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QUASISTATIONARY DISTRIBUTIONS AND 

FLEMING-VIOT PROCESSES IN FINITE SPACES 

AMINE ASSELAH,* Universite Paris-Est 

PABLO A. FERRARI,** Universidade de Sao Paulo and Universidad de Buenos Aires 

PABLO GROISMAN,** 
*** Universidad de Buenos Aires 

Abstract 

Consider a continuous-time Markov process with transition rates matrix Q in the state 

space A U {0}. In the associated Fleming-Viot process N particles evolve independently 
in A with transition rates matrix Q until one of them attempts to jump to state 0. At this 

moment the particle jumps to one of the positions of the other particles, chosen uniformly 
at random. When A is finite, we show that the empirical distribution of the particles at 

a fixed time converges as N -+■ oo to the distribution of a single particle at the same 

time conditioned on not touching {0}. Furthermore, the empirical profile of the unique 
invariant measure for the Fleming-Viot process with N particles converges as N —> oo 

to the unique quasistationary distribution of the one-particle motion. A key element of 

the approach is to show that the two-particle correlations are of order 1 /N. 

Keywords: Quasistationary distribution; Fleming-Viot process 

2010 Mathematics Subject Classification: Primary 60K35 

Secondary 60J25 

1. Introduction 

Let A be a finite or countable state space, whose elements are also called sites. Let 

Q = (q(x, y), x, y e A U {0}) be the transition rates matrix of an irreducible continuous 
time Markov process on A U {0}. The transition matrix for the process stopped on {0} is 

Q(x, y) — Q(x, y) for x e A, and Q(0, y) = 0 for any ye A. 
Consider the process on A U {0} generated by Q, with initial law /i, and denote by T,/i its 

law at time t conditioned on not having touched {0} up to time t. In other words, for all x e A, 

EyeA l^(y)e\p(tQ)(y,x) 
T,u(x) = ^ 

1 - E>>€a mOO exP CQ)(y> °) 

Let M be the space of probability measures on A. Then [Tt, t > 0} is a semigroup on M and 

T, ji is the unique solution to the Kolmogorov forward equations: Tqh(x) = /i(x), and, for any 

x e A, 

TtH(x) = 
^2 q(y, x)T,fi(y) + ^ q{y, 0)Tt/i(y)T,^(x). 
yeA ye A 
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QSDs and Fleming-Viot processes 323 

A quasistationary distribution (QSD) for Q is a probability measure v on A that is invariant 

under [Tt, t > Oj, that is, 

Ttv = v for all t > 0. 

Our goal is to approximate the conditioned process by a particle system. This is useful from 

a theoretical point of view (in [4] the QSD is constructed as the limit of the invariant measures 

of the processes that approximate the conditioned evolution) as well as for simulation purposes, 

since the conditioned evolution cannot be simulated by the rejection method for large times. 

1.1. The associated Fleming-Viot process 

For each integer N > 1, the Fleming-Viot process with N particles is a continuous-time 

Markov process e A", t > 0; let (i) denote the position of the z'th particle at time t. The 

generator XN acts on functions /: A'v —> K as 

N 

•£"/«) = E £ 
i=l Jt€A\te(i)} 

qM),x) + qM), 0) 
w - l (/(£'•*) - /(£)), (2) 

where £'■*(/) = and, for j ^ i, f'*0) = £(y). We set Ef [/(&)] = exp(^)/(t). In 

words, each particle moves independently of the others as a continuous-time Markov process 

with transition rates matrix Q, but when it attempts to jump to state 0, it jumps to the position 

of one of the other particles chosen uniformly at random. 

