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Résumé

This paper deals with the splitting method first introduced in rare event analysis.
In this technique, the sample paths are split into R multiple copies at various stages
during the simulation. Given the cost, the optimization of the algorithm suggests
to sample a number of subtrials which may be non-integer and even unknown but
estimated. To avoid this problem, we present in this paper three different approaches
which provide precise estimates of the relative error between P(A) and its estimator.
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1 Introduction

1.1 General settings

The study of rare events is an important area in the analysis and prediction
of major risks as earthquakes, floods, air collision risks, etc. Studying the
major risks can be taken up by two main approaches which are the statistical
analysis of collected data and the modelling of the processes leading to the
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accident. The statistical analysis of extreme values needs a long observation
time since the very low probability of the events considered. The modelling
approach consists first in formalizing the system considered and then in using
mathematical (Aldous [1] and Sadowsky [26]) or simulation tools to obtain
some estimates.

Analytical and numerical approaches are useful, but may require many simpli-
fying assumptions. On the other hand, Monte Carlo simulation is a practical
alternative when the analysis calls for fewer simplifying assumptions. Never-
theless, obtaining accurate estimates of rare event probabilities, say about
10−9 to 10−12, using traditional techniques require a huge amount of compu-
ting time.

Many techniques for reducing the number of trials in Monte Carlo simulation
have been proposed, the first one is based on importance sampling (IS), e.g.
de Boer [7] and Heidelberger [20]. Fundamentally, IS is based on the notion of
modifying the underlying probability distribution in such a way that the rare
event occurs much more frequently. But the use of IS requires a deep knowledge
of the studied system. An alternative way is to use trajectory splitting, based
on the idea that there exists some well identifiable intermediate system states
that are visited much more often than the target states themselves and behave
as gateway states to reach the rare event. In contrast to IS type algorithms, the
step-by-step evolution of the system follows the original probability measure.
Thus we consider a decreasing sequence of events Bi leading to the rare event
A :

A = BM+1 ⊂ BM ⊂ . . . ⊂ B1 .

Then P(A) is given by

P(A) = P(A|BM)P(BM |BM−1) . . .P(B2|B1)P(B1), (1)

where on the right hand side, each conditioning event is «not rare». For the
applications we have in mind, these conditionnal probabilities are in general
not available explicitly. Instead we know how to make evolve the particles
from level Bi to the next level Bi+1 (e.g. Markovian behavior).

The principle of the algorithm is at first to run simultaneously several particles
starting from the level Bi ; after a while, some of them have evolved «badly »,
the other have «well» evolved i.e. have succeeded in reaching the threshold
Bi+1. «Bad» particles are then moved to the position of the «good» ones
and so on until A is reached. In such a way, the more promising particles are
favoured ; unfortunately that algorithm is hard to analyse directly because of
the interaction introduced between particles. Examples of this class of algo-
rithms can be found in [2] with the «go with the winners» scheme, in [13,21]
in the context of the approximate counting and in [10,11,14] in a more general
setting.
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Nevertheless, in practice the trajectory splitting method may be difficult to
apply. For example, the case of the estimation of the probability of a rare
event in random dynamical systems is more complex, since the difficulty to
find theoretically the optimal Bi. Furthermore, the probability to reach Bi

varies generally with the state of entrance in level Bi−1. But it is not always
the case e.g. for Markovian models (like diffusions).

A mathematical tool well adapted to study this type of algorithms is the
Feynman-Kac approach developped in [11]. Asymptotic results are derived,
such as LLN, CLT, and Large Deviations principles ; in particular asymptotic
variance of the estimator of the rare event probability is given. Non asymptotic
results such as uniform Lp mean error bounds and exponential concentration
inequalities with respect to the time horizon can be also found in this relevant
book. Getting precise confidence intervals is more challenging. Nevertheless, all
these algorithms lie on a common base, simpler to analyse and called branching
splitting model. In this technique, interactions between particles are avoided
and its relative simplicity allow us to derive precise results (Chernoff type
bound of the estimator) and to have better knowledge and understanding on
splitting models in general. We must precise here that we consider only one
dimensional models as introduced in Garvels [15] or in a more refined version :
the RESTART method [30, 31].

In the branching splitting technique, make a {0, 1} Bernoulli trial to check
whether or not the set event B1 has occured. In that case, we split this trial
in R1 Bernoulli subtrials, and for each of them we check again whether or not
the event B2 has occured. This procedure is repeated at each level, until A
is reached. If an event level is not reached, neither is A , then we stop the
current retrial. Using N independent replications of this procedure, we have
then considered NR1 . . . RM trials, taking into account for example, that if we
have failed to reach a level Bi at the i-th step, the Ri . . . RM possible retrials
have failed. Clearly the particles reproduce and evolve independently.

An unbiased estimator of P(A) is given by the quantity

P̂ =
NA

N
∏M

i=1Ri

, (2)

where NA is the total number of trajectories having reached the set A. Consi-
dering that this algorithm is represented by N independant Galton-Watson
branching processes (Zn)n, as done in [23], the variance of P̂ can be then deri-
ved and depends on the probability transitions and on the mean numbers (mi)
of particles successes at each level. Lead by the heuristic presented in [30,31],
an optimal algorithm is derived by minimizing the variance of the estimator
for a given budget (computational cost), defined as the expected number of
trials generated during the simulation, where each trial is weighted by a cost
function.
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The optimization of the algorithm (Lagnoux [23]) suggests to take all the
transition probability equal to a constant P0 and the number of splitting equal
to the inverse of this constant. We then deduce the number of thresholds M
and finally N is given by the cost. This result is not surprising since it means
that the branching processes are critical Galton-Watson processes. In other
words, optimal values are chosen in such a way to balance the loss of variance
from too little splitting and the exponential growth in computational effort
from too much splitting.

Now, we are interested in the study of the precision of this algorithm by
deriving an upper bound to the quantity

P(|P̂ − P(A)|/P(A) ≥ α) (3)

The Chebycheff’s bound being too crude, we will use the Chernoff type bound
based on the Laplace transfom of the normalized Galton-Watson branching
process

WM+1 := ZM+1/E(ZM+1).

We therefore need to get estimates on the Laplace transform of WM+1 which
depends on the n-th iterate of a function ψ. In practice, the optimal number
of thresholds M is not very large and therefore asymptotic estimates may
not be accurate. That optimal number being derived from these bounds, a
numerical approach would be unworth too. Hence we want to derive explicit
upper and lower bounds for a given number of thresholds. For an asymptotic
analysis of the branching splitting model, the reader is referred to Glasserman
et al. [16, 17].

In this paper, precise estimates are derived using the following technique :
instead of a single bounding function for ψ, several ones are used to obtain
sharper upper and lower estimates. These bounding functions are chosen in
the low dimensional Lie groups of the homographic and affine functions. The
higher the dimension of the Lie group, the more precise is the approxima-
tion since the dimension describes the number of parameters to adjust the
function with. Unfortunately, we did not find higher dimensional Lie algebras
of monotone functions (necessary property to iterate merely the inequalities
obtained). The interest of using such functions lies also in the fact that their
iterates can be explicitly computed. This technique leads to accurate bounds
on the probability (3) (see Proposition 1).

In practice, the adjustment of Pi close to the optimal value may be done du-
ring a first phase. The proportion of the cost devoted to this learning part
will be the topic of a forthcoming paper (see Section 7). But it soon appears
that, even in the case of Pi’s close to optimals, the fact that the number of
replicas is not an integer destroys rapidly the accuracy of the algorithm : in
such a case, one can take Ri equal to the closest integer (k or k + 1) of the
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Fig. 1. Sensitivity of the bounds in m for different values of α

optimal value R but whatever the choice we have made, the criticality of the
Galton-Watson process will be lost and the loss of precision is significant, see
Figure 1 and Tabular 1.

