain
points and zeros otherwise, by considering particular sequence positions as in Figure 3, we see
that the distributions are smoother than might be expected, yielding some uncertainty in the exact
position of the CpG islands.

6 Discussion

This paper has presented a methodology to examine patterns that occur in the underlying state se-
quences of HMMs and related models. This differs from previous work in that the patterns them-
selves are integral to the methodology rather than being determined in a post processing step from
either a most probable sequence or from a sampled distribution of underlying states. The methodol-
ogy allows for the quantification of uncertainty about the number, maximal length, and position of
patterns within a data set. This allows a statistical consideration to be made as to whether possible
patterns in the data really are there or not.

The methodology here was examined with explicit reference to HMMs and Markov switching mod-
els, but can be extended to many other types of graphical models and other machine learning and
theoretical computer science techniques. In addition, it would be of interest to extend the methods
to stochastic patterns which means that the patterns themselves are subject to noise or a probability
distribution on their exact form.
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Bayesian method has been used widely in many areas. Gilks et al (1996) and Berg (2004) have
given extensive discussions on these issues. Different types of Markov chain Monte Carlo (MCMC)
methods have been proposed to deal with different problems. For example, Green (1995) proposed
a reversible jump MCMC method to allow proposals that change the dimensionality of the space;
Ball et al. (1999) proposed an MCMC method for hidden Markov processes with applications to
ion channel gating mechanism. All the above work is trying to model the distribution of random
variables of interest.

On the other hand, modelling the quantiles of random variables of interest is becoming more and
more popular. Generally speaking, there are two different types of approaches to modelling quantiles
of a time series yt conditional on y1, . . . , yt−1. One is the semi-parametric approach proposed by
Koenker (2005). His model says that the τ th conditional quantile of yt given yt−1 = (y1, . . . , yt−1)
is given by

qτ
yt|yt−1

= aτ
0 + aτ

1yt−1 + · · ·+ aτ
kyt−k,

where the parameters are estimated by minimizing the following cost function

min
β

n∑

t=k+1

ρτ (ut),

where β = (aτ
0 , . . . , aτ

k) is the parameter vector, ρτ (ut) = ut(τ − I[ut<0]), and

ut = yt − aτ
0 − aτ

1yt−1 − · · · − aτ
kyt−k

for t = k+1, . . . , n. Different methods have been proposed to solve the above optimization problem,
see for example, Koenker and D’Orey (1987, 1994). Yu and Moyeed (2001) and Chen and Yu (2008)
also proposed a Bayesian method to estimate the model parameters in the case when the data are
independent with each other. Cai(2007) and Cai and Stander (2008) extended the Bayesian approach
to deal with quantile self-exciting autoregressive time series models.

Note that we say the above approach is a semi-parametric approach because the error term of the
model is not specified. Gilchrist (2000) proposed a parametric approach to modelling autoregres-
sive quantile function time series models. An autoregressive quantile function time series model is
defined by

Qyt(τ | yt−1) = a0 + a1yt−1 + · · ·+ akyt−k + ηQ(τ, γ), (1)

where ai, i = 0, . . . , k, η and γ are the model parameters, and Q(τ, γ) is the quantile function of
the error term with parameter γ. When Q(τ, γ) is not the quantile function of a normal random
variable, (1) defines a non-Gaussian quantile function time series model. Model (1) is parametric
because we assume that the mathematical form of Q(τ, γ) is known.

Gilchrist (2000) also discussed several methods for estimating the parameters of such models. How-
ever, to the author’s knowledge, no work in the literature can be found on a Bayesian approach to
quantile function modelling for time series, which motivated our current research.

It is worth mentioning that the choice of Q(τ, γ) is very flexible. For example, the sum of quantile
functions gives a new quantile function, the product of two positive quantile functions is also a
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quantile function etc. The properties of quantile functions enable us to construct proper statistical
models for an observed time series, and to deal with non-Gaussian time series very easily. In this
talk, we will consider a simple non-Gaussian quantile function time series model where the error
term follows an exponential distribution, we will present an MCMC method to estimate model
parameters, we will carry out simulation studies to investigate the performance of the method, and
we will also apply the methodology developed to two real time series. We will see that such a
quantile function approach to time series modelling indeed provides a very flexible way to study
non-Gaussian time series.
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Abstract

The auxiliary particle filter (APF) is a popular algorithm for the Monte Carlo ap-
proximation of the optimal filtering equations of state space models. This paper
presents a summary of several recent developments which affect the practical im-
plementation of this algorithm as well as simplifying its theoretical analysis. In
particular, an interpretation of the APF, which makes use ofan auxiliary sequence
of distributions, allows the approach to be extended to moregeneral Sequential
Monte Carlo algorithms. The same interpretation allows existing theoretical re-
sults for standard particle filters to be applied directly. Several non-standard im-
plementations and applications are also discussed.

1 Background

1.1 State Space Models

State space models (SSMs, and the closely related hidden Markov models) are very popular statis-
tical models for time series. Such models describe the trajectory of some system of interest as an
unobservedE-valued Markov chain, known as thesignal process, which for the sake of simplicity is
treated as being time-homogeneous in this paper. LetX1 ∼ ν andXn|(Xn−1 = xn−1) ∼ f(·|xn−1)
and assume that a sequence of observations,{Yn}n∈N are available. IfYn is, conditional upon
Xn, independent of the remainder of the observation and signalprocesses, withYn|(Xn = xn) ∼
g(·|xn), then this describes an SSM.

For any sequence{zn}n∈N
, we definezi:j = (zi, zi+1, ..., zj). In numerous applications, we are

interested in estimating recursively in time an analytically intractable sequence of posterior distri-
butions{p (x1:n| y1:n)}n∈N

, of the form:

p(x1:n|y1:n) ∝ ν(x1)g(y1|x1)

n∏

j=2

f(xj |xj−1)g(yj |xj). (1)

A great deal has been written about inference for such models– see [1, 2] for example – especially
filtering, which corresponds to computing the final time marginal of (1) at each time. This article is
concerned with a class of Monte Carlo algorithms which address this problem by approximating the
distributions of interest with a set of weighted samples. The remainder of this section introduces two
standard approaches to this problem, sequential importance resampling (SIR) and the auxiliary par-
ticle filter (APF). Section 2 illustrates the strong connection between these algorithms, and provides
some guidance upon implementation of the APF. Section 3 thenillustrates a number of extensions
which are suggested by these connections.

1.2 Sequential Importance Resampling

SIR is one of the most popular techniques for performing inference in SSMs. This technique propa-
gates a collection of weighted samples, termedparticles, from one iteration to the next in such a way
that they provide an approximation of the filtering distribution at each iteration. In fact, as illustrated
in algorithm 1, this technique can be used to sample from essentially any sequence of distributions
defined on a sequence of spaces of strictly increasing dimension. At its nth iteration, algorithm 1
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provides an approximation ofπn(x1:n). A crucial step in this algorithm is resampling. This involves
duplicating particles with high weights and discarding particles with low weights and reweighting
to preserve the distribution targeted by the weighted sample. The simplest scheme, multinomial re-
sampling, achieves this by drawingN times from the empirical distribution of the weighted particle
set (lower variance alternatives are summarised in [2]).

Algorithm 1 The Generic SIR Algorithm
At time 1

for i = 1 to N do
X

(i)
1 ∼ q1(·)

W
(i)
1 ∝

π1(X
(i)
1 )

q1(X
(i)
1 )

end for
Resample

{
X

(i)
1 , W

(i)
1

}
to obtain

{
X

′(i)
1 , 1

N

}

At time n ≥ 2
for i = 1 to N do

SetX(i)
1:n−1 = X

′(i)
1:n−1

SampleX(i)
n ∼ qn(·|X

(i)
n−1)

SetW (i)
n ∝

πn(X
(i)
1:n)

qn(X
(i)
n |X

(i)
n−1)πn−1(X

(i)
1:n−1)

end for
Resample

{
X

(i)
1:n, W

(i)
n

}
to obtain

{
X

′(i)
1:n , 1

N

}

In a filtering context,πn(x1:n) = p(x1:n|y1:n) and the expectation of some test functionϕn with
respect to the filtering distribution,ϕn =

∫
ϕn(xn)p(xn|y1:n)dxn can be estimated using

ϕ̂N
n,SIR =

N∑

i=1

W (i)
n ϕn(X(i)

n )

whereW
(i)
n = wn(X

(i)
n−1:n)

/∑N

j=1 wn(X
(i)
n−1:n) and

wn(xn−1:n) =
πn(x1:n)

qn(xn|xn−1)πn−1(x1:n−1)
∝

g(yn|xn)f(xn|xn−1)

qn(xn|xn−1)
. (2)

Note that (2) depends only on the two most recent components of the particle trajectory, so the
corresponding algorithm can be implemented with storage requirements which do not increase over
time and is suitable for online applications. In fact, SIR can be viewed as a selection-mutation
(genetic-type) algorithm constructed with a precise probabilistic interpretation. Viewing SIR as a
particle approximation of a Feynman-Kac flow [3] allows manytheoretical results to be established.

1.3 Auxiliary Particle Filters

It is natural to ask whether it is possible to employ knowledge about the next observationbefore
resampling to ensure that particles which are likely to be compatible with that observation have
a good chance of surviving – is it possible to preserve diversity in the particle set by taking into
account the immediate future as well as the present when carrying out selection? The APF first
proposed by [4, 5] invoked an auxiliary variable construction in answer to this question.

The essence of this APF was that the sampling step could be modified to sample an auxiliary vari-
able, corresponding to a particle index, according to a distribution which weights each particle in
terms of it compatibility with the coming observation. A suitable weighting is provided by some
p̂(yn|xn−1), an approximation of

∫
g(yn|xn)f(xn|xn−1)dxn (if the latter is not available analyti-

cally). It is straightforward to see that this is equivalentto resampling according to those weights
before carrying out a standard sampling and resampling iteration. A similar approach in which the
auxiliary weights are combined with those of the standard weighting was proposed in [6], which
involved a single resampling during each iteration of the algorithm. See algorithm 2.
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Algorithm 2 Auxiliary Particle Filter
At time 1

for i = 1 to N do
X

(i)
1 ∼ q1(·)

W̃
(i)
1 ∝

g(y1|X
(i)
1 )ν(X

(i)
1 )

q1(X
(i)
1 )

end for
At time n ≥ 2

for i = 1 to N do
SetW (i)

n−1 ∝ W̃
(i)
n−1 × p̂(yn|X

(i)
n−1)

end for
Resample

{
X

(i)
n−1, W

(i)
n−1

}
to obtain

{
X

′(i)
n−1,

1
N

}

for i = 1 to N do
SetX(i)

n−1 = X
′(i)
n−1

SampleX(i)
n ∼ qn(·|X

(i)
n−1)

SetW̃ (i)
n ∝

g(yn|X(i)
n )f(X(i)

n |X
(i)
n−1)

bp(yn|X
(i)
n−1)qn(X

(i)
n |X

(i)
n−1)

end for

2 Interpretation and Implementation

Whilst the APF has seen widespread use, remarkably the first asymptotic analyses of the algorithm
have appeared very recently. These analyses provide some significant insights into the performance
of the algorithm and emphasize some requirements that a successful implementation must meet.

2.1 The APF as SIR

When one considers the APF as a sequence of weighting and sampling operations it becomes appar-
ent that it also has an interpretation as a mutation-selection algorithm. In fact, with a little consider-
ation it is possible to interpret the APF as being an SIR algorithm.

It was noted in [7] that the APF described in [6] corresponds to the SIR algorithm which is obtained
by setting

πn(x1:n) = p̂(x1:n|y1:n+1) ∝ p(x1:n|y1:n)p̂(yn+1|xn). (3)
In the SIR interpretation of the APFp(x1:n|y1:n) is not approximated directly, but rather importance
sampling is used to estimateϕn, with the importance distributionπn−1(x1:n−1)qn(xn|xn−1). The
resulting estimate is given by

ϕ̂N
n,APF =

N∑

i=1

W̃ (i)
n ϕn(X(i)

n ) (4)

whereW̃
(i)
n = w̃n(X

(i)
n−1:n)

/∑N

j=1 w̃n(X
(j)
n−1:n) and

w̃n(xn−1:n) =
p(x1:n|y1:n)

πn−1(x1:n−1)qn(xn|xn−1)
∝

g(yn|xn)f(xn|xn−1)

p̂(yn|xn−1)qn(xn|xn−1)
. (5)

Only the case in which resampling is carried out once per iteration has been considered here. Em-
pirically this case has been preferred for many years and onewould intuitively expect it to lead
to lower variance estimates. However, it would be straightforward to apply the same reasoning to
the scenario in which resampling is carried out both before and after auxiliary weighting as in the
original implementations (doing this leads to an SIR algorithm with twice as many distributions as
previously but there is no difficulty in constructing such analgorithm).

One of the principle advantages of identifying the APF as a particular type of SIR algorithm is that
many detailed theoretical results are available for the latter class of algorithm. Indeed, many of the
results provided in [3], for example, can be applied directly to the APF via this interpretation. Thus
formal convergence results can be obtained (see [7] for a central limit theorem and some discussion
of other results which follow directly) without any additional analysis.
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2.2 Implications for Implementation

From an implementation point of view, perhaps the most significant feature of this interpretation is
that it makes clear the criticality of choosing ap̂(yn|xn−1) which ismorediffuse thanp(yn|xn−1)
(as a function ofxn−1). For importance sampling schemes in general, it is well known that a pro-
posal distribution with lighter tails than the target distribution can lead to an estimator with infinite
variance. In the case of the APF the proposal distribution isdefined in terms of̂p(yn|xn−1). It is
therefore clear that the popular choice of approximating the predictive likelihood by the likelihood
evaluated at the mode of the transition density is a dangerous strategy. This is likely to explain the
poor-performance of APF algorithms based on this idea whichhave appeared in the literature. One
simple option is to take

p̂(yn|xn−1) ∝

∫
ĝ(yn|xn)f̂(xn|xn−1)dxn

with the approximations to the likelihood and transition densities being chosen to have heavier tails
than the true densities and to permit this integral to be evaluated.

Whilst it remains sensible to attempt to approximate the optimal (in the sense of minimising the
variance of the importance weights) transition densityqn(xn|xn−1) ∝ f(xn|xn−1)g(yn|xn) and
the true predictive likelihood, it is not the case that the APF necessarily out-performs the SIR algo-
rithm using the same proposal even in this setting. This phenomenon is related to the fact that the
mechanism by which samples are proposed at the current iteration of the algorithm impacts the vari-
ance of estimates made at subsequent time steps. This is immediately apparent from the asymptotic
variance expressions which can be found together with an illustrative example in [7].

2.3 Direct Analysis

A direct analysis of the particle system underlying the APF was performed recently [8]. This con-
firmed the intuitive and empirical results that resampling once per iteration leads to a lower variance
estimate than resampling twice. One principle component ofthis work was the determination of the
auxiliary weighting function which minimises the varianceof estimates of a particular test function
obtainedone step aheadof the current iterations. Whilst this is of some theoretical interest, it would
seem to be necessary to exercise some caution when attempting to use such a weighting function in
practice, as it could have a deleterious effect upon estimates of the integral of thatsame functionat
later iterations.

If the test function of interest can be estimated without obtaining a good characterisation of the entire
distribution (for example, if that function has a support which is substantially smaller than that of
the distribution) then it may be desirable to concentrate the entire particle set in a small region to
minimise the immediate variance, but this could lead to severe problems at subsequent iterations. It
is for precisely the same reason that the use of customised proposal distributions tuned for a specific
test function are not generally used in particle filtering and thus a more conservative approach, with
less adaptation in the proposal mechanism remains sensible.

3 Applications and Extensions

The innovation of the APF is essentially that in sampling from a sequence of distributions using a
SIR strategy, it can be advantageous to employ an auxiliary sequence of distributions which take
account of one-step-ahead knowledge about the distributions of interest and to use importance sam-
pling to provide estimates under those distributions. Thissection summarises some other applica-
tions of this principle outside of the filtering domain in which it has previously been applied.

3.1 (Auxiliary) Sequential Monte Carlo Samplers

SMC Samplers are a class of algorithms for sampling iteratively from a sequence of distributions,
denoted by{πn(xn)}n∈N, defined upon a sequence of potentially arbitrary spaces,{En}n∈N, [9].
The approach involves the application of SIR to a cleverly constructed sequence of synthetic distri-
butions which admit the distributions of interest as marginals. It is consequently straightforward to
employ the same strategy as that used by the APF – see [10] which also illustrates that convergence
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results for this class of algorithms follow directly. In this context it is not always clear that there is a
good choice of auxiliary distributions, although it is relatively natural in some settings.

The synthetic distributions arẽπn(x1:n) = πn(xn)
n−1∏
p=1

Lp (xp+1, xp) , where{Ln}n∈N is a se-

quence of ‘backward’ Markov kernelsfromEn intoEn−1. With this structure, an importance sample
from π̃n is obtained by taking the pathx1:n−1, a sample from̃πn−1, and extending it with a Markov
kernel,Kn, which acts fromEn−1 into En, providing samples from̃πn−1 × Kn and leading to the
importance weight:

wn(xn−1:n) =
π̃n(x1:n)

π̃n−1(x1:n−1)Kn(xn−1, xn)
=

πn(xn)Ln−1(xn, xn−1)

πn−1(xn−1)Kn(xn−1, xn)
. (6)

In many applications, eachπn(xn) can only be evaluated pointwise, up to a normalizing constant and
the importance weights defined by (6) are normalised in the same manner as in the SIR algorithm.
Resampling may then be performed.

If one wishes to sample from a sequence of distributions{πn}n∈N then an alternative to directly
implementing an SMC sampler which targets this sequence of distributions, is to employ an auxiliary
sequence of distributions,{µn}n∈N and an importance sampling correction (with weightsw̃n(xn) =
πn(xn)/µn(xn)) to provide estimates. This is very much in the spirit of the APF. Such a strategy
was termed auxiliary SMC (ASMC) in [10]. Like the APF, the objective is to maintain a more
diverse particle set by using information before resampling rather than after.

3.1.1 Resample-Move: Inverting Sampling and Resampling

As has been previously noted, [9], in a setting in which one has a fixed state space,En = E at every
iteration, and employs a MCMC kernel of invariant distribution πn as the proposal, and makes use
of the auxiliary kernel:

Ln−1(xn, xn−1) =
πn(xn−1)Kn(xn−1, xn)

πn(xn)
,

the importance weights are simplywn(xn−1, xn) = πn(xn−1)/πn−1(xn−1) which is independent
of the proposed state,xn.

Consequently, it is intuitively clear that one should resample beforeproposing new states in the
interests of maximising sample diversity. This has been observed previously, for example by [11].
Indeed doing so leads to algorithms with the same structure as the Resample-Move (RM) particle
filtering algorithm [12]. By making the following identifications, it is possible to cast this approach
into the form of an ASMC sampler.

µn(xn) = πn+1(xn)

Ln−1(xn, xn−1) =
µn−1(xn−1)Kn(xn−1, xn)

µn−1(xn)
=

πn(xn−1)Kn(xn−1, xn)

πn(xn)

wn(xn−1:n) =
µn(xn)

µn−1(xn)
=

πn+1(xn)

πn(xn)

w̃n(xn) = µn−1(xn)/µn(xn) = πn(xn)/πn+1(xn).

This allows existing theoretical results to be applied to both RM and its generalisations.

3.1.2 Filtering Piecewise-Deterministic Processes

As an example, the SMC Samplers framework was employed by [13] to provide filtering esti-
mates for a class of continuous-time processes. This also illustrates that SMC samplers and their
auxiliary counterparts can provide useful extensions of SIR-type algorithms in time-series analy-
sis. Piecewise-Deterministic Processes (PDP’s) are a class of stochastic processes whose sample
paths,{ζt}t≥0 evolve deterministically in continuous time between a sequence of random times
{τj}j∈N, at which the path jumps to new, random values{θj}j∈N. Filtering for partially ob-
served PDP models involves computing a sequence of posterior distributions given observations
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{Yn}n∈N, whereYn = H(ζtn
, Vn), Vn is a noise disturbance and{tn}n∈N is an increasing se-

quence of observation times. Thenth such posteriorπn(kn, θn,0:kn
, τn,1;kn

|y1:n), is a distribution
overEn =

⊎∞
k=0{k} × Θk+1 × Tn,k,whereΘ ⊂ R

d is a parameter space,Tn,k = {τn,1:kn
: 0 ≤

τn,1 < ... < τn,kn
≤ tn}. The posterior distribution is specified by

πn(kn, θn,0:kn
, τn,1;kn

|y1:n) ∝ ν(θn,0)S(tn, τn,kn
)

kn∏

j=2

f(θn,j, τn,j |θn,j−1, τn,j−1)

n∏

p=1

g(yn|ζtn
),

with the conventionτn,0 = 0 and whereS(tn, τn,kn
) is the survivor function associated with the

prior distribution on inter-jump times for the interval[0, tn]. The SMC Samplers framework is
applied to approximate the distributions of interest, using a proposal kernel consisting of a mixture
of moves which extend each particle fromEn−1 to En by adjusting recent jump-time/parameter
pairs and adding new ones. An auxiliary scheme for filtering can be obtained by selecting the
auxiliary distributionµn to be:

µn(kn, θn,0:kn
, τn,1;kn

) ∝ Vn(θn,kn
, τn,kn

)πn(kn, θn,0:kn
, τn,1;kn

|y1:n),

whereVn(θn,kn
, τn,kn

) is a non-negative potential function which provides information aboutyn+1.
This strategy was seen to perform well in [13].

3.2 The Probability Hypothesis Density Filter

Multi-object tracking involves the online estimation of the time-varying number and positions of
a collection of hidden objects, given a sequence of noisy observations. In principle, filtering for
a multi-object tracking model involves computing a sequence of distributions with the same form
as (1). Here,E is E =

⊎∞
k=0 X

k, with X ⊂ R
d is the state-space of an individual object: each

Xn = Xn,1:kn
is actually a random number,kn, of points, each inX , and can be regarded as aspatial

point process[14]. The observation set at timen, Yn = Yn,1:mn
, is defined similarly. Performing

filtering on such spaces is practically very difficult due to the high and variable dimensionality. The
Probability Hypothesis Density (PHD) Filter, [15], approximates the optimal filter for this problem
by assuming that the state process is Poisson process a-posteriori and characterising the intensity of
that process,α.

For ease of presentation, we here consider a specific tracking model for which the PHD recursion
has the following prediction/update structure at itsnth iteration:

αn(xn) =

∫

X

f(xn|xn−1)pS(xn−1)ᾰn−1(xn−1)dxn−1 + γ(xn), (7)

ᾰn(xn) =

mn∑

p=1

g(yn,p|xn)

Zn,p

αn(xn), (8)

where forp = 1, 2, ..., mn, Zn,p =
∫

E
g(yn,p|x)αn(x)dx + κ(yn,p). In this notation,αn(x) and

ᾰn(x) are respectively termed the predicted and updated intensities at timen, γ(x) is the intensity
of new objects,pS(x) is the survival probability,f(xn|xn−1) is the transition kernel of an individual
object, andκ(y) is the intensity of the clutter. We denote byg(yn,p|x) andmn the likelihood for the
pth observation and the total number of observations at iteration n respectively.

SMC methods may employed to approximate the sequence of intensity functions{ᾰn(xn)}n∈N. In
contrast to the case of particle filters which approximate probability distributions, it is necessary for
the collection of weighted samples used here to characterise the total mass of the intensity function
in addition to its form. Akin to the APF, an auxiliary SMC implementation (and references to other
approaches) can be found in [16], which demonstrates that this recursion is particularly well suited
to this approach , which outperforms more direct particle implementations.

In outline, this approach introduces an extended state spaceX ′ = X ∪ {s}, wheres is an isolated
“source” point which does not belong toX . Then define an intensity function denotedβn(xn−1:n)
onX × X ′ as follows:

βn(xn−1:n) =

mn∑

p=1

g(yn,p|xn)

Zn,p

[f(xn|xn−1)pS(xn−1)ᾰn−1(xn−1)IX (xn−1) + γ(xn)δs(xn−1)] .

(9)

6
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Note thatβn(xn−1:n) admits ᾰn(xn) under integration. The algorithm of [16] effectively ap-
proximates each term in (9) separately. Assume that there isavailable a particle approximation
of ᾰn−1(xn−1). Then, for eachp ∈ {1, 2, ..., mn}, a mechanism which weights and resamples
particles is executed with target distributionπn−1,p(xn−1) onX ′, where:

πn−1,p(xn−1) ∝ p̂(yn,p|xn−1) [ᾰn−1(xn−1)IX (xn−1) + δs(xn−1)] ,

p̂(yn,p|xn−1) being an approximation ofp(yn,p|xn−1), which is itself defined by

p(yn,p|xn−1) = IX (xn−1)

∫

X

g(yn,p|xn)f(xn|xn−1)dxn + I{s}(xn−1)

∫

X

g(yn,p|xn)γ(xn)dxn.

Proposals are then made from a kernelqn,p(xn|xn−1). The importance weight which yields a parti-
cle approximation to thepth term in (9) is given by:

w̃n,p(xn−1:n) ∝
g(yn,p|xn)[f(xn|xn−1)pS(xn−1)IX (xn−1) + γ(xn)I{s}(xn−1)]

qn,p(xn|xn−1)πn−1,p(xn−1)
,

Each normalizing constantZn,p is also estimated by IS, much as in SMC algorithms for SSMs. The
particle sets are then pooled, yielding a particle approximation of ᾰn(xn). [16] also provides the
optimal number of particles to assign to each term in (9).

3.3 Further Stratifying the APF

It is common knowledge that the use of multinomial resampling in a particle filter unnecessarily
increases the Monte Carlo variance of the associated estimators and that the use of systematic or
stratified approaches can significantly reduce that variance. The APF is, of course, no exception and
one should always employ minimum variance resampling strategies. Under some circumstances it
may be possible to introduce some further stratification in the APF.

Consider again the SSM from section 1.1. Let(Ap)
M
p=1 denote a partition ofE. Introducing an

auxiliary stratum-indicator variable,mn =
∑M

p=1 pIAp
(xn), we redefine the SSM on a higher di-

mensional space, with the signal process beingE × {1, 2, ..., M}-valued, with transition kernel:
r(xn, mn|xn−1, mn−1) = r(xn|mn, xn−1)r(mn|xn−1),

where:

r(xn|mn, xn−1) ∝ IAmn
(xn)f(xn|xn−1), r(mn|xn−1) =

∫

Amn

f(xn|xn−1)dxn.

The initial distribution of the extended chain is defined in asimilar manner and the likelihood re-
mains essentially unchanged. The posterior distributionsfor the extended model then obey the
following recursion:

p(x1:n, m1:n|y1:n) ∝ g(yn|xn)r(xn|mn, xn−1)r(mn|xn−1)p(x1:n−1, m1:n−1|y1:n−1). (10)
Note that the marginal distribution ofx1:n in (10) coincides with the original model.

As in the SIR interpretation of the APF, we then construct an auxiliary sequence of distributions,
{π(x1:n−1, m1:n)}n∈N, which will be targeted with an SIR algorithm, where:

π(x1:n−1, m1:n) ∝ p̂(yn|mn, xn−1)r̂(mn|xn−1)p(x1:n−1, m1:n−1|y1:n−1). (11)

For eachi, we first draw eachX(i)
n |x

(i)
n−1, m

(i)
n ∼ q(·|x

(i)
n−1, m

(i)
n ). Then, instead of randomly sam-

pling a valuem(i)
n+1, we evaluate one importance weight for every possible valueof mn+1, resulting

in a collection ofN × M weighted sample points. The resampling step of the SIR algorithm then
drawsN times from the resulting distribution on{1, 2, ..., N} × {1, 2, ..., M}. A related method
has been proposed in the context of tracking problems, but without exploiting the benefits of strati-
fication via low variance resampling [17].

The importance weight which targetsp(x1:n, m1:n|y1:n) (i.e. the analogue of (5)) is then:

w̃n(xn−1:n, mn) ∝
g(yn|xn)f(xn|xn−1)

p̂(yn|mn, xn−1)r̂(mn|xn−1)qn(xn|mn, xn−1)
.

This effectively assigns both a parent particleanda stratum to each offspring.This approach may be
of interest in the context ofswitchingSSMs, where the state space has a natural partition structure
by definition.

7
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4 Conclusions

This paper has summarised the state of the art of the auxiliary particle filter. Our intention is to
provide some insight into the behaviour of the APF and its relationship with other particle-filtering
algorithms, in addition to summarising a number of recent methodological extensions. The most
significant point is perhaps this: the APF is simply an example of a sequential estimation situation
in which one can benefit (by introducing information about subsequent distributions earlier) from
approximating thewrong sequence of distributions and using an importance samplingcorrection.
Other such scenarios exist and the same approach can be used when addressing them.
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Abstract

The ensemble Kalman filter (EnKF) is a Monte Carlo implementation of the
Kalman filter, which is often adopted to reduce the computational cost when deal-
ing with high dimensional systems. In this work, we propose anew EnKF scheme
based on the concept of the unscented transform [12], which therefore will be
called the ensemble unscented Kalman filter (EnUKF). Under the assumption of
Gaussian distribution of the estimation errors, it can be shown analytically that,
the EnUKF can achieve more accurate estimations of the ensemble mean and co-
variance than the ordinary EnKF. Therefore incorporating the unscented transform
into an EnKF may benefit its performance. Numerical experiments conducted on
a40-dimensional system [14] support this argument.

