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UNCERTAINTY QUANTIFICATION IN COMPLEX SYSTEMS

USING APPROXIMATE SOLVERS

PHAEDON-STELIOS KOUTSOURELAKIS ∗

Abstract. This paper proposes a novel uncertainty quantification framework for computation-
ally demanding systems characterized by a large vector of non-Gaussian uncertainties. It combines
state-of-the-art techniques in advanced Monte Carlo sampling with Bayesian formulations. The key
departure from existing works is the use of inexpensive, approximate computational models in a
rigorous manner. Such models can readily be derived by coarsening the discretization size in the so-
lution of the governing PDEs, increasing the time step when integration of ODEs is performed, using
fewer iterations if a non-linear solver is employed or making use of lower order models. It is shown
that even in cases where the inexact models provide very poor approximations of the exact response,
statistics of the latter can be quantified accurately with significant reductions in the computational
effort. Multiple approximate models can be used and rigorous confidence bounds of the estimates
produced are provided at all stages.
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1. Introduction and examples. Scientists have come to recognize the stochas-
tic aspects inherent in several physical systems and processes and seek ways to quan-
tify the probabilistic characteristics of their behavior. Their analysis tools are usually
restricted to elaborate legacy codes which have been developed over a long period
of time and are generally well-tested. They do not however include any stochas-
tic components and their alteration is commonly impossible or ill-advised. In many
problems of engineering or physical interest the only feasible solution for uncertainty
quantification is provided by non-intrusive methodologies.

Traditionally, two approaches have have attracted most attention. On one hand
methods based on polynomial chaos expansions (PC, [31])) and on the other tech-
niques anchored around Monte Carlo simulations. PC models, although originally de-
veloped as intrusive techniques ([15]), have grown into prominence in recent years with
the development of non-intrusive, stochastic collocation approaches ([32, 12]). They
are based on a representation of the random input by a finite number of uncorrelated
random variables (usually normally distributed) and orthogonal polynomials (usually
Hermite). The solution or output process is expressed with respect to the same basis
and the coefficients of the expansion are determined by calculating weighted resid-
uals or using a collocation approach. Although mathematically elegant, PC-based
approaches utilize a second-order matching (up to the autocovariance function) of
the input processes which does not account for important higher order statistics that
might affect the system’s response. The computational effort grows with the number
of random variables used to approximate the input which also adversely affects the
accuracy, particular in the stochastic collocation version, as an interpolation in a very
high dimensional space is required.

Standard Monte Carlo simulations require a minimal implementation overhead
as the coupling with existing deterministic solvers is trivial. Most often than not
however, in systems of physical interest, each of the runs of the forward solver re-
quires several CPU-hours and multiple processors. Even though the convergence rate
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N) (where N is the number of independent samples) is independent of the di-
mensionality of the random input, it is sufficiently slow to constitute the method
impractical or infeasible as several calls to forward solver have to be made to achieve
good accuracy. Another disadvantage of classical Monte Carlo is that it does not
directly provide confidence intervals for the estimates produced as those are usually
based on asymptotic results (i.e. when N → ∞) and the central limit theorem ([28]).
Recent years have seen significant progress in the development of advanced Monte
Carlo techniques which employ evolutionary strategies in combination with Markov
Chain Monte Carlo (MCMC) and Importance Sampling ([14, 25, 19]). In many cases
this has led to algorithms which require 10 or 100 times less samples in order to
produce estimates of the same accuracy ([2]).

Despite this dramatic improvements, the associated computational effort can still
be tremendous for systems of practical interest, where even a modest number of 100
or 1000 runs can be infeasible. It is obvious that a new perspective is needed. In the
author’s opinion this can be achieved if analysis goes beyond the black-box solver as
the only means of probing the problem of interest. Indeed in many situations, several
other pieces of knowledge and structural elements of the problem at hand, are read-
ily available but left unexploited. For example, quite frequently the computational
models of interest involve the solution of a system of PDEs using Finite Elements
(FE) or Finite Differences (FD). These imply the spatio-temporal discretization of
the governing differential equations and quite often the mesh sizes or time steps have
to be particularly small in order to capture the salient features of the solution. With-
out recourse to rigorous mathematical proofs, it is well-known that an FE solver that
operates on a coarser spatio-temporal grid can give an approximate solution at a lower
computational cost as the system of equations that need to be solved are smaller. The
deviation from the ”exact” (or reference) solution can be significant but in principle
this approximate solver can be used to obtain some, inaccurate of course, informa-
tion about our exact model. As it will be demonstrated in the sections to come, it
is not important if the solutions of the approximate solver deviate significantly from
the exact, but it suffices that they exhibit some sort of dependence. It is this de-
pendence that we will exploit in a general and rigorous computational framework in
conjuction with a few, carefully selected runs of the full, exact model. We will make
no claims about the optimality of the approximate solvers selected. In fact as it will
be demonstrated in the examples even crude approximations can yield impressive in-
creases in computational efficiency. Furthermore, the framework proposed allows for
the introduction of several such approximate models similar to the way one would
elicit opinions from multiple experts before making a decision. In that respect even
low-order, fast PC models can be utilized. Such an approach can be employed even
in cases where no accurate computational model exists but rather we have to rely on
experiments in order to collect the necessary information about the system. Since
conducting experiments can be costly and time consuming it is desirable to minimize
them by making use of approximate computational models that might be available.

To that end we investigate Bayesian alternatives to classical uncertainty quan-
tification techniques In particular we formulate a regression problem that establishes
the connection between the response values from the approximate and exact solver.
This is achieved using a flexible, non-parametric Bayesian model that employs a very
efficient Sequential Monte Carlo inference algorithm. An added advantage of this ap-
proach is that prior knowledge or expertise of the analyst regarding the relationship
between approximate and exact solvers can be readily incorporated in the prior dis-
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tributions. Once this relation is established, the posterior distribution can be readily
used to obtain estimates and confidence intervals on the output statistics of interest.
These can in turn be used to actively and adaptively improve the accuracy of the
regression by performing runs of the expensive solver in regions that contribute most
significantly to these uncertainties. An interesting extension involves using more than
one approximate solvers simultaneously in order to improve the accuracy and com-
putational efficiency of the model. This resembles mixtures of experts models that
are commonly used in various statistical applications, as each approximate solver pro-
vides some, generally incomplete, information about the exact model which is then
aggregated in order to obtain the best possible estimate.

2. Proposed Approach. Let (Ω,F ,P) be a complete probability space, where
Ω is the event space, F the σ-algebra, and P the probability measure. Consider the
following stochastic differential equation:

L(u(z, t); ξ(ω)) = f(z, t; ξ(ω)), z ∈ D, t > 0 (2.1)

defined on the domain D ⊂ R
q (q = 1, 2, 3) with appropriate initial/boundary

conditions which might also depend on the vector of uncertainties represented by
ξ(ω) : Ω → R

d. We are particularly interested in the most general and difficult case
where ξ is of very large dimension (i.e. d >> 1 ) and it should not or cannot be
condensed using any of the standard dimension reduction techniques (e.g. PCA). Let
u(z, t; ξ(ω)) denote the solution process which satisfies Equation (2.1) for P-almost
everywhere. We are interested in the statistics of the output itself or of a function
thereof which we denote by y(ξ) : R

d → R
r emphasizing the dependence on the vector

of input uncertainties ξ. We further postulate the existence of a forward solver of the
linear/nonlinear equation in Equation (2.1) that corresponds to a deterministic ver-
sion of the differential operator L (for fixed ξ). In general however one might consider
reduced versions of the above problem (i.e. dependence only on time or space) or even
systems (and associated computational models) which are not governed by SPDEs but
nevertheless characterized by a high-dimensional vector of input uncertainties ξ. For
illustration purposes we will restrict the presentation to the case that y is scalar (i.e.
r = 1). Naturally y may depend on other deterministic parameters which are omitted
for economy of notation.