P(A) = 3.5 10−11 and C = 108
P(A) = 5.10−11 and C = 108

Variance Laplace Variance Laplace

Optimal m = 1 0.05080 0.03948 0.04938 0.03835

Supercritical case : m = 1.111 Subcritical case : m = 0.909

Deterministic

Ri = [R] + 1R−[R]≥0.5 0.05702 0.04428 0.05428 0.04215

TAB1. Length of the 95% confidence interval given by the variance and the
Laplace transform

This paper is concerned with the study of different ways to overcome this
problem. Lead by [2], we choose at random the sampling number with the
hope of improving the simulation. In a first model (Random1), we sample a
Bernoulli random variableRi on {k, k+1} for each particle having reached level
i started from level i-1 and we decide to adjust p := P(R1 = k) such that m =
1. A second model (Random2) consists in sampling a random environmental
sequence (R1, R2, . . . , RM) of M i.i.d. Bernoulli random variables Ri on {k, k+
1} with common parameter p, derived by the same previous optimization
approach with an additional constraint (the link between the expectations
of R and its inverse). However, this problem is more complex and needs an
approximate solution. Results are presented in Proposition 3 and in Tabular
2.
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P(A) = 3.5 10−11 and C = 108
P(A) = 5.10−11 and C = 108

Variance Laplace Variance Laplace

Optimal m=1 0.05080 0.03948 0.04938 0.03835

Supercritical case : m = 1.111 Subcritical case : m = 0.909

Deterministic

Ri = [R] + 1R−[R]≥0.5 0.05702 0.04428 0.05428 0.04215

Random 1 0.05134 0.03990 0.04990 0.03878

Random 2 0.05388 0.04026 0.05235 0.03910

TAB2. Length of the 95% confidence interval given by the variance and the
Laplace transform

Remark that Random 1 provides the closest results from the optimals.

1.2 The results

Using the technique based on low dimensional Lie groups, described in section
1.1, we shall prove the following precise estimates :

Proposition 1 For a given cost C, there exists a generic constant α1 such
that for α ≤ α1,

P

(
|P̂ − P(A)|

P(A)
≥ α

)
≤






2 exp
{
− Cα2P0

8(1−P0)h(P0)
mM

(
m−1

mM+1−1

)2
}

for m 6= 1

2 exp
{
− Cα2P0

8(1−P0)h(P0)
1

(M+1)2

}
for m = 1

The value of α1 will be given in Section 3.

Remark 2 For large value of M , the bound of (3) then behaves like
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2 exp

{
− Cα2P0

8(1 − P0)h(P0)

1

mM+2

}
for m > 1

2 exp

{
− Cα2P0

8(1 − P0)h(P0)

1

(M + 1)2

}
for m = 1

2 exp

{
− Cα2P0

8(1 − P0)h(P0)
mM

}
for m < 1

With (13) and (10) in Section 2, we obtain the following gaussian bound

2 exp

(
−α

2

8

N

var(WM+1)

)
(4)

Considering R as a random variable in the two ways described in Section
1.1 and using the same type of techniques we get

Proposition 3 (1) Sampling at each success

There exists generic constants c2 and α2 such that for α ≤ α2

P

(
|P̂ − P(A)|

P(A)
≥ α

)
≤ 2 exp

{
−c2

C α2

h(P0)

1

(M + 1)2

}

where c2 is a constant depending on p and k.

(2) Sampling a random environment

There exists a generic constant α3 such that for α ≤ α3

P

(
|P̂ − P(A)|

P(A)
≥ α

)
≤ 2E

(
exp

{
− α2

8(1 − P0)

1
∑M

i=0 ξ
−1
0 . . . ξ−1

i

})C̃

where ξ0 = P0, ξi = RiP0 for i = 1 . . .M , C̃ = C
h(P0)

E(ξ)−1
E(ξ)M+1−1

.

The paper is organized as follows. Section 2 recall quickly the general settings
of the branching splitting model. We obtain, in Section 3, estimates on (3)
and their sensitivity in m. In Sections 4 and 5, the two random models are
studied and we derive precise estimates on (3). Section 6 presents a numerical
illustration. Finally in Section 7, we conclude and discuss the merits of this
approach and potential directions for further researches.
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2 Settings of the branching splitting model

As said in Introduction and following [23], we consider N independent Galton-
Watson branching processes (Z(i)

n )n≥0, i = 1, . . . , N where for each i, Z(i)
n is the

number of particles derived from the i-th particle (Z
(i)
0 =1) that have reached

the level Bn. Then, letting Ri the sampling number at level i,

P̂ :=
1

N

N∑

i=1

P̃i, where P̃i =
Z

(i)
M+1

R1 . . . RM
. (5)

To lighten notation, we will consider only the case N = 1 in the following,
i.e. we will consider the process (Zn)n≥0 with Z0 = 1. We have the following
recurrence relation

Zn+1 =
Zn∑

j=1

X(j)
n (6)

where for each n, the random variables (X(j)
n )j≥1 are i.i.d. with common law

a Binomial distribution with parameters (Rn, Pn+1) for n ≥ 1 and a Ber-
noulli distribution with parameter P1 for n = 0. Let introduce the following
quantities

m0 = P1, mn = RnPn+1, n = 1, . . . ,M + 1,

which are the mean number of particles success at each level. Then

P̃ =
ZM+1

R1 . . . RM
= P(A)

ZM+1

m0 . . .mM
(7)

According to (6), we obtain that E(Zn+1|Zn) = mnZn, so using this relation
repeatedly, we find that E(Zn+1) =

∏n
i=0mi. Introducing the random variable

Wn = Zn/E(Zn) gives the new expression

P̃ = P(A)WM+1 (8)

from which, we easily deduce that the estimate P̂ is unbiased. Integrating N ,
the variance of P̂ is given by

var(P̂ ) =
P(A)2

N

M∑

i=0

1 − Pi+1

m0 . . .mi

. (9)

The minimization of the variance of P(A) for a given budget C defined by

C = N

[
h(P1) +

M∑

i=1

h(Pi+1)m0 . . .mi−1Ri

]
(10)
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leads to the optimal parameters of the algorithm given by [23]





Pi = P0, i = 1, . . . ,M + 1,

mi = 1, i = 1, . . . ,M,

N = C/[(M + 1)h(P0)],

M = ⌊log P(A)/y0⌋,

where y0 is the solution of some equation which depends on the unit cost
function h. It means that the branching processes are critical Galton Watson
processes. The reader is referred to Harris [19], Lyons [24] and Athreya and
Ney [5] for more details on Galton-Watson and branching processes.

Remind the goal of this paper is to study the precision of the algorithm by
deriving an upper bound to (3) that decomposes in two probabilities itselves
bounded by

P

(
P̂ ≥ (1 + α)P(A)

)
≤ exp

{
N inf

u>0

[
log E

(
euWM+1

)
− u(1 + α)

]}
, (11)

P

(
P̂ ≤ (1 − α)P(A)

)
≤ exp

{
N inf

u<0

[
log E

(
euWM+1

)
− u(1 − α)

]}
. (12)

Thus precise estimates of the Laplace transform of WM+1 need to be derived.
In the following, we consider our model with all the Pi’s equal to a constant P0

and all the Ri’s equal to R ; but m = RP0 could be different from the optimal
value 1. From (9) and (10), remark

var(WM+1) :=σ2
M+1 =






(
1
P0

− 1
)

mM+1−1
(m−1)mM for m 6= 1,(

1
P0

− 1
)

(M + 1) for m = 1,
(13)

and

C =




Nh(P0)

mM+1−1
m−1

for m 6= 1,

Nh(P0)(M + 1) for m = 1.
(14)

3 First model : taking R deterministic with m 6= 1

3.1 The model

Throughout this section, we consider the branching process associated to the
splitting algorithm in the case R deterministic with m 6= 1 and we aim at
deriving relevant confidence intervals.
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Note the generating function of ZM+1 is P0f
oM(s) + 1 − P0 where f(s) =

(P0s+ 1 − P0)
R. To lighten notation, we denote the n-th functional iterate of

a function f by fn.