Denote by 77(f, x) the number of f particles at site x, and by ra(§) the empirical measure 

induced by a configuration £ 6 U,v A,v: 

r)(%,x) := ^ 1 {$(<)=*] and m(f) := ^xeA 

i= 1 -ixeA 

n(£,x)8x 

V(Z,x) 
(3) 

We also use mx(%) to denote m(f )(x) and q(x, x) = — 
5ZyeAu{0}\{jt} With this nota 

tion, the time derivative of [rnx (£,,)] is easily seen to be 

dE £W&)] N 

Jt 
= 

*)E$ [mjfe)] + — 
j £<?(>>,x)Ef [«,(&)] + y 0)Ef [«,(&)»»*(&)]. 

y€A yeA 

There is a natural Fleming-Viot process associated to any given Markov process with 

absorbing states. This appears for the first time in [2] for Brownian motion absorbed at the 

boundary of a bounded domain. In the associated Fleming-Viot process N Brownian particles 

evolve independently until one of them reaches the boundary, which plays the role of state 0. 

This model and generalizations of it were studied in several papers; see, e.g. [1], [2], [5], [6], 
and [7], which dealt with diffusions in bounded or unbounded domains. These works had to 
address the serious problem of nonexplosion of the number of hits of the boundary, and this 

required sophisticated analysis. On the other hand, Ferrari and Marie [4] considered a countable 

space, and a Doeblin-type condition was imposed on the transition rates matrix Q. Here we 

continue the analysis of [4] without their strong Doeblin-type condition but with a finite space. 

The starting point is still the similarity between (1) and (4). It is obvious that we require 
a control of the correlations between occupation numbers. We mention that a sophisticated 

approach, formulated in the proof of Theorem 1.4 of [2], was used to study the same object (for 

N Brownian motions on a bounded domain), without the need for controlling such correlations. 
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324 A. ASSELAH ETAL. 

Another approach given in [5], still for N Brownian motions on a bounded domain, was used 

to study the limit of the empirical measure through the hydrodynamics limit technology. Both 

approaches in [2] and [5] are sophisticated, whereas here we present a simple, short, and natural 

way to link quasistationary measures with the law of the empirical measure of the Fleming 

Viot process under its invariant measure. This latter approach is adapted to finite-state Markov 

chains. 

Once the Fleming-Viot process is considered, the issues to address are, of course, the 

well definiteness of the process and its ergodicity. Neither issue is straightforward to resolve 

in general state spaces. In countable spaces the well definiteness is immediate but not the 

ergodicity (see [4]). The conditions on the original process that guarantee the ergodicity of the 

Fleming-Viot process is still an open problem. Once this is solved, we are interested in the 

approximation of the conditioned process by its associated Fleming-Viot process. 

1. Does the Fleming-Viot process approximate the conditioned evolution as N —> oo for 

each t > 0? 

2. Does the empirical profile of the invariant measure of the Fleming-Viot process approx 

imate a QSD? In the case of the existence of more than one QSD, which QSD is chosen 

by the Fleming-Viot process? 

These two questions have been answered affirmatively for Brownian motion (the empirical 

profile of the invariant measure converges in this case to the first eigenfunction of the Laplacian 
with homogeneous Dirichlet boundary conditions) and more general diffusions (see [1], [2], 
and [5]). For countable spaces, under the condition that 

Einf q(x, z) > maxflfjc, 0), 
*eA\{z) xeA 

Z€ A 

Ferrari and Marie [4] proved the existence of a unique stationary measure kN for the Fleming 
Viot process and the existence of a measure v on A such that 

lim f (mx($) - v(x))2 dkN (%) = 0. 
/V->oo Jan 

Furthermore, v is the unique QSD of Q. 
The main goal of this paper is to prove that the Fleming-Viot process approximates the 

conditioned evolution as well as the QSD under the only hypothesis that A is finite (Theorem 2). 

The result is not included in [4] and requires control of the two-particle correlations uniformly 
in the initial configuration. 

Assume that fi is close to ra(£), and look at (1) and (4). A natural approach to show that 

is close to Tt\i is to establish that the occupation numbers of two distinct sites, at 

time t, become independent when N tends to oo (the so-called propagation of chaos). For this 

purpose, Ferrari and Marie [4] estimated the correlation of two £-particles, for A countable as 

the unique assumption. 

