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Université Paris-Sud, France

Jean-Michel Marin ∗†
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Abstract

We are interested in estimating probabilities of rare events in the context of com-
puter experiments. These rare events depend on the output of a physical model with
random input variables. Since the model is only known through an expensive black
box function, standard efficient Monte Carlo estimates of rare events probabilities can
not be used. We then propose two strategies to deal with this difficulty: a Bayesian
estimate and an importance sampling method. Both proposals rely on Kriging meta-
modeling and are able to achieve sharp upper confidence bounds on the rare events
probabilities. The variability due to the Kriging metamodeling step is properly taking
into account.
The proposed methodologies are applied to a toy example and a real case study which
consists of finding an upper bound of the probability that the trajectory of an airborne
load collides the aircraft that has released it.
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1 Introduction

Rare events are a major concern in reliability of complex systems (Heidelberg, 1995; Sha-
habuddin, 1995). We focus here on rare events depending on computer experiments. A
computer experiment (Welch et al., 1992; Koehler and Owen, 1996) consists of an evaluation
of a black box function which describes a physical model,

y = f(x) , (1.1)

where y ∈ R and x ∈ E where E is a compact subset of R. The code which computes
f is expensive since the model is complex. We assume that no more than N calls to f
are possible. The input x are measured with a lack of precision and some variables are
uncontrollabe. Both sources of uncertainties are modeled by a random distribution on E.
Let X be the random variable. Our goal is to estimate the probability:

πρ = P(f(X) < ρ)) = P(X ∈ Rρ) = PX(Rρ) ,

where Rρ is a subset of E defined by Rρ = {x : f(x) < ρ} and ρ ∈ R is a given threshold.
A crude Monte Carlo scheme leads to the following estimator of πρ:

π̂ρ,N =
Γ(f,X1:N , ρ)

N
, (1.2)

where Γ(f,X1:N , ρ) is defined by

Γ(f,X1:N , ρ) =
N∑
i=1

I]−∞,ρ[(f(Xi)) , (1.3)

and X1:N = (X1, . . . ,XN) is a N -sample of random variables with the same distribution
than X. Its expectation and its variance are:

E(π̂ρ,N) = P(X ∈ Rρ) = πρ , V(π̂ρ,N) =
1

N
πρ(1− πρ) .

Hence, its relative error is
(V(π̂ρ,N))1/2

E(π̂ρ,N)
≈ (πρN)−1/2 when πρ <<

1
N

. Therefore, the relative

error can be very large. Furthermore, since Γ(f,X1:N , ρ) follows a binomial distribution with
parameters N and πρ, an exact confidence upper bound on πρ:

P(πρ ≤ b(Γ(f,X1:N , ρ), N, α)) ≥ 1− α ,

is available.
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Indeed, let T be a random variable which follows a binomial distribution with parameters N
and p. For any real number α ∈ [0, 1], we can easily shown that the upper confidence bound
b on p:

PT (p ≤ b(T,N, α)) ≥ 1− α
is such that:{

b = 1 if T = N

b is the solution of equation
∑T

k=0

(
N
k

)
bk(1− b)N−k = α otherwise

. (1.4)

This upper bound is not in closed form but easily computable.
In the case where Γ(f,X1:N , ρ) = 0 which happens with probability (1−πρ)N , the (1−α)-

confidence interval is [0, 1−(α)1/N ]. As an example, if the realization of Γ(f,X1:N , ρ) is equal
to 0, an upper confidence upper bound at level 0.9, πρ ≤ 10−5 can be warranted only if more
than 230,000 calls to f were performed.
When the purpose is to assess the reliability of a system under the constrain of a limited
number of calls to f , there is a need for a sharper upper bound on πρ. Several way to improve
the precision of estimation have been proposed in the literature.

Since Monte Carlo estimation works better for frequent event, the first idea is to change
the crude scheme in such a manner that the event becomes less rare. It is what importance
sampling and splitting methods schemes try to achieve.
For example L’Ecuyer et al. (2007) showed that randomized quasi-Monte Carlo can be used
jointly with splitting and/or importance sampling. By analysing a rare event as a cascade
of intermediate less rare events, Del Moral and Garnier (2005) developped a genealogical
particle system approach to explore the space of inputs E. Cérou and Guyader (2007a,b)
proposed an adaptive multilevel splitting also based on particle systems. An adaptive di-
rectional sampling method is presented by Munoz Zuniga et al. (2010) to accelerate the
Monte Carlo simulation method. These methods can still need too many calls to f and the
importance distribution is hard to set for an importance sampling method.