Letting ψ (u) := log (f(eu)) = R log (P0e
u + 1 − P0) and h(u) = exp(u), we

observe that ψ = h−1ofoh ; thus ψM+1 = h−1ofM+1oh and the Laplace trans-
form of WM+1 becomes

E

(
euWM+1

)
= P0fM

(
e

u

P0mM

)
+ 1 − P0 = exp

{
1

R
ψM+1

(
u

P0mM

)}
(15)

As a consequence, (11) and (12) yield to

P

(
|P̂ − P(A)|

P(A)
≥ α

)
≤ exp

{
N inf

u>0
F+

M+1(u)
}

+ exp
{
N inf

u<0
F−

M+1(u)
}

where 



F+

M+1(u) := 1
R
ψM+1

(
u

P0mM

)
− (1 + α)u

F−
M+1(u) := 1

R
ψM+1

(
u

P0mM

)
− (1 − α)u

Remark 4 Note that for u ≤ 0, E

(
euWn

)
≤ 1 and so E

(
euW

)
≤ 1. What

happens for u ≥ 0 ? We have

ψn+1

(
u

P0mn

)
= R log E

(
euWn+1

)

As a consequence, information on ψn+1

(
u

P0mn

)
provides us results on the ex-

ponential integrability of Wn+1 and W .

3.2 The Laplace transform of Wn+1

3.2.1 Introduction

Wanting to obtain precise bounds on the Laplace transform of Wn+1 given by
(15) (M being replaced by n), we are interested in the behavior of ψn+1. But
since ψn+1 has no explicit expression, we are brought to estimate ψ in a first
step and then to iterate these estimates.

Heuristic for estimating ψ : instead of using a single function to bound
ψ, we use several bounding functions to obtain sharper upper and lower esti-
mates. Near the origin, we will use homographic functions and elsewhere affine
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functions.

For example, for u ≥ 0 and m > 1, near the origin a «good» homogra-
phic function (same value at 0, same first and second derivatives at 0) gives a
sharp upper bound. For large u, we simply use the asymptotic direction. We
get

ψ(u) ≤




mu/

(
1 − 1−P0

2
u
)

for 0 ≤ u ≤ u0

Ru for u0 ≤ u

for u0 such that mu0/
(
1 − 1−P0

2
u0

)
= Ru0.

Let us introduce h(u; x, y) = xu
1−yu

and g(u; x, y) = xu + y. More generally,
we obtain upper and lower estimates of the following form





h(u; x, y) for u close to 0

g(u; x, y) otherwise

We choose these bounding functions in the low dimensional Lie groups of
the homographic and affine functions. The higher the dimension of the Lie
group, the more precise is the approximation since the dimension describes
the number of parameters to adjust the function with (for example, the k
first derivatives at a given point). Unfortunately, we did not found higher
dimensional Lie algebras of functions having the monotonicity assumption
required to iterate merely the inequalities obtained for ψ. The interest of
using such functions lies also in the fact that their iterates can be explicitly
computed. Obviously

hn(u; x, y) =
xnu

1 − yuxn−1
x−1

and gn(u; x, y) = xnu+ y
xn − 1

x− 1

The problem is that the set formed by the homographic functions and the
affine functions is not a group ; so a crucial point will be to determine the
number of iterations corresponding to a change of group.

Heuristic for estimating ψn : Since the estimates of ψ have two expres-
sions, we will obtain estimates of ψn with three functions. Indeed, starting
from u close to 0, we iterate h, starting from u far from 0, we iterate the affine
function g. Nevertheless when u starts from a midle value, we shall encounter
a change of regime as described below.

More precisely, in the case when m > 1 and u > 0 e.g., 0 is a repulsive
fix point (see next section). So starting from u ≥ 0, ψn (u) diverges while n
goes to ∞ and there are different regimes for the upper estimates :
– if u ≥ u0, we simply iterate u 7→ Ru and the n-fold convolution of ψ is lower

than the n-fold convolution of Ru,
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– if u ≤ u0, we start by iterating h
(
.;m, 1−P0

2

)
and if fortunately after n itera-

tions hn

(
u;m, 1−P0

2

)
is still lower than u0 then the n-fold convolution of ψ is

lower than the n-fold convolution of h. In the other case, after k iterations,
hk

(
u;m, 1−P0

2

)
is greater than u0 then we continue iterating u 7→ Ru. The

value k0 appearing in the following lemma corresponds to that change of
regime.

Finally, the estimates of ψn reflects that change of regime and have the follo-
wing form





hn(u; x, y) for u close to 0

gn(u; x, y) for u far from 0

auα otherwise

3.2.2 Behavior and estimates of ψ for m > 1

We plot in Figure 2 ψ in the case m > 1. Note that ψ has two fix points : 0
which is repulsive and some q̃ < 0 which is attractive (s.t. ψ(q̃) = q̃).

Proceeding as explained in the previous section, straightforward studies of
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Fig. 2. Behavior of ψ for m > 1

functions leads to the following lemmas.

Lemma 3.1 Estimates of ψ for u ≥ 0 and m > 1

ψ (u) ≤



h
(
u;m, 1−P0

2

)
for 0 ≤ u ≤ u0

Ru for u ≥ u0
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ψ (u) ≥



mu for u ≤ v0

g (u;R,R log (P0)) for u ≥ v0

where u0 := 2 and v0 := − log (P0) /(1 − P0) ≥ 0.

Lemma 3.2 Estimates of ψ for u ≤ 0 and m > 1. Let
– b such that h (b;m, 1 − P0) < b,
– d := [q̃ − h (b;m, 1 − P0)]/(q̃ − b),

– mq̃ := ψ′ (q̃) = meq̃(1− 1
R),

– u−∞ := R log (1 − P0),
– v1 := argu{h (u;m, 1 − P0) = g (u;mq̃, q̃(1 −mq̃))},
– v2 := argu{g (u;mq̃, q̃(1 −mq̃)) = u−∞} = q̃ + (u−∞ − q̃)/mq̃.

ψ (u) ≤





h (b;m, 1 − P0) for b ≤ u ≤ 0

g (u; d, q̃(1 − d)) for q̃ ≤ u ≤ b

q̃ + h
(
u− q̃;mq̃, (1 − P0)e

− q̃
R

)
for u2 ≤ u ≤ q̃ for some u2 ≤ 0

ψ (u) ≥





h(u;m, 1−P0

2
) for v1 ≤ u ≤ 0

g (u;mq̃, q̃(1 −mq̃)) for v2 ≤ u ≤ v1

u−∞ for u ≤ v2

3.2.3 Estimates of ψn for m > 1

Theorem 3.1 Estimates of ψn for u ≥ 0 and m > 1 Let u⋆,n := h−1
n

(
u0;m,

1−P0

2

)
=

2/[mn(1 + σ2
n/R)] and γ := logR/ logm > 1.

Then there exists δi for i = 0, 1 such that

ψn (u) ≤





hn(u;m, 1−P0

2
) for 0 ≤ u ≤ u⋆,n

u0R
n−δ0

(
u

1+
1−P0

2(m−1)
u

)γ

for u⋆,n ≤ u ≤ u0

Rnu for u0 ≤ u

ψn (u) ≥





mnu for 0 ≤ u ≤ v0

mn

Rn−δ1uγ (v0 − qg) for v0

mn ≤ u ≤ v0

gn (u;R,R logP0) for v0 ≤ u

Proof Upper bound
During the proof we write h instead of h(.;m, 1−P0

2
).

13



If u ≤ u⋆,n,
-since m > 1, u ≤ h (u) and since h is increasing, u ≤ h (u) ≤ . . . ≤ hn (u).
-since u ≤ u⋆,n, hn (u) ≤ u0 then

ψn (u) = ψn−1 (ψ (u)) ≤ ψn−1 (h (u)) ≤ . . . ≤ hn (u) =
mnu

1 − 1−P0

2
umn−1

m−1

If u ≥ u0, since R ≥ 1, u0 ≤ u ≤ Ru ≤ . . . ≤ Rnu and so ψn (u) ≤ Rnu

If u ∈ [u⋆,n,u0], since u ≤ u0, we start by iterating h and since u ≤ h (u)
and u ≥ h−1

n (u0), the iterates hk (u) finally become greater than u0 and then
we iterate u 7→ Ru. Let k0 such that hk0 (u) ≤ u0 and hk0+1 (u) > u0. k0

corresponds to the change of regime and

k0 := log


 u0

1 + 1−P0

2(m−1)
u0


/ logm− log


 u

1 + 1−P0

2(m−1)
u


/ logm

Letting δ0 = log

(
u0

1+
1−P0

2(m−1)
u0

)
/ logm, we get

ψn (u) =ψn−k0 (ψk0 (u)) ≤ Rn−k0hk0 (u) ≤ Rn−k0u0

≤ . . . ≤ u0R
n−δ0


 u

1 + 1−P0

2(m−1)
u




γ

�

A similar behavior is observed in the other cases thus we will omit their proofs.