1 Introduction

The Kalman filter (KF) is a recursive data processing algorithm [15]. It optimally estimates the
states of linear stochastic systems that are driven by Gaussian noise, and are observed through linear
observation operators, which possibly also suffer from additive Gaussian errors. However, if there
exists nonlinearity from either the dynamical systems or the observation operators, or, if neither
the dynamical noise nor the observational noise follows anyGaussian distribution, then the Kalman
filter becomes suboptimal. To tackle the problems of nonlinearity and non-Gaussianity, there are
some strategies one may employ. For example, to handle the problem of nonlinearity, one may
expand the nonlinear function locally in a Taylor series andkeep the expansion terms only up to
second order. This leads to the extended Kalman filter (EKF) (e.g., [4]). To deal with the problem of
non-Gaussianity, one may specify a Gaussian mixture model (GMM) to approximate the underlying
probability density function (pdf), such that the KF algorithm is applicable to the individual distri-
butions of the GMM [18]. More generally, one may adopt the sequential Monte Carlo method (also
known as the particle filter, e.g., [19]), which utilizes the empirical pdf obtained from a number of
particles to represent the true pdf, wherein the problems ofboth nonlinearity and non-Gaussianity
are taken into account during the pdf approximation.

For practical large-scale problems like weather forecasting, the computational cost is another issue
of great concern. In such circumstances, direct application of the KF or EKF scheme is prohibitive
because of the computational cost of evolving the full covariance matrix forward. While for the
particle filter, because of its slow convergence rate, the required number of the particles for proper
approximations may be well above many thousands for even lowdimensional nonlinear systems
[11]. For the sake of computational efficiency, the so-called ensemble Kalman filter (EnKF) was
proposed in [5]. It is essentially a Monte Carlo implementation of the Kalman filter. Under the
framework of the EnKF, the computational cost can be significantly reduced.

In this paper we will introduce a modified framework of the EnKF incorporating the concept of the
unscented transform [9, 10, 12], which therefore will be called the ensemble unscented KF (EnUKF
for short). Under the assumption that the estimation errorsfollow a Gaussian distribution, it can
be shown that the EnUKF has better accuracies in estimating the ensemble mean and covariance
than the ordinary EnKF. To save space, here we omit the analytic results and provide the numerical
comparison only.
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This paper is organized as follows. We firstly review the framework of the ordinary EnKF in section
2. We then proceed to introduce the EnUKF in section3. In section4, we use the nonlinear model
in [14] to demonstrate the performance of the EnUKF, and compare itto the ordinary EnKF. Finally
we discuss and conclude the work in section5.

2 The framework of the EnKF

For simplicity in illustration, we consider the perfect model scenario. Suppose that we have a perfect
m-dimensional discrete dynamical system

xk+1 = Mk,k+1 (xk) , (1)

wherexk denotes them-dimensional system state at the instantk, andMk,k+1 is the transition
operator mappingxk to xk+1. We also assume that the system is observed through ap-dimensional
observerHk such that

yk = Hk (xk) + vk, (2)
whereyk are thep-dimensional observations at instantk, andvk, thep-dimensional observation
errors, are independent of the model state, and follow a Gaussian process with zero mean and co-
varianceRk.

For convenience of discussion, let us first introduce some concepts customarily used in the commu-
nity of data assimilation and meteorology. A state at instant k, which is propagated from a state at
the previous instantk − 1, is called thebackground at the assimilation cyclek, and usually denoted
by xb

k. Given the observationsyk, one introduces a correction toxb
k based on the KF algorithm,

and obtains an updated state, which is called theanalysis, and usually denoted byxa
k. One then

propagatesxa
k forward again to obtain the backgroundxb

k+1 at the next cycle. In this way, one can
apply the KF algorithm for state estimation recursively. Wecall the update from the background to
the analysis the filtering step, and the propagation from theanalysis to the background at the next
cycle the propagation step.

2.1 The filtering step

Without lost of generality, one may assume that there is ann-member ensemble of the analysis
{xa

k−1,i : i = 1, 2 · · · , n} available at the end of the(k−1)-th assimilation cycle. So at the filtering
step of thek-th cycle, a propagated ensemble

Xb
k =

{
xb

k,i : xb
k,i = Mk,k+1

(
xa

k−1,i

)
, i = 1, 2, · · · , n

}

can be obtained. The sample meanx̂b
k and covariancêPb

k can be evaluated according to the follow-
ing unbiased estimators1.

x̂b
k =

1

n

n∑

i=1

xb
k,i; P̂b

k =
1

n − 1

n∑

i=1

(
xb

k,i − x̂b
k

) (
xb

k,i − x̂b
k

)T
. (3)

In practice, the approximation covarianceP̂b
k need not be calculated. Instead, it is customary to

compute

P̂k
xh =

1

n − 1

n∑

i=1

(
xb

k,i − x̂b
k

) (
Hk

(
xb

k,i

)
−Hk

(
x̂b

k

))T
,

P̂k
hh =

1

n − 1

n∑

i=1

(
Hk

(
xb

k,i

)
−Hk

(
x̂b

k

)) (
Hk

(
xb

k,i

)
−Hk

(
x̂b

k

))T
.

(4)

The Kalman gainKk can be obtained through

Kk = P̂k
xh

(
P̂k

hh + Rk

)−1

. (5)

1In some works, e.g., [20], the authors may choose other estimators.
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With additional information from the observations, one canupdate the background ensemble ac-
cording to a certain scheme. As an example, we consider the ensemble transform Kalman filter
(ETKF) [3, 20]. In this scheme, on one hand, the ensemble meanx̂a

k is updated as follows

x̂a
k = x̂b

k + Kk

(
yk −H

(
x̂b

k

))
. (6)

On the other, let
δXb

k =
[
xb

k,i − x̂b
k, · · · ,xb

k,n − x̂b
k

]
, i = 1, · · · , n

be the matrix consisting of the perturbations of the background, then the perturbations of the analysis
δXa

k =
[
δxa

k,i, · · · , δxa
k,n

]
, i = 1, · · · , n

are updated fromδXb
k according to

δXa
k = δXb

k T, (7)
whereT is the transformation matrix derived in [3]. Givenx̂a

k andδXa
k, the ensemble of the analysis

Xa
k =

{
xa

k,i : i = 1, 2, · · · , n
}

is generated according to

xa
k,i = x̂a

k + δxa
k,i, i = 1, 2, · · · , n. (8)

The ensemble mean̂xa
k is already given in Eq. (6), while the ensemble covariancêPa

k is computed
by

P̂a
k = δXa

k (δXa
k)T /(n − 1). (9)

2.2 The propagation step

After the updates, one propagates each member of the analysis ensemble through the system model
so as to obtain the background ensemble at the next assimilation cycle.

3 The ensemble unscented Kalman filter

For consistency, we again take Eqs. (1) and (2) as them-dimensional system model and the
p-dimensional observer respectively. Moreover, we also assume that there exists a set of sys-
tem states{X a

k−1,i, i = 0, 1, · · · , 2lk−1}, called the sigma points, at the(k − 1)-th step. Cor-
respondingly, we denote the set of the propagated sigma points at thek-th cycle by {X b

k,i :

X b
k,i = Mk−1,k

(
X a

k−1,i

)
, i = 0, 1, · · · , 2lk−1}, which are associated with a set of weights

{
Wk−1,i, · · · , Wk−1,lk−1

}
specified according to Eq. (16). The weighted sample mean and co-

variance of the background at thek-th cycle are given by

x̂b
k =

2lk−1∑

i=0

Wk−1,i X
b
k,i , (10a)

P̂b
k =

2lk−1∑

i=0

Wk−1,i

(
X b

k,i − x̂b
k

) (
X b

k,i − x̂b
k

)T
+ β

(
X b

k,0 − x̂b
k

) (
X b

k,0 − x̂b
k

)T
, (10b)

where the second term on the rhs of Eq. (10b) is introduced to reduce the approximation error. In
the case thatx follows a Gaussian distribution, the choice ofβ = 2 is shown to be optimal [9].

The above evaluation scheme is also applicable to the projection of the background ensemble such
that

P̂k
xh =

2lk−1∑

i=0

Wk−1,i

(
X b

k,i − x̂b
k

) (
Hk

(
X b

k,i

)
−Hk

(
x̂b

k

))T

+ β
(
X b

k,0 − x̂b
k

) (
Hk

(
X b

k,0

)
−Hk

(
x̂b

k

))T
,

P̂k
hh =

2lk−1∑

i=0

Wk−1,i

(
Hk

(
X b

k,i

)
−Hk

(
x̂b

k

)) (
Hk

(
X b

k,i

)
−Hk

(
x̂b

k

))T

+ β
(
Hk

(
X b

k,0

)
−Hk

(
x̂b

k

)) (
Hk

(
X b

k,0

)
−Hk

(
x̂b

k

))T
.

(11)
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Then, following Eq. (5), the Kalman gain is

Kk = P̂k
xh

(
P̂k

hh + Rk

)−1

. (5)

With the above information, the mean and covariance of the analysis can be computed according to

x̂a
k = x̂b

k + Kk

(
yk −Hk

(
x̂b

k

))
, (12a)

P̂a
k = P̂b

k − Kk

(
P̂k

xh

)T

. (12b)

Apart from obtaining the updated sample mean and covariance, we also aim to generate a set of
sigma points as the analysis ensemble, which will then be propagated to the next assimilation cycle.
For this purpose, one may consider using an existing EnKF scheme, for example, the ETKF. How-
ever, in order to avoid doubling the ensemble size at the(k + 1)-th cycle, some sigma points have
to be discarded. To do this, the sample mean can be preserved by maintaining the symmetry about
x̂a

k among the remaining sigma points, while the corresponding sample covariance, denoted bỹPa
k,

can only be an approximation tôPa
k. This may appear to be a complicated problem for the existing

EnKF schemes to design a selection criterion, because the perturbations produced by them have no
indications of the relative importance for covariance approximation.

To tackle the above problem, the truncated singular value decomposition (TSVD) [7] is adopted in
this work. Suppose that̂Pa

k can be expressed as

P̂a
k = EkDK (Ek)

T
, (13)

whereDK = diag(σ2
k,1, · · · , σ2

k,m) is a diagonal matrix consisting of the eigenvalues ofP̂a
k, which

are sorted in descending order, i.e.,σ2
k,i ≥ σ2

k,j ≥ 0 for i > j; andEK = [ek,1, · · · , ek,m] is
the matrix consisting of the corresponding eigenvectors. Then, one can producelk perturbations, in
terms of the firstlk vectors ofσk,iek,i, and add them to the sample meanx̂a

k to form lk sigma points.
Another symmetriclk sigma points can also be produced by subtracting the perturbations from the
sample mean. Overall, the above procedure can be summarizedas follows

X a
k,0 = x̂a

k,

X a
k,i = x̂a

k + (lk + λ)1/2σk,iek,i, i = 1, · · · , lk,

X a
k,i = x̂a

k − (lk + λ)1/2σk,i−lek,i−l, i = lk + 1, · · · , 2lk,

(14)

whereλ is an adjustable scaling parameter. For convenience, we will hereafter calllk the truncation
number.

In our implementation, we letlk be an integer such that

σ2
k,i > trace

(
P̂a

k

)
/hk , i = 1, · · · , lk

σ2
k,i ≤ trace

(
P̂a

k

)
/hk , i > lk + 1

(15)

wherehk is the threshold at thek-th cycle. Moreover, to preventlk being too large or too small, we
also specify a lower boundll and an upper boundlu. One may need to adjust the thresholdhk at
each cycle to letll ≤ lk ≤ lu.

After the sigma points are generated, a set of correspondingweights can be specified as follows

Wk,0 =
λ

lk + λ
; Wk,i =

1

2 (lk + λ)
, i = 1, · · · , 2lk. (16)

Finally, all the sigma points in Eq. (14), which are associated with a set of weights given by Eq.
(16), are propagated forward to the next assimilation cycle.

We adopt the time averaged relative rms error (relative rmsefor short) to measure the performance
of the EnUKF, which is defined as

er =
1

kmax

kmax∑

k=1

‖x̂a
k − xtr

k ‖2/‖x
tr
k ‖2, (17)
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Figure 1: Effects of the covariance inflation factorδ on the performance of the EnUKF.

wherekmax is the maximum assimilation cycle,xtr
k denotes the true state at thek-th cycle, and‖•‖2

means theL2 norm. Moreover, we also use the time averaged rms ratio to examine the similarity
of the truth to the sigma points, which also qualitatively reflects the performance in estimating the
error covariance, e.g., overestimation or underestimation (cf. [1, 21] and the references therein). By
definition, the time averaged rms ratio, denoted byR, is computed as follows

R =
1

kmax

kmax∑

k=1

(2lk + 1) ‖x̂a
k − xtr

k ‖2/

2lk∑

i=0

‖X a
k,i − xtr

k ‖2 . (18)

If the true state is statistically indistinguishable from the sigma points, then the expectation ofR is

Re =
√

(leff + 1)/(2leff + 1),

where leff is the “effective” truncation number over the whole assimilation window. Note that
Re ≈ 0.71 for any largeleff , so for simplicity we letleff equal the average of the truncation
number̄l, i.e.,leff = l̄ =

∑kmax

i=1 lk/kmax. R > Re means that the covariance of the sigma points
underestimates the error of state estimation, whileR < Re implies the opposite, i.e., overestimation
of the error of state estimation [16, 21].

4 Numerical experiments with a 40-dimensional system

This section is dedicated to examining the performance of the EnUKF, and comparing it with one of
the prevailing ensemble Kalman filters in the community of data assimilation: the ETKF. We choose
them-dimensional system model due to Lorenz and Emanuel [13, 14] (LE98 model hereafter) as the
testbed. The LE98 model is a simplified system used to model atmospheric dynamics, and “shares
certain properties with many atmospheric models” [14]. We consider the perfect model scenario,
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wherein the governing equations are described as follows

dxi

dt
= (xi+1 − xi−2)xi−1 − xi + F, i = 1, · · · , m. (19)

The quadratic terms simulate the advection, the linear termrepresents the internal dissipation, while
the constantF acts as the external forcing ([13]). The variablesxi’s are defined cyclically such that
x−1 = xm−1, x0 = xm, andxm+1 = x1.

We choose the observerHk to be a time-invariant identity operator. Specifically, given a system
statexk = [xk,1, · · · , xk,m]T at thek-th assimilation cycle, the observations are obtained according
to

yk = Hk(xk) + vk = xk + vk , (20)
wherevk follows anm-dimensional Gaussian distributionN(0,Rk) with the covariance matrixRk

being them × m identity matrixIm.

In our experiments, we setm = 40 andF = 8 and integrate the system through the fourth-order
Runge-Kutta method. We choose the length of the integrationwindow to be100 dimensionless
units, and the integration time step to be0.05 units (corresponding to about a 6-h interval in reality,
see [14]), thus there are2000 assimilation cycles overall.

In order to improve the performances of filters, we also consider two additional techniques. One is
the method of covariance inflation, which is based on the observation that the covariance of the anal-
ysis error will be systematically underestimated in the EnKF [21]. Therefore, it may be beneficial
to increase either the background error covariance before updating the background, or the analysis
error covariance after the updating [2, 17, 21]. In this work, we follow the method used in [2, 21]
and choose to multiply the perturbations to the sample meanxa

k of the analysis by a constant1 + δ,
which is equivalent to increasing the analysis error covariance by a factor(1 + δ)2.

The other technique is the covariance filter [6, 8], which introduces the Schur-product to a covariance
matrix in order to reduce the effect of sample errors. We say alength scale of covariance filter is
optimal within a certain range if it minimizes the relative rmse among all possible values. Numerical
simulations (not reported here) show that for the EnUKF, theoptimal length scalelc = 200, while
for the ETKF, its optimal length scalelc = 240. For simplicity, we chooselc = 240 for both filters.

For the purpose of comparison, we randomly select an initialconditionx1, and use it to start a
control run. The observationsY = {yk}

2000
k=1 are obtained by adding Gaussian white noise to the

states of the control run at each cycle, in accordance with Eq. (20). In subsequent simulations, both
the EnUKF and the ETKF will start with the same initial conditionx1, and use the same observations
Y for assimilation. To initialize both the filters, at the firstassimilation cycle we randomly generate
a background ensembleXb

1 = {x1,i : i = 1, · · · , n}. GivenXb
1 andx1 , the ETKF is already able

to start running recursively. For the EnUKF, however, at thefirst cycle there is no propagated sigma
points from the previous cycle. But, similar to the ETKF, onemay use the background ensemble
Xb

1 to compute the sample mean and covariance of the analysis, and then generate the sigma points
accordingly. After propagating the sigma points forward, the EnUKF can start running recursively
from the second cycle.

For the EnUKF, we let parametersβ = 2, λ = −2, the thresholdh1 = 1000, the lower bound
ll = 3, the upper boundlu = 6, the length scale of covariance filterlc = 240, and the covariance
inflation factorδ vary from0 to 10, with an even increment of0.5. We consider the scenarios with
different ensemble sizesn = 3, 4, 5, 6 at the first assimilation cycle in order to explore the effectof
initial ensemble size on the performance of the EnUKF. The corresponding relative rms error and
ratio, as functions of the covariance inflation factor, are plotted in Figs.1(a)and1(b) respectively.

From the above two figures, it can be seen that different initial ensemble sizesn = 3, 4, 5, 6 leads
to similar behaviors of both the relative rmse and rms ratio.Interestingly, a larger initial ensemble
size does not necessarily guarantee a smaller rmse error. This can be observed either from Fig.1(a)
by fixing the covariance inflation factorδ at some point, sayδ = 1.5, or from Table1 by comparing
the minimum relative rms errors.

Fig. 1(a)shows that, as the covariance inflation factorδ increases from0, the relative rmse of the
EnUKF tends to decline. However, ifδ already gets too large, sayδ > 6, then further increments in
δ will instead boost the relative rmse. An examination on the rms ratio also reveals the same trend,
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Table 1: Minima of the relative rms errors in Figs.1(a)and1(c).
Ensemble Filter Minimum of the relative rms errors

n=3 n=4 n=5 n=6
EnUKF 0.1719 0.1722 0.1730 0.1753
ETKF 0.2074 0.2074 0.2074 0.2074

although, as indicated in Fig.1(b), the turning points, now atδ = 7.5 for n = 3, 4, 6 andδ = 7 for
n = 5 , are larger than those of the relative rms errors. To make thesigma point indistinguishable
from the truth (i.e., rms ratio≈ 0.71 ), one needs an inflation factorδ ≈ 2.5. However, modestly
larger inflation factors, say,2.5 < δ < 6, can benefit the performance of the EnUKF in terms of the
relative rmse, although they also cause the overestimationof the error covariance.

For the ETKF, we let the length scalelc of the covariance filter and the covariance inflation factorδ be
the same as those in the EnUKF. Suppose that in a run of the EnUKF we have the average truncation
numberl̄. Then for comparison, we consider the ETKF with an ensemble size n = ceil(2l̄ + 1),
where ceil(s) means the nearest integer that is larger than, or equal to, the real numbers. In our
experiments, the EnUKF with different initial ensemble sizesn = 3, 4, 5, 6 leads to the same value
ceil(2l̄ + 1) = 13, so it is not suprising to find in Figs.1(c)and1(d) that the relative rms errors and
ratios of the ETKF, which correspond to the EnUKF starting with different initial ensemble sizes,
actually coincide.

From Fig. 1(c), one can see that, starting fromδ = 0, as the covariance inflation factor increases,
the relative rmse of the ETKF tends to decrease. However, unlike the situation in the EnUKF, in
the test range, asδ gets larger, sayδ > 7, the corresponding relative rmse enters a plateau region.
The rms ratio indicates a similar behaviour. Asδ increases, the change of the rms ratio becomes
smaller, or in other words, the curve appears more and more flat. In order to make the ensemble of
the ETKF indistinguishable from the truth, one needs the inflation factorδ ≈ 1.5. Like the EnUKF,
overestimation of the error covariance (i.e.,δ > 1.5) can also benefit the performance of the ETKF
in terms of the relative error.

We use the minimum relative rms errors of the EnUKF and the ETKF to compare their performances.
To this end, in Table1 we list the minimum relative rms errors of the EnUKF with different initial
ensemble sizes, and the corresponding values of the ETKF with the ensemble size about twice the
average truncation number plus 1. Note that different initial ensemble sizesn = 3, 4, 5, 6 in the
EnUKF lead to the same ensemble size of the ETKF. Therefore, in Table1, the ETKF has the same
minimum relative rmse even in different columns. For the EnUKF with different initial ensemble
sizes, the minimum relative rms errors are roughly0.17, while for the ETKF, the minimum relative
rmse is approximately0.20. In this sense, the EnUKF outperforms the ETKF.

5 Conclusions

We proposed a new ensemble Kalman filter scheme based on the concept of the unscented transform.
We introduced some modifications in order to make the unscented transform suitable for large-
scale problems. In a more lengthy paper (in preparation), weshow that, under the assumption of
Gaussian distribution of the estimation error, the EnUKT has better accuracies in estimating the
sample mean and covariance than the ordinary EnKF, e.g., theETKF. Therefore incorporating the
unscented transform into an EnKF may benefit its performance. Numerical simulations reported in
this work support our arguments.
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Abstract

In this paper, we consider the use of mixtures of linear mixed models to cluster
data which may be correlated and replicated and which may have covariates. This
approach can thus be used to cluster time series data. For each cluster, a regression
model is adopted to incorporate the covariates, and the correlation and replication
structure in the data are specified by the inclusion of random effects terms. The
procedure is illustrated in its application to the clustering of time-course gene
expression data.

1 Introduction

Finite mixture models are being commonly used in a wide range of applications in practice concern-
ing density estimation and clustering; see, for example, McLachlan and Peel [1]. We let Y denote a
random vector consisting of p feature variables associated with the random phenomenon of interest.
We let y

1
, . . . , yn denote an observed random sample of size n on Y . With the finite mixture

model-based approach to density estimation and clustering, the density of Y is modelled as a mix-
ture of a number (g) of component densities fi(y) in some unknown proportions π1, . . . , πg . That
is, each data point is taken to be a realization of the mixture probability density function (p.d.f.),

f(y; Ψ) =

g∑

i=1

πifi(y), (1)

where the mixing proportions πi are nonnegative and sum to one. In density estimation, the number
of components g can be taken sufficiently large for (1) to provide an arbitrarily accurate estimate of
the underlying density function. For clustering purposes, each component in the mixture model (1)
corresponds to a cluster. The posterior probability that an observation with feature vector yj belongs
to the ith component of the mixture is given by

τi(yj) = πifi(yj)/f(yj) (2)
for i = 1, . . . , g. A probabilistic clustering of the data into g clusters can be obtained in terms of
the fitted posterior probabilities of component membership for the data.
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An outright partitioning of the observations into g nonoverlapping clusters C1, . . . , Cg is effected
by assigning each observation to the component to which it has the highest estimated posterior
probability of belonging. Thus the ith cluster Ci contains those observations yj

ẑij = arg max
h

τ̂h(yj), (3)

and τ̂i(yj) is an estimate of τi(yj). As the notation implies, ẑij can be viewed as an estimate of zij

which, under the assumption that the observations come from a mixture of g groups G1, . . . , Gg , is
defined to be one or zero according as the jth observation yj does or does not come from Gi (i =
1, . . . , g; j = 1, . . . , n).
In this paper, we wish to focus on the approach proposed by Ng et al. [2] for the clustering of data
from time-course microarray experiments, where thousands of genes are assayed repeatedly over
several time-points. An example will be given to illustrate its application. Although attention is
focussed here solely on the clustering of the gene profiles that can be formed from the output from
a series of microarray experiments, the procedure is widely applicable to the clustering of data from
other experimental sources.
In the sequel, it is assumed that the observed data vector yj (j = 1, . . . , n) contains the expres-
sion levels of the jth gene obtained from a series of p microarray experiments; see, for example,
McLachlan et al. [3]. Typically in such problems, the number of genes n is very large relative to
the number of microarray experiments p. In molecular biology, the yj are referred to as the gene
profiles. The underlying idea for clustering the gene profiles is that if coregulation indicates shared
functionality, then clusters defined to this level of abstraction represent biological modules. If the
microarray experiments were measured at p different time points, then the problem is one of clus-
tering time-course data (that is, time series data).

2 Mixtures of Linear Mixed Models

We consider the so-called EMMIX-WIRE (EM-based MIXture analysis With Random Effects)
procedure developed by Ng et al. [2] to handle the clustering of correlated data over time that may
be replicated. They adopted conditionally a mixture of linear mixed models to specify the correlation
structure between the variables and to allow for correlations among the observations.
To formulate this procedure, we consider the clustering of n gene profiles yj (j = 1, . . . , n),
where we let yj = (yT

1j , . . . , yT
mj)

T contain the expression values for the jth gene profile and
ytj = (y1tj , . . . , yrttj)

T (t = 1, . . . , m) contains the rt replicated values in the tth biological
sample (t = 1, . . . , m) on the jth gene. The dimension d of yj is given by p =

∑m

t=1
rt. With

the EMMIX-WIRE procedure, the observed d-dimensional vectors y
1
, . . . , yn are assumed to

have come from a mixture of a finite number, say g, of components in some unknown proportions
π1, . . . , πg , which sum to one. Conditional on its membership of the ith component of the mixture,
the profile vector yj for the jth gene (j = 1, . . . , n) follows the model

yj = Xβi + Ubij + V ci + εij (i = 1, . . . , g), (4)
where the elements of the qβ-dimensional vector βi are fixed effects (unknown constants) used in
modelling the conditional mean of yj in the ith component (i = 1, . . . , g). In (4), bij (a qb-
dimensional vector) and ci (a qc-dimensional vector) represent the unobservable gene- and cluster-
specific random effects, respectively. These random effects represent the variation due to the het-
erogeneity of genes and samples (corresponding to bi = (bT

i1, . . . , b
T
ip)

T and ci, respectively). The
random effects bi and ci, and the measurement error vector (εT

i1, . . . , εT
ip)

T are assumed to be mu-
tually independent, where X, U , and V are known design matrices of the corresponding fixed or
random effects, respectively. If the covariance matrix H i is taken to be diagonal, then the expression
levels on the jth gene in different biological samples are taken to be independent. The presence of
the random effect ci for the expression levels of genes in the ith component induces a correlation
between the profiles of genes within the same cluster. This is in contrast to the mixed-effects models
approaches in Luan and Li [4], McLachlan et al[̇3], Celeux et al. [5], and Qin and Self [6] that in-
volve only gene-specific random effects. Their methods thus require the independence assumption
for the genes which, however, will not hold in practice for all the genes. Recently, Booth et al. [7]
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have adopted a Bayesian approach to this problem in which genes within the same cluster are taken
to be correlated.
With the LMM, the distributions of bij and ci are taken, respectively, to be multivariate normal
Nqb

(0, Hi) and Nqc
(0, θciIqc

), where Hi is a qb × qb covariance matrix. The measurement error
vector εij is also taken to be multivariate normal Np(0, Ai), where Ai = diag(Wξi) is a diagonal
matrix constructed from the vector (Wξi) with ξi = (σ2

i1, . . . , σ2

iqe
)T and W a known p × qe

zero-one design matrix.
We now consider an example in which we apply the EMMIX-WIRE procedure to a real data set.

3 Example: Yeast Cell Data

In this example, we consider the CDC28 dataset, which contains more than 6000 genes measured at
17 time points (0, 10, 20, . . . , 160) over 160 minutes, which is about two periods of yeast cell under
CDC28 condition. Cho et al. [8] and Yeung et al. [9] identified and clustered some of the 6000 genes
into different functional groups. For example, Yeung et al. [9] presented 384 genes corresponding
to five functional groups, among which there are 237 genes falling into four MIPS functional groups
(DNA synthesis and replication, organization of centrosome, nitrogen and sulphur metabolism, and
ribosomal proteins). Wong et al. [10] reanalysed the 237 cell cycle data, using their two-stage
clustering method and found that it outperformed the other methods that they tried. They were an
hierarchical method, k-means, SOM, SOTA, and a normal mixture model-based procedure, which
were all used to cluster the 237 genes into g = 4 clusters. On comparing the latter with the four
MIPS functional groups, they reported that the the Rand Index (RI) for their two-stage method was
equal to 0.7087. In this paper, we shall compare the EMMIX-WIRE procedure with the two-stage
clustering method.
In this example, the gene profile vector yj for the jth gene is given by

yj = (yj1, . . . , yjp)
T ,

where yjt denotes the expression level of the jth gene at time t (t = 1, . . . , p) and p=17. Before
proceeding to fit the model (4), we first estimated the period T in the linear regression model in
which

yjt = β0 + β1cos(2πt/T ) + β2sin(2πt/T ) + ejt,

where tj = 0, 10, 20, . . . , 160, and T is the period, and where it is assumed that ejt
i.i.d.
∼ N(0, σ2).