A general approach in computer experiments is to make use of a metamodel which is
a fast computing function which approximates f . It has to be built on the basis of data
{f(x1), · · · , f(xn)} which are evaluations of f at points of a well chosen design Dn =
{x1, · · · ,xn}. The bet is that these n evaluations will allow to build more accurate esti-
mators and bounds on the probability of the target event.
Kriging is such a metamodeling tool, one can see Santner et al. (2003) and more recently
Li and Sudjianto (2005); Joseph (2006); Bingham et al. (2006). The function f is seen as a
realization of a Gaussian process which is a Bayesian prior.
The related posterior distribution is computed conditionally to the data. It is still a Gaussian
process whose mean can be used as a prediction of f everywhere on E and the variance as
a pointwise measure of the accuracy of the prediction.
By using this mean and this variance, Oakley (2004) has developped a sequential method to
estime quantiles and Vazquez and Bect (2009) a sequential method to estimate the probabil-
ity of a rare event. Cannamela et al. (2008) have proposed some sampling strategies based
only on a reduced model which is a coarse approximation of f (no information about the
accuracy of prediction are given), to estimate quantiles.
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Two approaches are investigated in that paper. Both rely on the hypothesis that f is a
realization of a Gaussian process F independent of X. As a consequence, πρ is a realization
of the random variable:

Πρ = E(I]−∞,ρ[(F (X))|F ) .

The first approach consists of focusing on the posterior distribution of Πρ which depends
on the posterior distribution of f given its computed evaluations. We show that a Bayesian
estimator of Πρ can be computed and a credible bound is reachable by simulating Gaussian
processes to obtain realizations of Πρ.
The other approach is an importance sampling method whose the importance distribution
is based on the metamodel.

The paper is organized as follows: Section 2 describes the posterior distribution of the
Gaussian process and how to obtain an estimator and a credible interval on Πρ. Section 3
presents the importance sampling method and the confidence upper bound which is provided
with a high probability. Finally in Section 4, these methods are used on a toy example to
ensure that they perform well and a solution to a real aeronautical case study about the risk
that the trajectory of an airborne load collides the aircraft that has released it, is proposed.

2 Bayesian estimator and credible interval

The first step for Kriging metamodeling is to choose a design Dn = {x1, . . . ,xn} of numerical
experiments (one can see Morris and Mitchell (1995); Koehler and Owen (1996) and more
recently Fang et al. (2006); Mease and Bingham (2006); Dette and Pepelyshev (2010)). Let
yDn = (y1 = f(x1), . . . , yn = f(xn)) be the evaluations of f on Dn.
Let us start from a statistical model consisting of Gaussian processes Fβ,σ,θ whose the ex-
pressions are given by: for x ∈ E,

Fβ,σ,θ(x) =
L∑
k=1

βjhj(x) + ζ(x) = H(x)Tβ + ζ(x) , (2.1)

where

• h1, . . . , hL are regression functions, and β = (β1, . . . , βL) is a vector a parameters,

• ζ is a centered Gaussian process with covariance

Cov(ζ(x), ζ(x′)) = σ2Kθ(x,x′) ,

where Kθ is a correlation function depending on some parameters θ (for details about
kernels, see Koehler and Owen, 1996).

The maximum likelihood estimates β̂, σ̂, θ̂ of β, σ,θ are computed on the basis of the
observations. Then, the Bayesion prior on f is chosen to be F = Fβ̂,σ̂,θ̂ and the pro-

cess F is assumed independent of X. We denote FDn the process F conditionally to
F (x1) = y1, . . . , F (xn) = yn, in short YDn = yDn .
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The process FDn is still a Gaussian process (see Santner et al., 2003) with

• mean: ∀x,
mDn(x) = H(x)T β̂ + ΣT

xDnΣ−1DnDn(yDn −HDnβ̂) , (2.2)

• covariance: ∀x,x′,
KDn(x,x′) = σ̂2(Kθ̂(x,x′)− ΣT

xDnΣ−1DnDnΣx′Dn) , (2.3)

where
(ΣDnDn)1≤i,j≤n = Kθ̂(xi,xj) and ΣxDn = (Kθ̂(x,xi))

T
1≤i≤n .