Proposition 1. ([4, Proposition 3.1].) Let /i be any probability measure on A, and let ix®N 
be the product probability on A'v. Then, there is a constant k such that, for any x, >' e A and 

t > 0, 

[mx(Mt)my^t)]dfi9N^)- 
J E^[mx^,)]d/i9N^) f E% [«,&)] dM®W(?) < " 

N 
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QSDs and Fleming-Viot processes 325 

In contrast to [4], our argument requires a control of the correlations under the invariant 

measure of the Fleming-Viot process. To that end, we obtain bounds that hold uniformly on 

the initial distribution of the particles. This result also holds for countable A with no further 

assumptions. 

Proposition 2. For each t > 0 and any x, y e A, 

sup IE£W&)my($f)] 
- 

e£W&)]e£V,(&)]| < + l(e2Ct _ 1} (5) 
f€ A" 

? ? ? " 
N N 

Our proof of Proposition 2 also shows that any finite number of particles evolve independently 
in the limit TV -> oo. A similar result was obtained by Grigorescu and Kang [6], following 
their approach in [5]. 

Finite state spaces 

In the rest of the paper we consider a finite A. In this case, for each N > 2, the Fleming-Viot 

process is an irreducible pure-jump Markov process on the finite state space AN. Hence, it is 

ergodic, that is, there exists a unique stationary measure for the process, and starting from any 

measure, the process converges to the stationary measure. We still denote this measure by kN. 

When A is finite, Darroch and Seneta [3] proved that T, /i converges exponentially fast to 

a probability measure v, uniformly in the initial measure. The measure v is the unique QSD 

of Q. 

Theorem 1. ([3].) Assume that A is finite and that the process on A with rates {q(x, y), x, y e 

A} is irreducible. Then there exists 9 > 0 such that 

sup IIT,n - v|| < e et. 
neM 

In Theorem 1 we have used the total variation norm 

IIm - v\\ = ^ \n(x) - v(*)|. 
xeA 

The asymptotic independence of Proposition 2 naturally implies the convergence of the 

empirical means in the Fleming-Viot process to the conditioned distribution Ttm(%), uniformly 
in £. Moreover, since A is finite, Ttm(£) is close to the unique QSD, uniformly in §, as implied 
by (6). These two facts imply the following, which is our main result. 

Theorem 2. Assume that A is finite. Then, 

lim f ||m(£)-v||dXw(£)=0. (7) 
N-±oo Jan 

Remark 1. Note that (7) readily implies (using the fact that 0 < mx < 1 for all x € A) that, 
for any subset U C A, 

^oo / n^=n^> 
xeU xeU 

The rest of the paper is organized as follows. In Section 2 we construct the process a la Harris 

following [4]. We use this construction to estimate the correlations and prove Proposition 2 in 

Section 3. Finally, in Section 4 we prove Theorem 2. 
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326 A. ASSELAH ETAL. 

2. Graphical construction 

We use the Harris graphical method [8] to construct the process. This representation is then 

used to prove the asymptotic independence property. A realization of the process (§,, t > 0) 

is a deterministic function of a realization of a marked (Poisson) point process. All initial 

conditions f use the same realization of the marked point process. The construction allows us 

to explore the process backwards in time (in the absence of the useful duality tool in particle 

systems) and control the two-point correlation function with a branching process at a finite 

time. 

Let C := maxx€A q(x, 0) be the (maximum) absorption rate, and let 

q := sup q(x,y)\ p(x, y) := g y 
, y ^ x\ 

*€Ay6A\{*} 
q 

p(x,x):= 1- ^ p{x,y). 
yzK\{x] 

To each particle i, we associate two independent marked Poisson processes (a>J, coj), which 
we respectively call the internal and voter point processes, described as follows. 

