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“ ‘Where shall I begin, please your Majesty?’ he asked. ‘Begin at the
beginning,’ the King said, gravely, ‘and go on till you come to the end:
then stop.’ ”

Lewis Carroll





Abstract

Jonathan Deutscher et al. introduced a new algorithm, termed annealed particle
filter, for articulated body motion tracking. It is a modified particle filter that uses
a continuation principle, based on annealing, to introduce the influence of narrow
peaks in the fitness function, gradually. However, neither an analytical expression
for the quality of the estimates nor restrictions, that are necessary for the stability of
the algorithm, are given. We develop a mathematical framework, termed generalised
annealed particle filter, based on the same ideas as the heuristic annealed particle
filter. As a result, we are able to give estimates for the error and state conditions
that are sufficient for the convergence.
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1. Introduction

Many real-world applications require estimating the unknown state of a system from
some given observations at each time step. In the field of computer vision, the
observations are usually image sequences captured by one or more cameras, and the
discrete time steps are given by the frame rate of the cameras. Even though the
dynamics of the system are not known exactly in many situations, prior knowledge
is generally available to construct a suitable model. In the Bayesian approach to
dynamic state estimation, prior distributions for the states and likelihood functions
relating these states with the observations are derived from the model. In this
context, estimates of the states base on the posterior distribution obtained from
Bayes’ theorem. In order to avoid storing the complete data and to enable sequential
processing of the observations, recursive filters are suitable for this task. These filters
consist essentially of a prediction step, where the state is predicted for the next time
step according to the dynamical model, and an update step, where the prediction is
updated according to the latest observation.

If the model is linear and Gaussian, then the Kalman filter [Kalm60] is the optimal
recursive filter in order to minimise the mean square error between the true state and
its estimate. However, there are many situations where these assumptions do not
hold. Various filters, such as extended Kalman filter ([Jazw70], [Gelb01]), unscented
Kalman filter [JuUh97], Gaussian sum approximations [AlSo72] and grid-based filters
[PoWH88], have been developed to deal with this problem. An overview is given
in [AMGC02]. But these, besides the last one, are only suboptimal solutions since
they approximate the nonlinearity and non-Gaussianity of the model, for example
by Taylor expansion or by using a sum of Gaussian distributions. When the set of
states is uncountable, the grid-based filters are computationally expensive in high
dimensions.

Sequential Monte Carlo methods are recursive Bayesian filters that base on Monte
Carlo simulations [HaHa67] and provide a convenient approach to approximate the
posterior distributions. This technique is known as bootstrap filtering [GoSS93], con-
densation [IsBl96], Monte Carlo filters [KiGe96], interacting particle approximations
[Mora04], survival of the fittest [KaKR95] and particle filters [DoFG01] depending
on the area of research. Though the ideas go back to the 70s, these methods have be-
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come very popular due to the extraordinary increase of computational power only in
the last few years. During this time, the methods have been successfully applied to a
wide range of applications, where several examples are discussed in [DoFG01]. The
mathematical fundamentals, including convergence results, have been developed fur-
ther by Pierre del Moral in [Mora98] and [MoMi00]. A survey of convergence results
is given in [CrDo02].

Various improvements of the particle filters have been proposed such as the regu-
larised particle filter [DoFG01, Chapter 12] and the auxiliary particle filter [DoFG01,
Chapter 13]. Another modified particle filter, termed annealed particle filter, was in-
troduced for articulated body motion tracking by Jonathan Deutscher et al. [DeBR00].
It uses a continuation principle, based on annealing, to introduce the influence of
narrow peaks in the fitness function, gradually. The algorithm is motivated by sim-
ulated annealing [KiJV83], which is a Markov chain based method for optimisation.
In contrast to [BlIs00] and [HSFl00], the dynamics are very simply modelled. God-
sill and Clapp [DoFG01, Chapter 7] suggested to use a similar idea for the filtering
problem.

1.1 Purpose

Jonathan Deutscher et al. showed that the annealed particle filter works well for
articulated body motion tracking. However, neither an analytical expression for the
quality of the estimates nor restrictions, that are necessary for the stability of the
algorithm, are given. Such results are very helpful for improvements, comparison
with other approaches and use in different applications, as the filtering problem.
Thus, we develop a mathematical framework, termed generalised annealed particle
filter, based on the same ideas as the heuristic annealed particle filter. As a result,
we are able to give estimates for the error and state conditions that are sufficient
for the convergence. Moreover, we evaluate the various parameters of the algorithm
and compare the annealed particle filter with the generic particle filter.