To estimate the period T of the data, we first fixed T as its lower limit T0, and then calculated the
Least Squares (LS) estimate and its mean squared error. We then increased T0 by 1 to get a new T ,
and then calculated the LS estimate and its MSE. This was repeated until a reasonable upper limit
of T , T1(> T0), was obtained. Comparing all the MSE’s, the LS estimate of T corresponding to the
minimum MSE is taken as our estimated period T. Using the dataset of 384 genes posted by Yeung
et al. [9], we obtained an estimated cell cycle period of 73min, assuming the initial phase to be zero.
As a period of 73min is about half of 160min, it would seem to be a reasonable estimate. Also, since
the 237 cell cycle data is a subset of the 384 cell cycle data, we assume here that it follows the same
time cycle of 73min.
The model (4) was fitted with βi = (β1i, β2i)

T as the fixed-effects vector for the ith component and
with the tth row of the design matrix X, corresponding to the time point t, given by

(cos(2πt/T ) sin(2πt/T )) (5)

for t = 1, . . . p. The design matrix U was taken to be 1p (that is, qb = 1) with bij = bij , the
common random effect for all time points shared by the jth gene, and H i = Ip. The cluster-
specific random effect ci was specified as ci = (ci1, . . . , cip)

T with qc = p and V = Ip. With
respect to the error terms, we took W = Ip with qe = p.
Concerning the number of components, we report in Table 1 the values of BIC obtained for various
levels of the number of components g. As we were unable to calculate the likelihood exactly under
the model (4) in the case of nonzero cluster-specific random-effects terms ci, we approximated it
by taking the gene-profile vectors to be independently distributed in forming the log likelihood in
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Table 1: Values of BIC for Various Levels of the Number of Components g
The Number of Components

2 3 4 5 6 7
10883 10848 10837 10865 10890 10918

calculating the value of BIC. According to the tabulated values of BIC in Table 1, we should choose
g = 4 components, which agrees with the number of MIPS functional groups in these genes.
For g = 4, we found that the estimated variance θci for the cluster-specific random-effects term
was equal to 0.227, 0.280, 0.043, and 0.137, which indicates some level of correlation within at
least three of the four clusters. The Rand Index and its adjusted value were equal to 0.7808 and
0.5455, which compare favourably to the corresponding values of 0.7087 and 0.3697, as obtained
by Wong et al. [10] for their method. On permuting the cluster labels to minimize the error rate of
the clustering with respect to the four MIPS functional groups, we obtained an error rate of 0.291.
We also clustered the genes into four clusters by not having cluster-specific random-effects terms
ci in (4), yielding lower values of 0.7152 and 0.4442 for the Rand Index and its adjustment. The
estimated error rate was equal to 0.316. Hence in this example, the use of cluster-specific random-
effects terms leads to a clustering that corresponds more closely to the underlying functional groups
than without their use.
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Figure 1: Clusters of Gene-Profiles Obtained by Mixture of Linear Mixed Models with Cluster-
Specific Random Effects

The clustering obtained in the latter case, however, is still superior in terms of the Rand Index and its
adjusted value for the two-stage method of Wong et al. [10], which was the best on the basis of these
criteria in their comparative analysis. We also fitted the mixed linear model mixture (4) without

Table 2: Summary of Clustering Results for g = 4 Clusters
Model Rand Index Adjusted Rand Index Error Rate

1 0.7808 0.5455 0.291
2 0.7152 0.4442 0.316
3 0.7133 0.3792 0.4093

Wong 0.7087 0.3697 Not available

the sine-cos regression model (5) for the mean, but with a separate (fixed effects) term at each of
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Figure 2: Clusters of Gene-Profiles Obtained by Mixture of Linear Mixed Models without Cluster-
Specific Random Effects
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Figure 3: Plots of Gene Profiles Grouped According to Their True Functional Grouping

the p = 17 time points; that is, we set X = Ip and took βi to be a p-dimensional vector of fixed
effects. We did not include cluster-specific random-effects terms ci due to their nonidentifiability in
this case. This nonregression model gave worse results for the Rand Index and the error rate than
with the regression model (4) using the sine-cos curve to specify the mean at a given time point.
The results for this nonregression version are listed under Model 3 in Table 2, where the clustering
results have been summarized. In this table, Models 1 and 2 correspond to the use of the regression
model (4) with and without cluster-specific random-effects terms.
In Figures 1 and 2, we give the plots of the gene profiles as clustered into g = 4 clusters as obtained
by fitting the mixture of linear mixed models (4) with and without cluster-specific random-effects
terms ci. In Figure 3, the plots of the gene profiles are grouped according to their actual functional
grouping.
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Núcleo de Modelagem Estocástica - NuMes, UFES, Brazil.

ffajardo@est.dout.ufmg.br

Francisco Cribari-Neto
Universidade Federal de Pernambuco, Brazil.

cribari@ufpe.br

Abstract

In this paper, we introduce an alternative semiparametric estimator of the frac-
tional differencing parameter in ARFIMA models which is robust against additive
outliers. The proposed estimator is a variant of the GPH estimator (Geweke &
Porter-Hudak(1983)). In particular, we use the robust sample autocorrelations of
Ma & Genton (2000) to obtain an estimator for the spectral density of the pro-
cess. Numerical results show that the estimator we propose for the differencing
parameter is robust when the data contain additive outliers.

1 Introduction

In the early 1980s, Granger & Joyeux (1980) and Hosking (1981) proposed an extension of the
ARIMA process in which the differecing parameter is allowed to assume non-integer values: the
ARFIMA process. Hosking (1981) showed that series with ARFIMA representation for which d ∈
(0, 0.5) are stationary and display long memory; the latter is expressed by statistically significante
autocorrelations at large lags or, alternatively, by a singularity of the spectral density at the zero
frequency.

Haldrup & Nielsen (2007) evaluated the impacts of measurement errors, outliers and structural
breaks on the estimation of the long-memory parameter. The results show that such impacts can
be quite substantial. For instance, an additive outlier in the data may substantially bias the differenc-
ing parameter estimate. They concluded that the regression-based semi-parametric estimators are
less biased when the bandwidth, which corresponds to the number of frequencies used in the esti-
mation, is small. The authors suggested the use of the approach proposed by Sun & Phillips (2003),
which adds a nonlinear factor to the log-periodogram regression, as a way to minimize any existing
bias. In a similar context, Agostinelli & Bisaglia (2003) proposed the use of a weighted maximum
likelihood approach as a modification of the the estimator proposed by Beran (1994).

In this paper we propose a robust estimator for the long-memory parameter in ARFIMA processes.
The proposed estimator is robust against additive outliers. The estimation approach we use is based
on the robust estimator of the autocovariance function proposed by Ma & Genton (2000) in the
context of obtaining the periodogram. The robust long-memory estimator is a variant of the well
known method proposed by Geweke & Porter-Hudak (1983) (GPH). We show the robustness of our
estimator both analytically and through Monte Carlo simulations.

In what follows, we shall consider the case where the process {yt}t∈Z is stationary
ARFIMA(p, d, q).
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2 Stationary ARFIMA process

Let {yt}t∈Z be a linear process such that

Φ(B)yt = Θ(B)(1−B)−dεt, with d ∈ (−0.5, 0.5),

where Φ(x) = 1 − φ1x − · · · − φpx
p and Θ(x) = 1 − θ1x − · · · − θpx

p are polynomials with no
common roots and with all roots outside the unit circle; here, {εt} is a zero mean white noise process
with variance σ2

ε . That is, {yt} follows a stationary and invertible ARFIMA(p, d, q) process. Note
that the fractional differencing filter (1−B)d, for d ∈ R, is defined by the binomial expansion

(1−B)d =
∞∑

j=0

ζjB
j ,

where ζj = Γ(j−d)
Γ(j+1)Γ(−d) , j = 0, 1, 2, . . ., Γ(·) being the Gamma function.

The spectral density function of {yt} is given by

fy(λ) =
σ2

ε

2π

|Θ(e−iλ)|2
|Φ(e−iλ)|2

{
2 sin

(
λ

2

)}−2d

; (1)

see Hosking (1981) and Reisen (1994) for details.

3 Long-memory parameter estimators

Let fy(λj) be as in (1), for λj = 2πj
n , j = 0, 1, . . . , bn

2 c, where n is the sample size and bxc denotes
the integer part of x. The natural logarithm of the spectral density fy(λj) is

log fy(λj) = log fu(0)− d log
{

2 sin
(

λj

2

)}2

+ log
fu(λj)
fu(0)

, (2)

where fu(λ) is the spectral density of Ut = (1−B)dyt.

Using (2), Geweke & Porter-Hudak (1983) proposed a semiparametric estimator of d. We shall use
equation (2) to obtain a robust estimator for the long-memory parameter.

3.1 The GPH estimator

By adding log I(λ) to both sides of (2) and considering frequencies close to zero, an estimate of d
can be obtained from the following regression equation:

log I(λj) = β0 − d log
{

2 sin
(

λj

2

)}2

+ ej , j = 1, 2, . . . , g(n), (3)

where β0 = log fu(0)+log fu(λj)
fu(0) +c, ej = log I(λj)

f(λj)
−c and c = ψ(1), where ψ(·) is the digamma

fuction, i.e. ψ(a) = ∂log Γ(a)
∂a .

Geweke & Porter-Hudak (1983) established that, for d < 0 and
{

log I(λj)
f(λj)

}
j=1,...,g(n)

is a sequence

of approximately independent Gumbel random variables with mean ψ(1) and variance π2

6 . Hence,
{ej} is a sequence of approximately independent Gumbel variables with mean zero and variance
π2

6 .

The GPH estimator is given by

dGPH = −
∑g(n)

j=1 (xj − x̄) log I(λj)∑g(n)
j=1 (xj − x̄)2

, (4)

2
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where xj = log
{

2 sin
(

λj

2

)}2

, g(n) being the bandwidth in the regression equation which has to

satisfy g(n) →∞, n →∞, with g(n)
n → 0. The variance of the GPH estimator is

var(dGPH) =
π2

6
∑g(n)

j=1 (xj − x̄)2
.

Geweke & Porter-Hudak (1983) proved the asymptotic normality of the semiparametric estimator
in (4) when d < 0 and suggested taking g(n) = nα, 0 < α < 1. However, the asymptotic
properties established originally for the GPH estimator were contested by Künsch (1986), Hurvich
& Beltrão (1993) and Robinson (1995) for d 6= 0. Hurvich, Deo & Brodsky (1998) proved that,
under some regularity conditions on the choice of the bandwidth, the GPH estimator is consistent
for the memory parameter and is asymptotically normal when the time series is Gaussian. The
authors also established that the optimal g(n) in equation (3) is of order o(n4/5). They showed that
if g(n) → ∞, n → ∞ with g(n)

n → 0 and g(n)
n log g(n) → 0, then, under some conditions on

0 < fu(λj) < ∞, the GPH estimator is a consistent estimator of d ∈ (−0.5, 0.5) with variance
var(dGPH) = π2

24g(n) + o(g(n)−1). If g(n) = o(n4/5) and log2 n = o(g(n)), then

√
g(n)(dGPH − d) Ã N

(
0,

π2

24

)
,

where Ã denotes convergence in distribution.

4 Robust estimation

We shall use the robust correlogram due to Ma & Genton (2000) to obtain a robust estimator for the
spectral density function and, as a consequence, a robust estimator for the long-memory parameter
d (say, dGPHR).

4.1 Robust estimators for the autocovariance and spectral density functions

Ma & Genton (2000) proposed a robust estimator for the ACOVF based on a scale approximation for
the covariance between two random variables and on the estimator Qn(·), proposed by Rousseeuw
& Croux (1993). The estimator Qn(·) is based on the kth order statistic of the

(
n
2

)
distances {|zi −

zj |, i < j}, and can be written as

Qn(z) = c× {|zi − zj |; i < j}(k), (5)

where z = (z1, z2, . . . , zn)′, c is a constant used to guarantee consistency (c = 2.2191 for the

normal distribution), and k =
⌊

(n
2)+2

4

⌋
+ 1. One can use the algorithm proposed by Croux &

Rousseeuw (1992), which is computationally efficient. The robust estimator for the ACOVF can be
expressed as

R̃(h) =
1
4

[
Q2

n−h(u + v)−Q2
n−h(u− v)

]
, (6)

where u and v are vectors contains the initial n − h and the last n − h observations, respectively.
The robust estimator for the autocorrelation function is

ρ̃(h) =
Q2

n−h(u + v)−Q2
n−h(u− v)

Q2
n−h(u + v) + Q2

n−h(u− v)
,

which is such that |ρ̃(h)| ≤ 1.

Ma & Genton (2000) proved the robustness of (6) and showed that its variance cannot be written in
closed form.

3
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4.2 A robust estimator of d

As described below, the robust correlogram, introduced in Section 4.1, can be used to obtain a robust
periodogram.

Let Ĩ(λ) be given by

Ĩ(λ) =
1
2π

n−1∑

s=−(n−1)

κ(s)R̃(s) cos(sλ), (7)

where R̃(s) is the sample autocovariance function in (6) and κ(s) is defined as

κ(s) =
{

1, |s| ≤ M,

0, |s| > M,

along with M = nβ , 0 < β < 1. κ(s) is called truncated periodogram lag window see, e.g., Priest-
ley (1981, pp. 433-437). We shall call the estimator in (7) robust truncated pseudo-periodogram,
since it does not have the same finite-sample properties as the periodogram.

Based on the above and using the regression equation given in (3), the robust GPH estimator we
propose is

dGPHR = −
∑g(n)

i=1 (xi − x̄) log Ĩ(λi)∑g(n)
i=1 (xi − x̄)2

, (8)

where xi = log
{

2 sin
(

λj

2

)}2

and g(n) is as before.

5 Empirical evidences

In order to investigate the empirical properties of the proposed estimator, a number of Monte Carlo
experiments were carried out.

Realizations of a Gaussian white noise sequence {εt}t=1,··· ,n, with zero mean and variance 1, were
generated by the function rann of the Ox matrix programming language. The long-memory time
series with size n was simulated according to Hosking (1981) with 5% of outliers of magnitude
10. The bandwidth g(n) was fixed at n0.7 (see Reisen (1994)). Figure 1 gives the box-plots of the
estimates when d =0.3 and n = 300, 3000. GPH and GPHR mean, respectively, the non-robust and
robust estimates of the memory parameter in a time series without outliers while GPHc and GPHRc
are the estimates when the series is contaminated by inconsistent observations. The boxplots clearly
evidence that the proposed method is robust in the presence of outliers. The figures also show
that the GPH estimates underestimate significantly the true parameter when the series has outliers.
The methods have similar performance for uncontaminated data. The increasing of the sample size
reduces significantly the bias and variance of the robust estimation method.

Table 1 presents results for d = 0.3, 0.45 and α = β = 0.7; the columns dGPHc and dGPHRc con-
tain results for the outlier contaminated series. The figures in Table 1 show that the GPH estimator
is sensitive to outliers; in particular, it underestimates the true parameter value when the data con-
tain atypical observations. It is noteworthy that the finite-sample behavior of the robust estimator
proposed in this paper is not affected by the introduction of atypical observations in the data; its
performance improves rapidly with the sample size (see Figure 1).

Table 2 shows that the bias of the estimator dGPHc depends on ω. The bias of dGPHRc, on the other
hand, is insensitive to ω.

The paper also investigate the order identification and parameter estimation of full ARFIMA models.
The procedure is described below. The empirical results are not presented here but available with
the authors and they indicated that the procedure is very promising in estimating the parameters of
the ARFIMA processes in the presence of outliers and can also easily be used in real situations.

4
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Figure 1: Estimates of parameter d for n=300, 3000 obtained for the estimators for contaminated data (GPHc
and GPHRc, respectively) and outlier-free data (GPH and GPHR).

d n dGPH dGPHc dGPHR dGPHRc

100 mean 0.2988 0.1134 0.2584 0.2449
s.d. 0.1735 0.1619 0.1558 0.1556
bias −0.0012 −0.1866 −0.0416 −0.0551
MSE 0.0301 0.0610 0.0260 0.0272

300 mean 0.3062 0.1007 0.2907 0.2837
0.30 s.d. 0.1005 0.0978 0.0926 0.0960

bias 0.0062 −0.1993 −0.0093 −0.0163
MSE 0.0101 0.0493 0.0087 0.0095

800 mean 0.3003 0.1184 0.2949 0.2869
s.d. 0.0679 0.0715 0.0573 0.0610
bias 0.0003 −0.1816 −0.0051 −0.0131
MSE 0.0046 0.0381 0.0033 0.0039

100 mean 0.4561 0.1923 0.3975 0.3778
s.d. 0.1722 0.1727 0.1506 0.1433
bias 0.0061 −0.2577 −0.0525 −0.0722
MSE 0.0297 0.0962 0.0254 0.0258

300 mean 0.4594 0.2015 0.4329 0.4233
0.45 s.d. 0.0986 0.0976 0.1041 0.1013

bias 0.0094 −0.2485 −0.0171 −0.0267
MSE 0.0098 0.0713 0.0111 0.0110

800 mean 0.4620 0.2306 0.4457 0.4349
s.d. 0.0688 0.0809 0.0562 0.0576
bias 0.0121 −0.2194 −0.0043 −0.0151
MSE 0.0049 0.0547 0.0032 0.0035

Table 1: Simulation results; ARFIMA(0, d, 0) with α = β = 0.7 and ω = 0, 10.
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ω n dGPHc dGPHRc

3 100 mean 0.3747 0.3799
s.d. 0.1953 0.1513
bias −0.0753 −0.0701
MSE 0.0438 0.0278

800 mean 0.4080 0.4309
s.d. 0.0679 0.0576
bias −0.0419 −0.0191
MSE 0.0064 0.0037

5 100 mean 0.3108 0.3741
s.d. 0.1934 0.1452
bias −0.1392 −0.0759
MSE 0.0567 0.0268

800 mean 0.3526 0.4270
s.d. 0.0846 0.0568
bias −0.0974 −0.0229
MSE 0.0166 0.0038

10 100 mean 0.1923 0.3778
s.d. 0.1727 0.1433
bias −0.2577 −0.0722
MSE 0.0962 0.0258

800 mean 0.2306 0.4349
s.d. 0.0809 0.0576
bias −0.2194 −0.0151
MSE 0.0547 0.0035

Table 2: Simulation results; ARFIMA(0, d, 0) with d = 0.45, ω = 3, 5, 10 and α = β = 0.7.

5.1 ARFIMA parameter estimation

1. Estimate d using the robust GPH estimator, d̂ = dGPHR.

2. Compute Ût = (1−B)d̂zt.

3. For Φ(B)Ût = Θ(B)εt, use the Box-Jenkins approach to identify the or-
ders of the autoregressive and moving average polynomials, and then estimate
φ1, φ2, . . . , φp and θ1, θ2, . . . , θq .
Note: In this step we use ρ̃(λ) in the Yule-Walker equations to obtain the estimates of
ARMA components.

4. Perform the usual goodness-of-fit tests.

6 Applications

We have applied the methodology proposed in the annual minimum water levels of the Nile river
measured at the Roda gorge (see, e.g. Hosking (1981), Beran (1994). The period analyzed for
this data set was from 622 A.D. to 1284 A.D. and displayed in Figure 2. The estimated values for
parameter d, and other proposed alternatives, are presented in Table 3.

d̂

Robinson (1994) 0.4338
Beran (1994) 0.4000
Agostinelli & Bisaglia (2003) 0.4160
GPH Robusto (dGPHR) 0.4161

Table 3: Estimated values of the parameter d: Annual minimum levels of the Nile river.
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Figure 2: Annual minimum levels of the Nile river with sample ACF and PACF.
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Abstract

A wide class of asymptotically efficient parameter estimation procedures is pro-
posed for general time series models. The procedures allow one to incorporate
auxiliary information into the estimation process and under certain regularity con-
ditions are consistent and asymptotically efficient.

1 Introduction

Consider an AR(1) process
Xt = θXt−1 + ξt, (1)

where ξt is a sequence of random variables (r.v.’s ) with mean zero. The least squares (LS) estimator
θ̂LS

t of θ can be written recursively as

θ̂LS
t = θ̂LS

t−1 + Î−1
t Xt−1

(
Xt − θ̂LS

t−1Xt−1

)
, (2)

Ît = Ît−1 + X2
t−1. (3)

where θ̂0 = 0 and Î0 = 0. This can easily be verified by subtracting two successive terms of
θ̂LS

t =
∑t

s=1 XsXs−1/
∑t

s=1 X2
s−1 and simple algebra (note also that Ît =

∑t
s=1 X2

s−1). It is
well-known that in the case when ξt is a sequence of Gaussian i.i.d. r.v.’s, the LS estimators are
consistent and asymptotically efficient. However, in the case of non-Gaussian ξt’s the LS estimators
fail to be efficient.

Suppose now that ξt is a sequence of i.i.d. r.v.’s and the probability density function of ξt w.r.t.
Lebesgue’s measure is g(x). Consider an estimator defined recursively as

θ̂t = θ̂t−1 − Î−1
t ig−1Xt−1

g′(Xt − θ̂t−1Xt−1)

g(Xt − θ̂t−1Xt−1)
, (4)

where ig =
∫

(g′(z)/g(z))2 g(z) dz, t ≥ 1 and θ̂0 ∈ R is an arbitrary starting point. We will
refer to (4) as the recursive likelihood procedure. This name can be justified by the fact that under
certain conditions, the estimators defined by (4) are asymptotically equivalent to MLEs in the sense
that they have the same asymptotic properties as the MLE’s, in particular consistency and asymptotic
efficiency. A heuristic justification of the estimation procedures of this type in a more general setting
will be given later in the paper.

Let us now consider a class of estimation procedures defined by

θ̂t =
[
θ̂t−1 + Γ−1

t γ(Xt−1)φ(Xt − θ̂t−1Xt−1)
]βt

αt

, (5)

with suitably chosen φ, γ, and Γt. Here αt and βt are random variables with −∞ ≤ αt ≤ βt ≤ ∞
and [v]βt

αt
is the truncation operator, that is,

[v]βt
αt

=





αt if v < αt

v if αt ≤ v ≤ βt

βt if v > βt.
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The truncation interval Ut = [αt, βt] represents our auxiliary knowledge about the unknown pa-
rameter which is incorporated in the procedure through the truncation operator. For example, if
θ ∈ Θ = [α, β], then one can take αt = α and βt = β. In the case of the open interval Θ = (α, β)
we may choose to consider truncations with moving bounds to avoid possible singularities at the
endpoints of the interval. That is, we can take Ut = [αt, βt] with some sequences αt ↓ α and
βt ↑ β.

The most interesting case arises when a consistent, but not necessarily efficient auxiliary estima-
tor θ̃t is available having a rate dt. Then one can use θ̃t to truncate the recursive procedure in a
neighbourhood of θ by taking Ut = [θ̃t − εt, θ̃t + εt] with εt → 0. Such a procedure is obviously
consistent since θ̂t ∈ [θ̃t−εt, θ̃t +εt] and θ̃t±εt → θ. However, since our main goal is to construct
an efficient estimator, care should be taken to ensure that the truncation intervals do not shrink to θ
too rapidly, for otherwise θ̂t will have the same asymptotic properties as θ̃t.

An example of possible applications of (5) is a likelihood procedure with LS truncations, that is,

θ̂t =

[
θ̂t−1 − Î−1

t i−1
g Xt−1

g′(Xt − θ̂t−1Xt−1)

g(Xt − θ̂t−1Xt−1)

]θ̂LS
t +cÎ−ε

t

θ̂LS
t −cÎ−ε

t

(6)

where θ̂LS
t and Ît are defined by (2) and (3), and c and ε are positive constants.

Let us now consider a general time series model given by a sequence X1, . . . , Xt of r.v.’s with the
joint distribution depending on an unknown parameter θ ∈ Rm. Recall that an M -estimator of θ is
defined as a solution of the estimating equation

t∑
s=1

ψs(v) = 0, (7)

where ψs(v) = ψs(Xs
1 ; v), s = 1, 2, . . . , t, are suitably chosen functions which may, in general,

depend on the vector Xs
1 = (X1, . . . , Xs) of all past and present observations. If fs(x, θ) =

fs(x, θ|X1, . . . , Xs−1) is the conditional probability density function (pdf) or probability function
(pf) of the observation Xs given X1, . . . , Xs−1, then one can obtain a MLE on choosing ψs(v) =
f ′s(Xs, v)/fs(Xs, v). Besides MLEs, the class of M -estimators includes estimators with special
properties such as robustness. Under certain regularity and ergodicity conditions, there exists a
consistent sequence of solutions of (7) which has the property of local asymptotic linearity.

If ψ-functions are nonlinear, it is rather difficult to work with the corresponding estimating equa-
tions. Note that for a linear estimator, e.g., for the sample mean θ̂t = X̄t, we have X̄t =
(t − 1)X̄t−1/t + Xt/t, that is θ̂t = θ̂t−1(t − 1)/t + Xt/t, which means that the estimator θ̂t

at each step t can be obtained recursively using the estimator at the previous step θ̂t−1 and the new
information Xt. Such an exact recursive relation may not hold for nonlinear estimators (e.g., in the
case of the median).

In general, to find a possible form of an approximate recursive relation consider θ̂t defined as a root
of the estimating equation (7). Denoting the left hand side of (7) by Mt(v) and assuming that the
difference θ̂t − θ̂t−1 is “small” we can write Mt(θ̂t) ≈ Mt(θ̂t−1) + M ′

t(θ̂t−1)(θ̂t − θ̂t−1) and

0 = Mt(θ̂t)−Mt−1(θ̂t−1) ≈ M ′
t(θ̂t−1)(θ̂t − θ̂t−1) + ψt(θ̂t−1).

Therefore,

θ̂t ≈ θ̂t−1 − ψt(θ̂t−1)

M ′
t(θ̂t−1)

,

where M ′
t(θ) =

∑t
s=1 ψ′s(θ). Now, depending on the nature of the underlying model, M ′

t(θ) can be
replaced by a simpler expression. For instance, in the i.i.d. models with ψ(x, v) = f ′(x, v)/f(x, v)
(the MLE case), by the strong law of large numbers,

M ′
t(θ)
t

=
1
t

t∑
s=1

(f ′(Xs, θ)/f(Xs, θ))
′ ≈ Eθ

[
(f ′(X1, θ)/f(X1, θ))

′] = −i(θ)

2
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for large t’s, where i(θ) is the one-step Fisher information. So, in this case, one can consider

θ̂t = θ̂t−1 +
1

t i(θ̂t−1)

f ′(Xt, θ̂t−1)

f(Xt, θ̂t−1)
, t ≥ 1, (8)

to construct an estimator which is “asymptotically equivalent” to the MLE.

Motivated by the above argument, we consider a class of estimators

θ̂t = θ̂t−1 + Γ−1
t (θ̂t−1)ψt(θ̂t−1), t ≥ 1, (9)

where ψt is a suitably chosen vector process, Γt is a (possibly random) normalizing matrix process,
θ̂0 ∈ Rm is some initial value. In particular, if ψs(θ) = f ′s(Xs, θ)/fs(Xs, θ), where fs(x, θ) =
fs(x, θ|X1, . . . , Xs−1) is the conditional pdf/pf of the observation Xs given X1, . . . , Xs−1, we
obtain

θ̂t = θ̂t−1 + I−1
t (θ̂t−1)

f ′t
T (Xt, θ̂t−1)

ft(Xt, θ̂t−1)
, t ≥ 1, (10)

where, It(θ) is the conditional Fisher information matrix, f ′t is the row-vector of partial derivatives
of ft w.r.t. the components of θ (here T means transposition).

Now, it is easy to see that (4) is of the form of (10), since in this case, fs(x, θ) = fs(x, θ|Xs−1) =
g(Xt − θXt−1) and It(θ) = ig Ît = ig

∑t
i=1 X2

s−1.

It should be noted that at first glance, recursions (8) and (10) resemble the Newton-Raphson or
the one-step Newton-Raphson iterative procedure of numerical optimisation. In the i.i.d. case, the
Newton-Raphson iteration for the likelihood equation is

ϑk = ϑk−1 + J−1(ϑk−1)
t∑

s=1

f ′(Xs, ϑk−1)
f(Xs, ϑk−1)

, k ≥ 1, (11)

where J(v) is minus the second derivative of the log-likelihood function, that is,
−∑t

s=1
∂
∂v (f ′(Xs, v)/f(Xs, v)) or its expectation, that is, the information matrix ti(v). In the

latter case, the iterative scheme is often called the method of scoring. The main feature of the
scheme (11) is that t is fixed, and ϑk, at each step k = 1, 2, . . . , is the k’th approximation to a
root, say θ̃t, of the likelihood equation

∑t
s=1 (f ′(Xs, v)/f(Xs, v)) = 0. Also, if a new (t + 1)st

observation is available, the whole procedure has to be repeated again. Note also, that the one-step
Newton-Raphson is a simplified version of (11) when an auxiliary

√
t-consistent estimator, say θ̃t is

available. Then, the one-step Newton-Raphson improves θ̃t in one step (that is, k = 1) by

θ̂t = θ̃t + J−1(θ̃t)
t∑

s=1

f ′(Xs, θ̃t)
f(Xs, θ̃t)

. (12)

As we can see the procedure (8) is quite different. It does not require an auxiliary estimator and
it adjusts the the value of the estimator in one single step at each instant of time with the arrival
of the new observation. A theoretical implication of this is that by studying the procedures (8),
or in general (9), we study the asymptotic behaviour of the estimator. As far as applications are
concerned, there are several advantages in using (8), (9), or (10). Firstly, these procedures are easy
to use and do not require storing all the data unnecessarily. This is especially convenient when the
data come sequentially. Another potential benefit of using (9) is that it allows one to monitor and
detect certain changes in probabilistic characteristics of the underlying process such as change of
the value of the unknown parameter. So, there may be a benefit in using these procedures in linear
cases as well.

Note also that the recursive procedure (9) is not a numerical solution of (7). Nevertheless, recur-
sive estimator (9) and the corresponding M -estimator are expected to have the same asymptotic
properties under quite mild conditions.

To understand how the procedure works, consider the likelihood recursive procedure (10) in the
one-dimensional case. Denote ∆t = θ̂t − θ, rewrite the above recursion as

∆t = ∆t−1 + I−1
t (θ + ∆t−1)

f ′t(Xt, θ + ∆t−1)
ft(Xt, θ + ∆t−1)

3
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and let

bt(θ, u) = Eθ

{
f ′t(Xt, θ + u)
ft(Xt, θ + u)

| Ft−1

}
,

where Ft is the σ-field generated by the random variables X1, . . . , Xt. Then,

Eθ

{
θ̂t − θ̂t−1 | Ft−1

}
= Eθ {∆t −∆t−1 | Ft−1} = I−1

t (θ + ∆t−1)bt(θ, ∆t−1).