• The internal process is defined on M x Aa with intensity measure q dt dy(F), where 

dy(F) = 
Y[ P(x> FM) for all F e Aa, 
xeA 

that is, y is the joint distribution of independent random variables with marginal distri 

butions {p(x, ■), x e A}, so that to each state x the (random) F assigns a state v = F(x) 

with probability p(x,y). If (t, F) is an internal marked time associated to particle i and at 
time t— particle i is at site x, then at time t, particle i jumps to site Fix). The function F 
associated to this time is called the mark. This gives the correct rate q(x, y) = qp{x, y) 

for jumps from x to y. 

• The voter point process is defined on M x ({1,..., N] \ {/}) x {0, 1} with measure 

intensity C df d/3, (j) dy'(£), where fit is the uniform probability on {1,..., N] \{i} and 

y' is the joint distribution of independent Bernoulli random variables with parameters 

q(x, 0)/C, x e A. A voter marked time is (t, j, £), where j corresponds to a reincar 
nation label and £ takes into account the position-dependent rate: if the /th particle is at 

position x at time t—, it jumps to the position of particle j at time t only if £(x) = 1, 

yielding the correct rate q(x,0)/(N — I). 

We call co = ((o>j, ojf ), i e {1,..., N}) an independent and identically distributed sequence 
of stationary marked point processes associated with labeled particles. Finally, for any subset 

of labels a C {1,N], we denote by coa the processes associated with labels a. For any real 

numbers s < t, we denote by wa[.s, t) and u>a[s, 11 the projections of the marked times in the 

time period f.v, t) and [s, t ], respectively. 

We construct {^, t > 0} in such a way that & is a function of the initial configuration £o 

and the time marks u>[0, t], f > 0. Fix an initial configuration §o € Aw, and t > 0. There is, 
almost surely, a finite number of time marks within [0, r], say K\ let [bk, 0 < k < K] be the 
ordered time realizations with bo = 0. We build f, inductively as follows. 

• At time bo = 0, the configuration is §o 
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QSDs and Fleming-Viot processes 327 

• Assume that %bk is known. For t e [bk, bk+i), set = 
^bk- We now describe £bk+[ ■ 

• If bk+1 corresponds to an internal time of particle i and mark F, we move particle 

i to Fix), where x = This move occurs with rate qq(x, F(x))/q = 

q(x, F(x)). 

• If bk+i corresponds to a voter time of particle i and mark (j, f), we move particle 

i to the position of particle j if f(x) = 1, where x = ^ (i). This move occurs 
with rate 

c<?(•*, 
0) 1 _ q(x, 0) 

C N - 1 
~ 

N - 1 
' 

It is easy to check that {£,, t > 0}, as constructed above, has generator given by (2); see [8]. 

By translation invanance of the law of co, if we use the marks &>[—/, 0] instead of the marks 

to[0, f], the configuration so obtained has the same law of as constructed above. We abuse 

notation and call the configuration constructed with the marks co[—t, 0], For each particle 

label i, we build simultaneously a set of labels ip-'(t) of particles which could potentially 
influence (i ) (that is, the set of all other particles that may have interacted with particle i up to 

time t). This set is constructed backwards in time (from time 0 to time — 
t), also as a function 

of u>[—t, 0]. First, the process t h* i/r' (t) may only change at the time realizations of the voter 

process oA, and it changes as follows. Let — v be the largest time realization of <w(v[—r, 0), and 

let (j, f) be its associated mark. Then, for 0 < s < v, we set \{rl (s) — {i}, and iff' (v) — [i, j | 
(regardless of the values of f). For s < t, assume that 1// (s) is built, let —v be the largest time 

realization of [—t, —s), and let (j, (, ) be its associated mark. Then, for all u e [s, v), 

1//'(u) = lis'(s) and %lrl{v) = x/rl(s) U {7}. 