1.2 Outline

The thesis is divided into two parts. The first part containing Chapter 2 - 6 treats the
mathematical framework of the annealed particle filter. A compact overview over the
mathematical foundations, which are essential for the succeeding chapters, is given
in Chapter 2. The filtering problem is stated in Chapter 3. Furthermore, a theorem
is proved that establishes necessary and sufficient conditions for the convergence
of an approximating sequence to the posterior distribution. The generic particle
filter and its mathematical properties, such as convergence and rate of convergence,
are discussed in Chapter 4. In Chapter 5, an interacting annealing algorithm is
derived that combines the idea of annealing with particle filtering. Moreover, we
prove the convergence of the algorithm. The mathematical framework is completed
by connecting the generic particle filter with the interacting annealing algorithm in
Chapter 6. In the second part, Chapter 7, two applications are used to evaluate the
annealed particle filter with various parameter settings and compare this with the
generic particle filter.
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We give a minimalistic summary of important probabilistic tools needed in the fol-
lowing chapters, where we assume that the basics of measure and probability theory,
particularly conditional expectation, are known. We recommend the books [Baue90]
and [Baue91], [Bill95] or [Shir84] to readers who are unfamiliar with this subject. In
the following, we will often cite from these books.

2.1 Notation

The notation is similar to that used in [Mora04]. Let (Ω,F , P ) be a probability
space and let (E, E) be a measurable space, where E denotes the σ-field of Borel
subsets of E.

First, we introduce some standard notations:

• B(E) - set of bounded E-measurable functions f : E → R;

• Cb(E) - set of bounded continuous functions f : E → R;

• Cc(E) - set of compactly supported continuous functions f : E → R;

• P(E) - set of probability measures on E .

We have Cc(E) ⊂ Cb(E) since a continuous function on a compact set attains its
maximum and minimum values on the set.

We will also use the supremum norm

‖f‖∞ := sup
x∈E
|f(x)| ,

for all f ∈ Cb(E), and the total variation distance

‖µ1 − µ2‖TV := sup
A∈E
|µ1(A)− µ2(A)| ,

for all µ1, µ2 ∈ P(E).
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The following condition is necessary so that a measure µ possesses a density f with
respect to a measure ν, i.e.

µ(B) =

∫

B

fdν ∀B ∈ E .

Definition 2.1.1. [Baue90, Definition 17.7] A measure µ on E is called absolutely
continuous with respect to a measure ν on E if

ν(B) = 0 ⇒ µ(B) = 0

for all B ∈ E .

If E = R
d and ν is the Lebesgue measure on B(Rd), or if ν is a probability measure,

then the Radon-Nikodym theorem [Baue90, Theorem 17.10] shows that the condition
is also sufficient. The density f is ν-almost surely unique and also called Radon-
Nikodym derivative written as

dµ

dν
= f ν − a.s.

2.2 Weak Convergence

Definition 2.2.1. [Baue90, Definition 30.7] Let (µn)n∈N be a sequence of probability
measures on

(
R
d,B(Rd)

)
and let µ be a probability measure on

(
R
d,B(Rd)

)
. Then

(µn)n∈N converges weakly to µ if

lim
n→∞

∫
f dµn =

∫
f dµ ∀f ∈ Cb(Rd).

The weak convergence is commonly denoted by µn
w−→ µ.

2.3 Markov processes

We consider an E-valued stochastic process (Xt)t∈N0 , that means a stochastic process
with state space (E, E).

Definition 2.3.1. [Baue91, Definition 36.1] A kernel on E is a function

K : E × E → [0,∞]

such that

1. x 7→ K(x,B) is E-measurable ∀B ∈ E ;

2. B 7→ K(x,B) is a measure on E ∀x ∈ E.

The kernel is called Markov if K(x, E) = 1.
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Let f ∈ B(E), µ ∈ P(E) and let K and L be kernels on E. We will use the following
notations:

〈µ, f〉 =

∫

E

f(x)µ(dx),

〈K, f〉(x) =

∫

E

f(y)K(x, dy),

〈µ,K〉(B) =

∫

E

K(x,B)µ(dx),

(KL)(x,B) =

∫

E

L(y, B)K(x, dy),

for all x ∈ E and B ∈ E .