The input uncertainties ξ are characterized by a probability density πξ. In order
for the problem to be well-posed, πξ need not be known analytically but it suffices to
be able to draw samples from πξ. Our goal is to calculate statistics of the response,
e.g.:

Pr[y ∈ A] =

∫

1A(y(ξ)) πξ(ξ) dξ (2.2)

where 1A is the indicator function of a πξ-measurable subset A, or:

E[h(y)] =

∫

h(y(ξ)) πξ(ξ) dξ (2.3)

where h is any πξ-integrable function.
Quite often the statistics of interest involve very rare events (i.e. Pr[y ∈ A] << 1],

as is the case for example in molecular dynamics simulations where transition to a
local minimum of the free-energy landscape happens infrequently or in estimating
reliability of mechanical components. In other cases we are interested in expectations
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of multimodal functions h as is the case in nonlinear dynamical systems where small
perturbations in the input ξ can lead to significant differences in the (long-term) re-
sponse. Due to the large variance of the integrands in Equations (2.2) or (2.3), several
calls to the forward solver have to be made (to calculate the response y for various
ξ’s) which imply a significant or insurmountable computational burden, particularly
in cases where each of these calls imply several CPU-hours on multiple processors.

To address these issues we postulate the existence of M approximate forward
solvers xm(ξ) : R

d → R
r, for m = 1, . . .M , as those discussed in the introduction and

in the numerical examples to follow. Each of those provides approximations to the
output of interest at a fraction of the computational cost. The latter requirement is
the key in increasing the overall computational efficiency in the proposed framework,
whereas the former condition can be interpreted very loosely. In fact it is acceptable
that the xm’s provide very poor estimates (i.e. y(ξ)−xm(ξ) is relatively large) as long
as there is some statistical dependence between them. In that sense xm might not
even correspond to the same output quantities, although in such cases the selection of
reasonable approximate solvers can be less straightforward. For the purposes of this
work, xm’s are viewed as (potentially) biased and partial predictors of the output
y. Our goal is to quantify the information these predictors provide for the purposes
of estimating statistics of y at a fraction of the computational cost. In particular, if
x = (x1, x2, . . . , xm), Equation (2.2) can be rewritten as:

Pr[y ∈ A] = Ex [Pr[y ∈ A | x]]

=

∫

Pr[y ∈ A | x]πx(x) dx

=

∫
(
∫

1A(y) p(y | x) dy

)

πx(x) dx (2.4)

and Equation (2.3):

E[h(y)] = Ex [E[h(y) | x]]

=

∫

E[h(y) | x]πx(x) dx

=

∫
(
∫

h(y) p(y | x) dy

)

πx(x) dx (2.5)

Hence it is apparent that estimates of Pr[y ∈ A] and E[h(y)] can be obtained as
long as the density πx(x) =

∫

δ(x−x(ξ)) πξ(ξ) dξ and conditional p(y | x) are known.
Given that calls to the approximate solvers are computationally inexpensive in relative
terms as it will be seen in the examples of section 3, πx(x) can be readily evaluated
using direct or advanced Monte Carlo techniques as those discussed previously. The
pivotal component is the conditional density p(y | x) which probabilistically quantifies
the information that the predictors x carry about y.

Figure 2.1 trivially illustrates the two extreme scenaria. On one hand y and x are
statistically independent. In this case knowledge of x is completely useless in furnish-
ing information about y and p(y | x) = p(y). Hence the proposed framework cannot
offer any improvement. On the other extreme, there exists an injective, deterministic
mapping between the two quantities, i.e. y = g(x) and therefore knowing x and its
statistics translates straightforwardly to y since p(y | x) = δ(y − g(x)). The proposed
methodology is applicable to all cases except the one of independence between x and
y.
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Fig. 2.1.

Critical to the feasibility of proposed framework is establishing a quantitative
link between the exact y and approximate x outputs as described by p(y | x). This
will be accomplished using computationally generated data that consist of pairs of
{(xi = x(ξi), yi = y(ξi))}n

i=1 obtained by running approximate and exact solvers for
the same ξi. This is discussed in detail in the next 3 sub-sections. The task of utilizing
the inferred models for the purposes of estimating Equation (2.4) or Equation (2.5)
is discussed in sub-section 2.4 and illustrated in the examples of section 3.

2.1. Hierarchical Bayesian model. We assume that the data have been rescaled
so that xi ∈ [0, 1]M and consider regression models of the form:

y(ξi) = yi = f(x(ξi); θ) + σ Zi (2.6)

where f is a function of the predictors x = (x1, . . . xM ) and model parameters θ, and
Zi are i.i.d standard normal variates i.e. Zi ∼ N (0, 1) (if y ∈ R

r then f, Zi ∈ R
r).

Equation (2.6) postulates that, given the model parameters θ, for an input ξi for
which the outputs of the approximate models are xm(ξi), the target response y(ξi) is
normally distributed with mean f(x(ξi); θ) and standard deviation σ, i.e.:

yi | x(ξi), θ, σ ∼ N (f(x(ξi); θ), σ2I) (2.7)

At first glance such a model seems highly restrictive as it is unlikely that y is normally
distributed (given x and model parameters θ). For that purpose we adopt a Bayesian
formulation in which the model parameters θ are assumed random and equipped with
a distribution. This allows us to actually formulate a family of such models (each
corresponding to a particular θ) and even though conditionally on θ, y is normally
distributed, marginally (when θ are integrated out) non-Gaussian distributions can
be considered.

Bayesian formulations differ from classical statistical approaches (frequentist) in
that all unknown parameters are treated as random. Hence the results of the infer-
ence process are not point estimates but distribution functions. The basic elements of
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Bayesian models are the likelihood function L(θ) = p(data | θ) which is a conditional
probability distribution and gives a (relative) measure of the propensity of observing
data for a given model configuration specified by the parameters θ. The likelihood
function is also encountered in frequentist formulations where the unknown model
parameters θ are determined by maximizing L(θ). This could be thought as the prob-
abilistic equivalent of deterministic optimization techniques commonly used in such
problems. The second component of Bayesian formulations is the prior distribution
p(θ) which encapsulates in a probabilistic manner any knowledge/information/insight
that is available to the analyst prior to observing the data. Although the prior is a
point of frequent criticism due to its inherently subjective nature, it can prove ex-
tremely useful in the context of problems examined as it provides a mathematically
consistent vehicle for injecting the analyst’s insight (whenever it is available) with re-
gards to the relation between the exact and approximate models. The combination of
prior and likelihood based on Bayes’ rule yields the posterior distribution π(θ) which
probabilistically summarizes the information extracted from the data with regards to
the unknown θ :

π(θ) = p(θ | data) =
p(data | θ) p(θ)

p(data)
∝ p(data | θ) p(θ) (2.8)

Hence Bayesian formulations allow for the possibility of multiple solutions - in fact
any θ in the support of the likelihood and the prior is admissible - whose relative
plausibility is quantified by the posterior. Credible or confidence intervals can be
readily estimated from the posterior which quantify inferential uncertainties about
the unknowns.

The crucial ingredient is of course the prior specification, not only in terms of the
functional form of p(θ) but primarily in terms of the structural characteristics of the
relation between y and x that is implied in Equation (2.6). It is easily understood,
that any parameterization that depends on a finite number of θ will be restrictive
no matter how large the family of models that it contains. Furthermore, in order
to be consistent with the principle of parsimony, prior models should make as few
assumptions as possible and allow their complexity to be inferred from the data.
To satisfy the aforementioned desiderata and overcome the shortcomings of existing
approaches, we propose the use of nonparametric priors ([30, 21]). As the term can be
misleading, we note that this does not imply lack of parameters but rather that the
number of parameters is not a priori fixed and can change as the data dictates. At
the core of such representations, lie simple basis functions, whose shape and location
are controlled by a few parameters. The key unknown is the cardinality of the model,
i.e. the number of such terms that are needed to provide a good interpretation of the
data. Consider the expansion:

f(x; θ) = a0 +

k
∑

j=1

ajKj(x; φj) x ∈ D (2.9)

where θ = (k, {φj}), Kj are kernels that serve as the basis functions of our represen-
tation and φj associated parameters. Expression (2.9) is motivated by the representer
theorem of Kimeldorf and Wahba ([18]), which states that the solution to the problem
of minimizing a goodness-of-fit loss function subject to a Reproducing Kernel Hilbert
Space norm penalty lies in a subspace represented as in Equation (2.9). Overcomplete
representations as in Equation (2.9) have been advocated because they have greater
robustness in the presence of noise, can be sparser, and can have greater flexibility in
matching structure in the data ([20, 1, 21]). One possible selection for the functional
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form of Kj, that also has an intuitive parameterization, is isotropic, Gaussian kernels:

K(x; φj) = (xj , τj)) = exp{−τj ‖ x − νj ‖2} (2.10)

The parameters τj directly correspond to the scale of variability of f(x). Large τj ’s
imply narrowly concentrated fluctuations and large values slower varying fields. The
center of each kernel is specified by the location parameter νj .