Note that, for any t > 0, \[rl (t) is a(cov[—t, 0))-measurable and that, for any subset of 

a C {1,..., N} containing i, we have 

W(t) = a] e [-f, 0)) and (i/f'(r) = a, £,(/) = x] e o(coa[-t, 0)). 

The next lemma says that the sets of labels associated to two different particles intersect with 

probability of order 1 /N times an exponential factor in t. Since t is fixed and N goes to oo, the 

bound is sufficient to establish the 1 /N decay of two-particle correlation at any fixed time t. 

Lemma 1. For i, j distinct labels and t > 0, 

p«r'(r) n t) ^ 0) < 
j(e2Cf 

- 1). (9) 

Proof. First, we show that the rate of growth of 1/^ (?) is at most exponential. It is clear from 

the construction of that its rate of growth at time t is at most Ci/r1 (f) and that it grows by 

adding one label (from {1,..., N] \\/f' (t)) uniformly at random. Thus, 

E[\r(t)\ |or(fl)[-r,0))]<l + C f |Vr'(s)|ds =» E[|i/r'(0|] < exp(Cr). (10) 
Jo 

Second, we show that, for two distinct labels i, j, 

2 CC' 
P(iA!(0 n \ls](t) ^ 0) < ——- E[i/f'(j)]E[iAJ(i)]ds. (11) « - 1 Jo 
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328 A. ASSELAH ETAL. 

Note that 

P(*'(On *>(»**)= fE\wrw+Hs)*0\<rM-s.O))) Jo L di 

and 

dP(i/f'(s) PI y) ^ 0 | a(co[—s, 0)))" 
ds 

2 C 
= 

^7YE[i{^(i)n^w=0) 1^ CO II 'A7 (-y)ll 

2C 
= 

N _ ! \a\\b\PW(s) = a, \lfj(s) = b) 
a(~)b=0 

- 
t |fl||Z>|P(Vf'(s) = a)P(^-/(s) = b) 

ar\b=0 

< 
j^E[|Vr<(*)|]E[|^(s)|]. 

In (12) we used the fact that, for two nonoverlapping subsets of labels a and b, [if (t) = a] 

and {x//J (t) = b} are independent by (8). 
This concludes the proof of (11). Now (9) follows from (10) and (11). 

3. Proof of Proposition 2 

We need to show that, for any x,y € A, any time t > 0, and initial configuration 

|E[jK&)(*M&)GO] - E[»;(&)(je)]E[»j(&)(y)]| < 2Nc2a. (13) 

Here and throughout this section, we use E and P to denote 
E^ 

and P 

(3), the difference in the expectations on the left-hand side of (13) is 

J2 = *, 60') = y) - P(Sr(«) = *)P(60") = >0L (14) 
!<JV j<N 

For a subset a, {&(/) = x, yr (0 = 1S o-(^[—r, 0))-measurable, by (8). Thus, for two 

nonoverlapping subsets of labels a and /?, 

P(^'(0 =a, fJ(t) =b, §f(i) =*, f,0) = )0 

= P(if'(t) = a, £,(i) = x)P(i/rJ(t) = b, 1,0") = >>). 

Compute a generic term on the right-hand side of (14) with i ^ j: 

P({£r(0 =x, %,(j) = ?}) = p(f (f)n^J(t) ^ 0, £,(/) = ^0') = >>) 

+ 5Z pW(t) = a> ylfJ(t) = b,h(i) = x, %t(j) = y) 
anb=0 

= PW(t)r\xlrj(t) jz 0, $t(i) =x, 1,0) = y) 

+ £ P(^'(0 = a, MO = * W'(0 = 60") = y). 
aClb=0 

(15) 
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QSDs and Fleming-Viot processes 329 

To compute P(|r(0 = x)P(£r(j) = y)> we can think of two independent marked point 

processes driving the evolution (we use a tilde to denote the independent copy), and we have a 

decomposition similar to (15) for i / j: 

p (i,(i) = xm,(j) = y) = p(r(t) n r(t) / 0, mo = *, hu) = y) 