In this approach the conditioning to the data regard the parameters as fixed although they
are estimated.

The Bayesian prior distribution PF on f leads to a Bayesian prior distribution on Πρ. Our
goal is to use the distribution of the posterior process FDn conditionally to the observation
of YDn , to learn about the posterior distribution of Πρ. The random variable ΠDn

ρ is defined
by:

ΠDn
ρ = E(I]−∞,ρ[(FDn(X))|FDn) . (2.4)

Its distribution is the posterior distribution of Πρ conditionally to YDn = yDn , as the following
useful lemma states.

Lemma 2.1. For all measurable function g : R 7→ R,

E(g(ΠDn
ρ )) = E(g(E(I]−∞,ρ[(FDn(X))|FDn))) .

Proof

E(g(ΠDn
ρ )) = E(g(Πρ)|YDn = yDn)

= E(g(E(I]−∞,ρ[(F (X))|F ))|YDn = yDn)

=

∫
RE
g(E(I]−∞,ρ[(F (X))|F = ϕ))PF |YDn=yDn (dϕ)

=

∫
RE
g(E(I]−∞,ρ[(F (X))|F = ϕ))PFDn (dϕ) .

Since X and F are independent,

E(I]−∞,ρ[(F (X))|F = ϕ) = E(I]−∞,ρ[(ϕ(X))) .

Hence,

E(g(ΠDn
ρ )) =

∫
RE
g(E(I]−∞,ρ[(ϕ(X))))PFDn (dϕ)

=

∫
RE
g(E(I]−∞,ρ[(FDn(X))|FDn = ϕ))PFDn (dϕ)

= E(g(E(I]−∞,ρ[(FDn(X))|FDn))) .

2

5



The mean and the variance of ΠDn
ρ are, then, given by:

Proposition 2.1.

E(ΠDn
ρ ) =

∫
E

E(I]−∞,ρ[(FDn(x)))PX(dx) = E

(
Φ

(
ρ−mDn(X)√
KDn(X,X)

))
, (2.5)

where Φ is the cumulative distribution function of a centered reduced Gaussian random vari-
able.

V(ΠDn
ρ ) =

∫
E×E

Cov(I]−∞,ρ[(FDn(x)), I]−∞,ρ[(FDn(x′))PX × PX(dx, dx′) . (2.6)

Proof
From Lemma 2.1, it comes

E(ΠDn
ρ ) = E(E(I]−∞,ρ[(FDn(X))|FDn))

= E(I]−∞,ρ[(FDn(X))) =

∫
E
E(I]−∞,ρ[(FDn(x)))PX(dx) .

Since FDn(x) follows Gaussian distribution with mean mDn(x) and variance KDn(x,x),

E(ΠDn
ρ ) = E

(
Φ

(
ρ−mDn(X)√
KDn(X,X)

))
.

Then, E((ΠDn
ρ )2) is computed by using again Lemma 2.1 and the independence of X and

FDn :

E((ΠDn
ρ )2) = E(

[
E(I]−∞,ρ[(FDn(X))|FDn)

]2
)

=

∫
RE

[
E(I]−∞,ρ[(ϕ(X)))

]2 PFDn (dϕ)

=

∫
RE

∫
E

I]−∞,ρ[(ϕ(x))PX(dx)

∫
E

I]−∞,ρ[(ϕ(x))PX(dx)PFDn (dϕ)

=

∫
E2

E(I]−∞,ρ[(FDn(x))I]−∞,ρ[(FDn(x′)))PX × PX(dx, dx′) .

As, it also holds:

E(ΠDn
ρ )2 =

∫
E2

E(I]−∞,ρ[(FDn(x)))E(I]−∞,ρ[(FDn(x′)))PX × PX(dx, dx′) ,

V(ΠDn
ρ ) = E((ΠDn

ρ )2)− E(ΠDn
ρ )2

=

∫
E2

Cov(I]−∞,ρ[(FDn(x)), I]−∞,ρ[(FDn(x′))PX × PX(dx, dx′) .