Under usual regularity conditions (see [3] Remark 3.2 for details), bt(θ, 0) = 0 and
∂

∂ubt(θ, u) |u=0= −it(θ) < 0, implying that

ubt(θ, u) < 0 (13)

for small values of u 6= 0. Now, assuming that (13) holds for all u 6= 0, suppose that at time
t − 1, θ̂t−1 < θ, that is ∆t−1 < 0. Then, by (13), Eθ

{
θ̂t − θ̂t−1 | Ft−1

}
> 0. So, the next

step θ̂t will be in the direction of θ. If at time t − 1, θ̂t−1 > θ, then by the same reason,
Eθ

{
θ̂t − θ̂t−1 | Ft−1

}
< 0. So, on average, at each step the procedure moves towards θ. However,

the magnitude of the jumps θ̂t − θ̂t−1 should decrease, for otherwise, θ̂t may oscillate around θ
without approaching it. On the other hand, care should be taken to ensure that the jumps do not
decrease too rapidly to avoid failure of θ̂t to reach θ.

Note also that in the iid case, (8) can be regarded as a stochastic iterative scheme, i.e., a classical
stochastic approximation procedure, to detect the root of an unknown function when the latter can
only be observed with random errors. To see this, let us rewrite (8) in terms of ∆t = θ̂t − θ as

∆t = ∆t−1 +
1

ti(θ + ∆t−1)
f ′(Xt, θ + ∆t−1)
f(Xt, θ + ∆t−1)

.

Now, denoting

Rθ(u) :=
1

i(θ + u)
Eθ

{
f ′

f
(Xt, θ + u)

}

we obtain
∆t = ∆t−1 +

1
t

(
Rθ(θ + ∆t−1) + εθ

t

)
(14)

where

εθ
t =

1
i(θ + ∆t−1)

f ′

f
(Xt, θ + ∆t−1)−Rθ(∆t−1).

Under usual regularity conditions, R(θ, 0) = 0 and Eθ(εθ
t ) = 0. Equation (14) defines a Robbins-

Monro stochastic approximation procedure that converges to the solution of the equation Rθ(u) = 0
when the values of the function Rθ(u) can only be observed with zero expectation errors εθ

t . The
technique of stochastic approximation has been exploited by a number of authors to study asymptotic
behaviour of the recursive estimators in the iid case (see, e.g., [1] and [2] and references therein).
Note that the idea of using auxiliary estimators in these schemes also goes back to [1] and [2].
Although in general, recursion (9) and (10) cannot be considered in the framework of classical
stochastic approximation theory, some work has been done for non i.i.d. models as well. Discussion
of these results and the references can be found in [3], [4] and [5].

2 Estimation using auxiliary information

Let us now return to a general time series model given by a sequence X1, . . . , Xt of r.v.’s with the
joint distribution depending on an unknown parameter θ ∈ Rm. It often happens that a statistician
has auxiliary information which indicates in what range θ is likely to be:

• We may know a priori that the parameter lies in some set Θ. In this case it does not seem
reasonable to use the procedure (9), especially as the functions in (9) may not be defined
outside Θ. In this case one would want to have a procedure which generates values only
from the set Θ.

4
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• We may have an auxiliary estimator θ̃t such that dt|θ̃t − θ| → 0 as t →∞ (a.s.), where dt

is a sequence of positive numbers dt ↑ ∞.
• An interesting case arises when in estimating a multi-dimensional parameter, a qualita-

tively different additional (auxiliary) information is available for different components of
θ, e.g., suppose θ = (θ(1), θ(2))T and we have an auxiliary consistent estimator only for
the component θ(1).

For a set U ⊆ Rm, define a truncation operator as a function ΦU : Rm −→ Rm, such that
{

ΦU (v) = v if v ∈ U

ΦU (v) ∈ closure(U) if v /∈ U.

Suppose now that for each t a set Ut is given (which may depend on X1, . . . , Xt) such that θ ∈ Ut

for large t’s (a.s.). Define the recursive procedure by

θt = ΦUt

(
θt−1 + Γ−1

t (θt−1)ψt(θt−1)
)
. (15)

In fact, Ut represents auxiliary knowledge about the unknown parameter which is incorporated in
the procedure through the truncation operator Φ. For example, in the case (i) discussed above, if,
e.g., θ ∈ Θ, then one can take Ut = Θ and

ΦUt(v) =
{

v if v ∈ Θ
v∗ otherwise,

where v∗ denotes a closest point to v in the closure of the set Θ.

In the case when a consistent but not necessarily efficient auxiliary estimator θ̃t is available having
a rate dt, a possible choice is Ut = S(θ̃t, γt), where S is the ball in Rm with the center at θ̃t and the
radius δt = d−1

t + ‖Γ−1(θ̃t)‖ε (ε < 1/2), and

ΦUt(v) =
{

v if v ∈ S(θ̃t, δt)
v∗ otherwise,

where v∗ denotes the closest point to v in the ball S(ϑt, δt).

There are three main problems arising concerning the behaviour of the estimating procedures of
type (15): the global convergence, that is the convergence of (15) for any starting point θ̂0; the rate
convergence; and the asymptotic distribution.

Note that in the case of an auxiliary consistent estimator the procedure (15) is automatically globally
convergent. In general, given that usual regularity conditions are satisfied (e.g., conditions similar
to (13) and the appropriate rate of the normalising sequence), the construction of the procedure
guarantees the local convergence. In other words, the estimator will converge to θ, provided that
the values of the procedure “stay” in a sufficiently small neighbourhood of θ. To ensure the global
convergence, one need to impose the conditions of the global type on the corresponding functions,
e.g. the conditions that guarantee the property of type (13) for any u, and also conditions on the
growth of the corresponding functions at infinity (see [3] for details). Once the convergence is
secured, the rate of convergence and the asymptotic distribution depend on the local behaviour of
the corresponding functions (like differentiability of higher order) and the ergodicity of the model
(see [4]-[5]). For instance, when studying asymptotic distribution, the main task is to show that θ̂t

is locally asymptotically linear, that is

θ̂t = θ + Γ−1
t (θ)

t∑
s=1

ψs(θ) + ρθ
t , (16)

and Γ1/2
t (θ)ρθ

t → 0 in probability. Asymptotic distribution of an asymptotically linear estimator
can be studied using a suitable form of the central limit theorem.

3 Examples

Example 1. AR(1) - Linear procedures Suppose that Xt is an AR(1) process defined by (1) where ξt

is a martingale-difference, that is, Eθ {ξt | Ft−1} = 0. Suppose also that Dt = Eθ

{
ξ2
t | Ft−1

}
> 0

5
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and consider the recursive estimator

θ̂t = θ̂t−1 +
1

Γ̂tDt

Xt−1

(
Xt − θ̂t−1Xt−1

)
(17)

where

Γ̂t = Γ̂t−1 +
X2

t−1

Dt
. (18)

Proposition Suppose that

Γ̂t = Γ̂0 +
t∑

s=1

X2
s−1

Ds
→ ∞.

Then the estimator θ̂t defined by (17) is strongly consistent, that is, θ̂t → θ a.s. for any initial values
θ̂0 and Γ̂0. Furthermore, if

lim
t→∞

4Γ̂t

Γ̂t−1

= 0, (19)

a.s., then Γ̂δ
t |θ̂t − θ| → 0 a.s. for any δ ∈]0, 1/2[ and for any initial values of θ̂0 and Γ̂0.

Proof The proof is given in [6].

In the case of the i.i.d. innovations ξt we have Γ̂t = Γ̂0 + const
∑t

s=1 X2
s−1 → ∞ for any θ,

implying that in this case θ̂t is strongly consistent for any value of the parameter θ. Also, it is easy
to see that (19) holds if e.g., the limit Γ̂t/t exists (a.s. ) and is finite. For example, in the case of the
i.i.d. innovations ξt, this will happen if |θ| ≤ 1 implying that tδ|θ̂t− θ| → 0 a.s. for any δ ∈]0, 1/2[.

Example 2. AR(1) - Likelihood procedures Let Xt be strongly stationary and let ξt be i.i.d. and
independent from X0. Suppose that g is the common probability density function of ξt. Consider
the recursive estimator θ̂t defined by

θ̂t =

[
θ̂t−1 −KÎ−1

t Xt−1
g′(Xt − θ̂t−1Xt−1)

g(Xt − θ̂t−1Xt−1)

]βt

αt

, (20)

Ît = Ît−1 + X2
t−1,

where K is any positive constant and (αt, βt) is a random truncation sequence with −∞ ≤ αt ≤
βt ≤ ∞ (-a.s.) and θ ∈ [αt, βt] for large t′s. If g is bell-shaped and symmetric about zero, and the
function g′/g is bounded and continuous at zero, then θ̂t → θ a.s. for any staring value θ̂0 (this and
more general results can be found in [6]).

Let us now consider the recursive estimator with the LS truncations.

Proposition Let Xt be strongly stationary and ξt be i.i.d. and independent from X0. Suppose that
ξt have a finite fourth moment and a common probability density function g. Consider the recursive
estimator defined by (6), (2) and (3), where 1/4 ≤ ε < 1/2 and

0 < ig =
d

dw

∫ ∞

−∞

g′

g
(z − w) g(z)dz

∣∣∣∣
w=0

< ∞. (21)

Suppose also that for some ε0 > 0
∫ ∞

−∞

g′

g
(z − w) g(z)dz = −igw + w1+ε0O(1), (22)

as w → 0, ∫ ∞

−∞

[
g′

g
(z)

]2

g(z) < ∞, (23)

and ∫ ∞

−∞

[
g′

g
(z − w)− g′

g
(z)

]2

g(z)dz → 0 (24)

6
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as w → 0.

Then tδ|θ̂t − θ| → 0 a.s. for any δ ∈]0, 1/2[ and any starring values θ̂0. Furthermore, θ̂t is
asymptotically efficient in the sense that

L(Î1/2
t (θ̂t − θ)) d→N (

0, i−1
g

)
, (25)

and also,

L(t1/2(θ̂t − θ)) d→N
(

0,
(1− θ2)

σ2ig

)

where σ2 = var(ξt).

Proof The proof is given in [6].

Note that under usual regularity assumptions, ig =
∫

(g′(z)/g(z))2g(z) dz, implying that it =
igX

2
t−1 is the one step conditional Fisher information and the total conditional Fisher information is

It = ig

t∑
s=1

X2
t−1 = ig Ît.

So, (25) reflects the fact that (θ̂t− θ) is asymptotically normal with asymptotic variance I−1
t , where

It is the conditional Fisher information.

Example 3. An explicit example - AR(1) with Student innovations Suppose that Xt is a strictly
stationary and ξt are independent Student random variables with degrees of freedom α. So, the
probability density functions of ξt is

g(z) = Cα

(
1 +

z2

α

)−α+1
2

,

where Cα = Γ((α + 1)/2)/(
√

πα Γ(α/2)). Since

g′(z)
g(z)

= −(α + 1)
z

α + z2
,

it is easy to see that the Fisher information is

ig =
∫ (

g′(z)
g(z)

)2

g(z) dz =
α + 1
α + 3

.

Consider a likelihood recursive procedure with −∞ ≤ αt ≤ βt ≤ ∞:

θ̂t =

[
θ̂t−1 + Î−1

t i−1
g (α + 1)Xt−1

Xt − θ̂t−1Xt−1

α + (Xt − θ̂t−1Xt−1)2

]βt

αt

, t ≥ 1, (26)

where
Ît = Ît−1 + X2

t−1

and θ̂0 is any starting point. If α ≥ 3, θ̂t is strongly consistent provided that θ ∈ (αt, βt) for large
t′s, in particular when αt = −∞ and βt = ∞.

Now consider (26) with the LS truncations, that is, when

αt = θ̂LS
t − cÎ−ε

t and βt = θ̂LS
t + cÎ−ε

t . (27)

It is not difficult to see that if 1/4 ≤ ε < 1/2 and α ≥ 5, all the conditions of
the proposition in the previous example are satisfied (all the improper integrals involved are
uniformly convergent and all the corresponding functions are infinitely many times differen-
tiable). Thus, if α ≥ 5, the recursive estimator defined by (26) and (27) with 1/4 ≤
ε < 1/2, is strongly consistent with tδ|θ̂t − θ| → 0 (a.s.) for any δ ∈]0, 1/2[.

7
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Figure 1: Realisations of θ̂t (MleT) and θ̂LS
t (Ls)

0 20 40 60 80 100 120 140

0.25

0.50

0.75

1.00

1.25

1.50 MleT Ls 

Figure 2: Realisations of θ̂t (MleT) and θ̂LS
t (Ls)

Furthermore, θ̂t is asymptotically efficient, i.e. L
(
Î
1/2
t (θ̂t − θ)

)
d→N (

0, i−1
g

)
, and also,

L
(
t1/2(θ̂t − θ)

)
d→N

(
0, (1− θ2)

(
1− 6

α + 6
1+α

))
.

As far as the practical implementation of this procedure is concerned, it is important to note that the
asymptotic behaviour of θ̂t will not change (including the rate of convergence), if we replace Ît in
(26) (or, in general, in (20)) by ctÎt, where ct > 0 are constants with ct = 1 for large t′s (see [6]
for details). In practice, ct can be treated as tuning constants to control behaviour of the normalising
sequence for the first several steps, especially when the number of observations is small or even
moderately large. As it was mentioned above, at each step, the recursive procedure (26) (or, in
general (20)) on average moves towards the parameter. Nevertheless, if the values of the normalizing
sequence are too small for the first several steps, then the procedure will oscillate excessively around
the true value of the parameter. On the other hand, too large values of the normalizing sequence will
result in delay of the estimator reaching the value of the parameter. A good balance can be achieved
by using the tuning constants.

Figures 1 and 2 show realisations of the estimators θ̂t and θ̂LS
t for t = 0, . . . , 150, when the observa-

tions are from AR(1) process with the iid Student innovations with α = 5, θ = 0.5, θ̂0 = θ̂LS
0 = 0.1

and Î0 = 0. θ̂t is derived from (26) with (27) truncations where ε = 1/4 and c = 1. As we can
see from Figure 1, θ̂t is moving downwards slowly. This may be due to the high values of the nor-

8
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malising sequence at the beginning of the procedure. Figure 2 shows the values of θ̂t for the same
realisation but the normalising sequence Ît is replaced by ctÎt, where ct = 0.6 for t = 1, . . . , 15
and ct = 1 otherwise. Now the path of the estimator has a “proper” shape, that is a reasonable
oscillation at the beginning of the procedure before settling down at a particular level. On other
occasions, it may be desirable to increase the values of the normalising sequence for the first several
steps. This happens when the procedure oscillates too excessively before settling down at a particu-
lar level. This can be dealt with by introducing a positive constant Î0 6= 0 and/or setting the values
of ct greater than one for the first several values of the normalising sequence ctÎt.
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Abstract

In this paper, we develop set of novel Markov chain Monte Carlo algorithms
for Bayesian inference in partially observed non-linear diffusion processes. The
Markov chain Monte Carlo algorithms we develop herein use an approximating
distribution to the true posterior as the proposal distribution for an independence
sampler. The approximating distribution utilises the posterior approximation com-
puted using the recently developed variational Gaussian Process approximation
method. Flexible blocking strategies are then introduced to further improve the
mixing, and thus the efficiency, of the Markov chain Monte Carlo algorithms. The
algorithms are tested on two cases of a double-well potential system. It is shown
that the blocked versions of the variational sampling algorithms outperform Hy-
brid Monte Carlo sampling in terms of computational efficiency, except for cases
where multi-modal structure is present in the posterior distribution.

1 Introduction

Stochastic dynamical systems, also often referred to as diffusion processes or stochastic differen-
tial equations (SDEs), have been used for modelling of real-life systems in various areas ranging
from physics to system biology to environmental science [1]. This work has been motivated by the
problem of data assimilation [2] where such systems, representing the evolution of the atmosphere
system are observed by an array of different instruments and the aim is inference of the current
state of the system. Such continuous time systems are often only partially observed, which makes
likelihood based statistical inference difficult. From a methodological point of view, the inference
problem for stochastic dynamical systems has been pursued in three main directions.

The first direction is based on solving the Kushner-Stratonovich-Pardoux (KSP) equations [3] which
are the most general optimal solutions to the inference problem. However, solution of the KSP equa-
tions is numerically intractable for high-dimensional non-linear systems, so various approximation
strategies have been developed. In the particle filtering method [4], the solution of the KSP filter-
ing equations, namely the posterior density, is approximated by a discrete distribution with random
support. For linear, Gaussian systems, the filtering part of KSP equations reduces to the well-known
Kalman-Bucy filter [5]. To treat non-linear systems a number of approximation strategies have
extended the Kalman filter, for example, the ensemble Kalman filter [6], and unscented Kalman
filter [7].
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The second direction involves a variational approximation to the posterior process. In [8], a linear
diffusion approximation is proposed and its linear drift is optimised globally. This is explained in
more detail in Section 3. In [9], a mean field approximation is applied to the KSP equations and the
mean field representation of possible trajectories is optimised globally.

The third direction employs Markov Chain Monte Carlo (MCMC) methods [10] to sample the pos-
terior process, which is the focus of this paper. At each step of a MCMC simulation, a new state
is proposed and will be accepted or rejected in a probabilistic way. For applications to stochas-
tic dynamical systems, it is also often referred to as path sampling. A path sampling approach to
discrete-time state-space models has been addressed in [11] and references therein. In those works,
a Gibbs-sampler with single-site update was used. To achieve better mixing, two closely related
MCMC algorithms for path sampling, namely the Metropolis-adjusted Langevin and the Hybrid
Monte Carlo (HMC) algorithm, were recently proposed in [12] and [13], respectively. The both
methods update the entire sample path at each sampling iteration while keeping the acceptance of
new paths high. This is achieved by combining the basic MCMC algorithm with a fictitious dy-
namics so that the MCMC sampler proposes moves towards the regions of higher probability in the
state space. Another strategy to achieve better mixing in path sampling is to update one of the sub-
paths between two neighbouring observations at each Metropolis-Hastings step leading to “blocking
strategies”. In [14], the so-called “modified diffusion bridge” approach is used to propose candidates
for such sub-paths. The similar bridging method, suggested in [15], is based on a crude discretiza-
tion scheme for the generating SDE. To the same end, a so-called “retrospective sampling” method
is used in [16] which can simulate a wide class of diffusion bridge processes exactly, under certain
conditions on the stochastic noise process.

In this paper, we present a novel MCMC algorithm for path sampling of non-linear diffusion pro-
cesses. The new algorithm employs the variational approximation method in [8] to produce a more
computationally efficient sampling method. Our MCMC algorithm also extends the blocking strate-
gies in [14, 15], allowing blocks of arbitrary size. The idea of using the variational posterior distribu-
tion as the proposal distribution for MCMC samplers in not new [17] and is referred to as Variational
MCMC. Our algorithm makes use of information from the data, which guides the Markov chain to
make proposals from locations in the solution space which have considerable support under the
posterior distribution. Precisely speaking, information from the data is encoded in the variational
Gaussian process which approximates the true posterior process. Thus we might also consider our
algorithm as being within the spirit of data-driven MCMC [18]. Further, the variational MCMC
sampler can also be used in a setting of ”mixture of transition kernels” [17], and the mixture kernel
including both HMC and the variational sampler can be defined adaptively.

The paper is organised as follows; Section 2 first presents Bayesian treatment of non-linear smooth-
ing which is followed in Section 3 by a summary of the variational Gaussian process smoother [8]
that is used to provide the proposal density. The novel algorithms are described in Section 4 and the
performance of these algorithms is demonstrated in Section 5 by numerical experiments with two
variants of a double-well potential system. The paper concludes with a discussion.

2 Bayesian inference for non-linear diffusions

Mathematically, a stochastic dynamical system is often represented by a SDE [19]:

dx(t) = f(x, t)dt + D
1/2(x, t)dW(t), (1)

where x(t) ∈ R
d is the state vector, D ∈ R

d×d is the so-called diffusion matrix, and f represents a
deterministic dynamical process, generally called the drift. The driving noise process is represented
by a Wiener process W(t). (1) is also referred to as a diffusion process. The state is observed via
some measurement function h(·) at discrete times, say {tk}k=1,...,M . The observations are assumed
contaminated by i.i.d Gaussian noise:

yk = h(x(tk)) + R
1

2 · η (2)

where yk ∈ R
d′

is the k-th observation, R ∈ R
d′

×d′

is the covariance matrix of measurement
errors, and η represents multivariate white noise.

A Bayesian approach to smoothing is typically adopted in which the posterior distribution
p(x([0, T ])|{y1, ...,yM , tM < T}),
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is formulated and estimated, using for example the methods described in Section 1. In this work, we
discretise the continuous-time SDE, using an explicit Euler-Maruyama scheme [19], and thus treat
an approximate non-linear discrete time model which describes a Markov chain. The discretized
version of (1) is given by

xk+1 = xk + f(xk , tk)δt + D
1/2(xk , tk)

√

δt · ξk, (3)
with tk = k · δt, k = 0, 1, ..., N , and a smoothing window from t = 0 to T = N · δt. Note that
ξk are white noise random variables. An initial state, x0, needs to be set. There are M observa-
tions within the smoothing window chosen at a subset of discretisation times (tkj

,yj)j=1,...,M with
{tk1

, ..., tkM
} ⊆ {t0, ..., tN}. In the following, we formulate the posterior distribution step by step.

The prior of a diffusion process, exploiting the Markov property, can be written as
p(x0, ....,xN ) = p(x0) · p(x1|x0) · .... · p(xN |xN−1),

where p(x0) is the prior on the initial state and p(xk+1|xk) with k = 0, ...., N − 1 are the transition
densities of the diffusion process. In the limit of small enough δt, those transition densities can be
well approximated by a Gaussian density [20] and thus p(xk+1|xk) = N (xk+1|xk+f(xk)δt,Dδt).
Therefore, the prior over the path, defined by the SDE is given by

p(x0, ....,xN ) ∝ p(x0) · exp(−Hdynamics),

where

Hdynamics =
N−1∑

k=0

δt

2

[
xk+1 − xk

δt
− f(xk, tk)

]>

D
−1

[
xk+1 − xk

δt
− f(xk , tk)

]

.

Assuming the measurement noise is i.i.d. Gaussian, the likelihood is simply given by
p(y1, ...,yM |x(t0), ...,x(tN )) ∝ exp(−Hobs),

where

Hobs =
1

2

M∑

j=1

[
h(x(tkj

)) − yj

]>
R

−1
[
h(x(tkj

)) − yj

]
. (4)

In summary, we have the posterior distribution given by
p(x(t)|{y1, ...,yM}) ∝ p(x0) · exp(−(Hdynamics + Hobs)).

3 Variational Gaussian process approximation smoother

The starting point of the variational Gaussian process approximation method [8] is to approximate
(1) by a linear SDE:

dx(t) = fL(x, t)dt + D
1/2(x, t)dW(t), (5)

where the time varying linear drift approximation is given by
fL(x, t) = −A(t)x(t) + b(t). (6)

The matrix A(t) ∈ R
d×d and the vector b(t) ∈ R

d are two variational parameters to be optimised.

The approximation made in (6) implies that the true posterior process, i.e. p(x(t)|y1, ...,yM ), is
approximated by a Gaussian Markov process, q(t). If we discretise the linear SDE in the same way
as the true SDE, the approximate posterior can be written down as

q(x0, ....,xN ) = q(x0) ·

N−1∏

k=0

N (xk+1|xk + fL(xk)δt,Dδt).

Note that q(x0) = N (x0|m(0), S(0)). The optimal A(t) and b(t), together with the optimal
marginal means and covariances m(t) and S(t), are obtained by minimising the KL divergence of
q(·) and p(·) [8]. With the estimated A(t) and b(t), we are able to obtain the two-time covariance
function K(t1, t2) using

dK(t1, t2)

dt1
= −A(t1)K(t1, t2) (7)

for t1 > t2 with K(t1, t2) = K(t2, t1) for t2 > t1. We note that the variational approximation can
also be derived in continuous time using Girsanov’s change of measure theorem, however it is then
necessary to discretise the system for computational implementation [21].
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4 Variational MCMC methods

In a Metropolis-Hastings algorithm [22] for sampling a posterior density π(x), defined on a general
state space X , one proposes a new state x′

∈ X according to some density q(x, x′). The proposed
state will be accepted with probability α(x, x′), given by

α = min
{

1,
π(x′)

π(x)
·

q(x′, x)

q(x, x′)

}

.

When the Metropolis-Hastings (MH) algorithm is applied to a particular Bayesian inference prob-
lem, intelligent proposal mechanisms are often required to make the algorithm efficient.

In our variational MCMC algorithms, we make proposals using A, b, m, S, and K(·, ·) estimated
by applying the variational Gaussian process method described in Section 3, to the data set we
consider. To implement the algorithm, we employ an independence sampler in which any proposal
is independent of the current state. In the following, we describe two different implementations:

“Variational multivariate sampler” makes proposals x′ by sampling from the multivariate Gaus-
sian distribution with the mean m and covariance function K(·, ·). This means that

x
′ = m + L

>
w,

where L is the Cholesky decomposition of K and w = (w0, ..., wN )> is a vector of white
noise;

“Variational simulation sampler” makes proposals by integrating the approximate linear SDE
with the drift term given by fL(x, t) = −A(t) + b(t). The initial value x0 is sampled
from N (x0|m(0),S(0)). This means that

x0 = m(0) +
√

S(0) · w0

and
xk = xk−1 + fL(x, t)δt + D

1/2
√

δt · wk

with k = 1, ..., N .

In both cases, N +1 random numbers are sampled from the standard Gaussian distribution indepen-
dently. Therefore, the log proposal probability, up to a normalising constant, can be calculated by
−w

>
w/2.

The efficiency of the independence sampler depends on how well the proposal density approximates
the target measure. In this work, our proposal density is a Gaussian process approximation to the
target measure. Moreover, the approximate density is optimised with respect to the first and second
moment of the target measure. Therefore, the efficiency of the above algorithms is determined by
how far the target measure deviates from a Gaussian one. In cases with a highly non-linear drift term
in the diffusion and relatively few observations, the above proposal mechanisms need to be further
refined.

The idea of blocking helps to improve the performance of our independence samplers. Simply
speaking, we propose only a part of the sample path at each MH step while the remaining parts
are fixed, and conditioned on. To implement blocking, the whole sample path is sub-divided into a
block of size l + 1,

B1 = {x0, x1, ..., xl}

and M − 1 blocks of size l, say

Bk = {x(k−1)∗l+1, ..., xk∗l}

with k = 2, ..., M . This means that N = M · l. At each MH step, one block is chosen at random
and a proposal is made for the sub-path within this block by conditional sampling. The conditional
sampling versions of the algorithms are described in the following:

“Block variational multivariate sampler” carries out the conditional sampling of block k, first
using a permutation matrix P so that

P(B1, ..., BM )> = (Bk, B1, ..., Bk−1, Bk+1, BM )>,
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m̂ = Pm, and K̂ = AKA>. After the permutation, the first block can be sampled, i.e.
y = B>

k , conditioning on the remaining blocks

x = (B1, ..., Bk−1, Bk+1, Bm)>

from the Gaussian distribution N (y|m̂k, K̂k) using the following relations:

m̂ =

(
µy

µx

)

and K̂ =

(
Σyy Σyx

Σxy Σxx

)

m̂k = µy + ΣyxΣ−1

xx (x − µx)

K̂k = Σyy − ΣyxΣ−1

xx Σxy .

“Block variational simulation sampler” carries out the conditional sampling of block k by sim-
ulate a bridging process with two fixed ends at t(k−1)∗l and tk∗l+1. In the following, we
derive the effective drift and diffusion term of a SDE for such a process so that it can be
easily simulated.
For clarity, we now consider a one-dimensional SDE and further reduce the problem of
simulating a bridging process to the following question: how to sample xt at time t with
t = t′ + δt and t < T conditioning xt′ at time t′ and xT at time T ? Note that ∆t =
T − t′ >> δt.
To sample xt, first compute the conditional probability

p(xt|xt′ , xT ) ∝ p(xt|xt′) · p(xT |xt) .

As the time increment δt is the one used to discretise both the original and approximate
SDE by a Euler-Maruyama scheme

p(xt|xt′) ∝ exp







−

1

2Dδt
(xt − xt′ − fL(xt′ )δt)

2

︸ ︷︷ ︸

I1







. (8)

On the other hand, p(xT |xt) can be expressed by the marginal density of x from the back-
ward version of the approximate linear SDE in (5) which is now initialised with xT at time
T . This means that

p(xT |xt) ∝ exp







−

1

2dt

(xt − ct)
2

︸ ︷︷ ︸

I2







(9)

where ct and dt are obtained by integrating the following two ordinary differential equa-
tions backwards in time:

d

dt
ct = −Act + b

and
d

dt
dt = −2Adt − D ,

which are actually the moment equations corresponding to the backward version of the
linear approximate SDE. The initial values are cT = xT and dT = 0.
By re-formulating I1 and I2 in (8) and (9), respectively, the effective drift and diffusion
terms for the bridging process are obtained as follows:

feff
L = −1 ·

dA + D

d + Dδt
︸ ︷︷ ︸

A
eff

t

· xt′ +
cD + bd

d + Dδt
︸ ︷︷ ︸

b
eff

t

(10)

and
Deff

t = D ·

d

d + Dδt
. (11)

In the continuous-time limit, the effective drift is given by

feff
L = fL + σ2∂x ln p(XT |xt)

while the effective diffusion term is D.
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Figure 1: Comparison of the mean path and marginal variance estimates between the HMC (dashed)
and variational (solid) method for two double-well potential systems, with diffusion variance κ2

= 0.25 (left) and κ2 = 1.0 (right). For each case, filled circles represent the observations, with
measurement noise variance equal to 0.04. The mean paths are displayed by thick lines, while each
pair of thin lines indicates an envelope of mean path with 2 × standard deviation.