Theorem 3.1 allows us to state about the exponential integrabibilty of W ,
the limit of Wn as n→ +∞ :

Corollary 5 The random variable uW γ′

is exponentially integrable, indepen-
dently of the value of u, where γ′ = γ

γ−1
≥ 1 i.e.

E

(
euW γ′

)
< +∞ for all u ∈ R

Theorem 3.2 Estimates of ψn for u ≤ 0 and m > 1. Let
– u⋆⋆,n := h−1

n (b;m, 1 − P0) = b/[mn(1 + σ2
nb/R)],

– v⋆,n := h−1
n

(
v1;m,

1−P0

2

)
= v1/[m

n(1 + σ2
nv1/(2R))],

– v⋆⋆,n := g−1
n (v2;mq̃, q̃(1 −mq̃)) = q̃ − (q̃ − v2)/m

n,
– η := log d/ logm and µ := logm/ logmq̃.

14



Then there exists δi for i = 2, 3 such that

ψn (u) ≤





hn(u;m, 1 − P0) for u⋆⋆,n ≤ u ≤ 0

q̃ + dn−δ2

(
u

1+
1−P0
m−1

)η

(b− q̃) for b ≤ u ≤ u⋆⋆,n

gn (u; d, q̃(1 − d)) for q̃ ≤ u ≤ b

q̃ + hn

(
u− q̃;mq̃, (1 − P0)e

− q̃
R

)
for u2 ≤ u ≤ q̃

ψn (u) ≥





hn(u;m, 1−P0

2
) for v⋆,n ≤ u ≤ 0

q̃ +mn−δ3
q̃

(
u

1+
1−P0

2(m−1)
u

)−µ

(v1 − q̃) for v1 ≤ v⋆,n

gn (u;mq̃, q̃(1 −mq̃)) for v⋆⋆,n ≤ u ≤ v1

u−∞ for u ≤ v⋆⋆,n

3.2.4 Estimates of ψn for m < 1

Proceeding in the same way, we obtain the same kind of inequalities.

3.3 Confidence intervals

Theorem 3.3 Bounds of P

(
|P̂−P(A)|

P(A)
≥ α

)

In both cases, for α small enough and m 6= 1,

P

(
|P̂ − P(A)|

P(A)
≥ α

)
≤ h+ + h−

where




h+ := exp
{
− 2C

h(P0)(1−P0)R
mM+1

(
1−m

1−mM+1

)2 (√
1 + α− 1

)2
}

h− := exp
{
− C

h(P0)(1−P0)R
mM+1

(
1−m

1−mM+1

)2 (
1 −

√
1 − α

)2
}

Proof All the cases behave similarly : so we just treat the case m > 1 and
u ≥ 0 for example. We have F+

M+1 (u) := 1
R
ψM+1

(
u

P0mM

)
− (1 + α)u. Then

inf
u>0

F+
M+1 (u) = inf

{
inf

u∈[0,u⋆,M+1]
F+

M+1 (u) , inf
u∈[u⋆,M+1,u0]

F+
M+1 (u) , inf

u>u0
F+

M+1 (u)

}

For u ∈ [0,u⋆,M+1],

15



F+
M+1 (u)≤ u

1 − σ2
M+1u/2

− u (1 + α) := φM+1 (u)

The cancellation of the first derivative of φM+1 gives us the minimum of φM+1 :

us =
2

σ2
M+1

(
1 − 1√

1 + α

)

which is lower than u⋆,M+1 for α small enough i.e.

α ≤
(
1 − u⋆,M+1σ

2
M+1/2

)−2 − 1

For u ∈ [u⋆,M+1,u0], F
+
M+1 (u) ≤ RM−δ0u0

(
u

1+
1−P0

2(m−1)

u⋆,M+1

P0mM

)γ

− (1 + α) u :=

φM+1 (u) . The cancellation of the first derivative of φM+1 gives us the mini-
mum of φM+1 :

ũs =

{
(1 + α)

γu0RM−δ0

(
P0m

M +
1 − P0

2(m− 1)
u⋆,M+1

)γ} 1
γ−1

which is lower than u⋆,M+1 for

α ≤ γu0R
M−δ0

u⋆,M+1



 u⋆,M+1

P0mM + 1−P0

2(m−1)
u⋆,M+1




γ

− 1

And so the solution leaves the interval.

For u ≥ u0,

F+
M+1 (u) ≤ RMu/

(
P0m

M
)
− u (1 + α) = u

[
1/PM+1

0 − (1 + α)
]
,

and 1/PM+1
0 − (1 + α) is positive for M great enough ; so the minimum is

atteined in u0 and the solution leaves the interval.
Finally, P

(
P̂ ≥ P (1 + α)

)
is bounded by

exp
{
N

R
F+

M+1(us)
}

= exp
{
−N
R

1

1 − P0
mM+1 1 −m

1 −mM+1

(√
1 + α− 1

)2
}

and we get the result from (14). �

Theorem 3.4 For m = 1 and α small enough, we have

P

(
|P̂ − P(A)|

P(A)
≥ α

)
≤ g+ + g−

16



where 




g+ := exp
{
− 2C

h(P0)(1−P0)R
1

(M+1)2

(√
1 + α− 1

)2
}

g− := exp
{
− C

h(P0)(1−P0)R
1

(M+1)2

(
1 −

√
1 − α

)2
}

We check that this bound is better than the one for m 6= 1.

The next corollary follows from Theorem 3.3 and provides us an exact up-
per bound of P

(
|P̂ − P(A)|/P(A) ≥ α

)
involving the variance of WM+1 that

we might compare to (4), the approximate one obtained in the Introduction.

Corollary 6 For α such as in Theorem 3.3,

P

(
|P̂ − P(A)|

P(A)
≥ α

)
≤ 2 exp

{
−α

2

4

N

var(WM+1)

(
1 − α

2

)}

Proof By Theorem 3.3, the definition of N and (13), we deduce that

P

(
|P̂ − P(A)|/P(A) ≥ α

)
is bounded by

exp

{
− 2N

var(WM+1)

(√
1 + α− 1

)2
}

+ exp

{
− N

var(WM+1)

(
1 −

√
1 − α

)2
}

But for α ≤ 2 and since
√

1 + α ≤ 1 + α
2

and
√

1 − α ≤ 1 − α
2
,

(√
1 + α− 1

)2
=

α2

2 + α + 2
√

1 + α
≥ α2

4

1

1 + α
2

≥ α2

4

(
1 − α

2

)

(
1 −

√
1 − α

)2
=

α2

2 − α + 2
√

1 − α
≥ α2

4

(
1 +

α

2

)
≥ α2

4

(
1 − α

2

)

that leads to the corollary. �

Proposition 1 and Remark 2 now follow from the previous theorems, using
the same kind of argument as in Corollary 6.

3.4 Numerical illustration

We plot in Figure 3 the different bounds using :
– the variance,
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Fig. 3. Upper estimates for m 6= 1

– the Laplace transform in the optimal case : m = 1,
– the Laplace transform in the other case : m 6= 1,

in two different cases

– for P(A) = 5 10−9 and C = 6 107, then m=1.055 (supercritical case),
– for P(A) = 10−11 and C = 2 108, then m=0.924 (subcritical case).

4 Second model : sampling at each success

4.1 The model

Let k ∈ N such that k = ⌊1/P0⌋. We decide here to allow R to vary. More
precisely, each time a particle reach a higher level, we generate a realization
of a Bernoulli random variable R whose parameter p = 1 − q will be derived
by the same optimization scheme as used previously. Let ξ = RP0.