Definition 2.3.2. [Mora04, Definition 4.2.1] The Dobrushin contraction or ergodic
coefficient β(K) ∈ [0, 1] of a Markov kernel K on E is defined by

β(K) := sup
x1,x2∈E

‖K(x1, ·)−K(x2, ·)‖TV .

Let K1 and K2 be Markov kernels, then we have

β(K1K2) ≤ β(K1) β(K2), (2.3.1)

as given in [SeVa05] and [Gida95, Section 3.2].

We define a Markov process according to [Baue91, Chapter 42] as follows:

Definition 2.3.3. An E-valued Markov process X = (Ω,A, P, (Xt)t∈N0) is an E-
valued stochastic process such that for s, t ∈ N0, 0 ≤ s ≤ t and B ∈ E

P (Xt ∈ B | Fs) = P (Xt ∈ B | Xs) a.s., (2.3.2)

where Fs := σ(Xs, . . . , X0). The family of Markov kernels (Kt)t∈N0 defined by

Kt(x,B) := P (Xt+1 ∈ B | Xt = x),

for all x ∈ E, B ∈ E and t ∈ N0, is called family of transition kernels. In the
case where Kt = K for all t ∈ N0, the Markov process is called time-homogeneous,
otherwise time-inhomogeneous.

For time-homogeneous processes, we simplify the notation, and we denote by Kn

the kernel for n transitions, i.e. Kn = KKn−1 with K0 = Id.

Definition 2.3.4. [RoWi01, Chapter III.6] A family of transition kernels on E is
said to satisfy the Feller property if

〈Kt, f〉 ∈ Cb(E) ∀f ∈ Cb(E), (2.3.3)

for all t ∈ N0.
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We note that equation (2.3.2) can be rewritten as

E [1B ◦Xt | Fs] = E [1B ◦Xt | Xs] a.s.,

and therefore we get by a limit argument

E [f(Xt) | Fs] = E [f(Xt) | Xs] a.s., (2.3.4)

for all f ∈ B(E) and 0 ≤ s ≤ t.

Furthermore, we deduce from equation (2.3.4) a useful result. If A ∈ E , the definition
of a transition kernel yields

∫

{Xt∈A}

f(Xt+1) dP =

∫

A

E [f(Xt+1) | Xt = x]PXt
(dx)

=

∫

A

∫

E

f(y)Kt(x, dy)PXt
(dx)

=

∫

A

〈Kt, f〉(x)PXt
(dx)

=

∫

{Xt∈A}

〈Kt, f〉(Xt) dP .

Hence, we obtain

E [f(Xt+1) | Ft] = E [f(Xt+1) | Xt] = 〈Kt, f〉(Xt) a.s., (2.3.5)

for all f ∈ B(E) and t ∈ N0.

Finally, we remark that the distribution of the Markov process (Xt)t∈N0 is uniquely
determined by the family of transition kernels (Kt)t∈N0 and an initial distribution µ
since

P (Xt ∈ B) =

∫

E

∫

E

. . .

∫

E

Kt−1(xt−1, B)Kt−2(xt−2, dxt−1) . . .K0(x0, dx1)µ(dx0),

for all B ∈ E .

Definition 2.3.5. [MeTw93, Chapter 10] A probability measure ν on E is invariant
for the transition kernel K if

ν(B) = 〈ν,K〉(B) ∀B ∈ E .

In the case that the probability measure possesses a density f , we also say that K
leaves f invariant.



3. Filtering problem

We state the filtering problem as discussed in [DoFG01, Chapter 2] and [CrGr99].
Furthermore, we prove a theorem that establishes necessary and sufficient conditions
for the convergence of an approximating sequence to the distribution of interest,
which is given by the problem, in some sense.

3.1 Filtering Problem

Let X = (Xt)t∈N0 be an R
d-valued Markov process, called signal process, with a

family of transition kernels (Kt)t∈N0 satisfying the Feller property and initial distri-
bution η0. Let Y = (Yt)t∈N0 be an R

m-valued stochastic process, called observation
process, defined as

Yt = ht(Xt) +Wt for t > 0,

and Y0 = 0, where

1. ht : R
d → R

m is a continuous function for all t ∈ N,

2. Wt are independent m-dimensional random vectors and their distributions pos-
sess a density gt w.r.t. the Lebesgue measure λ,

3. gt ∈ Cb(Rm).