The parameters of the prior model adopted consist of:
• k: the number of kernel functions needed,
• {aj}k

j=0, the coefficients of the expansion in Equation (2.9). Each of those
can be a scalar or vector depending on the dimensionality of the exact output
y.

• {τj}k
j=1 the precision parameters of each kernel which pertain to the scale of

the unknown field(s), and
• {νj}k

j=1 the center locations of the kernels which are points in [0, 1]M .

Let θk = {{aj}k
j=0, {τj}k

j=1, {νj}k
j=1} ∈ Θk denote the vector containing all

the unknown parameters and θ = (k, θk). If k is also assumed unknown and al-
lowed to vary, then the dimension of θk is variable as well and Θk , (Rk+1)r ×
(R+)k × ([0, 1]M )k. For example, in the case of two approximate solvers (x1, x2)
(M = 2) and a scalar y (r = 1), θk is of dimension (k + 1) + k + (2k) = 1 + 4k,
i.e. Θk , R

1+k × (R+)k × [0, 1]2k. In accordance with the Bayesian paradigm, all
unknowns are considered random and are assigned prior distributions which quantify
any information, knowledge, physical insight, mathematical constraints that is avail-
able to the analyst before the data is processed. Naturally, if specific information
about the relation between exact y and approximate x outputs is available it can be
reflected on the prior distributions. We consider prior distributions of the following
form (excluding hyperparameters):

p(k, {aj}k
j=0, {τj}k

j=1, {xj}k
j=1) ∝ p(k)

× p({aj}k
j=0 | k)

× p({τj}k
j=1 | k)

× p({xj}k
j=1)) (2.11)

In order to increase the robustness of the model and exploit structural dependence
we adopt a hierarchical prior model ([13]).

2.2. Prior Distribution. Pivotal to the robustness and expressivity of the
model is the selection of the model size, i.e. of the number of kernel functions k
in Equation (2.9). This number is unknown a priori and in the absence of specific
information, sparse representations should be favored. This is not only advantageous
for computational purposes, as the number of unknown parameters is proportional to
k, but also consistent with the parsimony of explanation principle or Occam’s razor
([17, 27, 24]). For that purpose, we propose a Poisson prior for k:

p(k | λ) = e−λ λk

k!
k = 0, 1, . . . ,∞ (2.12)

For computational purposes, the aforementioned distribution is truncated beyond
kmax. The latter is selected based on computational limitations and defines the sup-
port of the prior. This prior allows for representations of various cardinalities to be
assessed simultaneously with respect to the data. As a result the number of un-
knowns is not fixed and the corresponding posterior has support on spaces of different
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dimensions as discussed in more detail in the sequence. In this work, an exponen-
tial hyper-prior is used for the hyper-parameter λ to allow for greater flexibility and
robustness i.e. p(λ | s) = s exp{−λ s}. After integrating out λ we obtain:

p(k | s) ∝ 1

(s + 1)k+1
, for k = 0, 1, . . . , kmax (2.13)

The parameters {τj}k
j=1 control the scale of variability in the relation between y

and x. If prior information about this is available then it can be readily accounted
for by appropriate prior specification. In the absence of such information however
multiple possibilities exist. We assumed τj are a priori independent i.e. p({τj}k

j=1) =
∏k

j=1 p(τj) and a Gamma(aτ , bτ ) prior was used for each τj :

p({τj}k
j=1 | k, aτ , bτ ) =

k
∏

j=1

baτ
τ

Γ(aτ )
τaτ−1
j exp(−bττj) (2.14)

This has a mean aτ/bτ and coefficient of variation 1/
√

aτ . Diffuse versions can be
adopted by selecting small aτ . A non-informative prior p(τj) ∝ 1/τj arises as a special
case for aτ = 2 and bτ = 0 which is invariant under rescaling. Furthermore. it offers
an interesting physical interpretation as it favors “slower” varying representations (i.e.
smaller τ ’s). In order to automatically determine the mean of the Gamma prior, we
express bτ = µjaτ where µj is a location parameter for which an Exponential hyper-
prior is used with a hyper-parameter aµ i.e. p(µj) = 1

aµ
e−µj/aµ . Integrating out the

µj ’s leads to following prior:

p({τj}k
j=1 | k, aτ , aµ) =

k
∏

j=1

Γ(aτ + 1)

Γ(aτ )

aaτ
τ

τ
(aτ−1)
j

1

aµ

1

(aττj + a−1
µ )(aτ+1)

(2.15)

For the coefficients aj a multivariate normal prior was adopted:

{aj}k
j=0 | k, σ2

a ∼ N(0, σ2
a Ik+1) (2.16)

where Ik+1 is the (k + 1) × (k + 1) identity matrix. The hyper-parameter σ2 which
controls the spread of the prior is modeled by the standard inverse gamma distribution
Inv − Gamma(a0, b0). It can readily be marginalized leading to the following prior
for aj ’s:

p({aj}k
j=0 | k, a0, b0) =

1

(2π)(k+1)/2

Γ(a0 + k+1
2 )

(

b0 + 1
2

∑k
j=0 a2

j

)a0+(k+1)/2
(2.17)

For the unknown kernel center locations νj , a uniform prior in [0, 1]M was used.
Naturally if prior information is available about subregions with significant fluctua-
tions this can be incorporated in the prior.

Based on the aforementioned equations, the complete prior model is given by:

p(θ | s, aτ , aµ, a0, b0) =
1

(s + 1)k+1

×
k
∏

j=1

Γ(aτ + 1)

Γ(aτ )

aaτ
τ

τ
(aτ−1)
j

1

aµ

1

(aτ τj + a−1
µ )(aτ +1)

× 1

(2π)(k+1)/2

Γ(a0 + k+1
2 )

(

b0 + 1
2

∑k
j=0 a2

j

)a0+(k+1)/2
(2.18)
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Given n data pairs, (xi, yi)
n
i=1 the likelihood p(y1:n | x1:n, θ) is:

p(y1:n | x1:n, θ) =
n
∏

i=1

p(yi | xi, θ)

=
1

(2π)n/2

1

σn
exp{− 1

2σ2

n
∑

i=1

(yi − f(xi; θ))2} (2.19)

A Gamma(a, b) prior was used for the variance σ−2 of the Gaussian error in Equation
(2.6), which is conjugate to the likelihood above and can be readily marginalized
resulting to the following expression:

Ln(θ) = p(θ | (x1:n, y1:n)) =
Γ(a + n/2)

(

b + 1
2

∑n
i=1(yi − f(xi; θ))2

)a+n/2
(2.20)

where Γ(z) =
∫ +∞
0

tz−1 e−t dt is the gamma function.
The combination of the prior p(θ) with the likelihood Ln(θ) corresponding to n

data points, give rise to the posterior density πn(θ) which is proportional to:

πn(θ) = pn(θ | (x1:n, y1:n)) ∝ Ln(θ) p(θ) (2.21)

Even though several parameters have been marginalized from the pertinent ex-
pressions, the corresponding posteriors can be readily be obtained, or rather be sam-
pled from, once the posteriors πn(θ) has been determined. Of particular interest for
prediction purposes is the variance σ2 of the error term (Equation (2.6)). From Equa-
tion (2.19) and the conjugate prior model adopted for σ2, it can readily be shown
that the conditional posterior is given by a Gamma distribution:

πn(σ−2, θ) = p(σ−2, θ | (x1:n, y1:n))

= πn(σ−2 | θ) πn(θ | (x1:n, y1:n)) (2.22)

and:

πn(σ−2 | θ) = p(σ−2 | θ, (x1:n, y1:n))

= Gamma

(

a +
n

2
, b +

∑n
i=1(yi − f(xi; θ))2

2

)

(2.23)

In the context of Monte Carlo simulation, this trivially implies that once samples θ

from πn have been obtained, samples of σ−2 can also be drawn from the aforemen-
tioned Gamma.