Here the estimator chosen is given by :

P̂ =
P(A)

N

N∑

i=1

W i
M+1 =

1

N

N∑

i=1

Z i
M+1

E(ZM+1)
=

P(A)

N

N∑

i=1

Z i
M+1

P0E(ξ)M

18



4.2 The variance and its optimization

4.2.1 Study of the variance

Proposition 7 P̂ is trivially an unbiased estimator and its variance is given
by

var(P̂ ) =
P(A)2

N

[(
1

P0
− 1

) M∑

i=0

1

E(ξ)i
+

var(ξ)

P0E(ξ)

M∑

i=1

1

E(ξ)i

]
(16)

Proof First of all, var(P̂ ) = P(A)2

N
1

[P0E(ξ)M ]2
var(ZM+1). The calculation of

var(P̂ ) then amounts to the calculation of var(ZM+1).

Note that for all X random variable and F filtration,

var(X) = var(E(X|F)) + E( var(X|F)) (17)

Applying (17) to X = ZM+1 and F = σ(ZM) and then to X = XM and
F = σ(RM), and since X i

k ∼ Bin(Rk, P0), we get

var(ZM+1) = var(
ZM∑

i=1

X i
M) = var(ZME(XM |ZM)) + E(ZM var(XM |ZM))

= E(XM )2 var(ZM) + var(XM)E(ZM)

= E(E(XM |RM))2 var(ZM) + var(E(XM |RM)E(ZM) + E( var(XM |RM))E(ZM)

= E(ξ)2 var(ZM) + var(ξ)E(ZM) + (1 − P0)E(ξ)E(ZM)

By a recurrent descent,

var(ZM+1) = E(ξ)2M var(Z1)+ var(ξ)
M∑

k=1

E(Zk)E(ξ)2(M−k)+(1−P0)E(ξ)
M∑

k=1

E(Zk)E(ξ)2(M−k)

But var(Z1) = P0(1 − P0) and E(Zk) = P0E(ξ)k−1, and so we finally get the
result.�

4.2.2 Optimization of the parameters

As done in Lagnoux [23], an optimal algorithm is chosen via the minimization
of the variance of P̂ for a given budget C, keeping the optimal values for M
and P0. The (average) cost is now

C = Nh(P0)
M∑

i=0

E(ξ)i +NP0h(1)
M−1∑

i=0

E(ξ)i (18)
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Neglecting the cost introduced by the generation of the random splitting num-
bers at each success, we assume, in the following,

C = Nh(P0)
M∑

i=0

E(ξ)i, (h(1) ≪ h(P0)). (19)

Suppose E(ξ) 6= 1, then the variance can be rewritten as

var(P̂ )=
P(A)2

N

[(
1

P0
− 1 +

var(ξ)

P0E(ξ)

)
M∑

i=0

1

E(ξ)i
− var(ξ)

P0E(ξ)

]

=
P(A)2

N

[(
1

P0
− 1 +

var(ξ)

P0E(ξ)

)
1

E(ξ)M

E(ξ)M+1 − 1

E(ξ) − 1
− var(ξ)

P0E(ξ)

]

and the cost has the following form

C = Nh(P0)
E(ξ)M+1 − 1

E(ξ) − 1

The optimal value of N is given by the cost

N =
C

h(P0)

E(ξ) − 1

E(ξ)M+1 − 1

and we have to minimize the expression

var(P̂ ) =
P(A)2

CP0
h(P0)

E(ξ)M+1 − 1

E(ξ) − 1

[(
1 − P0 +

var(ξ)

E(ξ)

)
1

E(ξ)M

E(ξ)M+1 − 1

E(ξ) − 1
− var(ξ)

E(ξ)

]

whose principal term is

P(A)2

CP0
h(P0)

1

E(ξ)M

[
E(ξ)M+1 − 1

E(ξ) − 1

]2

which is minimal for E(ξ) = 1.

4.2.3 Confidence interval

From now on, we take m = f ′(1) = E(ξ) = P0(k + q) = 1 which is equivalent
to p = 1 − q = 1 − δ. Here the generating function of the reproduction law is
given by

f(s) = (P0e
u + 1 − P0)

k(P0qe
u + 1 − P0q) := exp {ψ(log s)}

Remark 8 That form reflects the fact that R is randomly chosen between k
and k + 1 following the parameter q.

20



Since log(P0s+ 1 − P0) ≤ 1
k+q

log f(s) and m = 1,

E

(
euWM+1

)
≤ exp

{
1

k + q
log fM+1(e

u
P0 )

}
= exp

{
1

k + q
ψM+1

(
u

P0

)}

Using again the Chernoff’s bounding method,

P

(
|P̂ − P(A)|

P(A)
≥ α

)
=exp

{
N inf

u>0
F+

M+1(u)
}

+ exp
{
N inf

u<0
F−

M+1(u)
}

where 


F+

M+1(u) := 1
k+q

ψM+1

(
u
P0

)
− (1 + α)u

F−
M+1(u) := 1

k+q
ψM+1

(
u
P0

)
− (1 − α)u

Once again we are interested in the Laplace transform of WM+1 which leads
to study the behavior of the iterate of the function ψ.

4.3 The Laplace transform of Wn+1

Let β := [k(1 − P0) + q(1 − P0q)] /(k + q). We will proceed as explained in
Section 3.2.1.

4.3.1 Estimates of ψ

Lemma 4.1 Estimates of ψ for u ≥ 0
There exists u0 > 0 such that

ψ (u) ≤



h
(
u; 1, β

2

)
for 0 ≤ u ≤ u0

(k + 1)u for u ≥ u0

Lemma 4.2 Estimates of ψ for u ≤ 0
There exists u0 < 0 such that

ψ (u) ≤ h(u; 1, β) for u ≤ u0
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4.3.2 Estimates of ψn

Proposition 9 Estimates of ψn for u ≥ 0
Let u⋆ := h−1

n (u0; 1,
β
2
).

ψn (u) ≤






hn

(
u; 1, β

2

)
for 0 ≤ u ≤ u⋆

u0(k + 1)
n− 2

β
( 1

u
− 1

u0
)

for u⋆ ≤ u ≤ u0

(k + 1)nu for u0 ≤ u

Proposition 10 Estimates of ψn for u ≤ 0

ψn (u) ≤ hn(u; 1, β) for u ≤ u0

4.4 Confidence interval

Finally, as in the deterministic case, we deduce

Theorem 4.1 For α small enough, we have

P

(
|P̂ − P(A)|

P(A)
≥ α

)
≤ h+ + h− (20)

where





h+ := exp
{
− 2C

(k+q)β[h(P0)+P0h(1)M/(M+1)]
1

(M+1)2

(√
1 + α− 1

)2
}

h− := exp
{
− C

(k+q)β[h(P0)+P0h(1)M/(M+1)]
1

(M+1)2

(
1 −

√
1 − α

)2
}

The first part of Proposition 3 follows from Theorem 4.1 using the same kind
of argument as in Corollary 6 and provides better results than the results of
the previous section since here we obtain an upper bound in exp{ 1

(M+1)2
} like

in the optimal case.

5 Third model : sampling a random environment

5.1 The model

Here we decide to sample a random environment described by (R1, R2, . . . , RM)
at the beginning of the simulation, to keep the optimal values of Pi and M and
to optimize the algorithm in E(R). More precisely, let ri = {R(i)

j , j = 1 . . .M},
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for i = 1 . . . N N sequence of i.i.d. Bernoulli random variables {k, k + 1}.
ri is said to be the i-th «environmental» sequence. Given that environ-
mental sequences, we consider N independent branching processes (Z(i)

n )n≥0,
i = 1, . . . , N in the same way as in the deterministic case except that each
Rj is a random variable associated to a random generating function (g.f.)
fj(s) which represents the offspring’s distributions in j-th generation with
fj(s) = (P0s+ 1 − P0)

Rj .

(Zn) is now a Branching Process in Randon Environment (BPRE).

As in usual case in random environments, we should be careful to distinguish
the alea coming from the environment and the one from the process itself.