+ 22 pW0) = ci, &j(t) = b, %t(i) = x, U) = y) 
aDb=0 

= P(Vr'(r) n ? 0, &(i) = X, l,{j) = y) 

+ 22 P(ir'(t) - a, £,(/) = x)P(.i/rj(t) = b, %,(j) = y). 
anb=0 

Subtracting (16) from (15) we obtain, for i / y, 

|P(£,(i) = x, H,(j) = y) — P({|,(i) = x)P(g,U) = >01 
< P(r/f'U) n irj(t) ^ 0) + P(V(t) n irj (t) ^ 0) 

(e2Cf ~ 
N — l 

by Lemma 1 (we have used the fact that the lemma also holds for \jjl (t) D \frJ (t)). Thus, by 

summing over i and j e {1,..., /V}, and noting that there are N diagonal terms which bring a 

factor N when i = j, we obtain the desired bound. 

4. Proof of Theorem 2 

Note that (7) follows from (6), combined with the following property: for any positive time t, 

lim sup E?[||m(§,) - T,m^)\\] = 0. 
^00?€AW 

Indeed, 

||m«)-v|| dAw(?) 

= [ Ef[||/n(?f)-v||]d^(?) 
J A" 

? 

<[ E"[\\rn(!;t)-T,m(md^N($)+ f \\TtmQ) - v|| dXw(f) 
J A" 

? 
J A" 

< sup E^[||w(fr) 
- T,m(M)||] + sup \\T,n - v||. 

%eAN iJ-eM 

Thus, we first estimate [||m(%t) — Ttm(t-)\\]. It is more convenient to work with the /2-norm, 
rather than the total variation norm. For a function tp: A —> R, we denote its /2-norm as 

IMl2 = fe< 
\teA 

By the Cauchy-Schwarz inequality, note that if [i and v are probabilities on A, 

(16) 

IIm - V\\2 < IIm - v|| < yiAIII/^ - vh 

This content downloaded from 144.82.108.120 on Sat, 19 Dec 2015 16:07:05 UTC
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


330 A. ASSELAH ETAL. 

To estimate [||m(£t) — Ttm(%)\\2\, note that 

Ef [||m(fe) - Ttm(M)||2] < 
Ef [||m%) - 

Ef [m($t)]||2] + ||Ef [m(&)] - TtmQ)||2. (17) 

Taking y = x in (5) we obtain 

By (18) and Jensen's inequality, we have 

[Ef 
- 

Ef [m(t,)]||2]2 < Ef [||m(|f) - Ef [m(^)]|||] 

The second term in (17) is dealt with in the following lemma. 

Lemma 2. For any T > 0, 

lim max max ||E^[m(^r)] — Ttm(£)\\2 = 0. 
N-+00 0<t<T t-eAN 

Proof. We introduce some simplifying notation: 

We show that there is a constant B such that, for any t > 0, 

d ux 

d t 
= 

XI q(y' x^uy+ XI q(y' UxUy+ Rx^'t)' 
yeA 

(20) 
yeA 

where 

RxG,t) = 
J^q(y, °) 
yeA 

^j-Ef [«,(?,)«,(?,)] - Ef [my(£)]Ef k(?()] . 

Proposition 2 implies that 

2e2C' ^2vq(y, 0) 
sup sup | Rx(%, 01 < 77 • 
jreA I N 

On the other hand, from (1), 

di> U Uj£ % > % > — = 
2_ q(y, x)vy + 2_^ q(y, 0)vxvy. (21) 
yeA yeA 

N 

2e 
E[(!»,(!,) - Etm^fe)])2] < ——. (18) 

Ux(t) = 
E? [mx(%,)] and vx(t) = T,m(%)(x). 

d , , 4e2Cl J2v<l(y<Q) 
—II ii(o - w(oni < flii«(o - «(oni + — ■ (i9) 

Since ||m(0) 
— 

v(0) 1I2 = 0, the result follows at once by means of Gronwall s inequality. 