5 Numerical Experiments

In this section, we compare the variational MCMC algorithms described in Section 4 with the state-
of-the-art Hybrid Monte-Carlo (HMC) method based on the implementation developed in [12]. In
HMC, the proposals for path X = (x0, ...,xN ) are made by simulating a fictitious deterministic
system as follows

dX

dτ
= P and

dP

dτ
= −∇XĤ(X,P)

where τ is fictitious time, P = (p0, ...,pN ) represents momentum, and Ĥ is a fictitious Hamilto-
nian which is the sum of − log posterior probability of X, i.e. p(X|{y1, ...,yM}) defined in Sec. 2,
and kinetic energy H

kin = 1

2

∑N

k=1
p

2

k. The above system is initialised by setting X(τ = 0) = X

(current path) and drawing P(τ = 0) from a standard multivariate Normal distribution. After that,
it is integrated forward in time with time increment δτ by using leapfrog [12]. A reasonably good
mixing can be achieved by tuning the parameter δτ and the number of integration steps. Compared
to the algorithm implemented in [12], the preconditioning matrix is not used here. A similar algo-
rithm called Metropolis-adjusted Langevin (MALA) method is applied to path sampling in [13]. In
contrast to HMC, the proposals for path X in MALA are made by integrating a SDE whose drift
term is specified through the gradient of − log p(X|{y1, ...,yM}) (so-called Langevin equation).

We compare the different MCMC algorithms by their mixing properties and their burn-in period,
since these are critical measures for the computational efficiency of a given MCMC algorithm.
Mixing is measured by the auto-correlation function of the fictitious, algorithm induced time series
of some summary statistic of a sample path. In this work, we look at both instantaneous values of
the state x(t) at different discrete times t and the summary statistic L, defined by L =

∫

W
x(t)dt

where W denotes the smoothing window to assess mixing.

The algorithms are tested on two versions of a one-dimensional double-well potential systems. The
double-well system is defined by

ẋ(t) = 4x(1 − x2) + κξ(t) ,

where κ2 is the diffusion variance and ξ(t) is white-noise. This system has two stable states, namely
x = +1 and x = −1 [23], and is often taken as an analogue for a system that has two stable states
with atypical transitions between the two state, for example the climate of glacial and inter-glacial
epochs. Depending on the value of κ, average times τ needed for the system to escape from one
well can vary over a wide range of magnitudes. In this work, double-well systems with two different
κ-values are considered. For κ = 0.5, τ amounts to about 3,000 time units, which makes a transition
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unlikely within the smoothing window W = [0, 12] we choose. In contrast, the escape time for
κ = 1.0 is about 8 time units. To allow for multiple transitions, we choose for this case a larger
smoothing window, that is, W = [0, 50].

Further, we assume that the state x can be observed directly corrupted by additive Gaussian noise,
and the observation error variance is chosen to be 0.04. For our numerical experiments, we make
one observation per time unit for both cases. Accordingly, we generate two data sets, say data set A
of 7 data points with κ = 0.5 and data set B of 50 data points with κ = 1.0.

The observations and a second order summary of the posterior paths for the HMC and variational
Gaussian process approximation are shown in Figure 1. When applying the variational method to
double-well systems, we discretise the SDE (5) with time increment δt = 0.01. For the MCMC
methods, however, we use both δt = 0.01 and δt = 0.1 (see below).
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Figure 2: Comparison of the auto-correlation function of the time series of x at t = 2.0 (left) and that
of x at t = 8.0 (right) between HMC (circle), the Variational Multivariate Sampler (box), the Block
Variational Multivariate Sampler (diamond), the Variational Simulation Sampler (up-triangle) and
the Block Variational Simulation Sampler (down-triangle) for data set A.

The initial experimental results focus on contrasting the four different variational MCMC algorithms
with each other and the HMC results. In this case, data set A is considered. As can be seen from
the description of the algorithm, the block variational multivariate sampler involves the inversion
of large matrices. This is very time-consuming. Therefore, at this stage, we discretise the double-
well potential model with δt = 0.1 for the MCMC algorithms while the variational Gaussian process
method is applied with δt = 0.01. For the variational simulation sampler, we therefore need to
coarsen the time resolution of A(t) and b(t) by sub-sampling the original ones. For those varia-
tional multivariate sampler, however, we first calculate K(t1, t2) with the fine-scale A(t) and b(t)
and then sub-sample K accordingly. This ensures that the coarsening won’t impair the algorithm
performance.
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Figure 3: As Figure 2 but for time series of x at t = 6.0 (left) and that of x at t = 4.0 (right)

To compare different MCMC algorithms according to their mixing property, we calculate the
auto-correlation functions of x-traces at fixed t = 2.0, t = 4.0, t = 6.0, and t = 8.0. For each
algorithm, those traces are sub-sampled from the Markov chain of length equal to 5,000,000,
with sampling interval equal to 1,000, after the burn-in period is discarded. The auto-correlation
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functions are plotted against the number of sampling intervals in Figure 2 and Figure 3. From
these figures, we can see that the blocking strategy greatly improves the performance of a naive
independence sampler, except for the times t in the transitional phase (from t = 3.0 to t = 4.0).
Outside this transition phase, it is also seen that both block variational samplers outperform the
HMC approach. This means that the variational Gaussian process method can represent the
information from the data in a convenient and efficient manner to guide a MCMC sampler by
finding promising proposal distributions. The difficulties that occur in the transitional phase can
be understood by the fact that the approximation made by variational Gaussian process to the true
posterior process is necessarily relatively poor when the process shows multi-modal probability
structure. Such multi-modal structure can be seen in a double-well system with a κ = 0.5 when the
observations support probability in both modes of the system at transition times.

It is also clear from the algorithms that the simulation sampler is computationally much more
efficient than the multivariate sampler. However, we notice that a simulation sampler generally
performs worse, as measured by mixing, than its corresponding multivariate sampler. This can be
explained by the coarsening of A(t) and b(t) in the simulation sampler. Therefore, the results of
a multivariate sampler indicate the performance which the corresponding simulation sampler can
achieve when fine time increments are used. By the same argument, it is also observed that the
effect of coarsening is much less significant when the blocking strategy is adopted. This indicates
that blocking can also help reduce the computational complexity by utilising a relatively coarse time
resolution. Therefore, we now focus on the comparison between HMC and the block variational
simulation sampler.

In the second part of the numerical experiments, we apply both the HMC and block variational
simulation sampler to data sets A and B, with δt = 0.01. The histograms of state x at different times
t are compared between these two MCMC algorithms, Fig 6 for the data set A with κ = 0.5 and
Fig 7 for the data set B with κ = 1.0. To within sampling variability, both MCMC methods produce
the same marginal sample distribution of state x.

To take CPU time into account in the comparison, we generate two long Markov chains with ap-
proximately same CPU time, one by HMC and another one by the variational sampler. Note that
these two chains are of different length as the computational cost of a single MH step is different
for those two sampler. The CPU time used in the experiment is about 2 hours for the data set with
κ = 0.5 and about 28 hours for the data set with κ = 1.0. On the other hand, we sub-sample from
these two chains with appropriate subsampling intervals so that 5, 000 sample paths are obtained
from each chain. In the next step, we compare the burn-in period and mixing property of these two
sequences of sample paths.
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Figure 4: Comparison of burn-in period between HMC and the block variational simulation sampler
for two data sets in Figure 1, with diffusion variance κ2 = 0.25 (left) and κ2 = 1.0 (right). In each
panel, two traces of the summary statistic L, defined by L =

∫

W
x(t)dt, are plotted for HMC (solid)

and the block variational simulation sampler (dotted).
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We compare the results in terms of both the burn-in indicated by the trace of summary statistic L
and the auto-correlation of L. From Fig. 4 we can see that the burn-in of HMC is significantly
longer than that of the variational MCMC method. This is partly because the variational MCMC
make proposals by sampling from an approximate equilibrium distribution while HMC’s proposals
are always based on the current state. In addition, the blocking strategy helps to increase the
acceptance of independent proposals made by the variational sampler. In Fig. 5, the decay of two
auto-correlation functions of L-traces is compared. While the results for the data set with κ = 1.0
clearly show that our variational MCMC sampler has better mixing than HMC, the results for κ =
0.5 are not clear. It is evident that our method has fast decay of the auto-correlation function at short
time scales but both methods are actually comparable at large time scales. This is maybe related to
the observation that the variational MCMC sampler could occasionally get stuck for a long period
of algorithm time, if a very probable state is accepted.

To summarise, the numerical experiments have demonstrated that the proposed blocking strategy
has greatly improved the performance of two independence samplers. It is shown that the sam-
ple paths obtained from the block variational simulation sampler and those from HMC show very
similar marginal distributions at different times t. We also find that the burn-in period needed for
the variational sampler can be neglected, when compared to HMC. Finally, it is observed that the
variational sampler provides better mixing than HMC in one example while both methods have com-
parable mixing in another example, which is very challenging for our variational Gaussian process
approximation.
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Figure 5: Comparison of mixing between HMC and the block variational simulation sampler for
two data sets in Figure 1, with diffusion variance κ2 = 0.25 (left) and κ2 = 1.0 (right). In each panel,
the ACF of two traces of the summary statistic L, defined by L =

∫

W
x(t)dt, are plotted for HMC

(circles) and the block variational simulation sampler (triangles).

6 Discussion

In this paper, we have presented two novel MCMC algorithms which both combine a particular MH
algorithm, namely an independence sampler, and the variational Gaussian process approximation
for Bayesian inference in non-linear diffusions. This demonstrates that variational approximations
can be combined with MCMC methods to good effect. We stress that the variational approximation
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Figure 6: Comparison of histograms of state x at time t between HMC (filled) and the block vari-
ational simulation sampler (empty) for a double-well potential system with diffusion variance κ2 =
0.25. Upper-left: t = 2.0; Upper-right: t = 4.0; Lower-left: t = 6.0; and Lower-right: t = 8.0.

introduced in this paper is not the traditional fully factorising approximation, rather the approxi-
mation is over the joint distribution of the state path, which make the variational approximation an
attractive proposal distribution. Further, we introduce a flexible blocking strategy to improve the
performance of the variational samplers.

One of our novel algorithms is based on conditional sampling of a multivariate Gaussian distribution
whose mean and covariance function is obtained from the variational Gaussian process approxima-
tion. It has been shown that this algorithm outperforms Hybrid Monte Carlo, with one exception
which we discuss below. However, the conditional sampling method involves inverting large ma-
trices, which makes this algorithm time-consuming in practice, although this could be readily im-
proved with some minor changes to the implementation and the exploitation of sparsity in the inverse
covariance matrices.

The second algorithm makes proposals by simulating a bridge process of the approximate linear
diffusion obtained from the variational Gaussian process approximation and thus this algorithm is
very computationally efficient. Roughly speaking, it is 15 times faster than the optimised HMC we
have implemented, which we believe is one of the most computationally efficient methods currently
available for the problems we have tackled. Compared to the work presented in [15] and [14], we
have adopted a very similar strategy for proposing a diffusion bridge process. Both [15] and [14]
made a relatively crude Gaussian approximation to the marginal density of the process. In contrast,
we exploit the more sophisticated approximation to the apparent, posterior, linear diffusion derived
from the variational Gaussian process. In doing so, we integrate the corresponding moment equa-
tions backwards in time which may cause lower acceptance rates for the MCMC algorithm because
the true posterior process may not time-reversible, however in experiments we do not see evidence
for this having a practically noticeable effect, and we would expect that our variational samplers are
significantly more efficient than those based on crude approximations.
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Figure 7: Comparison of histograms of state x at time t between HMC (filled) and the block vari-
ational simulation sampler (empty) for a double-well potential system with diffusion variance κ2 =
1.0. Upper-left: t = 10; Upper-right: t = 20; Lower-left: t = 30; and Lower-right: t = 40.

As seen in Section 5, our algorithms have difficulties in the transitional phase of the double-well sys-
tem. This is the situation where the variational Gaussian process approximation cannot capture the
multi-modal structure of the true posterior process. As we know, the performance of independence
samplers is strongly dependent of how well the proposal distribution matches the true posterior. We
stress that the intention of the variational MCMC methods we develop in this paper is to address the
situation where the state is relatively well observed such that the posterior distribution is essentially
uni-modal, a situation one might typically expect in a variety of situations, and in particular in the
data assimilation [2] context that motivated this work initially. In any case all naive MCMC ap-
proaches, including HMC, will have mixing problems for multi-modal posterior distributions unless
specifically adapted [24]

We believe these methods can be extended to cope with larger systems exploiting the variational
approximation and could provide a framework for MCMC based inference in more complex, larger
stochastic dynamic systems, where methods such as HMC become computationally prohibitive. In
future work we plan to assess the ability of sub-optimal variational approximations to provide com-
putationally efficient mechanisms for generating proposal distributions for blocked independence
samplers, where we employ localisation in time and space to reduce the computational burden of
sampling paths in very high dimensional spaces. We are also considering whether it might make
sense to combine the variational sampler with the HMC sampler to address the issue of the poor
performance in regions of posterior multi-modality, however this raises so complex questions about
combining such sampling methods and maintaining detailed balance in the sampler overall.
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Abstract

We present a novel test of nonlinear Granger causality in bivariate time series. The
trace norm of conditional covariance operators is used to capture the prediction er-
rors. Based on this measure, a subsampling-based multiple testing procedure tests
the prediction improvement of one time series by the other one. The distributional
properties of the resulting p-values reveal the direction of Granger causality. En-
couraging results of experiments with simulated and real-world data support our
approach.

1 Introduction

In this paper, a time seriesX:=(. . . , xt−1, xt, xt+1, . . .)
T is a discrete time, continuous state process

wheret∈Z is a certain discrete time point. Time points are usually taken at equally spaced intervals.
Given a bivariate time series(X,Y) measured simultaneously, we focus on the problem whether the
underlying process ofX is causal to the underlying process ofY and/or the other way around. The
well-known concept of causality in analysis of times seriesis the so-called Granger causality: The
processX Granger causes another processY, subsequently denoted as “X ⇒ Y”, if future values
of Y can be better predicted using the past values of(X,Y) compared to using the past values of
Y alone. To formalize the time flow, we introduce the notation of the time-delayed embedding
vector reconstructing the state (or phase) space of times series X, which is expressed asXn,r

t :=
(xt−(n−1)r, . . . , xt−2r, xt−r, xt)

T, wheren is the embedding dimension andr is the time delay
(or lag) between successive elements of the state vector [1,2]. The choice ofr, n depends on
the dynamics of underlying process. We refer to [3, 4] for some principled way of choosingr, n.
Throughout this paper, we setr= 1 and the expressionXt := (xt−n+1, . . . , xt−1, xt)

T is used for
n>1. Forn= 1, we use the notationxt explicitly, in stead ofXt.

Fig. 1 illustrates the task of inferring Granger causality from X to Y in terms of embedding vec-
tors . . . ,Xt,Xt+1, . . . and. . . ,Yt,Yt+1, . . . . We use the notation “Xt → Yt+1 |Yt,Yt−1, . . .” to
describe the conditional predictability ofYt+1 by Xt given the past observations(Yt,Yt−1, . . . of
Yt+1). Note that, we distinguish between simple arrow “→” expressing predictability between time
slides and the double arrow “⇒” expressing Granger causality between time series.

Figure 1: Inferring Granger causality fromX to Y (left plot) can be expressed in terms of testing the
prediction improvement ofYt+1 by Xt (right plot).

To assess the predictability “Xt → Yt+1 |Yt,Yt−1, . . .”, the standard test of Granger causality
developed by Granger [5] considers the following autoregressive models:

yt+1 = αT · Yt + ξ(Y) and yt+1 = aT · Yt + bT · Xt + ξ(Y|X) ,
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whereξ(Y) and ξ(Y|X) represent the prediction errors,α = (α1, . . . , αn)T, a = (a1, . . . , an)T,
b= (b1, . . . , bn)T denote regression coefficient vectors. The coefficient vectors are determined so
that the variances ofξ(Y) andξ(Y|X) minimize. Once the coefficient vectors have been calculated,
the causal inference ofX on Y can be revealed if the varianceVar[ξ(Y|X)] is significantly smaller
thanVar[ξ(Y)], which means that the value ofX additionally improves the prediction of the future
value ofY, after the past observations ofY have been considered. The opposite direction “X⇐Y”
can be tested analogously. Such traditional test of Grangercausality is based on linear regression
models, and its application to nonlinear systems may not be appropriate in the general case. A
nonlinear extension of Granger causality, called the extended Granger causality index was proposed
in [6]. The main idea of this technique is to divide the phase space into a set of small neighborhoods
and approximate the globally nonlinear dynamics by local linear regression models. Obviously,
the local linearity is a restrictive assumption. Another recently introduced nonlinear extensions
of Granger causality [7] completely dropped the linearity assumption and based the prediction on
kernel autoregression scheme

yt+1 =
∑

i

αi · φi(Yt) + ξ(Y) and yt+1 =
∑

i

ai · φi(Yt) +
∑

j

bj · ψj(Xt) + ξ(Y|X)

with regression coefficientsαi, ai, bj and some nonlinear functionsφi, ψj , e.g., nonlinear radial
based functions (RBFs). Nonetheless, this approach assumes additive interactions betweenφi(Yt)
andψj(Xt). In this paper, we present an autoregression model, in whichboth linearity and additivity
assumptions are dropped, as follows:

∑

i

αi · φi(Yt+1) =
∑

j

βj · ψj(Yt, . . . ,Yt−l+1) + ξ(Y) and

∑

i

ai · φi(Yt+1) =
∑

j

bj · ψj(Yt, . . . ,Yt−l+1,Xt) + ξ(Y|X) (1)

with regression coefficientsαi, βj , ai, bj , some positive integerl, and some nonlinear functions
φi, ψj . In addition, the target variableYt+1 in our model is also represented by nonlinear func-
tions. We will choose the nonlinear functionsφi, ψj from the so-called reproducing kernel Hilbert
space [8] (RKHS). For this purpose, we introduce the so-called kernel framework.

2 Kernel Framework

A positive definite kernelkX : X ×X → IR on a non-empty setX is a symmetric function, i.e.,
kX (x, x′) = kX (x′, x) for anyx, x′ ∈ X such that for arbitraryn ∈ IN andx(1), . . . , x(n) ∈X the
matrixK with (K)ij := kX (x(i), x(j)) is positive definite, i.e.,

∑n
i,j=1 cicjkX (x(i), x(j)) ≥ 0 for

all c1, . . . , cn ∈ IR. An RKHSHX is a Hilbert space defined by the completion of an inner product
space of functionskX (x, ·) with x ∈ X and the inner product defined by

〈kX (x, ·), kX (x′, ·)〉 = kX (x, x′)

for all x, x′ ∈ X . In other words,φ(x)(·) = kX (x, ·) defines a map fromX into a feature space
HX . With the so-called “kernel trick”, a linear algorithm can easily be transformed into a non-linear
algorithm, which is equivalent to the linear algorithm operating in the space ofφ. However, the
mappingφ is never explicitly computed, since the kernel function is used for calculating the inner
product. This is desirable, because the high-dimensional space may be infinite-dimensional, as is
the case when the kernel is, e.g., a Gaussian:

kX : IRm×IRm→ IR, kX (x, x
′

) = exp(−‖x−x′‖2/2σ2) . (2)

In this framework, we are able to define the covariance operator [9] expressing variance of variables
in the feature space.

2.1 Covariance Operator

Suppose we have random vector(X,Y ) taking values onX ×Y . The base spacesX andY are
topological spaces. Measurability of these spaces is defined with respect to the Borelσ-field. The
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joint distribution of(X,Y ) is denoted byPXY and the marginal distributions byPX andPY . Let
(X ,BX ) and(Y,BY) be measurable spaces and(HX , kX ), (HY , kY) be RKHSs of functions onX
andY with positive definite kernelskX , kY . We consider only random vectors(X,Y ) on X ×Y
such that the expectationsEX [kX (X,X)],EY [kY(Y, Y )] are finite, which guaranteesHX andHY

are included inL2(PX) andL2(PY ) respectively, whereL2(µ) denotes the Hilbert space of square
integrable functions with respect to a measureµ. It is known that there exists a unique operator
ΣYX , called cross-covariance operator, fromHX toHY such that

〈g,ΣYXf〉HY
= EXY [f(X)g(Y )] − EX [f(X)]EY [g(Y )] = Cov[f(X), g(Y )]

for all f ∈ HX , g ∈ HY . Here,Cov[·] denotes the covariance.EX [·], EY [·] andEXY [·] denote
the expectation overPX , PY andPXY , respectively. Baker [9] showed thatΣYX has a repre-
sentation of the formΣYX = Σ

1/2
Y Y VYXΣ

1/2
XX with a unique bounded operatorVYX : HX → HY

such that‖VYX‖ ≤ 1, where‖ · ‖ is used for the operator norm of a bounded operator, i.e.,
‖V ‖=sup‖f‖=1 ‖V f‖. Moreover, it is obvious thatΣXY =Σ∗

YX , whereΣ∗ denotes the adjoint of
an operatorΣ. If X is equal toY , the positive self-adjoint operatorΣY Y is the covariance operator.

Based on the cross-covariance operator, we introduce the conditional covariance operator. Let
(HX , kX ), (HY , kY) be RKHSs on measurable spacesX ,Y respectively. Let(X,Y ) be a random
vector onX×Y. The positive self-adjoint operator

ΣY Y |X := ΣY Y − Σ
1/2
Y Y VYXVXY Σ

1/2
Y Y

is called the conditional covariance operator, whereVYX andVXY are the bounded operators derived
from ΣYX andΣXY . If Σ−1

XX exists, we can rewriteΣY Y |X as

ΣY Y |X = ΣY Y − ΣYXΣ−1
XXΣXY .

Fukumizu et al. [10, Proposition 2] showed that

〈g,ΣY Y |Xg〉HY
= inf

f∈HX

EXY

[∣∣(g(Y ) − EY [g(Y )]) − (f(X) − EX [f(X)])
∣∣2]

for any g ∈ HY . This is an analogous to the well-known results on covariance matrices and lin-
ear regression: The conditional covariance matrixCY Y |X = CY Y −CYXC

−1
XXCXY expresses the

residual error of the least square regression problem asbTCY Y |Xb=mina EXY ‖bTY − aTX‖2. To
relate this residual error to the conditional variance ofg(Y ) givenX, the following assumption for
RKHSs is made.

Assumption 1 Let1 denote the function with constant value1 onX . ThenHX +IR · 1 is dense in
L2(PX), where “+” means the sum of Hilbert spaces.

The kernels that satisfy this assumption are necessarily “characteristic”. The notation of the char-
acteristic kernels is a generalization of the characteristic functionEX [exp(

√
−1uTX)], which is the

expectation of the (complex-valued) positive definite kernel k(x, u) = exp(
√
−1uTx) (see [11, 12]

for more details). One popular class of characteristic kernels is the universal kernels [13] on a com-
pact metric space, e.g., the Gaussian or Laplacian kernel ona compact subset ofIRm, because the
Banach space of bounded continuous functions on a compact subsetX of IRm is dense inL2(PX)
for anyPX on X . Another example is the Gaussian or Laplacian kernel on the entire Euclidean
space, since many random variables are defined on non-compact spaces. One can prove that, As-
sumption 1 holds for these kernels (see Appendix in [11]). A recent paper of Sriperumbudur et
al. [12] showed the necessary and sufficient condition, under which shift-invariant kernels are char-
acteristic. Shift-invariant kernels are given byk(x, x′)=ψ(x−x′) whereψ is a bounded continuous
real-valued positive definite function onIRm, e.g., Gaussian, Laplacian, etc.

Under Assumption 1, one can show that

〈g,ΣY Y |Xg〉HY
= EX

[
VarY |X [g(Y )|X]

]

for all g∈HY . Thus, the conditional covariance operator expresses the conditional variance ofg(Y )
givenX in the feature space. As a side note, Ancona et al. [14] claimed that not all kernels are
suitable for their nonlinear prediction schemes. They presented sufficient conditions, which hold
for Gaussian kernels. Our kernel framework allows wider class of kernels. Note that the maps
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φ, ψ in Eq. 1, do not necessarily belong to the same function class, even though we overall used
Gaussian kernels in our experiments. The parameterσ2 in kernel functions as in Eq. 2 is adapted
to the variance of variables independently. In our experiments, we set the parameter such that2σ2

equals the variance of the corresponding variable.

To evaluate the conditional covariance operator, we use thetrace norm, because it is not difficult to
see that the trace norm of the operator is directly linked with the sum of residual errors, namely

Tr(ΣY Y |X)=
∑

i

min
f∈HX

EXY

[∣∣(φi(Y )−EY [φi(Y )])−(f(X)−EX [f(X)])
∣∣2] ,

where {φi}∞i=1 is the complete orthonormal system of the separable RKHSHY . An RKHS
(HY , kY) is separable, when the topological spaceY is separable andkY is continuous onY×Y [15].

Further, let(HX1
, kX1

), (HX2
, kX2

) be RKHSs on measurable spacesX1,X2 respectively. If we
defineX := (X1, X2) andHX :=HX1

⊗HX2
, it can be shown thatΣY Y |X ≤ΣY Y |X1

, where the
inequality refers to the usual order of self-adjoint operators, namely ifA≤B⇔〈Ag, g〉≤〈Bg, g〉 for
all g∈HY . Further, ifHX , HY , HX1

are given by characteristic kernels,ΣY Y |X1,X2
=ΣY Y |X1

⇔
Y ⊥⊥X2 |X1, which denotes thatY andX2 are conditionally independent, givenX1. In terms of
the trace norm, we have the following property:

Property 1 Let TY Y |X denote the trace norm of the conditional covariance operator Tr(ΣY Y |X)
withX :=(X1, X2). Then we have

TY Y |X1,X2
<TY Y |X1

⇔ Y 6⊥⊥ X2 |X1 and TY Y |X1,X2
=TY Y |X1

⇔ Y ⊥⊥ X2 |X1 .

Property 1 of the trace norm generalizes the (P1)-property,required by Ancona et al. [7, Section II.A]
for any measure of nonlinear Granger causality, since (P1)-property describes merely the bivariate
case, while Property 1 holds also for multivariate cases.

2.2 Empirical Estimation of Operators

In analogy to the work of [11], we introduce the estimations of TY Y andTY Y |X based on sample
(x(1), y(1)), . . . , (x(n), y(n)) from the joint distribution. Using the empirical mean elementsm̂(n)

X =
1
n

∑n
i=1 kX (x(i), ·) andm̂(n)

Y = 1
n

∑n
i=1 kY(y(i), ·), an estimator ofΣYX is

Σ̂
(n)
YX =

1

n

n∑

i=1

(
kY(y(i), ·) − m̂

(n)
Y

)
〈kX (x(i), ·) − m̂

(n)
X , ·〉HX

.

Σ̂
(n)
Y Y andΣ̂

(n)
XX can be defined accordingly. An estimator ofΣY Y |X is then defined by

Σ̂
(n,ε)
Y Y |X = Σ̂

(n)
Y Y − Σ̂

(n)
YX(Σ̂

(n)
XX + εI)−1Σ̂

(n)
XY ,

whereε>0 is a regularization constant that enables inversion.1 It can be shown that̂T(n)
YY =Tr(Σ̂

(n)
YY )

is a consistent estimator ofTYY , which guarantees to converge in Hilbert-Schmidt norm at rate
n−1/2. Moreover,T̂(n,ε)

YY |X = Tr(Σ̂
(n,ε)
YY |X) is a consistent estimator ofTYY |X . If ε converges to zero

more slowly thann−1/2, this estimator converges toTYY |Z . For notational convenience, we will
henceforth omit the upper index and useT̂YY andT̂YY |X to denote the empirical estimators.

The computation with kernel matrices ofn data points becomes infeasible for very largen. In our
practical implementation, we use the incomplete Cholesky decompositionK̂=LLT [18] whereL is
a lower triangular matrix determined uniquely by this equation. This may lead to considerably fewer
columns than the original matrix. Ifk columns are returned, the storage requirements areO(kn)
instead ofO(n2), and the running time of many matrix operations reduces fromO(n3) toO(nk2).