Since to each (Z(i)
n )n≤0 i = 1 . . . N of the N > 1 initial particles we associate a

random environment ri, the N initial particles reproduces independently one
from each other. As a consequence, we can rewrite P̂ the estimator of P as
the sum of N independent branching processes :

P̂ =
1

N

N∑

i=1

P̃i =
P(A)

N

N∑

i=1

Z
(i)
M+1

ξ0ξ1 . . . ξM
=

P(A)

N

N∑

i=1

W
(i)
M+1

where ξi = RiP0 is a random variable for all i = 1 . . .M ; and we aim at mi-
nimizing its variance for a fixed effort to derive the optimal parameter for R.

Some general results on BPRE

For more general background and details on BPRE, see for instance Athreya
and Karlin [3, 4], Guivarc’h et al. [18], Smith and Wilkinson [27] and Tanny
[28]. Suppose now that r = {rj , j ≥ 0} is a general sequence of i.i.d. random va-
riables that determines the succession of offspring g.f.’s {fj(rj; s), j ≥ 0},i.i.d.,
in a BPRE. Let us recall that, in complete analogy with the classical Galton-
Watson process, a Galton-Watson process in random environment is sub-
critical if E (log f ′

0(1)) < 1, critical if E (log f ′
0(1)) = 1 and supercritical if

E (log f ′
0(1)) > 1. Moreover, in the subcritical and the critical (resp. supercri-

tical) cases the probability of extinction given the environment r is one (resp.
q(r) ∈ [0, 1[). Nevertheless in the critical case, under the assumption of a finite
third moment for the random variables Xn, the asymptotic conditional dis-
tribution of Zn/E (Zn|Zn > 0), given that Zn 6= 0, is exponential, expressing
the extreme character of this event for large n. In the supercritical case, Wn

converges to some random variable W non-degenerated.
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5.2 The variance and its optimization

5.2.1 Study of the variance

Proposition 11 P̂ is trivially an unbiased estimator and its variance is given
by

var(P̂ ) =
P(A)2

N

(
1

P0
− 1

) M∑

i=0

E

(
1

ξ

)i

(21)

Proof First of all, var(P̂ ) = P(A)2

N
var(WM+1). The calculation of var(P̂ )

then amounts to the calculation of var(WM+1).

Applying (17) to X = WM+1 = ZM+1

P0

∏M

i=1
ξi

and F = σ(ZM , r) and since WM is

a martingale and X i
M ∼ Bin(RM , P0), we get

var(WM+1)= var(WM) + E

(
1

[P0
∏M

i=1 ξi]
2

var(ZM+1|σ(ZM , r))

)

= var(WM) + E

(
ZM

[P0
∏M

i=1 ξi]
2

var(XM |σ(ZM , r))

)

= var(WM) + E

(
ZM

[P0
∏M

i=1 ξi]
2
RMP0(1 − P0)

)

= var(WM) + (1 − P0)E

(
WM

P0
∏M

i=1 ξi

)

By a recurrent descent,

var(WM+1) = var(W0) + (1 − P0)
M∑

k=0

E

(
Wk

P0
∏k

i=1 ξi

)

It remains to compute the expectation of Wk

P0

∏k

i=1
ξi

which is derived by induc-

tion and at step k we have

E

(
Wk

P0
∏k

i=1 ξi

)
=

1

P0

E

(
1

ξ

)k

(22)

Clearly the formula holds for k = 0 : E

(
W0

P0

)
= 1

P0
. To go from k − 1 to k,

assume (22) for k − 1.
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E

(
Wk

P0
∏k

i=1 ξi

)
= E

(
Zk−1

[P0
∏k−1

i=1 ξi]
2ξk

E(Xk−1|σ(Zk−1, r))

)

= E

(
Wk−1

P0
∏k

i=1 ξi

)
= E

(
Wk−1

P0
∏k−1

i=1 ξi

)
E

(
1

ξ

)

since the Ri’s are i.i.d. And we finally get the result using the induction’s
hypothesis.�

5.2.2 Optimization of the parameters

As done in Lagnoux [23], an optimal algorithm is chosen via the minimization
of the variance of P̂ for a given budget C, keeping the optimal values for M
and P0. The (average) cost is now

C = N

[
h(P0)

M∑

i=0

E(ξ)i +Mh(1)

]
(23)

Neglecting the cost introduced by the generation of the random environment,
we assume, in the following,

C = N

[
h(P0)

M∑

i=0

E(ξ)i

]
, (h(1) ≪ h(P0)). (24)

Once the trivial cases have been isolated, we can suppose E(R) 6= 1
P0

and

E( 1
R
) 6= P0, then the variance can be rewritten as

var(P̂ ) =
P(A)2

N
(

1

P0

− 1)
E(1

ξ
)M+1 − 1

E(1
ξ
) − 1

and the cost has the following form

C = Nh(P0)
E(ξ)M+1 − 1

E(ξ) − 1

The optimal value of N is given by the cost

N =
C

h(P0)

E(ξ) − 1

E(ξ)M+1 − 1

and we have to minimize the expression

var(P̂ ) =
P(A)2

C
h(P0)

(
1

P0

− 1
)

E(1
ξ
)M+1 − 1

E(1
ξ
) − 1

E(ξ)M+1 − 1

E(ξ) − 1

under the constraint E(R) = 2k+1−k(k+1)E( 1
R
). To lead the analytic study,

suppose that 1/P0 = k + δ with δ ∈]0, 1[ and let
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– u = E(ξ) − 1 and v = E(1
ξ
) − 1,

– ρ = (k+δ)2

k(k+1)
and α = δ(1−δ)

k(k+1)
.

The constraint becomes v = α − ρu and by Lagrange multipliers, we finally
need to solve

F (M,u) = ρF (M, v) (25)

where F (M,u) = (1+u)M (Mu−1)+1
u[(1+u)M+1−1]

.

Remark 12 Note that u and v depend on M and lie in the following intervals
[− δ

k+δ
, 1−δ

k+δ
] and [− 1−δ

k+δ
, δ

k
] respectively.

We may only state asymptotic results.

Proposition 13 Asymptotically in M , we only have three solutions :

– u→ u1 = 0 and v → v1 = α
– u→ u2 = α

ρ
and v → v2 = 0

– u→ u3 = 1+α−ρ
2ρ

and v → v3 = α+ρ−1
2

Proof • Suppose first that u and v do not converge to 0 when M → +∞. So
we have three cases to analyse (the case u < 0, v < 0 is not worth to consider
since E(1/R)E(R) ≥ 1) :

– u < 0 and v > 0
– u > 0 and v < 0
– u > 0 and v > 0

Case 1 : If u < 0 and v > 0 (or symetrically u > 0 and v < 0), since u does
not converge to 0, there exists a subsequence of u such that u < −ǫ ∀M . Then
asymptotically in M , (25) is equivalent to

−1

u
= ρ

M

1 + v

which is absurd since v 6= −1 and u does not converge to 0.

Case 2 : If u > 0 and v > 0, in the same way, there exists a subsequence
of u and a subsequence of v such that u > ǫ and v > ǫ. Then asymptotically
in M , (25) is equivalent to

M

1 + u
= ρ

M

1 + v
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And given the constraint, umust necessarily converge to 1+α−ρ
2ρ

and v to α+ρ−1
2

.
Since the sequence u has only one adherence value and lies in a compact, it
converges to u3 = 1+α−ρ

2ρ
and similarly v converges to v3 = α+ρ−1

2
. To guaran-

tee u > 0 and v > 0, δ must be in [ k
1+2k

, 1
2
] := [δ1, δ2].

• Suppose now that u converges to 0 when M → +∞. We have two cases
to analyse : Mu bounded or not.

If Mu is not bounded, we can extract from Mu a subsequence which diverges.
Then

F (M,u) =
1 − 1

Mu
+ 1

Mu(1+u)M

1 − 1
(1+u)M+1

1

u(1 + u)
∼ 1

u(1 + u)

and thus (25) is equivalent to

1

u(1 + u)
= ρ

M

1 + v

which is absurd.