We fix t > 0, and we often omit to display the time dependence. From (4), 
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Subtracting (21) from (20), we obtain 

d(ux - vx) = q(y' x^uy ~ vy^+ 5Z q(-y' °)(uxuy - vxyy) + Rx(%, t). 
dt 

yeA yeA 

Now, 

d 1 -) T—> d (Mr Ur) — -"«(*) - W(0II2 = dr 
~ Vx^ 

X 

= 
^212 ^x' y^uy 

~ 
vy^ux 

~ vx) 
jceA ye.A 

+ XI 
_ 

VxVy)(ux 
- Vx) 

xeA yeA 

+ ^Rx(ux 
- 

vx). 

X 

We deal with each term on the right-hand side of (22) separately. First, 

£]£«(*• 
xeA yeA 

y)(lly Vy){Ux ^jc) S £«: 
jc.yeA 

(*,jO 
1/2 

"111 

To deal with the second term, observe that uxuy 
— 

vxvy 
= 

vx(uy 
— 

vy) + uy(ux 
— vx) and, 

hence, the second term in (22) equals 

X! ^2l(y>°)Vx(uy 
- 

Vy)(ux -vx) + ^2 ^2q(y,0)uy(ux 
- vx)(ux - vx). (24) 

xeA ye A xeA ye A 

Since v is bounded, the first term in (24) can be treated as (23) with q(x, y) replaced by 

q(x,y) := q(y,0)vx. The second term in (24) equals 

U - v\\l ̂q(y, 0)uy < IIu - VII2 sup^(y, 0). 

Finally, taking into account the fact that J_,x v* = 
12x Mx = U the last term of (22) 

bounded by 

„ 4e2c'Ev9(3'.0) 2 sup | Rx | < £ . 
* N 

Collecting all these computations, we obtain (19). 

Acknowledgements 

This work was initiated during the semester Interacting Particle Systems at IHP, Paris. 

We would like to thank the staff and the organizers for a wonderful work atmosphere. AA 

acknowledges the support of the French Ministry of Education through the ANR BLAN07 
2184264 grant. PAF was partially supported by FAPESP. PG and PAF were partially supported 

by the Universidad de Buenos Aires under grant X447, by ANPCYT PICT 2008-315, and by 
CONICET PIP 0613. 

(22) 

(23) 

This content downloaded from 144.82.108.120 on Sat, 19 Dec 2015 16:07:05 UTC
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


332 A. ASSELAH ETAL. 

References 

[1] Bieniek, M., Burdzy, K. and Finch, S. (2009). Non-extinction of a Fleming-Viot particle model. Preprint. 
Available at http://arxiv.org/abs/0905.1999vl. 

[2] Burdzy, K., HotYST, R. and March, P. (2000). A Fleming-Viot particle representation of the Dirichlet 

Laplacian. Commun. Math. Phys. 214, 679-703. 

[3] Darroch, J. N. and Seneta, E. (1967). On quasi-stationary distributions in absorbing continuous-time finite 
Markov chains. J. Appl. Prob. 4, 192-196. 

[4] Ferrari, P. A. and Maric, N. (2007). Quasi stationary distributions and Fleming-Viot processes in countable 

spaces. Electron. J. Prob. 12, 684-702. 

[5] Grigorescu, I. and Kang, M. (2004). Hydrodynamic limit for a Fleming-Viot type system. Stoch. Process. 

Appl. 110, 111-143. 

[6] Grigorescu, I. and Kang, M. (2006). Tagged particle limit for a Fleming-Viot type system. Electron. ]. Prob. 

11,311-331. 
[7] Grigorescu, I. and Kang, M. (2011). Immortal particle for a catalytic branching process Prob. Theory Relat. 