It is worth pointing out, that Equation (2.21) defines a sequence of posterior den-
sities with support on ∪kmax

k=0 {k} × Θk. Each πn corresponds to n data points. It
is easily understood that for small datasets, i.e. small n, the effect of the likelihood
function Ln will be subdued and the the associated posterior πn will have fewer modes
as it is dominated by the prior. As more data points are added and n increases the
contribution of the likelihood becomes more pronounced and the posterior will po-
tentially exhibit more idiosyncratic characteristics. As a result the task of identifying
these posteriors becomes increasingly more difficult for larger n. It is this feature that
we propose of exploiting in the next section in order to increase the accuracy and
improve on the efficiency of the inference process.
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2.3. Bayesian Computation - Determining the Posterior . The posterior
defined above is analytically intractable. For that reason, Monte Carlo methods
provide essentially the only accurate way to infer πn. Traditionally Markov Chain
Monte Carlo techniques (MCMC) have been employed to carry out this task ([30, 1]).
These are based on building a Markov chain that asymptotically converges to the
target density (in this case πr) by appropriately defining a transition kernel. While
convergence can be assured under weak conditions ([22, 29]), the rate of convergence
can be extremely slow and require a lot of likelihood evaluations. Particularly in cases
where the target posterior can have multiple modes, very large mixing times might be
required. In this work we propose a recursive inference algorithm based on Sequential
Monte Carlo techniques (SMC, [23, 10]) that ingests the data one at a time or in larger
batches and independently of the order of presentation. The sequential incorporation
of data points introduces a tempering effect in the sense described in the previous
paragraph. As a result, the global problem of identifying a potentially multi-modal
posterior is decomposed to a series of easier, tractable problems. More importantly,
the inferences made can be readily updated if more data becomes available. As
with Markov Chain Monte Carlo methods (MCMC), in SMC samplers the target
distribution(s) need only be known up to a constant and therefore do not require
calculation of the intractable integral in the denominator in Equation (2.8). The basis
of the approximation is a set of random samples (commonly referred to as particles),
which are propagated using a combination of importance sampling, resampling and
MCMC-based rejuvenation mechanisms ([8, 7]). Each of these particles is associated
with an importance weight which is proportional to the the posterior value of the
respective particle. These weights are updated sequentially along with the particle

locations. Hence if {θ(i)
n , w

(i)
n }N

i=1 represent N such particles and associated weights
for distribution πn(θ) then:

πn(θ) ≈
N
∑

i=1

W (i)
n δ

θ
(i)
n

(θ) (2.24)

where W
(i)
n = w

(i)
n /

∑N
i=1 w

(i)
n are the normalized weights and δ

θ
(i)
n

(.) is the Dirac

function centered at θ(i)
n . Furthermore, for any function h(θ) which is πn-integrable

([6, 5]):

N
∑

i=1

W (i)
n h(θ(i)

n ) →
∫

h(θ) πn(θ) dθ almost surely (2.25)

In order to facilitate the transition between two successive posteriors πn and πn+1

(particularly for small n), we can introduce a series of bridging distributions, based on
a modified annealing scheme. In particular, if π0 is the prior p(θ) (Equation (2.18))
we define a family of artificial, auxiliary distributions πn,γ(θ) as follows:

πn,γ(θ) ∝ Ln,γ(θ) p(θ) (2.26)

based on the modified likelihood:

Ln,γ(θ) =
Γ(a + (n + γ)/2)

(

b + 1
2

∑n
i=1(yi − f(xi; θ))2 + γ(yn+1 − f(xn+1; θ))2

)a+(n+γ)/2
γ ∈ [0, 1]

(2.27)
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where γ plays the role of reciprocal temperature. Trivially for γ = 0 we recover πn and
for γ = 1, πn+1. The role of these auxiliary distributions is to bridge the gap between
πn and πn+1 and provide a smooth transition path where importance sampling can be
efficiently applied. In this process, inferences based on n data points are transferred
and updated to conform with additional (n + 1)th datum. Starting with a particulate
approximation for π0(θ) = p(θ) (which trivially involves drawing samples from the

prior with weights w
(i)
0 = 1), the goal is to gradually update the importance weights

and particle locations in order to approximate the target posteriors πn.
We propose an adaptive SMC algorithm, that extends existing versions ([7, 8])

in that it automatically determines the number of intermediate bridging distribu-
tions needed. In this process we are guided by the Effective Sample Size ESS =

1/
∑N

i=1(W
(i)
s+1)

2 which provides a measure of degeneracy in the population of par-
ticles. Let s denote the number of intermediate bridging distributions between πn

and πn+1 and γs the associated reciprocal temperature. If ESSs is the ESS of the
population after the step s, then in the most favorable scenario that the next bridging
distribution πn,γs+1 is very similar to πn,γs

, then ESSs+1 should not be that much
different from ESSs. On the other hand if that difference is pronounced then ESSs+1

could drop dramatically. Hence in determining, the next auxiliary distribution, we
define an acceptable reduction in the ESS, i.e. ESSs+1 ≥ ζ ESSs (where ζ < 1) and
prescribe γs+1 (Equation (2.26)) accordingly. The proposed Adaptive SMC algorithm
is summarized in Table 2.1.

Table 2.1

Basic steps of the Adaptive SMC algorithm proposed

Adaptive SMC algorithm:

1. Initialize population {θ(i)
0,0, w

(i)
0,0}N

i=1 where θ
(i)
0,0 are i.i.d draws from the

prior π0 and w
(i)
0,0 = 1 (ESS0 = 0). Set l = 0 and s = 0 and γ0 = 0.

2. For l < n:
a) Set s = s + 1.

b) Reweigh: If w
(i)
l,s (γs) = w

(i)
l,s−1

πl,γs (θ
(i)
l,s−1)

πl,γs−1
(θ

(i)
l,s−1)

are the updated

weights as a function of γs then determine γs ∈ (γs−1, 1] so
that the associated ESSs = ζESSs−1 (the value ζ = 0.95 was

used in all the examples). Calculate w
(i)
l,s for this γs.

c) Resample: If ESSs ≤ ESSmin then resample (the value
ESSmin = N/2 was used in all the examples).

d) Rejuvenate: Use an MCMC kernel Pl,s(., .) that leaves πl,γs
in-

variant to perturb each particle θ
(i)
l,s−1 → θ

(i)
l,s

e) The current population {θ(i)
l,s , w

(i)
l,s}N

i=1 provides a particulate ap-
proximation of πl,γs

in the sense of Equations (2.24), (2.25).

f) If γs = 1 set l = l + 1, θ
(i)
l,0 = θ

(i)
l−1,s, w

(i)
l,0 = w

(i)
l−1,0, s = 0 and

γ0 = 0

The role of the Reweighing step is to correct for the discrepancy between the
two successive distributions in exactly the same manner that importance sampling
is employed. The Resampling step aims at reducing the variance of the particulate
approximation by eliminating particles with small weights and multiplying the ones
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with larger weights. The metric that we use in carrying out this task is the Effective
Sample Size (ESS) defined earlier. If this degeneracy exceeds a specified threshold,
resampling is performed. As it has been pointed out in several studies ([9]), fre-
quent resampling can deplete the population of its informational content and result
in particulate approximations that consist of even a single particle. Throughout this
work ESSmin = N/2 was used. Although other options are available, multinomial
resampling is most often applied and was found sufficient in the problems examined.

A critical component involves the perturbation of the population of samples by a
standard MCMC kernel in the Rejuvenation step as this determines how fast the tran-
sition takes place. Although there is freedom in selecting the transition kernel Ps(., .)
(the only requirement is that it is πl,γs

-invariant), there is a distinguishing feature
that will be elaborated in the next sub-section (see 2.3.1). The target posteriors πn

(as well as the intermediate bridging distributions in Equation (2.26)) live in spaces of
varying dimensions as previously discussed. Hence an exploration of the state space
must involve trans-dimensional proposals. Pairs of such moves can be defined in
the context of Reversible-Jump MCMC (RJMCMC , [16]) such as adding/deleting a
kernel in the expansion of Equation (2.9), or splitting/merging kernels (see 2.3.1).