So Mu is bounded and we can extract of Mu a subsequence which converges
to 0 or to a constant C1. In the first case,

F (M,u) ∼ eMu(Mu− 1) + 1

u(eMu − 1)
∼ (1 +Mu)(Mu − 1) + 1

u(1 +Mu− 1)
∼M

and (25) is equivalent to

M = ρ
M

1 + v
which is absurd since v > −1. So the subsequence of Mu converges to a
constant C1 that solves

eC1(C1 − 1) + 1

C1(eC1 − 1)
=

ρ

1 + α

Let f(x) = ex(x−1)+1
x(ex−1)

− ρ
1+α

. Note that f is strictly increasing, converges to

1− ρ
1+α

≥ 0 when x→ +∞ and to − ρ
1+α

≤ 0 when x→ −∞ for δ ≤ δ2. So C1

is defined uniquely and then the sequence Mu has only one limiting point and
lies in a compact, so it converges to C1, u converges to u1 = 0 and v converges
to v1 = α.

Symetrically we get the equivalent result for v : it converges to v2 = 0 and u
converges to u2 = α

ρ
. �

Remind that we want to determine the minimum of the variance of P̂ .
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Proposition 14 Let δ0 :=
√
k(
√
k + 1 −

√
k). Then asymptotically in M ,

– if δ ∈ [0, δ0], (u1, v1) minimizes the variance,
– if δ ∈ [δ0, 1], (u2, v2) minimizes the variance.

Proof Let β = P 2

C
h(P0)

(
1
P0

− 1
)

and for i = 1, 2, 3,

vari = β
[1 + ui]

M+1 − 1

ui

[1 + vi]
M+1 − 1

vi

First of all, compare var1 and var2. For i = 1, 2,

vari ∼β
e(M+1)(1+Ci−1/M) − 1

ui

[1 + vi]
M+1

vi

∼ βM
eCi − 1

Ci

[1 + vi]
M+1

vi

Thus

var1

var2
∼ eC1 − 1

C1

C2

eC2 − 1

u2

v1

(
1 + v1

1 + u2

)M+1

But 1+v1

1+u2
< 1 ⇔ δ ≤ δ0 :=

√
k(
√
k + 1 −

√
k). As a conclusion,

var1 ≤ var2 ⇔ δ ≤ δ0

Then note that var3 is not defined on [0, δ1]∪ [δ2, 1] and δ0 trivially belongs to
]δ1, δ2[. Consequently, for δ ∈ [δ1, δ2], it is sufficient to compare

– var1 and var3 on [δ1, δ0],
– var2 and var3 on [δ0, δ2].

But var1
var3

∼M eC−1
C

u3v3

α

[
4ρ 1+α

(1+α+ρ)2
−−−−→
M→∞

]M+1

and 4ρ 1+α
(1+α+ρ)2

=
4 ρ

1+α

(1+ ρ
1+α

)2
< 1.

Thus var1
var3

−−−−→
M→∞

0 and var1 ≤ var3 asymptotically in M . In the same way,
var2
var3

−−−−→
M→∞

0. �

5.2.3 Confidence interval

By analogy with the deterministic case, we are interested in bounds on

P

(
|P̂ − P(A)|/P(A) ≥ α

)

So let ψi (u) := Ri log (P0e
u + 1 − P0), f0,i := f0◦. . .◦fi and ψ0,i := ψ0◦. . .◦ψi,

taking again ξi = RiP0 for all i = 1, . . . ,M and ξ0 = P0,
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E

(
euWM+1

)
= E

[
P0f1,M

(
e

u∏M

i=0
ξi

)
+ 1 − P0

]
= E

[
exp

{
ψ0,M

(
u/

M∏

i=0

ξi

)}]

Finally,

P

(
|P̂ − P(A)|

P(A)
≥ α

)
≤ E

(
exp

{
inf
u>0

F+
M+1(u)

})N

+ E

(
exp

{
inf
u<0

F−
M+1(u)

})N

where 



F+
M+1(u) := ψ0,M

(
u∏M

i=0
ξi

)
− (1 + α)u

F−
M+1(u) := ψ0,M

(
u∏M

i=0
ξi

)
− (1 − α)u

And we are interested in the Laplace transform of WM+1 which leads to study
the behavior of the iterate of the random functions ψ.

5.3 The Laplace transform of Wn+1

5.3.1 Criticality

By simple arguments of convexity,

Proposition 15 Asymptotically in M ,

– for all δ ∈ [0, δ0], we are in the subcritical case,
– for all δ ∈ [δ0, 1], we are in the supercritical case.

Proposition 16 The critical case is given by pc := P(R = k)

pc =
log

(
k+δ
k+1

)

log
(

k
k+1

)

and - p > pc ⇔ E(log f ′
1(1)) < 0 ⇔ subcritical case,

- p = pc ⇔ E(log f ′
1(1)) = 0 ⇔ critical case,

- p < pc ⇔ E(log f ′
1(1)) > 0 ⇔ supercritical case.

Note that

p →
M→∞

pa :=





1 − δ for δ < δ0
k(1−δ)

k+δ
for δ > δ0
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Let us plot pa and pc in Figure 4 to obtain in a different way the distinction
between the supercritical case and the subcritical one.
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Fig. 4. Plot p=f(δ) asymptotically in M

5.3.2 Estimates of ψ0,M

Remind we aim at estimate ψ0,M = ψ0 ◦ . . . ◦ ψM and so we have to iterate





ψ(1)(u) = k log(P0e
u + 1 − P0)

and

ψ(2)(u) = (k + 1) log(P0e
u + 1 − P0)

Heuristic : Whatever the case studied (m > 1, m < 1), we simply use two
bounding functions for ψ. More precisely, for example, for u ≥ 0, until some a
(intersection between the lowest homography (m < 1) and the first bissector)
we bound ψ by the homographic function and then by the asymptotic direc-
tion in both cases.

• For u ≥ 0. Let

– m(1) = kP0 < 1 and m(2) = (k + 1)P0 > 1,

– a+ := argu 6=0{h(u;m(1), 1−P0

2
) = u} = 21−m(1)

1−P0
,

– b+ := h(a+;m(2), 1−P0

2
),

– u+ := h−1
M+1(a

+;m(2), 1−P0

2
).

Following Section 3.2.1 in a simplified version, we deduce

ψ(1) (u) ≤



h
(
u;m(1), 1−P0

2

)
for 0 ≤ u ≤ a+

g(u; k, a+(1 − k)) for u ≥ a+
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and

ψ(2) (u) ≤




h
(
u;m(2), 1−P0

2

)
for 0 ≤ u ≤ a+

g(u; k + 1, b+ − a+(k + 1)) for u ≥ a+

which leads to the following proposition

Proposition 17 If a0 = a+ and for all i = 1 . . .M ,

ai :=




a+ if Ri = k

b+ if Ri = k + 1

ψ0,M (u) ≤






h+
0,M (u) for 0 ≤ u ≤ u+

g+
M(u) for u+ ≤ u ≤ a+

∏M
i=0Riu+

∑M
i=0

(∏i−1
j=0Rj

)
ai −

∑M
i=0

(∏i
j=0Rj

)
a+ for u ≥ a+

where
– h+

0,M (u) = u
(∏M

i=0 ξi
)
/
[
1 − 1−P0

2
u
(
1 +

∑M
i=1 ξi . . . ξM

)]
and

– g+
M (u) =





h+

0,M (u) w.p. P

(
0 ≤ h+

0,M(u) ≤ a+
)

b+ w.p. 1 − P (0 ≤ h0,M(u) ≤ a+)

• For u ≤ 0. Let
– a− := argu 6=0{h(u;m(2), 1 − P0) = u} = 1−m(2)

1−P0
,

– b− := h(a−;m(1), 1 − P0),
– u− := h−1

M+1(a
−;m(1), 1 − P0).