2
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A numerical Monte Carlo integration can be used to compute the posterior mean and
variance since they do not need more calls to f . However, the computation time requested
by a massive Monte Carlo integration, especially for V(ΠDn

ρ ), can be very long as it is noticed
in the examples.

The mean and the variance of ΠDn
ρ can be used to obtain credible bounds. As a conse-

quence of Markov inequality, it holds, for any α ∈ [0, 1],

P

(
ΠDn
ρ ≤

E(ΠDn
ρ )

α

)
≥ 1− α . (2.7)

Likewise, Chebychev inequality gives, for any α ∈ [0, 1],

P

(
ΠDn
ρ ≤ E(ΠDn

ρ ) +

√
V(ΠDn

ρ )

α

)
≥ 1− α . (2.8)

The quantiles of ΠDn
ρ are exactly the upper bounds that are sought. They can be reached

through massive simulation of ΠDn
ρ . For example, the following algorithm provides realiza-

tions of ΠDn
ρ . It relies on a discretization of the Gaussian process to be simulated.

Algorithm 2.1.

1. Simulate a realization of a Gaussian process: A realization of the vector of points
ỹ = (yx̃i)1≤i≤ñ is drawned according to the distribution FDn of the Gaussian process.

2. Reconstruction of the realization: By a Kriging method, the points ỹ ∪ yDn are inter-
polated. This interpolation is considered as a realization of FDn on E.

3. Numerical integration: The realization πρ corresponding to the realization of the Gaus-
sian process is hence computed using a massive Monte Carlo integration with respect to
the distribution of X.

Using a lot of iterations, it is possible to obtain an approximation of the cumulative
distribution function of ΠDn

ρ which gives estimates of quantiles. Thus, a credible interval on
Πρ is constructed. A constant a ∈ [0, 1] is found such that:

P(ΠDn
ρ < a) ≥ 1− α .

This approach can suffer of an error due to the spatial discretization needed at step 1 of the
algorithm. In the next Section, an alternative approach based on importance sampling is
proposed.

3 Importance sampling

As it was explained in Section 1, the major drawback of the crude Monte Carlo scheme is
the high level of uncertainty when it is used for estimating the probability of a rare event.
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Importance sampling is a way to tackle this problem. The basic idea is to change the
distribution to make the target event more frequent. We aim at sampling according to the
importance distribution:

PZ : A ⊂ E 7→ PX(A|R̂ρ) ,

where R̂ρ ⊂ E is to be designed close to Rρ = {x ∈ E : f(x) < ρ}. Thanks to n calls to the

metamodel, a set R̂ρ can be chosen as follows:

R̂ρ = R̂ρ,κ =
{
x : mDn(x) < ρ+ κ

√
KDn(x,x)

}
, (3.1)

where κ is fixed such that “{x : F (x) < ρ} ⊂ R̂ρ,κ with a good confidence level”. In other

words, if x is such that f(x) < ρ, we want x to be in R̂ρ,κ. We recall that the posterior mean

mDn(x) is an approximation of f(x) and κ
√
KDn(x,x) has been added to take into account

the uncertainty of the approximation.
A set of m points, Z1:m = (Z1, . . . ,Zm), is drawned to be an i.i.d. sample following the

importance distribution. The corresponding importance sampling estimator of πρ is

PX(R̂ρ)

m
Γ(f,Z1:m) =

PX(R̂ρ)

m

m∑
k=1

I]−∞,ρ[(f(Zk)) . (3.2)

The probability PX(R̂ρ) is computable by a Monte Carlo integration since it does not
depend on f ; yet, m more calls to f are necessary to compute I]−∞,ρ[(f(Zk)). This estima-

tor is only unbiased provided that Rρ ⊂ R̂ρ. Nevertheless, it is an unbiased estimator of
EX(I]−∞,ρ[(f(X))IR̂ρ(X)). Since Γ(f,Z1:m) follows a binomial distribution

B
(
m,

E(I]−∞,ρ[(f(X))IR̂ρ (X))

PX(R̂ρ)

)
, for any α ∈]0; 1[, the following confidence upper bound holds:

P
(
E(I]−∞,ρ[(f(X))IR̂ρ(X)) ≤ b(Γ(f,Z1:m, ρ),m, α)PX(R̂ρ)

)
> 1− α , (3.3)

by using the bound (1.4). This is an upper bound on πρ only if the estimator (3.2) is unbiased

i.e. only if Rρ ⊂ R̂ρ. As it is noticed in the decomposition:

πρ = E(I]−∞,ρ[(f(X))) = E(I]−∞,ρ[(f(X))IR̂ρ(X)) + E(I]−∞,ρ[(f(X))(1− IR̂ρ(X))) ,

the second term on the right-hand side which is the opposite of the bias has to be controlled.
That is why the random variable

ΠDn
ρ = E(I]−∞,ρ[(FDn(X))|FDn) ,

whose a realisation is πρ, is considered.
Similarly to the previous decomposition, it holds

ΠDn
ρ = E(I]−∞,ρ[(FDn(X))IR̂ρ(X)|FDn) + E(I]−∞,ρ[(FDn(X))(1− IR̂ρ(X))|FDn) . (3.4)

A bound on E(I]−∞,ρ[(FDn(X))IR̂ρ(X)|FDn) comes from (3.3).
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Proposition 3.1. For α ∈]0, 1[, it holds

P(
(
E(I]−∞,ρ[(FDn(X))IR̂ρ(X)|FDn) ≤ b PX(R̂ρ)

)
≥ 1− α , (3.5)

where b stands for b(Γ(FDn ,Z1:m, ρ),m, α).

Proof
Let ϕ be any realisation of FDn .
As in (3.3), we have

P
(
E(I]−∞,ρ[(ϕ(X))IR̂ρ(X)) ≤ b(Γ(ϕ,Z1:m, ρ),m, α)PX(R̂ρ)

)
≥ 1− α .

Thus, since this result holds for any realisation of FDn ,

P
(
E(I]−∞,ρ[(FDn(X))IR̂ρ(X)|FDn) ≤ b(Γ(FDn ,Z1:m, ρ),m, α)PX(R̂ρ)

)
≥ 1− α .

2

The next proposition states an upper bound for the second term in (3.4).

Proposition 3.2. For β ∈]0, 1[, it holds

P
(
E(I]−∞,ρ[(FDn(X))(1− IR̂ρ(X))|FDn) ≤ c

β

)
≥ 1− β ,

where c = E
(

Φ

(
ρ−mDn (X)√
KDn (X,X)

)
(1− IR̂ρ(X))

)
.

Proof
The mean of E(I]−∞,ρ[(FDn(X))(1−IR̂ρ(X))|FDn) can be computed in the same fashion than

the mean of ΠDn
ρ in Proposition 2.1. It gives

E
(
E(I]−∞,ρ[(FDn(X))(1− IR̂ρ(X))|FDn)

)
= E

(
Φ

(
ρ−mDn(X)√
KDn(X,X)

)
(1− IR̂ρ(X))

)
.

Then, Markov inequality is applied which completes the proof. 2

Finally, by gathering the results of Proposition 3.1 and Proposition 3.2, a stochastic upper
bound is found on ΠDn

ρ .

Proposition 3.3. For α, β ∈]0, 1[ such that α + β < 1, it holds

P
(

ΠDn
ρ ≤ bPX(R̂ρ) +

c

β

)
≥ 1− (α + β) , (3.6)

where b and c have been defined above.

The proof is obvious.
If R̂ρ is chosen as proposed in (3.1), the bound c is:

c = c(κ) = E

(
Φ

(
ρ−mDn(X)√
KDn(X,X)

)
I]−∞,−κ[

(
ρ−mDn(X)√
KDn(X,X)

))
.
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4 Numerical experiments

4.1 A toy example

The function f : [−10, 10]2 → R+ is assumed to describe a physical model:

f(x1, x2) = −sin(x1)

x1
− sin(x2 + 2)

x2 + 2
+ 2 .