The filtering problem consists of computing the conditional distribution

ηt(B) := P (Xt ∈ B | Gt) , (3.1.1)

for all B ∈ B(Rd) or, alternatively,

〈ηt, f〉 = E [f(Xt) | Gt] a.s.,

for any function f ∈ B(Rd), where Gt := σ(Yt, . . . , Y0). We also introduce the
predicted conditional probability measure

η̂t(B) := P (Xt ∈ B | Gt−1) , (3.1.2)
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for all B ∈ B(Rd) and t > 0.

We have the following recurrence relations

dηt
dη̂t

=
gt(Yt − ht)∫

Rd gt(Yt − ht(x)) η̂t(dx)
η̂t − a.s. (3.1.3)

η̂t+1 = 〈ηt, Kt〉 (3.1.4)

almost surely, as shown in [DoFG01, p. 20].

3.2 Convergence

Let (Ω,F , P ) be a probability space and let (µn)n∈N be a sequence of random prob-
ability measures, that means µn : Ω→ P(Rd). Let either µ : Ω→ P(Rd) be another
random probability measure or µ ∈ P(Rd) be a deterministic probability measure.
We say that the sequence (µn)n∈N converges almost surely to µ if

P
(
ω : µn(ω)

w−→ µ(ω)
)

= 1 (3.2.1)

and
P
(
ω : µn(ω)

w−→ µ
)

= 1, (3.2.2)

respectively.

We note that the equations (3.2.1) or (3.2.2) imply, for any 1 ≤ p <∞,

lim
n→∞

E [|〈µn, f〉 − 〈µ, f〉|p] = 0,

for all f ∈ Cb(R
d). Let f ∈ Cb(R

d) and consider 〈µn, f〉 and 〈µ, f〉 as functions
on Ω. Then 〈µn, f〉 ∈ Lp(P ) converges almost surely to 〈µ, f〉 ∈ Lp(P ). Since
|〈µn(ω), f〉| ≤ ‖f‖∞ for all ω ∈ Ω, the dominated convergence theorem [Baue90,
Theorem 15.6] yields limn→∞

∫
|〈µn, f〉 − 〈µ, f〉|pdP = 0.

It is known, cf. [Baue90, Chapter 31], that there exists a countable set M that is
dense in Cc(R

d), with respect to uniform convergence. By ordering the functions
ϕ ∈ M \ {0} as ϕ1, ϕ2, . . . ,

dM(µ, ν) :=

∞∑

k=1

|〈µ, ϕk〉 − 〈ν, ϕk〉|
2k ‖ϕk‖∞

defines a metric on P(Rd), which generates the weak topology

lim
n→∞

νn = ν ⇔ lim
n→∞

dM(νn, ν) = 0.

Thus equations (3.2.1) and (3.2.2) are equivalent to

P
(
ω : lim

n→∞
dM(µn(ω), µ(ω)) = 0

)
= 1

and
P
(
ω : lim

n→∞
dM(µn(ω), µ) = 0

)
= 1,

respectively.
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Remark 3.2.1. It is easily seen that if

dk(ν
n, ν) := |〈νn, ϕk〉 − 〈ν, ϕk〉| → 0 as n→∞,

for all k ∈ N, then

lim
n→∞

dM(νn, ν)→ 0.

Let 0 < ε ≤ 4 and put l = d2 − log2(ε)e, where dae denotes the smallest integer
greater than or equal to a. Then we have

dM(νn, ν) =
∞∑

k=1

1

2k−1

dk(ν
n, ν)

2 ‖ϕk‖∞
≤

l∑

k=1

1

2k
dk(ν

n, ν)

‖ϕk‖∞
+

∞∑

k=l+1

1

2k−1
.

By assumption, there exists an n ∈ N such that

l∑

k=1

1

2k
dk(ν

n, ν)

‖ϕk‖∞
<
ε

2
.

Thus, we have

dM(νn, ν) <
ε

2
+

1

2l−1
≤ ε.

Remark 3.2.2. Let us assume that

P
(
ω : lim

n→∞
〈µn(ω), ϕ〉 = 〈µ(ω), ϕ〉

)
= 1 ∀ϕ ∈ M ⊂ Cb(R

d). (3.2.3)

Then we have that for all ϕ ∈ M exists Nϕ ∈ F such that P (Nϕ) = 0 and
〈µn(ω), ϕ〉 → 〈µ(ω), ϕ〉 for all ω ∈ N {

ϕ. Using Remark 3.2.1, we get

dM(µn(ω), µ(ω))→ 0 ∀ω ∈
⋂

ϕ∈M

N{
ϕ,

which yields P (ω : dM(µn(ω), µ(ω))→ 0) = 1. This shows that it is sufficient to
prove (3.2.3) in order to obtain (3.2.1). We get the same result in the case of a
deterministic probability measure µ.