In the same way, we deduce

ψ(1) (u) ≤




h
(
u;m(1), 1 − P0

)
= m(1)u

1−(1−P0)u
for a− ≤ u ≤ 0

b− for u ≤ a−

and

ψ(2) (u) ≤




h
(
u;m(2), 1 − P0

)
for a− ≤ u ≤ 0

b− for u ≤ a−

which leads to the following proposition

Proposition 18

ψ0,M (u) ≤





h−0,M (u) for u− ≤ u ≤ 0

g−M(u) for a− ≤ u ≤ u−

b− for u ≤ a−

where

31



– h−0,M (u) = u
(∏M

i=0 ξi
)
/
[
1 − (1 − P0)u

(
1 +

∑M
i=1 ξi . . . ξM

)]
and

– g−M (u) =




h−0,M (u) w.p. P

(
b ≤ h−0,M(u) ≤ 0

)

b− w.p. 1 − P

(
b ≤ h−0,M(u) ≤ 0

)

5.3.3 About random walk on the affine group and consequences

We would like to estimate

P

(
0 ≤ h+

0,M(u) ≤ a
)

for u ≥ 0 and P

(
b ≤ h−0,M(u) ≤ 0

)
for u ≤ 0

Remind ξi = RiP0, let v = 1−P0

2
and





xn+1(y0) = ξ0 . . . ξny0 + v[1 +

∑n
i=1 ξi . . . ξn]

yn+1(y0) = ξ0 . . . ξny0 + v[1 +
∑n−1

i=0 ξ0 . . . ξi]

Random walk on the affine group : Consider the affine transformations
gk(x) = ξkx+ v (x ∈ R) and the random walk (g0 ◦ g1 ◦ . . . ◦ gn) on the affine
group. Immediatetly




g0 ◦ g2 ◦ . . . ◦ ogn(x) = yn+1(x)

gn ◦ gn−1 ◦ . . . ◦ g0(x) = xn+1(x)

and

Lemma 5.1 (i) yn
L
= xn

(ii) {0 ≤ h0,n(u) ≤ a} = {0 ≤ yn+1 (1/a) ≤ 1/u}
(iii) {b ≤ h0,n(u) ≤ 0} = { 1

u
≤ yn+1 (1/b) ≤ 0}

Hence the link between the random walk on the group of the homographic
transformations and the one on the affine group.

Therefore, we are interested in the asymptotic properties of g0 ◦ g1 ◦ . . . ◦ gn’s
distribution which is obviously characterized by the law of ξ. As for the BPRE,
we distinguish three different regimes determined by the position of E(log ξ)
with respect to the origin.

For general details on random walk on affine groups the reader is referred
for instance to Vervaat [29], Brandt [9] for the one-dimensional case and to
Kesten [22], Bougerol and Picard [8], Babillot et al. [6] for the d-dimensional
case.
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Subcritical case : E (log ξ) < 0

First of all, Diaconis and Freedman [12] allow us to state that the backward
process ψ0,M (u) = ψ0 ◦ . . . ◦ψM (u) converges almost surely, at an exponential
rate to a random limit that does not depend on the starting point u.

Concerning the random walk on the affine group in our particular case (ξ
L
=

Ber on {kP0, (k + 1)P0}), we have by Maksimov [25]

yn −−−→
n→∞

v(1 +D)

where D =
∑∞

i=0 ξ0 . . . ξi. In general, nothing is known on the distribution of
D except that it satisfies the following functional equation

F (λ) = pF

(
λ

kP0
− 1

)
+ (1 − p)F

(
λ

(k + 1)P0
− 1

)

with p = P(R = k).

But Kesten [22] gives an asymptotic result on the distribution of D : for
some C > 0 and some κ > 0,

P(D ≥ x) ∼
x→∞

C

xκ

Corollary 19 Letting κ = − log(p(1 − p))/ log(k(k + 1)P 2
0 ),

P (0 ≤ h0,n(u) ≤ a) ∼
n→∞

P

(
v(1 +D) ≤ 1

u

)
∼

n→∞,u→0
1 − C

( 1
uv

− 1)κ

Critical case : E (log ξ) = 0

Maksimov [25] asserts that the distribution of log yn/
√
n approaches, as n →

∞, the truncated normal distribution for any starting point of the walk.

Corollary 20 Let Z a truncated normal distribution and σ2 = var(ξ).

P (0 ≤ h0,n(u) ≤ a) ∼
n→∞ P

(
Z ≤ − 1√

n
log u

)
∼

n→∞

[
1 − e−

log u2

n

] 1
2

Supercritical case : E (log ξ) > 0

Following Maksimov [25], the distribution of (yn

v
)1/

√
ne−M

√
n approaches, as n

goes ∞, the log normal distribution for any starting point of the walk.
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Corollary 21 Let Z
L
= N(0, 1) and σ2 = var(ξ).

P (0 ≤ h0,n(u) ≤ a) ∼
n→∞

1

2
exp

{
− 1

2σ2
n
[
1

n
log(uv) + E(log ξ)

]}

5.4 Confidence interval

Finally, as in the deterministic case, we deduce

Theorem 5.1 For α small enough,

P

(
|P̂ − P(A)|

P(A)
≥ α

)
≤ hN

+ + hN
− (26)

where 



h+ := E

(
exp

{
− 2

1−P0

1∑M

i=0
ξ−1
0 ...ξ−1

i

(√
1 + α− 1

)2
})

h− := E

(
exp

{
− 1

1−P0

1∑M

i=0
ξ−1
0 ...ξ−1

i

(
1 −

√
1 − α

)2
})

where N = C
h(P0)

E(ξ)−1
E(ξ)M+1−1

. By Jensen’s inequalities,

P

(
|P̂ − P(A)|

P(A)
≥ α

)
≤ gN

+ + gN
− (27)

where 



g+ := exp
{
− 2

1−P0

1
E(ξ−1)

E(ξ−1)−1
E(ξ−1)M+1−1

(√
1 + α− 1

)2
}

g− := exp
{
− 1

1−P0

1
E(ξ−1)

E(ξ−1)−1
E(ξ−1)M+1−1

(
1 −

√
1 − α

)2
}

Using the same kind of argument as in Corollary 6, we obtain the second part
of Proposition 3.

6 Numerical illustration

We plot in Figure 5 the bounds given by the Laplace transform in the different
models :
– in the optimal model : m = 1 (plain line),
– in the deterministic model where m 6= 1 (− ∗ − line),
– in the model where we sample a new R at each success (dashed line),
– in the model where we sample a random environment (−.− line),

34



in two different cases

– for P(A) = 5 10−9 and C = 6 107, then m=1.055 (supercritical case),
– for P(A) = 10−11 and C = 2 108, then m=0.924 (subcritical case).
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7 Conclusion

In this article, the relative simplicity of our model allows us to state explicit
results as the Chernoff’s bounds of the relative error between the estimate P̂
and P(A). Going further in the calculus, using the heuristic presented above,
one can also deduce a central limit theorem and so Berry-Esseen bounds. Then
we study the sensitivity of the Chernoff’s bounds depending on the choice of
the splitting number R in three different algorithms based on the branching
splitting model : when one can not be exactly in the critical case (which
corresponds to the optimal algorithm), the best way to proceed is to consider
R as a random variable that we generate at each success during the simulation.
Besides, this procedure is currently used in practice, see for example [2].

In practice, we do not know the transition probablities but just empirical
estimation on them, and we can bound to adjust the levels according to them.
In a model where the Pi are unknown but belong in some known interval, we
may proceed in the following way :

(1) Choose an arbitrarly sequence
(
R

(0)
1 , R

(0)
2 , . . .R

(0)
M

)
of sampling numbers.

During the first step, sample a packet of θ1,NN particles following the

splitting algorithm with sampling numbers R
(0)
i . Thus empirical estima-

tions
(
P̂

(1)
i

)

i=1...M+1
of (Pi)i=1...M+1 are derived.
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(2) Compute the new sampling numbers
(
R

(1)
i

)

i=1...M
as suggested in the

algorithm optimization

R
(1)
i =

1
√
P̂

(1)
i P̂

(1)
i+1

√√√√1 − P̂
(1)
i+1

1 − P̂
(1)
i

During the second step, sample a second packet of theta2,NN particles

following the splitting algorithm with sampling numbers R
(1)
i . Thus empi-

rical estimations
(
P̂

(2)
i

)

i=1...M+1
(better than the first ones) of (Pi)i=1...M+1

are derived.

(3) Repeat that procedure until the budget is entirely consumed.

The goal of this algorithm is to be as close as possible to the optimal algo-
rithm. The precise study of the proportion of the budget to use in each step
shall be the purpose of a forthcoming paper and is not derive straightforward.
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