Figure 1: The function f

The input vector X is supposed to have a uniform distribution on [−10, 10]2. The thresh-
old is set to ρ = 0.01 which corresponds to the probability
PX (f(X) < ρ) = 4.72 · 10−4. This probability was computed thanks to a massive Monte
Carlo integration. In the case where only N = 100 calls to f are available, the two strate-
gies are tested. A maximin design with 100 points for the Bayesian strategy and one with
50 points for importance sampling strategy are computed thanks to a simulated annealing
algorithm. Kriging metamodels are built with an intercept as the regression function and a
Gaussian correlation function is chosen as the correlation function of the Gaussian process
ζ i.e. ∀x ∈ E, h(x) = 1 and ∀x,x′ ∈ E, K(x,x) = exp (−θ‖x− x′‖2) are set for the model
given by equation (2.1). The Bayesian estimate of πρ is 4.63 · 10−4. It was computed by a
Monte Carlo integration on a 107-sample using the result of Proposition 2.1. Yet, we were
not able to determine the posterior variance in a reasonable time. The importance sampling
estimate of πρ, constructed on a 50-sample, is 6.13 · 10−4. The probability PX(R̂ρ,κ) (and
also the bound on the bias, given in Proposition 3.2) was also computed by a Monte Carlo
integration on a 107-sample and κ = 3 has been set.

Then, the stochastic bounds on ΠDn
ρ are focused on. A thousand iterations of Algorithm

2.1 where the points x̃1, . . . , x̃ñ have been chosen to be a grid of one hundred points in [−1, 1]2
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and the numerical integration at step 3 is performed with a 105-sample, are done. In order
to prevent the covariance matrix of the posterior process to be ill-conditioned an eye matrix
multiplied by a small coefficient (here 10−5) is added. It is a regularization of the solution
known as a nugget effect in the Kriging literature. The estimates of the posterior quantiles
are 1.2 · 10−3 at level 90% and 2.1 · 10−3 at level 98%. The bounds found with importance
sampling are 1.5 · 10−3 at level 90% (α = β = 5%) and 2.1 · 10−3 at level 98% (α = β = 1%).
If a crude Monte Carlo scheme is used here with only N = 100 calls, the estimator is equal
to 0 with probability greater than 0.95 and in this case, the upper confidence bounds are
0.023 and 0.038 respectively at levels 90% and 98%.

There are sources of variability on the estimators and the bounds due to the choice in
the designs. Indeed, the designs are computed to be maximin by using a finite number of
iterations of a simulated annealing algorithm. Moreover, there exist symmetries within the
class of maximin designs. Concerning the importance sampling strategy, the sampling which
gives Z1:m induces variability.

In order to test the sensitivity of the estimators and the bounds to these sources of
variability, each of the two strategies as described just above, are repeated one hundred
times. Figure 2 displays a boxplot of one hundred estimates obtained with the Bayesian
method on the left-hand side and a boxplot of one hundred estimates obtained with the
importance sampling method on the right-hand side.

Figure 2: Estimates of πρ

Figure 3 displays the boxplots concerning bounds at level 90% and at level 98% given
by the Bayesian method (left-hand side) and the importance sampling method (right-hand
side). Table 1 summarizes the estimates and Table 2 summarizes the bounds.
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Figure 3: Bounds on πρ at level 90% (left) and at level 98% (right)

These results show that the Bayesian method is very reliable for estimating πρ while the
importance sampling method provides the sharpest upper bounds. The Bayesian method
suffers from the fact that the posterior quantiles are estimated thanks to an algorithm which
relies on a discretization of the space and is burdensome which implies a limited number
of possible iterations. The importance sampling methods which splits into two terms the
probability to bound is much more efficient. As these methods depend on the Kriging model
hypothesis (2.1), a leave-one-out cross validation as proposed by Jones et al. (1998) can be
performed to check if this hypothesis is sensible. It consists of building n metamodels with
posterior mean and variance denoted respectively by mD−in

and σ2
D−in

, from designs

D−in = {x1, . . . ,xi−1,xi+1, . . . ,xn} ,

where i = 1, . . . , n.
Then, the values

|f(xi)−mD−in
(xi)|

σ2
D−in

(xi)
, (4.1)

are computed. If something like 99.7% of them lies in the interval [−3, 3], the Kriging
hypothesis is not rejected. In our toy example, all of the tests which were made give that all
these values are in [−2, 2].