Fields 29pp. 
[8] Harris, T. E. (1978). Additive set-valued Markov processes and graphical methods. Ann. Prob. 6, 355-378. 

This content downloaded from 144.82.108.120 on Sat, 19 Dec 2015 16:07:05 UTC
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp

	Article Contents
	p. 322
	p. 323
	p. 324
	p. 325
	p. 326
	p. 327
	p. 328
	p. 329
	p. 330
	p. 331
	p. 332

	Issue Table of Contents
	Journal of Applied Probability, Vol. 48, No. 2 (JUNE 2011) pp. 295-595
	Front Matter
	HITTING TIMES AND THE RUNNING MAXIMUM OF MARKOVIAN GROWTH-COLLAPSE PROCESSES [pp. 295-312]
	NEW LIMITING DISTRIBUTIONS FOR BELLMAN—HARRIS PROCESSES [pp. 313-321]
	QUASISTATIONARY DISTRIBUTIONS AND FLEMING—VIOT PROCESSES IN FINITE SPACES [pp. 322-332]
	HYDRODYNAMIC LIMIT FOR A TYPE OF EXCLUSION PROCESS WITH SLOW BONDS IN DIMENSION d ≥ 2 [pp. 333-351]
	CONTACT PROCESS WITH DESTRUCTION OF CUBES AND HYPERPLANES: FOREST FIRES VERSUS TORNADOES [pp. 352-365]
	ON THE MARKOV TRANSITION KERNELS FOR FIRST PASSAGE PERCOLATION ON THE LADDER [pp. 366-388]
	IMPROVED FRÉCHET BOUNDS AND MODEL-FREE PRICING OF MULTI-ASSET OPTIONS [pp. 389-403]
	PRICING THE ZERO-COUPON BOND AND ITS FAIR PREMIUM UNDER A STRUCTURAL CREDIT RISK MODEL WITH JUMPS [pp. 404-419]
	A LOWER BOUND FOR THE FIRST PASSAGE TIME DENSITY OF THE SUPRATHRESHOLD ORNSTEIN—UHLENBECK PROCESS [pp. 420-434]
	MANAGING QUEUES WITH HETEROGENEOUS SERVERS [pp. 435-452]
	A STOCHASTIC BREAKDOWN MODEL FOR AN UNRELIABLE WEB SERVER SYSTEM AND AN OPTIMAL ADMISSION CONTROL POLICY [pp. 453-466]
	EFFICIENT SIMULATION FOR THE MAXIMUM OF INFINITE HORIZON DISCRETE-TIME GAUSSIAN PROCESSES [pp. 467-489]
	CONDITIONALLY INDEPENDENT INCREMENT POINT PROCESSES [pp. 490-513]
	PROCESSES WITH BLOCK-ASSOCIATED INCREMENTS [pp. 514-526]
	A CENTRAL LIMIT THEOREM AND ITS APPLICATIONS TO MULTICOLOR RANDOMLY REINFORCED URNS [pp. 527-546]
	EXACT LOWER BOUNDS ON THE EXPONENTIAL MOMENTS OF TRUNCATED RANDOM VARIABLES [pp. 547-560]
	Short Communications
	CONDITIONAL FULL SUPPORT OF GAUSSIAN PROCESSES WITH STATIONARY INCREMENTS [pp. 561-568]
	ASYMPTOTIC PROPERTIES OF A LEADER ELECTION ALGORITHM [pp. 569-575]
	ON THE MAXIMAL OFFSPRING IN A CRITICAL BRANCHING PROCESS WITH INFINITE VARIANCE [pp. 576-582]
	CONCAVE RENEWAL FUNCTIONS DO NOT IMPLY DFR INTERRENEWAL TIMES [pp. 583-588]
	ON THE FIRST EXIT TIME OF A NONNEGATIVE MARKOV PROCESS STARTED AT A QUASISTATIONARY DISTRIBUTION [pp. 589-595]

	Back Matter