It should be noted that the framework proposed is directly parallelizable, as the
evolution (reweighing, rejuvenation) of each particle is independent of the rest. The
particulate approximations obtained at each step, provide a concise summary of the
posterior distribution based on the respective forward solver. This can be readily
updated in the manner explained above, if more data become available, i.e. more
runs of the approximate and exact solver are invoked.

An advantageous feature of the proposed framework is that the confidence in
the estimates made can be readily quantified by establishing posterior (or credible)
intervals from the particulate approximations (Equation (2.24)). It is these credible
intervals (or in general measures of the variability in the estimates such as the posterior
variance) that can guide adaptive acquisition of data. Since we want to minimize calls
to the exact solver y, we can utilize these inferences in order to perform runs in regions
that will be most informative of the sought output and therefore make near-optimal
use of the computational resources available. This will be discussed in more detail in
the numerical examples.

2.3.1. Trans-dimensional MCMC. As mentioned earlier, a critical compo-
nent in the SMC framework proposed is the MCMC-based rejuvenation step of the
particle locations θ. It should be noted that the kernel Ps(., .) in the rejuvenation
step (Step 3 of the SMC algorithm) need not be known explicitly as it does not en-
ter in any of the pertinent equations. It is suffices that it is π12,γs

-invariant which
is the target density. For the efficient exploration of the state space, we employ a
mixture of moves which involve fixed dimension proposals (i.e. proposals for which
the cardinality of the representation k is unchanged) as well as moves which alter the
dimension k of the vector of parameters θ. We consider a total of M = 7 such moves,
each selected with a certain probability as discussed below. Of those, four involve
trans-dimensional proposals which warrant a more detailed discussion.

It is generally difficult to design proposals that alter the dimension significantly
while ensuring a reasonable acceptance ratio. For that purpose, in this work we
consider proposals that alter the cardinality k of the expansion by 1 i.e. k′ = k − 1
or k′ = k + 1. We adopt the the Reversible-Jump MCMC (RJMCMC) framework
introduced in [16] according to which such moves are defined in pairs in order to
ensure reversibility of the Markov kernel (even though the reversibility condition is
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not necessary, it greatly facilitates the formulations). We consider two such pairs of
moves, namely birth-death and split-merge. Let a proposal from (k, θ) to (k′, θ′) that
increases the dimension i.e. k =′ k + 1 and θ ∈ Rmk

, θ′ ∈ R
mk+1 (see last paragraph

of sub-section 2.2). Let p(k → k′) the probability that such a proposal is made
(user specified) and p(k′ → k) the probability that the reverse, dimension-decreasing
proposal is made. In order to account for the mk+1 −mk difference in the dimensions
of θ and θ′, the former is augmented with a vector u ∈ R

mk+1−mk drawn from a
distribution q(u). Consider a differential and one-to-one mapping h : R

mk+1 → R
mk+1

that connects the three vectors as θ′ = h(θ, u). Then as it is shown in [16], the
acceptance ratio of such a proposal is:

min

{

1,
π12,γs

(θ′)p(k → k′)

π12,γs
(θ)p(k′ → k)

1

q(u)

∣

∣

∣

∣

∂θ′

∂(θ, u)

∣

∣

∣

∣

}

(2.28)

where
∣

∣

∣

∂θ
′

∂(θ,u)

∣

∣

∣
is the Jacobian of the mapping h. Such a proposal is invariant w.r.t.

the density π12,γs
. Similarly one can define, the acceptance ratio of the reverse,

dimension-decreasing move:

min

{

1,
π12,γs

(θ)p(k′ → k)

π12,γs
(θ′)p(k → k′)

q(u)

∣

∣

∣

∣

∂θ′

∂(θ, u)

∣

∣

∣

∣

−1
}

(2.29)

In the following we provide details for the reversible pairs used in this work.
Birth-Death: In order to simplify the resulting expressions, we assign the following

probabilities of proposing one of these moves pbirth = c min{1, p(k+1)
p(k) } = c 1

s+1

(from Equation (2.13)) and pdeath = c min{1, p(k−1)
p(k) } = c (from Equation (2.13)).

The constant c is user-specified (it is taken equal to 0.2 in this work). Obviously if
k = kmax, pbirth = 0 and if k = 0, pdeath = 0.

For the death move:
• A kernel j (1 ≤ j ≤ k ) is selected uniformly and removed from the represen-

tation in Equation (2.9).
• The corresponding aj is also removed.

For the birth move:
• A new kernel k +1 is added to the expansion while the existing terms remain

unaltered.
• The associated amplitude ak+1 is drawn from N (0, σ2

4) (the variance σ2
4 is

equal to the average of the squared amplitudes aj over all the particles at the
previous iteration)

• The associated scale parameter τk+1 is drawn from the prior, Equation (2.15)
• The associated kernel location νk+1 is also drawn from the uniform prior,

Equation (2.18).
Hence the vector of dimension-matching parameters u consists of u = (ak+1, τk+1, xk+1)
and the corresponding proposal q(u) is:

q(u) =
1√
2π

1

σ4
e−

1
2 a2

k+1/σ2
4

baτ
τ

Γ(aτ )
τaτ−1
k+1 exp(−bττk+1) (2.30)

It is obvious that the Jacobian of such a transformation is 1.
Split-Merge These moves correspond to splitting an existing kernel into two or
merging two existing kernels into one. Similarly to the birth-death pair, they alter
the dimension of the expansion by 1 and are selected with probabilities psplit = 1

s+1
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and pmerge = c. For obvious reasons, psplit = 0 if k = kmax and pmerge = 0 if k ≤ 1.
Consider first the merge move between two kernels j1 and j2. In order to ensure a
reasonable acceptance ratio, merge moves are only permitted when the (normalized)
distance between the kernels is relatively small and when the amplitudes aj1 , aj2 are
relatively similar. Specifically we require that the following two conditions are met:

‖ νj1 − νj2 ‖
√

τ−1
j1

+ τ−1
j2

≤ δx | aj1 − aj2 |≤ δa (2.31)

(the values δx = δa = 1 were used in this work). Two candidate kernels are selected
uniformly from the pool of pairs satisfying the aforementioned conditions. The pro-
posed kernels j1 and j2 are removed from the expansion and are substituted by a new
kernel j with the following associated parameters:

•

τj =

(

√

τ−1
j1

+ τ−1
j2

)−1

(2.32)

•

aj =
√

τj(
aj1√
τj1

+
aj2√
τj2

) (2.33)

This ensures that the average value of the previous expansion (with j1 and
j2) in Equation (2.9) when integrated in R

d is the same with the new (which
contains j in place of j1 and j2)

•

νj =
νj1 + νj2

2
(2.34)

The split move is applied to a kernel j (selected uniformly) which is substituted
by two new kernels j1, j2. In order to ensure reversibility, kernels j1 and j2 should
satisfy the requirements of Equation (2.31) and the application of a merge move in
the manner described above, should return to the original kernel j. There are several
ways to achieve this, corresponding essentially to different vectors u and mappings h
in Equation (2.28). In this work:

• A scalar uτ is drawn from the uniform distribution U [0, 1] and τ−1
j1

= uττ−1
j

and τ−1
j2

= (1 − uτ )τ−1
j . This ensures compatibility with Equation (2.32).

• A vector ux is drawn uniformly in the ball of radius R where R = δx

2
√

τj
.

The center of the new kernels are specified as νj1 = νj − ux and νj2 =
νj + ux. This ensures compatibility with the first of Equation (2.31) as well
as Equation (2.34).