Bayesian estimates IS estimates
Minimum 4.19 0
Maximum 5.40 14
Mean 4.72 4.72

Table 1: Estimates of πρ multiplied by 10−4
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Bayesian bounds IS bounds
90% 98% 90% 98%

Minimum 3 7 4.5 6.5
Maximum 63 110 26 32
Mean 20 39 12 16

Table 2: Bounds on πρ multiplied by 10−4

4.2 A real case study: release enveloppe clearance

4.2.1 Context

When releasing an airborne load, a critical issue is the risk that its trajectory could collide
the aircraft. The behaviour of such a load after release depends on many variables. Some are
under control of the crew: mach, altitude, load factor etc. We call them controlled variables
and note C their variation domain. The others are uncontrolled variables : let E be the set
of their possible values. The release enveloppe clearance problem consists of exploring the
set C to find a subset where the release is safe, whatever the uncontrolled variables are.
To investigate this problem, we can use a simulator which computes the trajectory of the
carriage when the values of all the variables are given. Moreover, for xC ∈ C and x ∈ E,
besides the trajectory τ(xC ,x), the program delivers a dangerousness score f(xC ,x) to be
interpreted as an “algebraic distance”: a negative value characterizes a collision trajectory.
To assess the safety of release at a given point of C, we suppose that the values of the
uncontrolled variables are realizations of a random variable X ∈ E that can be simulated.
Therefore, for a given value xC ∈ C, and ρ ≥ 0 the ρ-collision risk is the probability

πρ(xC) = P(f(xC ,X) < ρ) .

We do not aim at estimating accurately this risk.
We would rather classify the points into three categories: according to the position of 0-risk
π0(xC) with respect to the two markers 10−5 and 10−2, xC is said to be

1. totally safe if π0(xC) ≤ 10−5,

2. relatively safe if 10−5 < π0(xC) < 10−2,

3. unsafe if π0(xC) ≥ 10−2.

In this example, there are 5 controlled and 26 uncontrolled variables, so that C ⊂ R5, E ⊂
R26. From budget point of view, experts consider that a set of about 400 representative points
of C are enough to cover consistently the domain C. On the other hand, the computation of
800000 trajectories takes about 4 days which is considered reasonable. On the basis of these
indications, the maximum amount of available calls to the simulator is N = 2000 per point.
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4.2.2 Estimation strategy

Our estimation strategy which applies iteratively to each point of the set of representative
points, has two steps each of which uses half of the calls budget: m = n = N

2
= 1000. Let

xC ∈ C be the current point of interest that we suppose fixed. For any x ∈ E, f(x) =
f(xC ,x) is set, recovering the notation introduced in the first part of the paper.

1. At the first stage, a Gaussian process is built as explained in (2), on the basis of
evaluations f(x1), · · · , f(xn) ∈ Rn of f on Dn = (x1, · · · ,xn). From Proposition 2.1,
we know that πρ is a realization of the random variable ΠDn

ρ whose mean

E(ΠDn
ρ ) = E

(
Φ

(
ρ−mDn(X)√
KDn(X,X)

))
,

can be computed accurately.
As stated by (2.7), applying Markov inequality gives, for any α ∈]0; 1[,

P

(
ΠDn
ρ ≤

E(ΠDn
ρ )

α

)
≥ 1− α .

According to the value of E(ΠDn
ρ ), we, then, take the following decisions:

• if E(ΠDn
ρ ) ≤ 1

2
10−10 which leads by (2.7) to P

(
ΠDn
ρ ≤ 10−5

2

)
≥ 1− 10−5

2
, we qualify

the current point xC ∈ C as totally safe,

• if E(ΠDn
ρ ) ≥ 10−2, we conservatively classify xC as unsafe,

• if 1
2
10−10 < E(ΠDn

ρ ) < 10−2 we use a second stage procedure to refine the risk
assessment.

2. A million-sample x1, · · · ,xM of X is drawn from which we tune κ in such a way that
m = 1000 of these million elements of E are in R̂ρ,κ. The resulting points z1, · · · , zm
are a m-sample z1:m of realizations of the random variable Z which follows the impor-
tance distribution,

PZ : A 7→ PX(A|R̂ρ,κ) .