1The regularizer is required as the number of observed data points is finite, whereas the feature space could
be infinite-dimensional. The regularization may be understood as a smoothness assumption on the eigen-
functions ofHX . It is analogous to Tikhonov regularization [16] or ridge regression [17]. Many simulated
experiments showed that the empirical measures are insensitive toε, if it is chosen in some appropriate interval,
e.g.,[10−10, 10−2]. We choseε=10−5 in all our experiments.
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3 Subsampling-based Testing of Granger Causality

We have showed that̂TYt+1Yt+1|Yt,...,Yt−l+1
andT̂Yt+1Yt+1|Yt,...,Yt−l+1,Xt

can be respectively con-
sidered as measures for variances of prediction errorsξ(Y) andξ(Y|X) based on models defined in
Eq. 1. To test the significance of the relation between them inspite of statistical fluctuations, we
employ the permutation test. For technical reasons, we firstrephrase the autoregression models of
Eq. 1 for some integerl>0 as follows

n∑

i=1

αi · φi(Yt+1) =

n∑

j=1

βj · ψj(Yt, . . . ,Yt−l+1,X
π
t ) + ξ(Y|Xπ) and

n∑

i=1

ai · φi(Yt+1) =

n∑

j=1

bj · ψj(Yt, . . . ,Yt−l+1,Xt) + ξ(Y|X) (3)

whereXπ
t :=(xπ(t−n+1), . . . , xπ(t))

T denotes the data vector obtained by shufflingn data points of
Xt by a random permutationπ. For the special casel=0, the models of Eq. 3 are defined by

n∑

i=1

αi · φi(Yt+1) =

n∑

j=1

βj · ψj(X
π
t ) + ξ(Y|Xπ) and

n∑

i=1

ai · φi(Yt+1) =
n∑

j=1

bj · ψj(Xt) + ξ(Y|X) . (4)

Then, we chooseφi as nonlinear maps ofY (set of all possible values ofYt+1) into feature space
HY , andψj as nonlinear maps ofY l ×X (set of all possible values of(Yt, . . . ,Yt−l+1,Xt))
into feature spaceHYl×X . In practice, the feature spaceHYl×X is spanned by data vector
(Yt, . . . ,Yt−l+1,X

π
t ) or by data vector(Yt, . . . ,Yt−l+1,Xt). To make both spaces coincide, we

restrict the random permutationπ to those that satisfy the condition

(Yt, . . . ,Yt−l+1,X
π
t ) ≡ (Yt, . . . ,Yt−l+1,Xt) . (5)

If vectorXt takes only discrete/categorical values, the condition of Eq. 5 restrictsπ to permutations
within the same category. In the case of real-valuedXt, Eq. 5 could be said to hold ifXπ

t andXt are
“similar” in some sense. This suggests the use of clusteringtechniques to search for an appropriate
partition of data points ofXt. In our experiments, we applied the standard k-means clustering
algorithm. Other clustering algorithms can be applied as well. Using a set of random permutations
π={π1, . . . , πk} satisfying Eq. 5, the null distribution (under unpredictability) of Var[ξ(Y)] can be
simulated. Based on the empirical null distribution

{T̂Yt+1Yt+1|Yt,...,Yt−l+1,X
π1
t

, . . . , T̂Yt+1Yt+1|Yt,...,Yt−l+1,X
πk

t

} , (6)

p-value can be determined, which is the percentage of valuesin the set of Eq. 6, which are prop-
erly less than̂TYt+1Yt+1|Yt,...,Yt−l+1,Xt

. Smaller p-values suggest stronger evidence against the
null hypothesis (unpredictable), and thus stronger evidence favoring the alternative hypothesis (pre-
dictable). As a cut-off point for p-values, a significance level α is pre-specified. A typical choice
is α = 0.05. If p < α, the null hypothesis is rejected, which means the predictability “ Xt →
Yt+1|Yt, . . . ,Yt−l+1” is significantly verified; Otherwise, we accept “Xt 6→Yt+1|Yt, . . . ,Yt−l+1”.
In summary, the p-value expressing the relationship between Var[ξ(Y|X)] andVar[ξ(Y|Xπ)] gives the
evidence for the Granger causality “X⇒Y”.

The remaining problem is the choice ofl in Eq. 3, which states that(Yt, . . . ,Yt−l+1) achieves the
maximum knowledge that would be useful to predictYt+1. We propose to calculatel by a iterative
procedure based on following autoregression models

n∑

i=1

αi · φi(Yt+1) =

n∑

j=1

βj · ψj(Yt, . . . ,Yt−l+1,Y
π
t−l) + ξ

(π)
l and

n∑

i=1

ai · φi(Yt+1) =

n∑

j=1

bj · ψj(Yt, . . . ,Yt−l+1,Yt−l) + ξl . (7)
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The integerl∈{0, 1, . . .} in Eq. 3 is specified to be the smallest integer whereVar[ξl] is not signifi-
cantly less thanVar[ξ

(π)
l ]. In other words,l is specified to be the smallest nonnegative integer where

“Yt−l 6→Yt+1|Yt, . . . ,Yt−l+1”. As mentioned previously, the models in Eq. 4 are used, ifl=0.

So far, we have shown the test of predictability ofYt+1 by Xt on a single sample. The statistical
power of such single tests is often limited, since many real-world time series are nonstationary, in
particular, the causal relationship could vary over time. For this reason, we propose a subsampling-
based multiple testing procedure and utilize the distributional properties of the resulting p-values
based on different sub-time-series (embedding vectors). Fig. 2 summarizes our multiple testing
procedure for detecting Granger causality. Step 1 runs single tests onN random sub-time-series and
obtainsN p-values, one for each sub-time-series.

Input: Bivariate time series(X, Y) and hypothesisX⇒Y.
Step 1: For each sub-time-series(Xti

, Yti
), i=1, . . . , N :

Step 1.1: Determine the smallest nonnegative integerl such thatYti−l 6→Yti+1|Yti
, . . . , Yti−l+1.

Step 1.2: Calculate the p-valuepi based on the models in Eq. 4 (l=0) or the models in Eq. 3 (l>0).
Step 2: Calculate the skewness ofp1, . . . , pN and the probabilityP Unif thatp1, . . . , pN are uniformly

distributed over[0, 1].

Output: If P Unif < 1

2
and p-values are positively skewed, accept the hypothesis; Otherwise, reject it.

Figure 2: Subsampling-based multiple testing of Granger causality

Based on the distributional properties of these p-values (Step 2), the procedure makes the decision
on the predictability. To make this step apparent, we take a closer look at the distribution of p-values.
According to Property 1, the relation

T̂Yt+1Yt+1|Yt,...,Yt−l+1,Xt
≤ T̂Yt+1Yt+1|Yt,...,Yt−l+1

,

holds in general. And, if the prediction ofYt+1 can indeed be improved byXt, we will expect that

T̂Yt+1Yt+1|Yt,...,Yt−l+1,Xt
< T̂Yt+1Yt+1|Yt,...,Yt−l+1,Xπ

t
. (8)

Roughly speaking, the prediction improvement ofYt+1 by Xt is reflected in a significant reduc-
tion of the sum of residual errors, captured by the relation betweenT̂Yt+1Yt+1|Yt,...,Yt−l+1,Xt

and
T̂Yt+1Yt+1|Yt,...,Yt−l+1,Xπ

t
. Thus, the majority of p-values are closer to0 and the distribution of

p-values is positively skewed (right-skewed). IfXt does not improve the prediction ofYt+1,

T̂Yt+1Yt+1|Yt,...,Yt−l+1,Xt
≥ T̂Yt+1Yt+1|Yt,...,Yt−l+1,Xπ

t
(9)

is as likely as the relation described in Eq. 8. Consequently, p-values are uniformly distributed over
[0, 1] and the skewness of p-values vanishes. If the relation in Eq.9 is true for the majority of ran-
dom permutations, more p-values are closer to1 and the distribution of p-values is negatively skewed
(left-skewed). This case, called uncertain situation, canoccur due to various reasons. One imagin-
able situation is, e.g.,̂TYt+1Yt+1|Yt,...,Yt−l+1,Xt

= T̂Yt+1Yt+1|Yt,...,Yt−l+1,Xπ

t
, the null distribution is

degenerate (all its probability mass is concentrated on onepoint). For instance, if(Yt, . . . ,Yt−l+1)
is high-dimensional, i.e.,l is large, or the statistical fluctuation ofYt+1 is very small, it could occur
that

T̂Yt+1Yt+1|Yt,...,Yt−l+1,Xt
≈ T̂Yt+1Yt+1|Yt,...,Yt−l+1,Xπ

t
≈ T̂Yt+1Yt+1|Yt,...,Yt−l+1

≈ 0 .

Then, the relation between these measures cannot provide any reliable information about the pre-
dictability of Yt+1 by Xt. We interpret such uncertain situations as no evidence for the Granger
causality hypothesis “X⇒Y”.

Inspired by [19, 20], we visualize these observations by an intuitive graphical tool. We first sort the
set of p-values{p(1), . . . , p(N)} in an increasing order, i.e.,p1 ≤p2 ≤ . . .≤pN . If pi behaves as an
ordered sample from the uniform distribution over[0, 1], the expected value ofpi is approximately
i
N . The slope ofpi versusi, also called Q-Q plot (“Q” stands for quantile), should exhibit a linear
relationship, along a line of slope1N passing through the origin (diagonal line in the Q-Q plot as
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Figure 3: Q-Q plots of three sets of p-values obtained by three multiple tests. The field above and
under the diagonal line are called uncertain (uc) area and predictable (pd) area respectively.

shown in Fig. 3). If p-values are positively skewed, the reordered p-values are located in the subfield
under the diagonal line, called pd-area (“pd”: predictable). If p-values are negatively skewed, the
reordered p-values are located in the so-called uc-area (“uc”: uncertain).

For a reliable decision based on the resulting p-values, thesubsamples should be independent to
some degree, since independent statistics on p-values are needed. This is the case, when the given
sample size is much larger than the subsample size (dimension n of the embedding vector). In our
experiments, we fixed the subsample size at100, since time series in our experiments contain at least
5000 data points. The other parameter of the multiple testing is the number of replications of the
single test:N . In principle,N should be large enough to enable a reliable identification ofuniform
distribution fromN p-values. In our experiments, we choseN ≥ 100. For large sample sizes, we
choseN=1000.

The last question is how to judge, in spite of the fluctuation of one specific set of p-values, whether
theN resulting p-values are uniformly distributed or not. We transform this problem to a two-
sample-problem. More precisely, we simulate1000 samples ofN values from the uniform distribu-
tion over[0, 1]. For each of the1000 simulated samples, we test whether theN resulting p-values
are identically distributed with theN values from truly uniform distribution. The percentage of the
positive results, i.e., the resulting p-values and the simulated values come from the same distribu-
tion, can be considered as the probability that the resulting p-values are uniformly distributed:P Unif.
If P Unif < 1

2 , the p-values are less likely from a uniform distribution than from a non-uniform distri-
bution. In our experiments, we employ the kernel-based testfor the two-sample-problem proposed
by Gretton et al. [21]. After all, the decision of Granger causality relies on whetherP Unif < 1

2 and
whether the p-values are positively skewed.

4 Experiments

To demonstrate the effectiveness of the proposed approach,we test our algorithm on simulated data
generated by chaotic maps and real-life systems of different scientific fields: financial time series
and a physiological problem.

4.1 Hénon Maps

As the first simulated example, we consider the following twonoisy H́enon maps:

xt+1 = a+ c1 xt−1 − d1 x
2
t + µ ξ1

yt+1 = a+ c2 yt−1 − b xtyt − (1−b) d2 y
2
t + µ ξ2

represented as systemsX and Y, respectively. Here, systemX drives systemY with coupling
strengthb∈ [0, 1]. If b=0, X andY are uncoupled; Ifb>0, we have a uni-directed couplingX⇒Y.
This example is also studied by Bhattacharya et al. [22], whoproposed to chooseb < 0.7 to avoid
strong synchronization. Similar to [22], we fixed the parameters ata=1.4, c1 =0.3, c2 =0.1, d1 =1,
d2 = 0.4, µ = 0.01. ξ1, ξ2 are unit variance Gaussian distributed noise terms. Note that X andY
are different systems even in the case ofb= 0, becausec1 6= c2 andd1 6= d2. Therefore, identical
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synchronization is impossible. We start with points(x1, y1) = (x2, y2) = (0, 0). The first and the
third plot (from left) of Fig. 4 show the time series of10000 data points. We ran our test procedure
on uncoupled time series (b= 0) and weakly unidirectionally coupled time series (b= 0.25). The
reordered p-values obtained in both cases are visualized inthe second and fourth plot of Fig. 4. In
the case ofb=0, our test rejected the Granger causality in both directions. In the case ofb=0.25,
our test revealedX ⇒ Y and gained no evidence forX ⇐ Y, because the reordered p-values are
located in the uc-area. Moreover, in testingX ⇒ Y, nearly all p-values obtained from single tests
on sub-time-series are close to0, which showed that our single test on time series of size100 in this
example is already able to provide reliable results.
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Figure 4: The first and third plot (from left) show bivariate time series of10000 observations (fine
points) generated by H́enon maps and random sub-time-series of100 observations (bold points).
The second and fourth plot show the corresponding Q-Q plots of p-values obtained by tests of
predictability on100 sub-time-series.

4.2 Logistic Maps

As the second simulated example, we consider the following pair of noisy logistic maps:

xt+1 = (1−b1) a xt(1−xt) + b1 a yt(1−yt) + µ ξ1
yt+1 = (1−b2) a yt(1−yt) + b2 a xt(1−xt) + µ ξ2

represented as systemsX andY. b1, b2∈ [0, 1] describe the coupling strengths betweenX andY. If
b1 = b2 =0, X andY are uncoupled; Ifb1, b2> 0, we have a bi-directed couplingX⇔Y; If b1 =0
andb2 > 0, we have a uni-directed couplingX ⇒ Y. The last case is also studied by Ancona et
al. [7]. They claimed that in the noise-free case, i.e.,µ= 0, a transition to synchronization occurs
at b2 =0.37 based on the calculation of the Lyapunov exponents. For thisreason, we choseb1, b2<
0.37. As proposed in [7], parametera is fixed to3.8; ξ1, ξ2 are unit variance Gaussian distributed
noise terms; andµ is set at0.01. We chose the start point(x1, y1) randomly from[0, 1]× [0, 1]
and generated time series of length10000 with (b1, b2)∈{(0, 0), (0, 0.3), (0.1, 0.3), (0.3, 0.3)}. We
repeated the same experiment with20 different start points that are randomly chosen in[0, 1]×[0, 1].
All these time series were not observed to diverge. The resulting directions of Granger causality
were always consistent.
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Figure 5: Q-Q plots of p-values obtained by tests of predictability on 100 random sub-time-series
from time series generated by logistic maps.

Fig. 5 shows Q-Q plots of p-values based on100 subsamples from one time series of length10000
with various coupling strengths(b1, b2). In all 4 cases, our method identified the directions of
coupling correctly: Ifb1 = b2 =0, bothX⇒Y andY⇒X are rejected due to uniform distributions
of p-values; If(b1, b2) = (0, 0.3), X ⇒ Y is accepted andY ⇒ X gained no evidence, which is
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consistent with the underlying model. In the case of(b1, b2)∈{(0.1, 0.3), (0.3, 0.3)}, bothX⇒Y
andY⇒X are accepted, which means the bi-directed Granger causality Y⇔X is verified.

Interestingly, by means of two-sample-test, we can additionally confirm that whenb1 =b2 =0.3 the
resulting p-values corresponding to testingX⇒Y and to testingY⇒X are identically distributed,
while in the case ofb1 6= b2 the resulting p-values corresponding to testingX ⇒ Y and to testing
Y ⇒ X come from different distributions. This is reasonable, because the coupling is absolutely
symmetric inX andY, if b1 = b2. It seems plausible that the more right-skewed, the stronger the
coupling (compare the caseb1<b2). But, we do not speculate on this property.

4.3 Co-movement of Stock Indexes

The analyzed raw dataset consists of daily closing values (adjusted for dividends and splits) of Dow
Jones (DJ) industrial average index and NIKKEI 225 stock average index during the time between
January 1984 and January 2008. Only days with trading activity in both stock exchanges were
considered. The time increment in the raw data is not always exactly one day due to weekends and
moving holidays. We transform the raw data into a series of day-to-day differences to describe the
daily movements (DM) of indexes. After all, we have a bivariate time series with5751 observations
(Fig. 6, left).
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Figure 6: The left plot illustrates the time series of DJ and NIKKEI index and their daily movements
(DM). The right plot is Q-Q plots of p-values obtained by testing predictability between “DMNIKKEI ”
and “DMDJ”on 100 random sub-time-series.

We ran our test procedure on this dataset. The p-values obtained for both causal hypotheses are
visualized in the right plot of Fig. 6. The probability of theuniform distribution for the p-values
corresponding to the hypothesis that the daily movement of DJ causes that of NIKKEI isP Unif =
0.003< 1

2 (p-values are positively skewed), andP Unif =0.875≥ 1
2 for the reversed causal direction.

Due to time difference, the US stock market actually opens after the market in Tokyo is already
closed. For this reason, it is in fact justified to test the conditional predictability onYt by Xt

(“X”: DM NIKKEI ; “Y”: DM DJ) within one time slice. The resulting p-values obtained from tests of
predictability onYt by Xt providesP Unif =1≥ 1

2 .

In summary, our testing procedure showed evidence of a uni-directed causality running from the
daily movement of DJ to the daily movement of NIKKEI. The knowledge of the dynamics of DJ
can significantly improve a prediction of the dynamics of NIKKEI, but the dynamics of NIKKEI
has a very limited, yet non-significant impact on the future dynamics of DJ. The finding that the
movement of DJ influences the movement of NIKKEI and not vice versa, which may seem trivial as
a purely economical fact, but actually confirms in an independent way the validity of our kernel test
formalism.

4.4 Cardiorespiratory Interaction

As another example of real-life systems, we consider the benchmark bivariate time series of heart
rate and respiration force of a sleeping human suffering from sleep apnea (data set B of the Santa Fe
Institute time series competition [23]) recorded in the sleep laboratory of the Beth Israel Hospital in
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Boston, MA. The magnitudes considered are heart rate and respiration force. The data are plotted
in Fig. 7 (left). The time interval between measurements is0.5 seconds. As described in [24, 25],
under normal, physiological conditions, the heart rate is modulated by respiration through a process
known as Respiratory Sinus Arrhythmia (RSA). It is the natural cycle of arrhythmia that occurs
through the influence of breathing on the flow of sympathetic and vagus impulses to the sinoatrial
node of the heart. When we inhale, vagus nerve activity is impeded and the heart rate begins to
increase. When we exhale, this pattern is reversed. This quasi-periodic modulation of heart rate
by respiration is most notable in young, healthy subjects and decreases with age, which means
“Heart⇐Respiration”.
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Figure 7: Time series of the heart rate and respiration forceof a patient suffering sleep apnea (left).
Q-Q plots of p-values obtained by testing predictability between “Heart” and “Respiration” on1000
random sub-time-series (right).

However, this dataset corresponds to a patient suffering from sleep apnea, which is a breathing dis-
order characterized by brief interruptions of breathing during sleep. Sleep apnea affects the normal
process of RSA, disturbing the usual patterns of interaction between the heart rate and respiration.
As a result, the control of the heart rate by respiration becomes unclear. It may well be blocked, in
accordance with the change in dynamics, that is characteristic of the so-called “dynamical diseases”.
Some studies [26, 22, 7] claimed a coupling in the reversed direction: “Heart⇒Respiration”. For
these reasons, the bi-directed causation “Heart⇔ Respiration” might be likely the ground truth in
this sample. The result of our test procedure is consistent with this prior knowledge, since for both
directions we haveP Unif = 0< 1

2 (p-values are positively skewed). The identified bi-directed cau-
sation between heart rate and respiration suggests a probably causal link between sleep apnea and
cardiovascular disease [27], although the exact mechanisms that underlie this relationship remain
unresolved [28].

5 Conclusion

We have presented a kernel framework for detecting nonlinear Granger causalityX ⇒ Y. We use
the property that when the underlying process ofX andY are indeed uncoupled to each other, the
p-values of testing prediction improvement ofYt+1 by Xt, given the relevant past observations
(Yt, . . . ,Yt−l+1), are uniformly distributed over[0, 1]. The predictability improvement is captured
by the trace norm of conditional covariance operators. In comparison to other nonlinear extensions
of Granger causality as described in [6, 7, 29], our approachis designed in a more general kernel
framework and can, in principle, be straightforwardly extended to analyzing multivariate time series.
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Abstract

This paper treats the multiscale estimation of the integrated volatility of an Itô
process immersed in high-frequency correlated noise. The multiscale structure
of the problem is modelled explicitly, and the multiscale ratio is used to quantify
energy contributions from the noise, estimated using the Whittle likelihood. This
problem becomes more complex as we allow the noise structure greater flexibility,
and multiscale properties of the estimation are discussed via a simulation study.

1 Introduction

The estimation of properties of continuous time stochastic processes, whose observation is immersed
in high frequency nuisance structure is required in many different fields of application, for example
molecular biology and finance. Various methods have been proposed to alleviate bias introduced
into the estimation from high frequency nuisance structure, see for example [1–4]. Commonly the
model of the observed process is as the process of interestXti superimposed with noiseεti , or

Yti = Xti + εti , (1)

whereYti is the observed process,Xti the unobserved component of interests, andεti is the mi-
crostructure noise effect. We modelXt, the process of interest with a suitable stochastic differential
equation. For example, the Heston model is specified [5] by

dXt = (μ− νt/2) dt+ σtdBt, dνt = κ (α− νt) dt+ γν
1/2
t dWt, (2)

whereνt = σ2t , andBt andWt are correlated 1-D Brownian motions.

Our main objective is to estimate theintegrated volatility, 〈X,X〉T of the Itô process{Xt}, from
the set of observations{Yti}. Different methods have been proposed for determining the properties
of Xti . An outstanding problem is proposing more robust inference methods. [3] has relaxed the
assumptions of [1], to include inference of processes with jumps. Another possible direction of de-
velopment is to include more complicated noise scenarios, namely allowing for correlation between
observations. The main issue with such relaxations, is that as the permitted structure ofXt and
εt become less stylized, it naturally becomes harder to separate energy due to the high frequency
nuisance component from the process of interest.

Sykulski et al. [4] have proposed inference for multiscale processes based on using the discrete
Fourier transform. Fourier domain estimators have also been used for estimating noisy Itô pro-
cesses, see [6], but the main innovation of Sykulskiet al. was to present a theoretical framework for
Harmonizable processes [7, 8] of interest, and an automatic procedure for estimating the nuisance
structure was proposed. The Whittle likelihood was used to estimate the energy level of the process
of interest, as well as the noise contamination. The method was shown to perform well under various
signal to noise scenarios, as well as path lengths, see[4].
∗www.ecs.soton.ac.uk/people/as07r
†www.homepages.ucl.ac.uk/˜ucaksc0/
‡www.ma.ic.ac.uk/˜pavl/
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The results of [4] or [1] are only appropriate when the noise is white. We shall in contrast in
this paper discuss possible extensions of the multiscale estimators to the case of more complicated
market microstructure, and illustrate the performance of the estimator in various noise scenarios.

2 Multiscale Estimation

In the absence of noise a suitable estimator of the integrated volatility,〈X,X〉T =
∫ T
0
σ2t dt, can be

specified from the quadratic variation of the process{Yt}. In the presence of market microstructure
noise this is no longer true and it is necessary to employ a different estimation procedure. For ease
of exposition we denote the difference processZti − Zti−1 by U (Z)ti whereZ = X, Y or ε. The
Loève spectrum [7,8] ofU (Z)ti will be denotedS(Z)(fk, fk), and we note that the observed quadratic
variation can be rewritten as:

〈̂X,X〉
(b)

T =

N−1∑

i=0

(
U
(Y )
ti

)2
=

N/2−1∑

k=−N/2

∣
∣
∣J (Y )(fk)

∣
∣
∣
2

(3a)

Ŝ(Y )(fk, fk) =
∣
∣
∣J (Y )(fk)

∣
∣
∣
2

, J (Y )(fk) =
1
√
N

N−1∑

j=1

U
(Y )
tj
e−2πitjfk . (3b)

with fk = k
T
. Ŝ(Y )(fk, fk) is the periodogram estimator, see [9], and normally has a single argu-

ment because the covariance of the Fourier Transform at two fixed frequencies is asymptotically
equivalent to zero for a stationary process. We note directly from [4] that the bias of the estimator

〈̂X,X〉
(b)

T is conveniently expressed in the Fourier domain by the observation that

E

{

〈̂X,X〉
(b)

T

}

=

N/2−1∑

k=−N/2

S(X)(fk, fk)+σ
2
ε

N/2−1∑

k=−N/2

|2 sin(πfkΔt)|
2
+O(Nα)+O

(
N1−α

)
. (4)

The error terms follow from assumptions regarding the spectral properties of the processXt, and are
detailed in [4]. These assumptions determine the value ofα. It is clear from eqn (4) that the influence
of the noise increases for larger frequencies, and that the relative magnitude ofS(X)(fk, fk) to
σ2ε |2 sin(πfkΔt)|

2 at frequencyfk will determine the need for bias correction atfk.

Sykulskiet al proposed to measure the average energy ofU
(X)
t across frequencies, and determine

the energy ofU (ε)t , using the form of the white noise spectrum. DespiteU (X)t assumed harmonizable
and not necessarily stationary, with appropriate assumptions regarding the spectral correlation of the
process, it is appropriate to use the Whittle likelihood, see [10], to determine the relative energy of
the two processes across scales. Instead of using eqn (3b) to estimate the spectral contributions of
the process of interest, a shrinkage estimator ofS(X)(fk, fk) was therefore proposed in [4]:

Ŝ(X)(fk, fk;Lk) = LkŜ
(Y )(fk, fk). (5)

0 ≤ Lk ≤ 1 is referred to as the ‘multiscale ratio’ and its optimal form for perfect bias correction
whenεti is white noise is given by:

Lk =
S(X)(fk, fk)

S(X)(fk, fk) + σ2ε |2 sin(πfkΔt)|
2 . (6)

Of course this assumes perfect knowledge ofS(X)(fk, fk) and is not a realizable estimator. Instead
typical contributions ofS(X)(fk, fk) across frequencies were considered, and the multiscale ratio
replaced by a sort of average ratio correspondingto

Lk =
σ2X

σ2X + σ
2
ε |2 sin(πfkΔt)|

2 . (7)

The justification for this choice is discussed in Sykulskiet al. We estimate the parametersof Lk
by maximising a pseudo-likelihood namely the multiscale Whittle likelihood defined in parameter

Inference and Estimation in Probabilistic Time-Series Models.      Eds. D. Barber, A. T. Cemgil and S. Chiappa.    Page 91   

Isaac Newton Institute for Mathematical Sciences, Cambridge UK, 18-20 June 2008.                                  



σ =
(
σ2ε σ2X

)

`(σ) = −
N/2−1∑

k=1

log
(
σ2X + σ

2
ε |2 sin(πfkΔt)|

2)−
N/2−1∑

k=1

Ŝ(Y )(fk, fk)

σ2X + σ
2
ε |2 sin(πfkΔt)|

2 .

If
{
U
(X)
t

}
is a stationary process, then the full Whittle likelihood (withσ2X replaced by

S(X)(fk, fk)) will approximate the time-domain likelihood of the sample, under suitable regularity
conditions, see [11].

The bias corrected estimator of the integrated volatility for an estimatedL̂K sequence becomes

〈̂X,X〉
(m1)

T =

N/2−1∑

k=−N/2

Ŝ(X)(fk, fk; L̂k). (8)

In Sykulskiet al. it was shown that the estimates ofσ2X andσ2ε produced suitablêLk such that bias
corrected estimators ofS(X)(fk, fk) with suitable properties were defined. Unfortunately it is not
always reasonable to model the high frequency structure as white, and so more subtle modelling
needs to be used when the noise is more complicated.

3 Correlated Noise

A key issue is treating correlation in the error terms. A reasonable relaxation of modellingεti
as white would correspond toεti stationary. Stationary processes can be conveniently represented
in terms of aggregations of uncorrelated white processes, using the Wold decomposition theorem
[12][p. 187]. We may therefore write the zero-mean observationεti as

εti =

∞∑

j=0

θtjηti−tj , (9)

whereθt0 ≡ 1,
∑
j θ
2
tj
< ∞, and{ηtn} satisfiesE [ηtn ] = 0 andE [ηtnηtm ] = σ2ηδn,m. Common

practise would involve approximating the distribution by a finite number of elements in the sum, and
thus truncate eqn (9) toq ∈ Z. We therefore model the noise as a Moving Average (MA) process
specified by

εti = ηti +

q∑

k=1

θtkηti−k , (10)

and the spectral density function [9] ofεti takes the form:

S∗(f ;θ, σ2η) = σ
2
η

∣
∣
∣
∣
∣
1 +

q∑

k=1

θke
2iπfk

∣
∣
∣
∣
∣

2

. (11)

In this case our spectral model forεti changes to a Lòeve spectrum of

S(ε)(f, f) = S∗(f ;θ, σ2η)|2 sin (πfΔt) |
2. (12)

Two possible methods now exist for treating the nuisance function ofS∗(f ;θ, σ2η): we can use the
method of Sykulskiet al. directly without adjustment, assuming the variability ofS∗(f ;θ, σ2η) to
be moderate or we could adjust the methodology to encompass a parametric model for the noise,
replacingσ2ε |2 sin (πfΔt) |2 by S∗(f ;θ, σ2η)|2 sin (πfΔt) |2 when treating the frequency structure
of the micro structure noise.

For a fixed and specified value ofq, we may therefore estimate the parameters of the MA, using
the Whittle likelihood, but where nowσ2ε |2 sin (πfΔt) |2 is replaced byS∗(f)|2 sin (πfΔt) |2. We
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thus get a multiscale likelihood1 given withσ =
(
σ2η σ2X

)
by

`(σ,θ) = −
N/2−1∑

k=1

log
(
σ2X + S

∗(fk;θ, σ
2
η) |2 sin(πfkΔt)|

2
)

−
N/2−1∑

k=1

Ŝ(Y )(fk, fk)

σ2X + S
∗(fk;θ, σ2η) |2 sin(πfkΔt)|

2 . (13)

and the augmented multiscale ratio is definedby

L
(a)

k =
σ2X

σ2X + S
∗(fk;θ, σ2η) |2 sin(πfkΔt)|

2 . (14)

If q is not assumed known, then model choice methods can also be applied to determine the value
of q, such as applying the modified Akaike AIC [12][p. 287], and adding2n(q + 2)/[n− q − 3] to
minus two times the log multiscale likelihood, and minimizing this objective function. Some care
must be applied as the Akaike AIC is known to overestimate the number of parameters, and BIC
or some other model choice method may be applied. For a chosen value ofq once we augment the
estimation ofσ2X andσ2ε with that of{θtk}, then we can estimate the noise spectrum and hence the
multiscale ratio. This will yield an augmented estimator of the integrated volatility, replacing the
parameters by their estimators in eqn (14), that we denote byL̂

(a)
k . Our new estimator then takes the

form

〈̂X,X〉
(a)

T =

N/2−1∑

k=−N/2

Ŝ(X)(fk, fk; L̂
(a)
k ). (15)

This form both takes the high frequency structure into account, and permits the high frequency
structure to be more dynamic than is the case of simple white noise nuisance structure.