• A scalar ua is drawn from the uniform distribution U [− δa

2 , δa

2 ]. The ampli-
tudes of the new kernels are determined by aj1 = â − ua and aj2 = â + ua,

where â =
a+ua(

√
uτ−

√
1−uτ )√

uτ +
√

1−uτ
. This ensures compatibility with the second of

Equation (2.31) as well as Equation (2.33).
The vector of dimension-matching parameters u (in Equation (2.28)) consists of

u = (uτ , ux, ua) and the corresponding proposal q(u) is a product of uniforms in the
domains specified above. After some algebra, it can be shown that the Jacobian of
such a transformation is 2M+1 τ

u2
τ (1−uτ )2

1√
uτ+

√
1−uτ

.
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(b) Split-Merge moves

Fig. 2.2. Trans-dimensional RJMCMC proposals

The remaining three proposals, involve fixed-dimension moves that do not change
the cardinality of the expansion but rather perturb some of the terms involved. In
particular, we considered updates of the amplitude aj , scale τj or location xj of a
kernel j selected uniformly (naturally, in the case of the amplitudes, the constant
a0 (Equation (2.9)) is also a candidate for updating). Each of these three moves
is proposed with probability 1

3 (pbirth + pdeath + psplit + pmerge) = 2 c
3 ( 1

s+1 + 1). In
particular:

1. Update aj → a′
j : A coefficient aj (in Equation (2.9)) is uniformly selected

and perturbed as:

a′
j = aj + σ1 Z , Z ∼ N (0, 1) (2.35)

2. Update τj → τ ′
j : A scale parameter τj (in Equation (2.9)) is uniformly se-

lected and perturbed as:

τ ′
j = τje

σ2Z , Z ∼ N (0, 1) (2.36)

(this ensures positivity of τ ′
j)

3. Update νj → ν′

j : A location νj ∈ [0, 1]M (in Equation (2.9)) is uniformly
selected and perturbed as:

ν′

j = νj + σ3 Z, Z = (Z1, . . . , Zd), Zi ∼ N (0, 1) (2.37)

The acceptance ratios are calculated based on the standard MCMC formulas using
π12,γs

as the target density. It should be noted that the variances in the random walk
proposals are adaptively selected so that the respective acceptance rates are in the
range 0.2 − 0.4. As it is well-known (chapter 7.6.3 in [29]) adaptive adjustments of
Markov Chains based on past samples can breakdown ergodic properties and lead to
convergence issues in standard MCMC contexts. In the proposed SMC framework
however, such restrictions do not apply as it suffices that the MCMC kernel is invari-
ant. This is an additional advantage of the proposed simulation scheme in comparison
to traditional MCMC.

2.4. Prediction - Calculating statistics of exact solver. We return to the
original problem of estimating statistics of the output y of the exact solver using
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the relationship with the outputs x of the approximate solvers. The aforementioned
Bayesian model is able to not only provide estimates but also quantify the level of
confidence one can assign to the predicted outcome. Let (θ, σ) denote a pair of
values for the model parameters in Equation (2.6). For these parameter values, the
conditional density p(y | x) can be obtained based on the regression model adopted
and Equation (2.7):

p(y | x) ≈ p(y | x, θ, σ) =
1√
2π

1

σ
exp{− 1

2σ2
(y − f(x; θ))2} (2.38)

which upon substitution in Equation (2.4) yields:

Pr[y ∈ A; θ, σ] =

∫

qA(x; θ, σ) πx(x) dx (2.39)

where:

qA(x; θ, σ) =

∫

1A(y) p(y | x, θ, σ) dy (2.40)

The latter expresses the probability that exact response y ∈ A for fixed approximate
response x (and model parameters). Consider for example the case that we are inter-
ested in calculating a probability of exceeding a threshold y0 ∈ R, i.e. A = (y0, +∞).
Then:

qA(x; θ, σ) = Φ

(

f(x; θ) − y0

σ

)

(2.41)

where Φ(z) =
∫ z

−∞
1√
2π

e−
w2

2 dw is the standard normal CDF.

Given a number of training data (x1:n, y1:n), the plausibility of various parameter
values is quantified by the posterior πn(θ) = p(θ | (x1:n, y1:n)). Hence, one can
obtain point estimates of qA based for example on the maximum a posteriori values
(MAP) θMAP = argmax πn(θ) or the posterior mean En[θ] =

∫

θ πn(θ) dθ. More
importantly, due to its dependence of θ (and σ), qA is also random and its distribution
can be determined from the posterior distribution of θ and σ. This distribution
therefore indirectly depends on the training data upon which posterior inferences
were based. In particular, one can estimate the posterior mean of qA for the case of
Equation (2.41) as follows:

q̂A(x) = En[qA] =

∫

Φ

(

f(x; θ) − y0

σ

)

πn(θ, σ−2) dθ dσ−2

=

∫

Φ

(

f(x; θ) − y0

σ

)

πn(θ) πn(σ−2 | θ) dθ dσ−2

(from Equation (2.22) )

≈
N
∑

i=1

W (i)
n Φ

(

f(x; θ(i)
n ) − y0

σ
(i)
n

)

(2.42)

where the particulate approximation {θ(i)
n , W

(i)
n }N

i=1 of πn obtained through the pro-

posed SMC scheme was used and {σ(i)
n }N

i=1 are corresponding draws from the condi-
tional posterior in Equation (2.23). Equation (2.42) expresses how, on average, based
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on the available data (x1:n, y1:n) the probability of interest depends on the approxi-
mate solver values x. This can provide an estimate of the probability of interest by
substitution in Equation (2.39).

Furthermore, the weighted samples q
(i)
A (x) = Φ

(

f(x;θ(i)
n )−y0

σ
(i)
n

)

provide a partic-

ulate approximation of the distribution of qA(x), ∀x. p-Quantiles qA,p(x) can be
readily estimated as:

Pr[qA(x) ≤ qA,p(x)] ≈
N
∑

i=1

W (i)
n H

(

q
(i)
A (x) − qA,p(x)

)

= p (2.43)

where H(.) is the Heaviside function. These can readily yield confidence bounds for
the probability of interest when substituted in Equation (2.39). More importantly
perhaps, these bounds can serve as the basis for active learning i.e. determining
where more training samples need to be generate in order to refine the estimates
produced. Consider for example the p = 1% and p = 99% quantiles qA,0.01(x) and
qA,0.99(x). then based on Equation (2.39)) an ordering of x can be constructed based
on:

(qA,0.99(x) − qA,0.01(x)) πx(x) (2.44)

Thus x (or regions in the x-space) for which the aforementioned value is large con-
tribute more in the uncertainty about the probability of interest Pr[y ∈ A] and
therefore could serve as the best candidates for generating additional training pairs
(xn+1, yn+1). This is particularly important in the cases considered where each run
for the evaluation of the exact response y can be extremely expensive and therefore
optimal use of the computational resources is crucial. These additional training sam-
ples can be readily incorporated based on the SMC scheme adopted and updates of
the particulate approximation that reflect the new data can be produced. These in
turn can lead to updates in the estimates made as well as the confidence bounds.
Naturally other measures of variability of qA(x), such as the variance (or coefficient
of variation) can be used in place of (qA,0.99(x) − qA,0.01(x)) in Equation (2.44). The
variance for each x can be estimated as follows:

V arn[qA] ≈
N
∑

i=1

W (i)
n

(

q
(i)
A (x) − q̂A(x)

)2

(2.45)

For estimates of expectations of functions h(.) of the exact output y as in Equation
(2.5), the same results apply if in place of qA(x) we use:

qh(x) =

∫

h(y)p(y | x) dy (2.46)

3. Numerical results. In the examples presented, the following values for the
hyperparameters of the prior model were used (Equation (2.18)):

• kmax = 100 and s = 1.0 (Equation (2.13))
• atau = 1.0 (Equation (2.14)) and aµ = 0.01 (Equation (2.15))
• a0 = 1.0 and b0 = 1.0 (Equation (2.17))
• a = 2. and b = 1. × 10−6 (Equation (2.19))

Furthermore, N = 1, 000 particles were employed in the adaptive SMC scheme de-
scribed in section 2.3. As in most systems of practical interest, the computational
cost is dominated by the number of calls to the forward solver, we report results on
computational effort in terms of the number of runs of the exact solver.
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3.1. Example 1. The first example involves a problem from fracture mechanics
where it is known that small scale stochastic fluctuations can have a significant im-
pact in the macroscale response. We consider cohesive interface of unit length that is
pulled apart in Mode I fracture and is modeled with cohesive zone elements (Figure
3.1). These are line (or surface in 3D) elements which are located at the interface
and govern the separation process in accordance with a cohesive law. The concept
of cohesive laws was pioneered by Dugdale ([11]) and Barenblatt ([3]) in order to
model fracture processes and has been successfully used in a Finite Element setting
by several researchers ([33, 4, 26]). According to these models, fracture is initiated
when the interface traction exceeds a threshold Tc and progresses gradually as the
separation takes place across an extended crack tip or cohesive zone and is resisted
by cohesive tractions. We assume herein a simple constitutive law relating interface
traction-separation as seen in Figure 3.1. Under monotonic loading the normal inter-

face traction decays as T = Tc

(

1 − δ
δc

)

for δ ≤ δc and T = 0 for δ > δc. The fracture

energy Gc is given by Gc = Tcδc/2. The constitutive rate equations are:

Ṫ =







−Tc
δ̇
δc

if δ̇ > 0
T
δ δ̇ if δ̇ < 0
0 if δ > δc

(3.1)

At the microstructural level, the cohesive properties exhibit random variability. We
adopt the following simple random field descriptions for the model parameters:

Tc(z) = T0 + ∆T0 U1(z)

Gc(z) = G0 + ∆G0 (ρU1(z) + U2(z)) z ∈ [0, 1] (3.2)

where:

Ui(z) = 2Φ(hi(z)) − 1, i = 1, 2 (3.3)

and h1(z) is a zero-mean, unit variance Gaussian process with autocorrelation Rh(∆z) =

E [h(z)h(z + ∆z)] = exp{− |∆z|
z0

} (Φ is the standard normal CDF). The parameter z0

controls the length scale of heterogeneity and it was taken equal to 0.1. The field
h2(z) was assumed to represent a Discretized white noise process. The parameter ρ
controls the autocorrelation between the two properties and was taken equal to 0.9
which implies that areas with high Tc are more likely to have high Gc as well. Also,
the values T0 = 1.0, ∆T0 = 0.5, Gc = 10−3 and ∆G0 = 0.5 × 10−3 were used.

The exact solver was a detailed finite element model consisting of 1, 000 cohesive
elements of equal length with properties assigned based on the values of Tc(z) and
Gc(z) at their midpoint. The mesh size is much smaller than the length scale of
variability of the cohesive properties as determined by the correlation length z0 defined
above. The output of interest y was the fracture energy released when a uniform
separation δ = 0.5 × 10−3 was applied at the interface. The quasi-static, nonlinear
calculation of the output of interest was carried out by applying separation increments
of 0.5×10−6 in order to capture accurately the traction-separation history (i.e. a total
of 1, 000 iterations).

We considered a single approximate solver with a much coarser mesh consisting
of only 10 cohesive elements of equal length, i.e. each macro-element takes the place
of 100 micro-elements of the exact solver. The assigned cohesive strength Tc in each
macro-element was set equal to the minimum of the cohesive strengths of the 100
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Tc

δc
Gc

Fig. 3.1. Cohesive interface - Cohesive Law: Tc denotes ultimate interfacial tension (when
the stress reaches Tc the cohesive element is activated), δc denotes the ultimate separation interface
(when the separation reaches δc the interface tension becomes zero) and Gc denotes the fracture
energy which is equal to the area under the tension-separation curve.

corresponding micro-elements, and the fracture energy Gc equal to the average of
the fracture energies of the the 100 corresponding micro-elements. In addition a
displacement increment of 0.5×10−5 (in contrast to the 0.5×10−6 for the exact solver)
was used in order to carry out the quasi-static, nonlinear integration of the equations
of equilibrium and the constitutive model (Equation (3.1)). As a result of these
crude simplifications the approximate solver was 1, 069 faster than the exact. Figure
3.2 compares the approximate and exact solver output prediction where significant
discrepancies can be observed (e.g. when x = 4 × 10−4, y ≈ 5 × 10−4 , i.e. a 25%
difference). It is also observed that the mapping from x to y is one-to-many, as the
coarse model crudely smears some of the fine details that affect the response.
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Fig. 3.2. Exact y vs. Approximate x response

In order to assess the performance of the method proposed we considered the
event y > y0 = 5.601 × 10−4 which corresponds to a probability 10−3. This was
found using an advanced simulation procedure based on Sequential Monte Carlo as
in the first example ([2, 19]). The computational effort amounted to 1, 500 calls to
the exact solver and the coefficient of variation (c.o.v) of the estimate was 0.23 (based
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Fig. 3.3. Cumulative distribution function for the approximate solver output x

on an asymptotic, and rather optimistic, bound in [2]). This roughly implies that
with probability 0.95, the actual probability of the event of interest is in the interval
[0.55× 10−3, 1.5× 10−3]. For the same c.o.v and standard Monte Carlo 18, 500 calls
to the exact solver would have been needed.

The density πx of x = x1 was estimated using the same advanced Monte Carlo
scheme that required 5, 000 calls to the approximate solver. The corresponding CDF
is depicted in Figure 3.3 for probabilities as low as 10−5. Note that due to the
reduced computational effort associated with calls to the approximate solver, the
computational time for this task amounted to (approximately) 5 runs of the exact
solver.

The crucial task, that of estimating p(y | x1) involves the nonparametric Bayesian
regression model discussed previously. Figure 3.4 depicts posterior statistics of the
regression model for various training sample sizes and Figure 3.5 the posterior mean
and posterior quantiles of qA(x) based on Equations (2.42) and 2.43 for various sam-
ple sizes. Table 3.1 summarizes the estimates based on the posterior mean q̂A(x)
and confidence bounds established with qA,0.01(x) and qA,0.99(x). It is noted that
even with a small number of calls to the exact solver, the estimates obtained are rea-
sonably good and most importantly the lower and upper confidence bounds always
include the reference value. This is particularly important in engineering purposes as
the analyst can decide whether these confidence bounds are satisfactory and if not
perform additional calls to the exact solver in order to refine them. As the number
of training samples increases the posterior mean approaches the true value and the
credible intervals become more concentrated. A complete view of the the cdf of the
exact output y is depicted in Figure 3.6 based on 150 training samples.

3.2. Example 2. We consider a problem in nonlinear solid mechanics that il-
lustrates the capabilities of the proposed methodology and the the significant im-
provements in computational efficiency even when very crude approximate solvers
are selected. A random two-phase medium consisting of two elastic-perfectly-plastic
materials occupies the unit square in 2D and is subjected to plane stress loading
conditions. It was assumed that the matrix phase (white in Figure 3.7) had a yield
stress σmatrix

yield = 0.1 and the inclusion phase (black in Figure 3.7) a yield stress
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Fig. 3.4. Posterior mean of f(x; θ) and and posterior density of σ (Equation (2.6)) for various
training sample sizes

Table 3.1

Estimates of Pr[y > y0 = 5.601 × 10−4] and computational effort (the latter is measured in
number equivalent number of calls to the exact solver

Number Posterior Posterior Posterior Computational
of samples mean quantile 1% quantile 99% Effort

10 6.36 × 10−3 5.91 × 10−4 7.17 × 10−2 15
50 1.75 × 10−3 7.39 × 10−4 3.55 × 10−3 55
150 1.01 × 10−3 7.07 × 10−4 1.42 × 10−3 155
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Fig. 3.5. Posterior mean and quantiles for Pr[y ≥ 5.601 × 10−4 | x] based on various sample sizes
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Fig. 3.6. Posterior mean and quantiles for Pr[y ≥ y0], ∀y0 based on 150 training samples

σinclusion
yield = 1.0 The same elastic properties were assumed for both phases (elastic

modulus E = 1.0 and Poisson’s ratio ν = 0.3) and the von-Mises yield criterion was
used. The stochasticity in the problem is introduced by the distribution of the black
discs of diameter d = 0.0859375 whose centers are assumed to follow a Poisson point
process on the unit square. The intensity of the point process is selected so that the
volume fraction of the inclusion phase is 65%. This was intentionally chosen to be
close to the percolation threshold of 68% ([34]) in order to have realizations where the
inclusion phase was connected and disconnected. In the former case, the load-bearing
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capacity (in the horizontal direction) of the specimen is high as the strong, inclu-
sion phase forms a network that carries the load, whereas in the disconnected case,
the load-bearing capacity is lower and determined by the yield stress of the matrix
phase. Hence the stochastic geometry completely determines the mechanical behav-
ior of the system. The vector of uncertain parameters ξ ( Equation (2.2)) consists
of the number of inclusion disks and the coordinates of their centers. As the former
is a random variable (following a Poisson distribution) the corresponding πξ(ξ) has
support in spaces of varying dimension and non-zero probability for arbitrarily large
d where ξ ∈ R

d. It should be noted however that on average there are 181 disks and
dim(ξ) = 1 + 2 181 = 363. Usual dimension reduction techniques based on second
order properties would be extremely misleading in this case as higher order statistics
of the random medium (relating to connectivity) dominate mechanical response.