By using m calls to the simulator, Γ(f, z1:m, ρ) is computed. Drawn from Proposition
3.3 with setting α = β, we obtain the bound

b(Γ(f, z1:m, ρ),m, α)PX(R̂ρ,κ) +
c(κ)

α
,

which is a decreasing function of α.
Let define α0 = min{α : b(Γ(f, z1:m, ρ),m, α)PX(R̂ρ,κ) + c(κ)

α
≤ 2α}. For such an α0,

Proposition 3.3 states:

P
(

ΠDn
ρ ≤ b(Γ(FDn ,Z1:m, ρ),m, α0)PX(R̂ρ) +

c(κ)

α0

)
≥ 1− 2α0 ,

which provides 2α0 as a 1− 2α0 confidence upper bound on πρ.
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4.2.3 Experiments

Three points of C have been experienced. Of these cases the first one is known to be a null
0-risk point, while the third one is very unsafe and the second one is in-between.

For benchmarking purpose, besides the simulator calls budget required for the estimation
process described in 4.2.2, a 10000-samples of f(xE,X) has been computed for each of
the three examples. For each case, we began by estimating a Gaussian process on the
basis of f -values computed on the points of a 1000 points maximin latin hypercube design
Dn = {x1, · · · ,xn}. Figures 4, 5 and 6 show the predictive performance of the processes when
applied to the benchmark points. These points, which appear in red, are sorted according
to their process mean values while the blue curves mark the predicted 3 standard deviation
positions around the means. As it appears rather clearly, the dispersion of ther eal values is
underestimated by the model: they overflow the blue zone with a frequency (∼ 5%) higher
than expected (0.27%). The worse case is the first one, for which large deviations appear
for benchmark points with low values of f . In order to obtain bounds from (2.7), we then

Figure 4: Prediction performance case 1

computed E(ΠDn
0 ) using (2.5):
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Figure 5: Prediction performance case 2
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Figure 6: Prediction performance case 3
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• In the first case, the massive Monte Carlo procedure leads to a numerically null eval-
uation of E(ΠDn

0 ) and, as a consequence, to the classification of the related C point as
totally safe.

• In the second example, E(ΠDn
0 ) beeing evaluated at 1.68 10−4, we need to proceed the

second step.

• E(ΠDn
0 ) = 0.103 in case 3 which is consistent with the 90% confidence interval [0.0999; 0.1101],

obtained on benchmark data.

We now applied the procedure second stage to refine collision probability estimation: the
obtained confidence upper bound is 1.2 10−5 at confidence level 1−1.2 10−5. The benchmark
data do not show collision case: a 90% confidence upper bound is 2.3 10−4.

5 Dicussion

In this paper, two methods were proposed to estimate and to bound the probability of a rare
event which depends on an expensive black-box function. They are both based on a Kriging
hypothesis which induces an random interpretation of the probability to estimate. That is
why the Bayesian context is natural in this problem and leads to a very accurate estimator.
As it is hard to reach the posterior quantiles, it does not achieve as tight upper bounds as
the importance sampling method does. The importance sampling method relies on a split in
the possible calls to f . We have proposed to use half of the calls to compute a metamodel
and half of the calls to draw a sample according to the importance distribution; yet, other
way of splitting can be investigated.

As it was noticed on the toy example, there is a variability due to the choice in the
design. To reduce it, some points can be added where uncertainties on the prediction of
the metamodel are high (KDn(x,x) is large) and the probability that f is smaller than ρ is
high. It can consist of adding sequentially points of R̂ρ,κ where the variance of prediction is
the largest, as in Vazquez and Bect (2009); Bect et al. (2011) and in Ranjan et al. (2008);
Picheny et al. (2010) for contour estimation.

We have dealt with a cross validation method to assess the Kriging hypothesis. However,
in the case where the cross validation leads to reconsider this hypothesis, a solution is to
extend the confidence interval on the prediction by tuning at hand the parameter σ2 in
equation (2.1). In Bayesian words, it can be called using a less informative prior distribution
on f .

We have not manage to compute the posterior variance (given by Proposition 2.1) by
using a massive Monte Carlo integration in our examples since it is very small. However,
other rare events methods can be investigated since the variance does not depend anymore
on f .
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