4 Examples

We investigate the simple case of
εti = ηti + θ1ηti−1 , (16)

where thenS∗(f) = 1 + θ21 + 2θ1 cos(2πf). Clearly it is of interest to investigate the effect
of the variability ofS∗(f) on the multiscale estimation procedure. We note that settingθ1 = 0
recovers the white noise structure investigated in [4] and [1]. It is therefore of interest to compare
our estimators over a range of values forθ1 to study the effect of additional variability in the spectrum
of the nuisance structure in the estimation of the integrated volatility. This is not a full study of the
complete effects of complicated high-frequency structure superimposed on the process of interest:
this study is intended to demonstrate the adverse effects of a more dynamic nuisance structure, and
the potential of correcting for such effects using the multiscale structure of the process of interest.

We demonstrate the performance of our multiscale estimators of integrated volatility using the He-
ston model defined in eqn (2), with the same parameter values as used in [4] and [1], except this

time we generate the microstructure noise process by eqn (16). Our new estimator̂〈X,X〉
(a)

T ,
requires estimation of the parameters(σ2X , σ2ε , θ1) and this is done separately for each path us-
ing the MATLAB function fmincon on eqn (13). Figures 1(a) and 1(b) show the approximated
σ2X andS∗(fk; θ1, σ2η) |2 sin(πfkΔt)|

2 (in white) plotted over the periodogramŝS(X)(fk, fk) and
Ŝ(ε)(fk, fk) for one simulated path, whereθ1 = 0.5. The parameters(σ2X , σ2ε , θ1) seem to have
been approximated well, as the approximated spectral densities follow the shape of their respective
periodograms. Figure 1(c) shows the corresponding multiscale ratioL̂

(a)
k (in white) plotted over an

unrealizable estimate ofLk:

L̃k =
Ŝ(X)(fk, fk)

Ŝ(X)(fk, fk) + Ŝ(ε)(fk, fk)
. (17)

1Note that̀ (σ,θ) is not strictly speaking a likelihood, see the full discussion in Sykulski et al. [4], but can
for all intents and purposes be treated as such in this context.
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Table 1: Root Mean Square Error (RMSE) for the different estimators of the integrated volatility,
over different values ofθ1. The RMSEs are averaged over 7,500paths.

RMSE{∙} 〈̂X,X〉
(b)

T 〈̂X,X〉
(s1)

T 〈̂X,X〉
(m1)

T 〈̂X,X〉
(a)

T 〈̂X,X〉
(u)

T

θ1 = −1 3.51× 10−2 4.82× 10−4 7.35× 10−5 1.52× 10−5 1.46× 10−5

θ1 = −0.75 2.71× 10−2 3.62× 10−4 7.14× 10−5 1.56× 10−5 1.44× 10−5

θ1 = −0.5 2.05× 10−2 2.42× 10−4 6.40× 10−5 1.57× 10−5 1.44× 10−5

θ1 = −0.25 1.54× 10−2 1.21× 10−4 4.58× 10−5 1.60× 10−5 1.44× 10−5

θ1 = 0 1.17× 10−2 1.67× 10−5 1.61× 10−5 1.62× 10−5 1.43× 10−5

θ1 = 0.25 9.51× 10−3 1.22× 10−4 1.18× 10−4 1.67× 10−5 1.45× 10−5

θ1 = 0.5 8.78× 10−3 2.41× 10−4 4.67× 10−4 1.70× 10−5 1.43× 10−5

θ1 = 0.75 9.51× 10−3 3.62× 10−4 2.13× 10−3 1.74× 10−5 1.44× 10−5

θ1 = 1 1.17× 10−2 4.82× 10−4 9.82× 10−3 1.67× 10−5 1.45× 10−5

Our multiscale ratio provides a good estimate toLk and will remove the noise microstructure from
the correct frequencies by shrinkage. Figure 1(d) showsL̂

(a)
k Ŝ

(Y )(fk, fk); the energy has been
shrunk at frequencies affected by the microstructure noise and the spectrum is a good approximation
to Ŝ(X)(fk, fk), which in turn should lead to a good approximation of the integrated volatility,
compare with Figure 1(a). Figures 2(a) and 2(b) show two more estimated multiscale ratiosL̂

(a)
k (in

white), but this time withθ1 = −0.5 andθ1 = 1 respectively. The multiscale estimator appears to
correctly detect the correlation of noise in the process, as well as the magnitude of the signal to noise
ratio. Note that forθ1 = −0.5 we shrink the estimated Loève spectrum at an increasing rate for high
frequencies, whilst forθ1 = 1 we shrink in a highly non-monotone fashion across frequencies.

We investigate the performance of our new estimator against the estimators developed in [4] and
[1] using Monte Carlo simulations. A range of values forθ1 are used to investigate the effect of
correlated noise. For each value ofθ1 we generated 7,500 simulated paths. Table I displays the
results of our simulation, where the errors are calculated using a Riemann sum approximation on

theXt process (see [4] for details). Along with the performance of our new estimator̂〈X,X〉
(a)

T

(eqn (15)), we include the performance of the estimator from [4],̂〈X,X〉
(m1)

T (eqn (8)) and the

best un-biased estimator developed in [1],̂〈X,X〉
(s1)

T . Naturally we do not aim to compare our
estimator for correlated noise structure with that of [1,4], as these were not developed for correlated
noise, but more include these to show the necessity of treating correlation in the microstructure.
Furthermore, had our Whittle estimators been sufficiently poor, then the variability of the estimated
multiscale ratio would have made our proposed procedure unsuitable. We also include for reference,

the biased estimator in eqn (3a),̂〈X,X〉
(b)

T (the quadratic variation onYt) and the unobservable
unbiased estimator

〈̂X,X〉
(u)

T =
N−1∑

i=0

(
U
(X)
ti

)2
(18)

the quadratic variation onXt, which in some sense is the best estimator that can be achieved.

The table shows that the new estimator performs remarkably well under different values ofθ1. In
fact the RMSE of the estimator is very close to that of the unobservable quadratic variation, the best
measure in the absence of market microstructure. The loss of efficiency by the more flexible model
whenθ1 = 0 is marginal whilst whenθ1 = 1 the RMSE has decreased by a factor of a 500 compared
to [4], and by a factor of 30 compared to [1], whilst ifθ1 = −1 the RMSE has decreased by a factor
of a 5 compared to [4], and by a factor of 30 compared to [1]. The small and consistent RMSE is due
to the successful bias removal of the augmented multiscale estimator, where the low mean square
error of the estimators of(σ2X , σ2ε , θ1), ensures that the bias in the estimated Loève spectrum of the
process of interest is removed efficiently. Figure 3 shows the distribution of the estimates of these
parameters over the 7,500 simulated paths forθ1 = 0.5; the estimation procedure is unbiased and
has reasonably low variance.
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The estimators〈̂X,X〉
(s1)

T and 〈̂X,X〉
(m1)

T are inconsistent when additional structure is permitted
in the noise. We stress that these are estimators based on assumptions of white noise, and their
strong performance in this instance (θ1 = 0) is apparent. As we move away from white noise,

〈̂X,X〉
(s1)

T and 〈̂X,X〉
(m1)

T overcompensate for the noise whenθ1 in near minus one and under-
compensate whenθ1 is near one. This happens because as the value ofθ changes, taking values
between minus one and one the spectral properties of the noise process change quite markedly with
the appropriate shrinkage factor changing form in a corresponding fashion. For negative values of
θ1 the multiscale ratio, and smaller positive values ofθ1 the augmented multiscale ratio is decreas-
ing at higher frequencies, whilst whenθ1 approaches one the multiscale ratio is not monotone (see

Figures 1(c), 2(a) and 2(b)).̂〈X,X〉
(m1)

T seems to still perform well for negativeθ1 values (note how
the spectral form of the noise process is still largely the same shape) but performs disastrously for
positiveθ1 values, due to the larger energy at lower frequencies that the estimator fails to remove.

〈̂X,X〉
(s1)

T suffers equivalent loss of performance asθ1 moves away from zero in each direction;
for such a time-domain estimator to perform better in these instances, the optimal subsampling rate
of the estimator would have to be re-calibrated to incorporate the correlated noise. Nevertheless, all
the estimators perform better than the noise polluted and biased estimator of the quadratic variation

onYt, 〈̂X,X〉
(b)

T .

5 Conclusions

This paper has proposed extending the multiscale estimation methods of Sykulskiet al for inte-
grated volatility to include the case of stationary high frequency nuisance structure. It was found
that naively applying estimators designed for the case of uncorrelated noise did not perform well.
By modelling the nuisance structure as a Moving Average process, better bias correction could be
applied at each frequency, and this substantially improved our estimator of the integrated volatility.
Despite greater flexibility, the performance of the estimator did not deteriorate in terms of mean
square error, which could have been a possible outcome. Note that the multiscale methods did not
include parametric modelling of{Xt} only approximating its multiscale nature. Future avenues of
investigation includes rigorous model choice procedures, and the application of Bayesian estimation
methods to naturally incorporate the multiscale ratio by Hierarchical modelling. Multiscale mod-
elling shows great promise for designing inference methods for continuous time processes, by the
increase in precision and power from investigating properties directly scale-by-scale.
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Figure 1: (a) The periodogram of a realisation ofU (X)t (solid line), (b) of a realisation ofU (ε)t (solid
line) with the Whittle estimates superimposed (white solid line), (c) the estimate ofLk from the raw
periodograms of the unobserved processes (solid line) with the Whittle estimateL̂k superimposed
(white solid line) and (d) the bias corrected estimator of the periodogram ofU

(X)
t , usingL̂k. θ1 =

0.5 in this example. Notice the different scales in the four figures. Estimated spectra are here plotted
on a linear scale for ease of comparison to the effect of applyingLk.
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Figure 2: The estimate ofLk from the raw estimated spectra of the unobserved processes (solid
line) with the Whittle estimatêLk (white solid line) superimposed for (a)θ1 = −0.5 and (b)θ1 = 1.
Notice the non-monotone structure of the multiscale ratio in the second case.
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Abstract

We discuss Markov chain Monte Carlo algorithms for sampling functions in Gaus-
sian process models. A first algorithm is a local sampler that iteratively samples
each local part of the function by conditioning on the remaining part of the func-
tion. The partitioning of the domain of the function into regions is automatically
carried out during the burn-in sampling phase. A more advanced algorithm uses
control variables which are auxiliary function values that summarize the proper-
ties of the function. At each iteration, the algorithm proposes new values for the
control variables and then generates the function from the conditional Gaussian
process prior. The control input locations are found by minimizing the total vari-
ance of the conditional prior. We apply these algorithms to estimate non-linear
differential equations in Systems Biology.

1 Introduction

Gaussian processes (GPs) are used for Bayesian non-parametric estimation of unobserved or latent
functions. In regression problems with Gaussian likelihoods, GP models are analytically tractable,
while for classification deterministic approximate algorithms are widely used [16, 3, 6, 10]. How-
ever, in recent applications of GP models in Systems Biology [1] that require the estimation of or-
dinary differential equations [2, 12, 7], the development of deterministic approximations is difficult,
since the likelihood can be highly complex. Furthermore, accurate estimation in Systems Biology
models is important and can facilitate a reliable Bayesian ranking of alternative models [15]. In this
paper, we consider MCMC algorithms for doing inference in GP models. The advantage of MCMC
over deterministic approximate inference is that it provides exact answers in the limit of long runs.

We introduce two sampling algorithms that construct the proposal distributions by utilizing the GP
prior. The first algorithm is a local sampler that iteratively samples each local part of the function
by conditioning on the remaining part of the function. Local sampling is implemented by iteratively
generating samples from conditional GP prior distributions. The partitioning of the function points
into groups is determined during the burn-in phase of MCMC using an hierarchical clustering pro-
cess. The second algorithm is a global sampler that uses control variables. The control variables are
auxiliary function values that summarize the properties of the function. At each iteration, the algo-
rithm proposes new values for the control variables and samples the function by drawing from the
conditional GP prior (given the proposed values for the control variables). The control input loca-
tions are found by continuously minimizing an objective function. This function is the least squares

∗http://www.cs.man.ac.uk/∼mtitsias/.
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error of reconstructing the latent function values from the control variables which also equals to the
total variance of the conditional GP prior.

We apply the MCMC algorithms to infer biological networks where a set of genes are regulated by
a transcription factor protein [7, 4]. The relationship between the protein and the target genes is
governed by a non-linear system of ordinary differential equations where the concentration of the
protein is an unobserved time continuous function. Given a set of gene expression mRNA measure-
ments and assuming a GP prior over the protein concentration, we apply Bayesian inference using
MCMC. We also compare the algorithms with Gibbs sampling in standard regression problems.

2 GP models

Assume a set of inputs (x1, . . . ,xN ) and a set of function values f = (f1, . . . , fN ) evaluated at those
inputs. A Gaussian process places a prior on f which is a N -dimensional Gaussian distribution so
as p(f) = N(y|µ,K). The mean µ is typically zero and the covariance matrix K is defined by the
kernel function k(xn,xm) that depends on parameters θ.

GPs are widely used for supervised learning [10]. Given a set of observed pairs (yi,xi), where i =
1, . . . , N , we assume a likelihood model p(y|f) that depends on parameters α and associates the data
with the latent function f . For regression or classification problems, the latent function values are
evaluated at the observed inputs and the likelihood factorizes according to p(y|f) =

∏N
i=1 p(yi|fi).

However, for other type of applications, such as modelling latent functions in ordinary differential
equations, the above factorization is not applicable. Assuming that we have obtained suitable values
for the model parameters (θ,α) inference over the latent function values f is done by applying
Bayes rule:

p(f |y) ∝ p(y|f)p(f). (1)

For regression, where the likelihood is Gaussian, the above posterior is a Gaussian distribution that
can be obtained using simple algebra. When the likelihood p(y|f) is non-Gaussian, computations
become intractable and we need to consider approximations. Next we discuss MCMC algorithms
that are applied independently from the functional form of the likelihood.

3 Sampling algorithms for GP models

The MCMC algorithm we consider is the general Metropolis-Hastings (MH) algorithm [11]. Sup-
pose we wish to sample from the posterior in eq. (1). The MH algorithm forms a Markov chain. We
initialize f (0) and we consider a proposal distribution Q(f (t+1)|f (t)) that allows us to draw a new
state given the current state. The new state is accepted with probability min(1, A) where

A =
p(y|f (t+1))p(f (t+1))

p(y|f (t))p(f (t))
Q(f (t)|f (t+1))
Q(f (t+1)|f (t))

. (2)

To apply this generic algorithm, we need to choose the proposal distribution Q. For GP models,
finding a good proposal distribution is challenging since f is high dimensional and the posterior
distribution can be highly correlated.

To motivate the algorithms presented in sections 3.1 and 3.2, we discuss two extreme options for
specifying the proposal distribution Q. One simple way to choose Q is to set it equal to the GP
prior p(f). This gives us an independent MH algorithm [11]. However, sampling from the GP prior
is very inefficient as it is unlikely to obtain a sample that will fit the data. Thus the Markov chain
will get stuck in the same state for thousands of iterations. On the other hand, sampling from the
prior is appealing because any generated sample satisfies the smoothness requirement imposed by
the covariance function. Functions drawn from the posterior GP process should satisfy the same
smoothness requirement as well.

The other extreme choice for the proposal , that has been considered in [8], is to apply Gibbs sam-
pling where we iteratively draw samples from each posterior conditional density p(fi|f−i,y) with
f−i = f \ fi. However, Gibbs sampling can be extremely slow for densely discretized functions,
as in the regression problem of Figure 1, where the posterior GP process is highly correlated. To
clarify this, note that the variance of the posterior conditional p(fi|f−i,y) is smaller or equal to the
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variance of the conditional GP prior p(fi|f−i). However, p(fi|f−i) may already have a tiny variance
caused by the conditioning on all remaining latent function values. The more densely discretized a
function is (relative to the manifold of the input data), the more inefficient Gibbs sampling becomes
since the variance of p(fi|f−i) tends to zero. For the one-dimensional example in Figure 1, Gibbs
sampling is practically not applicable. We further study this issue in section 5.

A similar algorithm to Gibbs sampling can be expressed by using as a proposal distribution the se-
quence of the conditional densities p(fi|f−i)1. We call this algorithm the Gibbs-like algorithm. This
algorithm can exhibit a high acceptance rate, but it is inefficient to sample from highly correlated
functions. Next we describe a modification of the Gibbs-like algorithm that is more efficient.

3.1 Sampling using local regions

To overcome the limitations of the Gibbs and Gibbs-like algorithm we can divide the domain of the
function into regions and sample the entire function within each region. Assuming that the number
of the regions depends mainly on the shape of the function and not on the discretization, this scheme
can be more efficient.

Let fk denote the function values that belong to the local region k, where k = 1, . . . ,K and f1 ∪
. . . ∪ fK = f . New values for the region k are proposed by drawing from the conditional GP
prior p(f t+1

k |f (t)
−k), where f−k = f \ fk, by conditioning on the remaining function values. f (t+1)

k is
accepted with probability min(1, A) where

A =
p(y|f (t+1)

k , f (t)
−k)

p(y|f (t)
k , f (t)

−k)
. (3)

Sampling fk is iterated between all different regions k = 1, . . . ,K. Note that the terms associated
with the GP prior cancel out from the acceptance probability since sampling from the conditional
prior ensures that any proposed sample is consistent with the prior smoothness requirement. Sam-
pling from the GP prior and the Gibbs-like algorithm are special cases of the above algorithm.

To apply the above algorithm, we need to partition the function values f into clusters. This process
of adapting the proposal distribution can be carried out during the burn-in sampling phase. If we
start with a small number of clusters, so as the acceptance rate is very low, our objective is to refine
these initial clusters in order to increase the acceptance. Following the widely used heuristics [5]
according to which desirable acceptance rates of MH algorithms are around 1/4, we require the
algorithm to sample with acceptance rate larger than 1/4.

We obtain a initial partitioning of the vector f by clustering the inputs X using the kmeans algorithm.
Then we start the simulation and we observe the local acceptance rate rk associated with the proposal
p(fk|f−k). Each rk provides information about the variance of the proposal distribution relative to
the local characteristics of the function. A small rk implies that p(fk|f−k) has high variance and
most of the generated samples are outside of the support of the GP posterior process; see Figure
1 for an illustrative example. Thus, when rk is small, we split the cluster k into two clusters by
locally applying the kmeans algorithm using all the inputs previously assigned to the initial cluster
k. Clusters that have high acceptance rate are unchanged. This hierarchical partitioning process
is recursively repeated until all the current clusters exhibit a local acceptance rate larger than a
predefined threshold (this was set to 1/4 for all our experiments). The above partitioning process is
supervised since the information provided by the MH steps is used to decide which clusters need to
be split into smaller clusters.

Once the adaption of the proposal distribution is ended, we can start sampling from the posterior
GP process. The final form of the proposal distribution is a partition of the vector f into K disjoint
groups and the conditional GP prior is the proposal distribution for each group.

3.2 Sampling using control points

The algorithm described previously is a local sampler that samples each part of the function by
conditioning on the remaining part of the function. A limitation of this approach is that the variance

1Thus we replace the proposal distribution p(fi|f−i,y) with the prior conditional p(fi|f−i).
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Figure 1: Illustration of the hierarchical clustering process. The panel in (a) shows the variance (dis-
played with shaded two standard errors bars) of the initial conditional GP prior where we condition
on the right side of the function. Since the variance is high the generated local parts of the function
will not fit the data often. Dividing the local input region in (a) into two smaller groups (plots (b)
and (c)) results a decrease of the variance of the newly formed GP conditional priors and an increase
of the acceptance rate.

of the proposal distributions can be small close to the boundaries between neighbouring function
regions; see Figure 1. This can result in a slow exploration of the probability density mass. In this
section we discuss a different MH algorithm that can sample the whole function at once.

Let fc be a set of K auxiliary function values that are evaluated at inputs Xc and drawn from the
GP prior. fc are called the control variables and their meaning is analogous to the inducing variables
used in sparse GP models; see e.g. [13, 14, 9]. To compute the posterior p(f |y) based on control
variables we use the expression

p(f |y) =
∫
fc

p(f |fc,y)p(fc|y)dfc. (4)

Assuming that fc is highly informative about f , so as p(f |fc,y) ' p(f |fc), we can approximately
sample from p(f |y) in a two-stage manner: firstly sample the control variables from p(fc|y) and
then generate f from the conditional prior p(f |fc). This scheme can allow us to introduce a MH
algorithm, where we need to specify only a proposal distribution q(f (t+1)

c |f (t)
c ), that will mimic

sampling from p(fc|y), and always sample f from the conditional prior p(f |fc). The whole proposal
distribution takes the form

Q(f (t+1), f (t+1)
c |f (t), f (t)

c ) = p(f (t+1)|f (t+1)
c )q(f (t+1)

c |f (t)
c ). (5)

Figure 2 illustrates the steps of sampling from this distribution. Each proposed sample is accepted
with probability min(1, A) where A is given by

A =
p(y|f (t+1))p(f (t+1)

c )

p(y|f (t))p(f (t)
c )

.
q(f (t)

c |f (t+1)
c )

q(f (t+1)
c |f (t)

c )
. (6)

The usefulness of the above sampling scheme stems from the fact that the control variables can form
a low-dimensional representation of the function. Assuming that these variables are much fewer
than the points in f , the sampling is mainly carried out in the low dimensional space. In section 3.3
we describe how to select the number K of control variables and the inputs Xc so as fc becomes
highly informative about f . In the remainder of this section we discuss how we set the proposal
distribution q(f (t+1)

c |f (t)
c ).

A suitable choice for q is to use a Gaussian distribution with diagonal or full covariance matrix.
The covariance matrix can be adapted during the burn-in phase of MCMC in order to increase
the acceptance rate. Although this scheme is general, it has practical limitations. Firstly, tuning
a full covariance matrix is time consuming and in our case this adaption process must be carried
out simultaneously with searching for an appropriate set of control variables. Also, since the terms
involving p(fc) do not cancel out in the acceptance probability in eq. (6), using a diagonal co-
variance for the q distribution has the risk of proposing control variables that may not satisfy the
GP prior smoothness requirement. To improve on these issues, we define q by utilizing the GP
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Figure 2: Illustration of sampling using control variables. (left) shows the current GP function f (t)

with green, the data and the current location of the control points (red circles). (middle) shows the
proposed new positions for the control points (circles in magenda). (right) shows the new function
values f (t+1) drawn from the conditional GP prior (blue dotted line).

prior. According to eq. (4) a suitable choice for q must mimic the sampling from the posterior
p(fc|y). Given that the control points are far apart from each other, Gibbs sampling in the control
variables space can be efficient. However, iteratively sampling fci

from the conditional posterior
p(fci

|fc−i
,y) ∝ p(y|fc)p(fci

|fc−i
), where fc−i

= fc \ fci
is intractable for non-Gaussian likeli-

hoods2. An attractive alternative is to use a Gibbs-like algorithm where each fci
is drawn from

the conditional GP prior p(f (t+1)
ci |f (t)

c−i) and is accepted using the MH step. More specifically, the

proposal distribution draws a new f
(t+1)
ci for a certain control variable i from p(f (t+1)

ci |f (t)
c−i) and

generates the function f (t+1) from p(f (t+1)|f (t+1)
ci , f (t)

c−i). The sample (f (t+1)
ci , f (t+1)) is accepted

using the MH step. This scheme of sampling the control variables one-at-a-time and resampling f is
iterated between different control variables. A complete iteration of the algorithm consists of a full
scan over all control variables. The acceptance probability A in eq. (6) becomes the likelihood ratio
and the prior smoothness requirement is always satisfied.

Although, the control variables are sampled one-at-at-time, f can still be drawn with a considerable
variance in all regions in the input space apart from the regions close to the control variables that
are kept fixed. A full scan over all control variables can allow the function to significantly change
everywhere.

3.3 Selection of the control variables

To apply the previous algorithm we need to select the number K of the control points and the
associated inputs Xc. Xc must be chosen so that knowledge of fc can determine f with small
error. The prediction of f given fc is equal to Kf,cK

−1
c,c fc which is the mean of the conditional prior

p(f |fc). A suitable way to search over Xc is to minimize the reconstruction error ||f−Kf,cK
−1
c,c fc||2

averaged over any possible value of (f , fc):

G(Xc) =
∫
f ,fc

||f −Kf,cK
−1
c,c fc||2p(f |fc)p(fc)dfdfc = Tr(Kf,f −Kf,cK

−1
c,c KT

f,c).

The quantity inside the trace is the covariance matrix of p(f |fc) and thus G(Xc) is the total variance
of this distribution. We can minimize G(Xc) w.r.t. Xc using continuous optimization. Note that
G(Xc) is nonnegative and when it becomes zero, p(f |fc) becomes a delta function.

To find the number K of control points we minimize G(Xc) by incrementally adding control vari-
ables until the total variance of p(f |fc) becomes smaller than a certain percentage of the total vari-
ance of the prior p(f). 5% was the threshold used in all our experiments. Then we start the sim-
ulation and we observe the acceptance rate of the Markov chain. According to the heuristics [5]
which suggest that desirable acceptance rates of MH algorithms are around 1/4, we require a full
iteration of the algorithm (a complete scan over the control variables) to have an acceptance rate
larger than 1/43. When for the current set of control inputs Xc the chain has a low acceptance rate,

2This is because we need to integrate out f in order to compute p(y|fc).
3This means that the acceptance rate of each control variable i must be larger than 1

4K
.
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it means that the variance of p(f |fc) is still too high and we need to add more control points in order
to further reduce G(Xc). The process of observing the acceptance rate and adding control variables
is continued until we reach the desirable acceptance rate.

When the training inputs X are placed uniformly in the space, and the kernel function is stationary,
the minimization of G places Xc in a regular grid, as happens in the example of Figure 2. In general,
the minimization of G places the control inputs close to the clusters of the input data in such a way
that the kernel function is taken into account. This also suggests that G can be used for learning
inducing variables in sparse GP models in a unsupervised fashion where the observed outputs y are
not involved.

4 Transcriptional regulation

In this section we consider a small biological sub-system where a set of target genes are regulated
by one transcription factor (TF) protein. Ordinary differential equations (ODEs) can provide an
useful framework for modelling the dynamics in these biological networks [1, 2, 12, 7, 4]. The
concentration of the TF and the gene specific kinetic parameters are typically unknown and need
to be estimated by making use of a set of observed gene expression levels. We use a GP prior to
model the unobserved TF activity, as proposed in [7], and apply full Bayesian inference based on
the MCMC algorithm presented previously.

Barenco et al. [2] introduce a linear ODE model for gene activation from TF. This approach was
extended in [12, 7, 4] to account for non-linear models. The general form of the ODE model for
transcription regulation with a single TF has the form

dyj(t)
dt

= Bj + Sjg(f(t))−Djyj(t), (7)

where the changing level of a gene j’s expression, yj(t), is given by a combination of basal tran-
scription rate, Bj , sensitivity, Sj , to its governing TF’s activity, f(t), and the decay rate of the
mRNA, Dj . The differential equation can be solved for yj(t) giving

xj(t) =
Bj

Dj
+ Aje

−Djt + Sje
−Djt

∫ t

0

g(f(u))eDjudu, (8)

where Aj term arises from the initial condition. Due to the non-linearity of the g function that trans-
forms the TF, the integral in the above expression is not analytically obtained. However, numerical
integration can be efficiently used to estimate this quantity as follows. Assuming a very dense grid
(ui)P

i=1 of points in the time axis and discretizing the TF according to fp = f(up), equation (8) is
written as

yj(t) =
Bj

Dj
+ Aje

−Djt + Sje
−Djt

Pt∑
p=1

wpg(fp)eDjup , (9)

where the weights wp arise from the numerical integration method used and, for example, can be
given by the composite Simpson rule.

The transcription protein f(t) in the above system of ODEs is a latent function that needs to be es-
timated. Additionally the kinetic parameters of each gene αj = (Bj , Dj , Sj , Aj) are unknown and
need to be estimated as well. To infer these quantities we use mRNA measurements (obtained from
microarray experiments) of N target genes at T different time steps. Let yjt denote the observed
gene expression level of gene j at time t and let y = {yjt} collect together all these observations.
Assuming a Gaussian noise for the observed gene expressions the likelihood of our data has the form

p(y|f , {αj}N
j=1) =

N∏
j=1

T∏
t=1

p(yjt|f1≤p≤Pt
,αj), (10)

where each probability density in the above product is a Gaussian with mean given by eq. (9) and
f1≤p≤Pt

denotes the TF values up to time t. Notice that this likelihood is non-Gaussian due to the
non-linearity of g. Further, this likelihood does not have a factorized form, as in the regression and
classification cases, since an observed gene expression depends on the protein concentration activity
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in all previous times points. Also note that the discretization of the TF in P time points corresponds
to a very dense grid, while the gene expression measurements are sparse, i.e. P � T .

To apply full Bayesian inference in the above model, we need to define prior distributions over all
unknown quantities. The protein concentration f is a positive quantity, thus a suitable prior is to
consider a GP prior for log f . The kinetic parameters of each gene are all positive scalars. Those
parameters are given vague gamma priors. Sampling the GP function is done exactly as described
in section 3; we have only to plug in the likelihood from eq. (10) in the MH step. Sampling from
the kinetic parameters is carried using Gaussian proposal distributions with diagonal covariance
matrices that sample the positive kinetic parameters in the log space.