(a) Connected inclusion phase (high strength) (b) Disconnected inclusion phase (low strength)

Fig. 3.7. Example 2

The exact model corresponds to a Finite Element solver with 128× 128 elements
i.e. 11 elements per inclusion diameter and ≈ 33, 000 dof, of the governing equations
of equilibrium:

∇ · σ̂ = 0 (3.4)

where σ̂ is the Cauchy stress tensor and :

˙̂σ = c : (ǫ̇ − ǫ̇p) (3.5)

the constitutive rate equations with ǫ and ǫp being the total and plastic strain tensors
respectively.

The yield stress was assumed constant within each element and equal to the yield
stress of the the phase occupying the majority of its area. The response of interest y
was the ultimate strength of the specimen in the horizontal direction and the average
computational time was ≈ 700sec on a single CPU.

A single approximate model was used (i.e. M = 1) which corresponds to Finite
Element solver on a uniform 8 × 8 mesh and 128 dof. Constant yield stress was
assigned to each of the 64 elements based on the log-average of the yield stress within
each element (Figure 3.8(b)). Hence if De is the subdoman occupied by element e,
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its yield stress σyield,e = exp{ 1
|De|

∫

De
log (σyield(s)) ds}. The computational time

for calculating the ultimate strength x = x1 was 0.15 sec, i.e. ≈ 4, 700 times faster
than the exact model. It is obvious that such a solver introduces a significant error as
it does not sufficiently resolve the governing PDEs and smears out the connectivity
details that determine the ultimate strength of the specimen. Furthermore, the log-
average rule used to determine the yield stress of the elements does not represent a
consistent upscaling scheme of the material model. This discrepancy can be seen in
Figure 3.9 which depicts 100 pairs of approximate x vs. exact response y. It is also
observed that the mapping from x1 to y is one-to-many as the approximate model
blurs some of the important microstructural details.

(a) Exact model - 128 × 128 mesh (700 sec) (b) Approximate model - 8 × 8 mesh (0.15 sec)

Fig. 3.8. Exact vs. Approximate solvers
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Fig. 3.9. Exact y vs. Approximate x response

In order to compare the performance of the method we considered the event
y > y0 = 0.521 which corresponds to a probability 10−3. This was found using
an advanced simulation procedure based on Sequential Monte Carlo as discussed in
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Fig. 3.10. Cumulative distribution function for the approximate solver output

detail in ([25, 14, 19]). The computational effort amounted to 1, 500 calls to the
exact solver and the coefficient of variation (c.o.v) of the estimate was 0.23 (based
on an asymptotic, and rather optimistic, bound in [2]). This roughly implies that
with probability 0.95, the actual probability of the event of interest is in the interval
[0.55 × 10−3, 1.5 × 10−3]. It should be noted that to achieve the same c.o.v with
standard Monte Carlo, 18, 500 calls to the exact solver would have been needed.

The density πx of x = x1 was estimated using the same advanced Monte Carlo
scheme that required 5, 000 calls to the approximate solver. The corresponding cdf is
depicted in Figure 3.10 for probabilities as low as 10−5. Note that due to the reduced
computational effort associated with calls to the approximate solver, the effective
computational time for this task amounted to (approximately) 1 call to the exact
solver.

As with the previous example Figure 3.11 depicts posterior statistics of this model
for various training sample sizes. Figure 3.12 depicts the posterior mean and posterior
quantiles of qA(x) based on Equations (2.42) and (2.43) for various sample sizes.
Table 3.2 summarizes the estimates based on the posterior mean q̂A(x) and confidence
bounds established with qA,0.01(x) and qA,0.99(x). It is noted that good estimates of
the actual output statistic can be obtained at a fraction of the computational cost.
Furthermore good confidence bounds are readily obtained for all sample sizes. The
same good quality in the results is also observed in the estimates of the whole cdf of
the exact output which is depicted in Figure 3.13 for 100 training samples.

Table 3.2

Estimates of Pr[y > y0 = 0.521] and computational effort (the latter is measured in number
equivalent number of calls to the exact solver

Number Posterior Posterior Posterior Computational
of samples mean quantile 1% quantile 99% Effort

10 1.47 × 10−2 2.33 × 10−4 3.80 × 10−1 11
20 6.24 × 10−3 3.56 × 10−3 1.90 × 10−2 21
30 2.64 × 10−3 3.50 × 10−4 8.55 × 10−3 31
50 2.64 × 10−3 4.25 × 10−4 5.23 × 10−3 51
100 1.06 × 10−3 4.75 × 10−4 2.14 × 10−3 101



26 P.S. KOUTSOURELAKIS

We examined the same problem using M = 2 approximate solvers. In addition
to the approximate solver discussed earlier we considered a second FE model with
the same mesh of 64 elements (Figure 3.8(b)). The yield stress σyield,e for each
element e was now determined by averaging i.e. σyield,e = 1

|De|
∫

De
σyield(s) ds. This

is again a non-consistent rule with the exact constitutive model and would yield
approximate solutions. Furthermore due to the concavity of the log-function and
Jensen’s inequality, the assigned yield stresses σyield,e were smaller in the first model
and as a result the predicted approximate outputs x1 < x2.

Figure 3.14 depicts 50 triplets (x1, x2, y) comparing the exact output with the
approximate solutions provided by the two reduced models. It is expected that the
addition of the second model will yield more information about y that can be readily
taken into account by the Bayesian framework presented. The joint pdf πx(x1, x2)
was estimated using 5, 000 calls to each solver (i.e. total 10, 000) which due to their
reduced computational cost amounted to the equivalent of ≈ 2 runs of the exact
solver.

Figure 3.15 depicts posterior statistics of the regression model for 50 training
samples. Finally Figure 3.16 illustrates the complete cdf of the exact output y based
on the same number of training samples. The computational effort for obtaining this
result is equivalent to 52 calls to the exact solver (i.e. 2 for estimating πx and 50
for obtaining the training data. The addition of the second predictor x2 offers a
significant improvement w.r.t. Figure 3.13 not only in terms of accuracy but also in
terms computational efficiency since the latter result required effectively 101 calls to
the exact solver.

4. Conclusions. The majority of systems of physical and engineering interest
are characterized by a large number of uncertainties. These are non-Gaussianly dis-
tributed and quite frequently their higher-order properties play a decisive role in the
statistics of the response/output. While Monte Carlo techniques provide the only
general method for uncertainty quantification in such systems and despite the signif-
icant progress of recent years, they might still require an infeasible number of calls
to the forward solver. The present paper introduced a Bayesian framework where
outputs from approximate, inexpensive solvers can be rigorously utilized in order to
accelerate the solution process. We made use of a flexible, non-parametric Bayesian
model and a general SMC-based inference engine that is able to establish a quantita-
tive link between approximate and exact solver. This can in turn be used to produce
estimates for the output statistics of interest and rigorous confidence bounds. While
this capability was not utilized in the examples presented, these credible intervals can
assist in minimizing the number of calls to the exact solver by performing runs in
selected regions that will be most informative. Furthermore it offers the capability
of utilizing multiple approximate solvers and it opens the door for designing or opti-
mizing systems in the presence of uncertainties based on establishing functions of the
output statistics with respect to the design variables.
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Fig. 3.11. Posterior mean of f(x; θ) and posterior density σ for various training sample sizes
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Fig. 3.12. Posterior mean and quantiles for Pr[y ≥ 0.521 | x] based on various sample sizes
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Fig. 3.13. Posterior for Pr[y ≥ y0] ∀y0 based on 100 training samples
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Fig. 3.14. Exact y vs. Approximate x = (x1, x2) response
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Fig. 3.15. Posterior mean of f(x; θ) and posterior density σ for 50 training samples
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Fig. 3.16. Posterior mean and quantiles for Pr[y ≥ y0], ∀y0 based on 50 training samples