5 Experiments

In the first experiment we compare Gibbs sampling (Gibbs), sampling using local regions (region)
and sampling using control variables (control) in standard regression problems of varied input di-
mensions. The performance of the algorithms can be accurately assessed by computing the KL
divergences between the exact Gaussian posterior p(f |y) and the Gaussians obtained by Monte
Carlo. We fix the number of training points to N = 200 and we vary the input dimension d from 1
to 10. Thus we can study the behavior of the algorithms with respect to the amount of correlation
in the posterior GP process which depends on how densely the function is discretized. The larger
the dimension d, the sparser the discretization of the function is. For each d the training inputs
X were chosen randomly inside the unit hypercube [0, 1]d. The outputs Y were chosen by ran-
domly producing a GP function using the squared-exponential kernel σ2

f exp(− ||xm−xn||2
2`2 ), where

(σ2
f , `2) = (1, 100) and then adding noise with variance σ2 = 0.09. The number of sampling it-

erations for all algorithms were chosen to be 3 × 104. We use only 3000 samples (by keeping one
sample every 10 iterations) to calculate the means and covariances of the 200-dimensional posterior
Gaussians. The burn-in period where set to 104 iterations4. For a certain dimension d the algorithms
were initialized to the same state obtained by randomly drawing from the GP prior. The parameters
(σ2

f , `2, σ2) were fixed to the values that generated the data. The experimental setup was repeated
10 times so as to obtain confidence intervals. Figure 3 shows the evolution of the KL divergences
with respect to the input dimension. Clearly Gibbs is very inefficient in low dimensions because
of the highly correlated posterior GP process. As d increases and the functions become sparsely
discretized, Gibbs improves and eventually drops the KL divergences close to zero. The region
algorithm works better than Gibbs but in low dimensions it suffers also from the problem of high
correlation. The control algorithm makes the KL divergences very close to zero for all dimensions.
Note also that as we increase the number of dimensions Gibbs eventually becomes slightly better
than the control algorithm (for d = 8 and onwards) since the function values tend to be independent
from one another. As shown in Figure 3c, the number of required control variables increases with
the dimension. This is very intuitive, since in the limit when the training function values become
independent there will not be a sensible low-dimensional representation of the function values and
thus we may have to use as many control variables as the number of training function values.

In the next two experiments we apply the control algorithm to infer the protein concentration of TFs
that active or repress a set of target genes. The latent function in these problems is always one-
dimensional and densely discretized and thus the control algorithm is the only one that can converge
to the GP posterior process in a reasonable time.

In the first experiment we consider the TF p53 which is a tumour repressor activated during DNA
damage. According to [2], irradiation is performed to disrupt the equilibrium of the p53 network and
the transcription of p53 target genes are then stimulated. Seven samples of the expression levels of
the target genes in three replicas are collected as the raw time course data. The non-linear activation
of the protein follows the Michaelis Menten kinetics inspired response [1] that allows saturation
effects to be taken into account so as g(f(t)) = f(t)

γj+f(t) in eq. (7) where the Michaelis constant for
the jth gene is given by γj . Note that since f(t) is positive the GP prior is place on the log f(t). To
apply MCMC we discretize f using a grid of P = 121 points. During sampling, 7 control variables
were needed to obtain the desirable acceptance rate. Running time was 4 hours for 5×105 sampling

4For Gibbs we used 2× 104 iterations since the region and control algorithms require additional iterations
during the adaption phase.
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Figure 3: (a) and (b) show the mean values (with one-standard error bars) of the two KL divergences
between the true posterior and the empirically estimated posteriors obtained by Gibbs, region and
control algorithms. (c) show the number of regions used by the region algorithm and the number of
control variables used by the control algorithm with respect to the dimension.
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Figure 4: The first row shows the inferred TF (left) and the predicted expressions of two different
genes by the ODE model. Red crosses correspond to the actual gene expression measurements. The
second row shows the estimated kinetic parameters of the 5 target genes. With grey bars we display
the parameters found by our MCMC algorithm and with black bars the parameters found in [2] using
a linear ODE model. Error bars correspond to 95% confidence intervals obtained using percentiles.

iterations plus 5 × 104 burn-in iterations. Figure 4 summarizes the estimated quantities obtained
from MCMC simulation.

In the second experiment we consider the TF LexA in E.Coli that acts as a repressor. In the repres-
sion case there is an analogous Michaelis Menten model [1] where the non-linear function g takes
the form: g(f(t)) = 1

γj+f(t) . Again the GP prior is placed on the log of the TF activity. We applied
our method to the same microarray data considered in [12] where mRNA measurements of 14 tar-
get genes are collected over six time points. The amount of LexA is reduced after UV irradiation,
decreasing for a few minutes and then recovering to its normal level. For this dataset, the expression
of the 14 genes were available for T = 6 times. The GP function f was discretized using 121 points
and the control algorithm uses 6 control variables. The result for the inferred TF profile along with
predictions of two target genes are shown in Figure 5. Our inferred TF profile and reconstructed
target gene profiles are similar to those obtained in [12]. However, for certain genes, our model
provides a better fit to the gene profile. Additionally, the MCMC approach gives an overall better fit
to the gene profiles compared to a Laplace approximation [4].
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Figure 5: The first plot (left) shows the inferred TF profile, while the predicted expressions of two
target genes are shown in the remaining two plots.

6 Discussion

Gaussian processes allow for inference over latent functions using a Bayesian estimation framework.
In this paper, we discussed MCMC algorithms that sample functions in GP models. We showed that
sampling using control variables can efficiently deal with highly correlated posterior GP processes.
MCMC allows for full Bayesian inference in the transcription factor networks application. An
important direction for future research will be scaling the models used to much larger systems of
ODEs with multiple interacting transcription factors. The algorithm using control variables can be
useful for other Gaussian process applications such as those that arise in geostatistics and spatio-
temporal models.
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Abstract

Variational methods are a key component of the approximate inference and learn-
ing toolbox. These methods fill an important middle ground, retaining distribu-
tional information about uncertainty in latent variables,unlike maximum a pos-
teriori methods (MAP), and yet requiring fewer computational resources than
Monte Carlo Markov Chain methods. In particular the variational Expectation
Maximisation (vEM) and variational Bayes algorithms, bothinvolving variational
optimisation of a free energy, are widely used in time-series modelling. Here, we
investigate the success of vEM in simple probabilistic time-series models. First
we consider the inference step of vEM, and show that a consequence of the well-
known compactness property is a failure to propagate uncertainty in time, thus
limiting the usefulness of the retained distributional information. In particular, the
uncertainty may appear to be smallest precisely when the approximation is poor-
est. Second, we consider parameter learning and analytically reveal systematic
biases in the parameters found by vEM. Surprisingly, simpler variational approxi-
mations (such a mean-field) can lead to less bias than more complicated structured
approximations.

1 The variational approach

We begin with a very brief review of vEM. The Expectation-Maximisation (EM) algorithm [1]
is a standard approach to finding maximum likelihood (ML) parameters for latent variable models,
including hidden Markov Models and linear or non-linear state space models (SSMs) for time-series.
The algorithm can be re-formulated as a variational optimisation of a free-energy [2, 3]. Consider
observations collected into a setY , that depend on latent variablesX and parametersθ. We seek to
maximiselog p(Y |θ) with respect toθ. By introducing a new distribution over the latent variables
q(X), we can write

log p(Y |θ) = log

∫
dX p(Y, X |θ) = log

∫
dX p(Y, X |θ)

q(X)

q(X)
, (1)

≥

∫
dX q(X) log

p(Y, X |θ)

q(X)
= F (q(X), θ). (2)

This last quantity is the free energy. It is smaller than the log-likelihood by an amount equal to
the Kullback-Leibler (KL) divergence betweenq(X) and the posterior distribution on the latents
p(X |Y, θ)

F (q(X), θ) = log p(Y |θ) − KL(q(X)||p(X |Y, θ)), (3)
For fixedθ, the optimum value forq is clearly equal top(X |Y, θ), at which point the KL divergence
vanishes and the free energy equals the log-likelihood. Thus, alternate maximisation ofF (q, θ)
with respect toq (the E-step) andθ (the M-step) will eventually find parameters that maximise the
likelihood.

In many models, calculation of this posterior is intractable. Thus, the vEM approach is to instead
optimiseq restricted to a class of distributionsQ, within which the minimum of the KL divergence
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can tractably be found. The optimalq is called the variational approximation to the posterior. Con-
strained optimisation ofq now alternates with optimisation ofθ to find a maximum of the free
energy, though not necessarily the likelihood. The optimalparameters are taken to approximate the
ML values.

Most often, the classQ is defined to contain all distributions that factor over disjoint setsCi of the
latent variables in the problem:q(X) =

∏I

i=1 qi(xCi
). For example, if each latent variable appears

in a factor of it own, the approximation is calledmean-field. Partial factorisations, which keep some
of the dependencies between variables are calledstructured approximations. In both cases theqi’s
are found iteratively, by repeating the following updates,

q(xi) ∝ exp
(
〈log p(Y, X |θ)〉Q

j 6=i
qj(xCj

)

)
. (4)

Here, we analyse the accuracy of vEM in two stages. We first look at the relationship between
the true posterior distribution and the variational approximation. It is well known that variational
methods tend to be compact [4]. For instance, a unimodal variational approximation to a multi-
modal distribution will match the largest mode [5], rather than averaging across all of them, and
a spherical Gaussian variational approximation will matchthe shortest length-scale of a correlated
Gaussian. We show that this compactness results in a complete failure to propagate uncertainty be-
tween time-steps, often making the variational approximation most over-confident exactly when it
is poorest. We then consider the accuracy of the vEM parameter estimates. As the variational bound
on the likelihood is parameter dependent, variational methods can be biased away from peaks in
the likelihood, toward regimes where the bound in tighter. As a result, the best approximations for
learning are not necessarily the tightest, but rather thosethat result in bounds which depend least on
the parameters. Both of these properties are exemplified using simple time-series models, although
the conclusions are likely to apply more generally.

2 Variational approximations do not propagate uncertainty

Fully factored variational approximations (so called mean-field approximations) have been used for
inference in time-series models as they are fast and yet still return estimates of uncertainty in the
latent variables [6]. Here, we show that in a simple model, the variational iterations fail to propagate
uncertainty between the factors, rendering these estimates of uncertainty particularly inaccurate in
time-series (see [7] for a related example).

We consider a time-series model with a single latent variable xt at each time-step drawn from an
AR(1) prior with coefficientλ and innovations varianceσ2,

p(xt|xt−1) = Norm(λxt−1, σ
2). (5)

The marginal mean of this distribution is zero and the marginal variance isσ2
∞ = σ2

1−λ2 . Typically
the latent variables are assumed carry strong temporal correlations, so thatλ is close to 11. We
consider arbitrary instantaneous likelihood functions,p(yt|xt). Using an approximating distribution
which is factored over timeq(x1:T ) =

∏T
t=1 q(xt), the update for the latent variable at timet follows

from Eq.4,

q(xt) =
1

Z
p(yt|xt) exp(〈log p(xt|xt−1)p(xt+1|xt)〉q(xt−1)q(xt+1)), (6)

=
1

Z ′
p(yt|xt)Norm

(
λ

1 + λ2
(〈xt−1〉 + 〈xt+1〉) ,

σ2

1 + λ2

)
=

1

Z ′
p(yt|xt)qprior(xt). (7)

That is, the variational update is formed by combining the likelihood with a variational prior-
predictiveqprior(xt) that contains the contributions from the latent variables at the adjacent time-
steps. This variational prior-predictive is interesting because it is identical to the true prior-predictive
when there is no uncertainty in the adjacent variables. Thatis, noneof the (potentially large) uncer-
tainty in the value of the adjacent latent variables is propagated toq(xt), and the width of the varia-

1In fact the effective time-scale of Eq.5 is τeff = −1/ log(λ) and so a change inλ from 0.9 to 0.99

is roughly equivalent to a change from0.99 to 0.999. This is important when the size of the biases in the
estimation ofλ are considered.
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tional predictive is consequently narrower than the width of state-conditional distributionp(xt|xt−1)
(compare to Eq.5)2.

Temporally factored variational methods for time-series models will thus generally recover an ap-
proximation to the posterior which is narrower than the state-conditional distribution. As the whole
point of time-series models is that there are meaningful dependencies in the latents, and therefore the
state-conditional often has a small width, the variationaluncertainties may be tiny compared to the
true marginal probabilities. Thus, the mean-field approachessentially reduces to iterative MAP-like
inference, except that we find the mean of the posterior rather than a mode. In the next section, it will
be shown that this does have some advantages over the MAP approach, notably that pathological
spikes in the likelihood can be avoided.

In conclusion, although variational methods appear to retain some information about uncertainty,
they fail to propagate this information between variables.In particular, in time-series with strong
correlations between latents at adjacent times, the variational posterior becomes extremely concen-
trated, even though it is least accurate. An ideal distributional approximation would perhaps behave
in the opposite fashion, returning larger uncertainty whenit is likely to be more inaccurate.

3 Variational approximations are biased

In the last section we showed that variational approximations under-estimate the uncertainties in in-
ference. We now ask how these inaccuracies might affect the parameter estimates returned by vEM.
This question is important in many contexts. For example, scientific enquiry is often concerned with
the values of a parameter, to substantiate claims like “natural scenes vary slowly” or “natural sounds
are sparse”, for instance.

What makes for a good variational approximation in this case? The instant reaction is that the free-
energy should be as close to the likelihood as possible. Thatis KL(q(X)||p(X |Y, θ)) should be as
small as possible for allX . However, from the perspective of learning it is more important to be
equally tight everywhere, or in other words it is more important for the KL-term to be asparameter-
independent as possible: IfKL(q(X)|p(X |Y, θ)) varies strongly as a function of the parameters,
this can shift the peaks in the free-energy away from the peaks in the likelihood, toward the regions
were the bound is tighter. (See [8] for a related example for variational Bayes in mixture models.)

We now illustrate this effect in a linear SSM. In particular,we show that the mean-field approxima-
tion can actually have less severe parameter-dependent biases than two structural approximations,
and can therefore lead to better vEM parameter estimates, even though it is less tight everywhere.

Deriving the learning algorithms
In the following we first introduce an elementary SSM, for which we can find the exact likeli-
hood (log p(y|θ)). We then examine the properties of a set of different variational learning algo-
rithms. This set comprises a mean-field approximation, two different structural approximations, and
zero-temperature EM. This final approximation can be thought of as vEM where the approximating
distributions are delta functions centred on themaximum a posteriori(MAP) estimates [3]. The
analysis of these schemes proceeds as follows: First the optimal E-Step updates for these approxi-
mations are derived; Second, it is shown that, as the SSM is a simple one, the free-energies and the
zero-temperature EM objective function can be written purely in terms of the parameters. That is,
maxq(x) F (θ, q(x)) andmaxX log p(Y, X |θ) have closed form solutions, and do not require itera-
tive updates to be computed as is usual. Thus, we can study therelationship between the peaks in
the likelihood and the peaks in the free-energies and zero-temperature EM objective function, for
any dataset. An outline of the derivation of these quantities is given here, but for more detail see the
associated technical report [9].

Consider an SSM which has two latent variables per time-stepand two time-steps. We take the
priors on the latent variables to be linear-Gaussian, and the observations are given by summing the

2This problem only gets worse if the prior dynamics have longer dependencies, e.g. ifp(xt|xt−1:t−τ ) =

Norm(
Pτ

t′=1
λt′xt−t′ , σ

2
) then the variational prior-predictive has a variance, σ2

1+
P

τ
t′=1

λ2
t′

.
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latents at the corresponding time-step and adding Gaussiannoise,

p(xk,1) = Norm

(
0,

σ2
x

1 − λ2

)
, (8)

p(xk,2|xk,1) = Norm
(
λxk,1, σ

2
x

)
, (9)

p(yt|x1,t, x2,t) = Norm(x1t + x2t, σ
2
y). (10)

This defines a joint Gaussian over the observations and latent variables. From this we can compute
the likelihood exactly by marginalising,

p(y1, y2|θ) = Norm(0, ΣY ), ΣY = Iσ2
y + 2

σ2
x

1 − λ2

[
1 λ
λ 1

]
. (11)

The posterior distribution over the latent variables is also Gaussian, and is given by,p(x|y) =
Norm(µx|y, Σx|y), wherex = [x11, x21, x12, x22]

T . The covariance and mean are

Σ−1
x|y =




1
σ2

y
+ 1

σ2
x

1
σ2

y
− λ

σ2
x

0
1

σ2
y

1
σ2

y
+ 1

σ2
x

0 − λ
σ2

x

− λ
σ2

x
0 1

σ2
y

+ 1
σ2

x

1
σ2

y

0 − λ
σ2

x

1
σ2

y

1
σ2

y
+ 1

σ2
x




, µx|y =
1

σ2
y

Σx|y




y1

y1

y2

y2


 . (12)

The posterior is correlated through time because of the linear-Gaussian prior, and correlated across
chains because of explaining away. The correlations through time increase as the prior becomes
slower (|λ| increases) and less noisy (σ2

x decreases). The correlations across chains increase as the
observation noise (σ2

y) decreases.

We now derive the optimal E-Step for four different approximations: The first three approximations
provide uncertainty estimates and these are the fully factored mean-field approximation (q1), fac-
torisation over chains but not time (q2), and factorisation over time but not chains (q3), as shown
in the following table: The optimal E-Step updates for thesethree distributions can be found by

factored over time unfactored over time
factored over chainsq1(x) = q11(x11)q12(x12)q13(x21)q14(x22) q2(x) = q21(x11, x12)q22(x21, x22)

unfactored over chains q3(x) = q31(x11, x21)q32(x12, x22) p(x|y) = q(x11, x12, x21, x22)

minimising the variational KL. Each factor is found to be Gaussian, with a mean and precision that
match the corresponding elements inµx|y andΣ−1

x|y. The fourth and final approximation is zero-
temperature EM (q4), for which the E-Step is given by the MAP estimate for the latent variables.
As the posterior is Gaussian, the mode and the mean are identical and so the MAP estimates are
identical to the variational values for the means.

The next step is to compute the free-energies. In the first three cases, the Gaussianity of the posterior
as well asq1, q2, andq3 makes it possible to compute the KL divergences analytically:

KLi

(
A∏

a=1

qia(xa)||p(x|y)

)
=

1

2
log

∏
Σia

Σx|y
. (13)

Using this expression we find,

KL1 =
1

2
log

(
σ2

y + σ2
x

)4

σ4
yγ

, KL2 =
1

2
log

((
σ2

y + σ2
x

)2
− λ2σ4

y

)2

σ4
yγ

, (14)

andKL3 =
1

2
log

(
σ2

y + 2σ2
x

)2

γ
, (15)

whereγ = (1−λ2)
(
(2σ2

x + σ2
y)2 − λσ4

y

)
. In the fourth approximation, theKL divergence between

a Gaussian and a delta function is infinite. Therefore, theKL term is discarded for zero-temperature
EM and the log-joint is used as a pseudo-free energy.
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Figure 1: Biases in the Free-energies for a simple linear dynamical system. True/ML parameters are
λ = 0.9, σ2

x = 1 − λ2 = 0.19, andσ2
y = 0.43. In each case one parameter is learned and the others

are set to their true/ML values. A. learningλ, B. learningσ2
y. Large panels show the uncertainty

preserving methods (q1:3). Small panels show the zero-temperature EM approach (q4). The bottom
two panels show a zoomed in region of the top two panels.

General properties of the bounds: A sanity check
We now verify that these results match our intuitions. For example, as the mean field approxi-
mation is a subclass of the other approximations, it isalwaysthe loosest of the bounds,KL1 >
KL2, KL3 > 0. Furthermore, approximation 3 (factorising over time) becomes looser than ap-
proximation 2 (which does not) when temporal correlations dominate over the correlations between
chains. This is indeed the case asKL3 > KL2 whenr =

σ2
x

|λ|σ2
y

< 1. Moreover, approximation
2 (which factorises over chains) is equivalent to the mean field approximation,KL1 = KL2, when
there are no temporal correlations,λ = 0 or σ2

x = ∞, and in this case the true posterior matches ap-
proximation 3,KL3 = 0. Similarly, approximation 3 is equivalent to the mean-fieldapproximation
when the observation noise is infinityσ2

y = ∞, and here approximation 2 is exactKL2 = 0.

We can now consider how the maxima in the likelihood relate tothe maxima in the Free-energies.
Unfortunately, there is no closed form solution for these maxima, but in the simple examples which
follow, the free-energies and likelihoods can be visualised. In general, we use as our data-set a large
number of samples drawn from the forward model (N > 10000) and in all cases the ML parameters
are essentially equal to the true parameters.

The model has a total of three parameters. We first consider learning just one of these parameters
and set the others to the true/ML value. This will allow us to develop some intuition about the ways
in which different approximations lead to different biasesin the parameter estimates. In this case,
the likelihood and free-energies are easy to visualise; some typical examples are shown in Fig.1.
We then consider how the bias changes as a function of the true/ML parameters, and observe that
there is no universally preferred approximation, but instead the least biased approximation depends
on the parameter that is being learned and on the value of the true/ML parameters. Finally, in we
will study the bias when learning the dynamic parameter and the observation noise simultaneously.

Learning the dynamical parameter, λ
We begin by considering learningλ, with the other parameters fixed. As the magnitude of the

dynamical parameter increases, so does the correlation in the posterior between successive latent
variables in the same chain, that isxk,1 andxk,2. This means the factorisation over time results
in looser bounds as the magnitude ofλ increases (KL3 increases, Eq.3). Furthermore, as the
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correlation between latents in the same chain increases, (xk,1 andxk,2), so does the correlation
betweenx11 andx22 (propagated by the explaining away). This means, somewhat surprisingly, that
the approximation which does not factorise over time, but over chains, also becomes looser as the
magnitude ofλ increases. That is,KL2 increases with the magnitude ofλ. Due to the fact that
both bounds become less tight asλ increases, the free-energies peak at lower values ofλ than the
likelihood does, and therefore yield under-estimates (see[10] for a similar result).

The mean-field approximation suffers from both of the aforementioned effects, and it is therefore
looser than both. However, with regard to their dependence on λ, KL1 andKL3 are equivalent.
This means that the mean field approximation and the approximation that factors over time recover
identical values for the dynamical parameter, even though the former is looser. Curiously, the so-
lution from zero-temperature EM is alsoidentical to the mean-field (q1) and temporally factored
(q3) solutions. One of the conclusions to draw from this is that most severe approximation need not
necessarily yield the most biased parameter estimates.

Learning the observation noise, σ2
y , and the dynamical noise, σ2

x

Next we consider learningσ2
y , with the other parameters fixed to their true values. Due to explain-

ing away, decreasing the observation noise increases the correlation between variables at the same
time step, i.e., betweenx1t andx2t. This means that the approximation that factors over chains,
becomes worse asσ2

y decreases, and thereforeKL2 is an increasing function ofσ2
y . In contrast, the

approximation that factorises over time, but not over chains, becomes tighter asσ2
y decreases i.e.

KL3 is a decreasing function ofσ2
y . As the mean-field approximation shares both of these effects

it lies somewhere between the two, depending on the settingsof the parameters. This means that
whilst approximation 3 under-estimates the observation noise, and approximation 2 over-estimates
it, the loosest approximation of the three, the mean field approximation, can actually provide the
best estimate, as its peak lies in between the two. The purpose of the next section is to characterise
the parameter regime over which this occurs.

In contrast to the situation with the dynamical parameter, the zero-temperature EM objective behaves
catastrophically as a function of the observation noise,σ2

y . This is caused by a narrow spike in the
likelihood-surface atσ2

y = 0. At this point the latent variables arrange themselves to explain the data
perfectly, and so there is no likelihood penalty (of the sort− 1

2σ2
y
(yt − x1,t − x2,t)

2). In turn, this
means the noise variance can be shrunk to zero which maximises the remaining terms (∝ − log σ2

y).
The small cost picked up from violating the prior-dynamics is no match for this infinity.

This is not a very useful solution from either the perspective of learning or inference. It is a patho-
logical example of overfitting3: There is an infinitesimal region of the likelihood-posterior surface
with an infinite peak. By integrating over the latent variables, in a variational method for example,
the problem vanishes as the peak has negligible mass and so makes only a small contribution. So,
although variational methods often do not preserve as much uncertainty information as we would
like, and are often biased, by recovering means and not modesthey provide better joint estimates
than the catastrophic zero-temperature EM approach.

Learning the dynamical noiseσ2
x with the other parameters fixed at their true values results in a very

similar situation: approximation 2 under-estimatesσ2
x, and approximation 3 over-estimates it, while

the mean-field approximation returns a value in between. Once again the MAP solution suffers from
an overfitting problem whereby the inferred value ofσ2

x is driven to zero.

Characterising the space of solutions
In the previous section we found that for a particular setting of the true/ML parameter, the mean-
field approximation was the most unbiased (see Fig.1). How typical is this scenario? One way of
answering this question is to evaluate the bias in the parameters learned using the four approxima-
tion schemes for many different data-sets each with different maximum-likelihood parameters. In
practice three methods are used to find the optimal settings of the parameters. The first is to perform
a grid based search, the second is to perform direct gradientascent on the free-energy and the third
is to run vEM. All three methods return identical results up to experimental error.

As a typical example, we show the bias in inferringλ for many different maximum-likelihood set-
tings of σ2

y andλ in Fig. 2A. In each caseσ2
x was set to the ML value, which was close to the

3This is the SSM analogue to Mackay’s so-called KABOOM! problem in soft K-means [4]
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Figure 2: A. Biases for infering a single parameter as a function of σ2
y andλ. For all pointsσ2

x =

1 − λ2. Bias is defined as∆Θ = ΘINF − ΘML so that over-estimation results in a positive bias.
Columns correspond to the four approximations. Top Row: Bias in λ. Bottom Row: Bias inσ2

y .B.
The best approximation for findingσ2

y indicated by color (q1 red,q2 blue andq3 magenta). The black
solid line isr = σ2

x/|λ|σ2
y = 1 and below it approximation 3 is tightest, and above it approximation

2 is tightest.

true value of1 − λ2. The parameter is under-estimated in all cases, often by a substantial amount
(e.g. for approximations 1,3, and 4, at highσ2

y andλ values, the bias is almost one). The bias from
using approximation 2 is always smaller than that from usingthe others, and it is to be preferred
everywhere. However, this does not generalise for other parameters. The bias for inferringσ2

y is
shown in Fig.2B. As noted in the previous section, approximation 2 over-estimates the observation
noise, whilst approximation 3 and 4 under-estimate it. The mean-field approximation combines the
behaviours of approximation 2 and 3 and therefore under-estimates in regions whereλ andσ2

y are
small, and over-estimates in regions where they are large. In the intermediate region, these effects
cancel and this is the region in which the mean-field approximation is the best. This is shown in
Fig. 2C which indicates the best approximation to use for inferring the observation noise at different
parts of the space. The mean-field solution is to be preferredover a fairly large part of the space.

Which is the best approximation therefore depends not only on which parameter has to be learned,
but also on the ML value of parameters.

Simultaneous inference of pairs of parameters
So far we have considered estimating a single parameter keeping the others at their true values. What
happens when we infer pairs of parameters at once? Consider,for instance, inferring the dynamical
parameterλ and the observation noiseσ2

y with σ2
x held at its ML/true value (see Fig.3). As before,

three methods are used to find the optimal parameter settings(gridding, gradient ascent and vEM).
In a small minority of cases the objective functions are multi-modal, in which case the agreement
between the methods depends on the initialisation. In orderto avoid this ambiguity, the gradient
based methods were initialised at the values returned from the method of gridding the space. This
procedure located the global optima. The most striking feature of Fig.3A. is that the biases are often
very large (even in regimes where the structural approximations are at their tightest). Moreover,
as there is a many to one mapping between the true parameters and the inferred parameters this
indicates that it is impossible to simply correct for the variational bias by looking at the inferences.

Fig. 3B. shows that, in contrast to the case where only one parameter is inferred at a time, the mean-
field solution is no-longer superior to the structural approximations. It also indicates that whilst
tightness is a guide for choosing the best approximation, itis not very accurate. It is also notable
that when all three parameters are inferred together (data not shown), the biases become even larger.

Finally, we consider the relevance of this toy example, and in particular what happens in longer
time-series (T > 2) with more hidden variables (K > 2). In general both of these changes result
in posterior distributions that have richer correlationalstructure. (That is, the posterior covariance
matrix has more off-diagonal terms.) The variational approximations thus ignore larger parts of this
structure and therefore the KL terms and associated biases will become correspondingly larger.
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Figure 3: Simultaneous inference ofλ and σ2
y with biases shown as a function of the true/ML

settings of the parameters. A. For each approximation (q1:4) a number of simulations are run and
each is represented by an arrow. The arrow begins at the true/ML setting of the parameters and the
tip ends at the inferred value. Ideally the arrows would be very short, but in fact they are often very
large. B. The best uncertainty preserving approximation (q1:3) for findingλ (Top) andσ2

y (Bottom)
indicated by color (q1 red,q2 blue andq3 magenta). The black solid line isr = σ2
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y = 1 and

below it approximation 3 is tightest, and above it approximation 2 is tightest.

4 Conclusion

We have discussed two problems in the application of vEM to time-series models. First, the
compactness property of variational inference leads to a failure to propagate posterior uncertainty
through time. Second, the dependence of the variational lower bound on the model parameters often
leads to strong biases in parameter estimates. We found thatthe relative bias of different approxi-
mations depended not only on which parameter was sought, butalso on its true value. Moreover,
tightest bound did not always yield the smallest bias: in some cases, structured approximations were
more biased than the mean-field approach. Variational methods did, however, avoid the over fitting
problem which plagues MAP estimation. Despite these shortcomings, variational methods remain a
valid, efficient alternative to computationally costly Markov Chain Monte Carlo methods. However,
the choice of the variational distribution should be complemented with an analysis of the depen-
dency of the variational bound on the model parameters. Hopefully, these examples will inspire new
algorithms that pool different variational approximations in order to achieve better performance.
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