We will state conditions for the convergence of the approximating sequences (ηnt )n∈N

and (η̂nt )n∈N to ηt and η̂t, respectively. We assume that ηnt and η̂nt are random
probability measures, such that

∫

Rd

gt(Yt − ht(x)) η̂nt (dx) > 0,

for all n, t ∈ N. Let also η̄nt be defined as random probability measure that is
absolutely continuous with respect to η̂nt and such that

dη̄nt
dη̂nt

=
gt(Yt − ht)∫

Rd gt(Yt − ht(x)) η̂nt (dx)
η̂nt − a.s. (3.2.4)

almost surely, for n, t ∈ N.
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Theorem 3.2.3. The sequences (ηnt )n∈N and (η̂nt+1)n∈N converge almost surely to ηt
and η̂t+1, respectively, i.e. in the sense of (3.2.1), for all t ∈ N0 if and only if

P
(
ω : ηn0 (ω)

w−→ η0

)
= 1, (3.2.5)

P
(
ω : lim

n→∞
dM
(
η̂nt+1(ω), 〈ηnt (ω), Kt〉

)
= 0
)

= 1, (3.2.6)

P
(
ω : lim

n→∞
dM
(
ηnt+1(ω), η̄nt+1(ω)

)
= 0
)

= 1, (3.2.7)

for all t ∈ N0.

Proof: ”⇐”: We will show that (ηnt )n∈N converges to ηt by induction on t. The
convergence of the sequence (η̂nt+1)n∈N to η̂t+1 also follows from the proof.

Let t = 0. Then the convergence of (ηn0 )n∈N is given by condition (3.2.5). Assume
that for a fixed t ∈ N0

P
(
ω : ηnt (ω)

w−→ ηt(ω)
)

= 1.

Let ϕ ∈ Cb(R
d). Then the Feller property (2.3.3) yields 〈Kt, ϕ〉 ∈ Cb(R

d). Using
Fubini’s theorem and the induction hypothesis, we obtain

|〈〈ηnt , Kt〉, ϕ〉 − 〈〈ηt, Kt〉, ϕ〉| = |〈ηnt , 〈Kt, ϕ〉〉 − 〈ηt, 〈Kt, ϕ〉〉| → 0 (3.2.8)

almost surely, as n→∞.

Since η̂t+1 = 〈ηt, Kt〉 by (3.1.4), we get

dM
(
η̂nt+1, η̂t+1

)
≤ dM

(
η̂nt+1, 〈ηnt , Kt〉

)
+ dM (〈ηnt , Kt〉, 〈ηt, Kt〉) a.s.

The first term of the right hand side converges almost surely to zero according to
(3.2.6), and also the second term converges to zero, which follows from (3.2.8) and
Remark 3.2.2. Hence, we have

P
(
ω : η̂nt+1(ω)

w−→ η̂t+1(ω)
)

= 1. (3.2.9)

Let ϕ ∈ Cb(R
d). We write g

Yt+1

t+1 (ω) instead of gt+1(Yt+1(ω) − ht+1) and note that

g
Yt+1

t+1 (ω) ∈ Cb(Rd) for all ω ∈ Ω. Using equations (3.1.3) and (3.2.4), we obtain

∣∣〈η̄nt+1, ϕ〉 − 〈ηt+1, ϕ〉
∣∣ =

∣∣∣∣∣
〈η̂nt+1, ϕg

Yt+1

t+1 〉
〈η̂nt+1, g

Yt+1

t+1 〉
− 〈η̂t+1, ϕg

Yt+1

t+1 〉
〈η̂t+1, g

Yt+1

t+1 〉

∣∣∣∣∣ (3.2.10)

≤
∣∣∣∣∣
〈η̂nt+1, ϕg

Yt+1

t+1 〉
〈η̂nt+1, g

Yt+1

t+1 〉
− 〈η̂

n
t+1, ϕg

Yt+1

t+1 〉
〈η̂t+1, g

Yt+1

t+1 〉

∣∣∣∣∣

+

∣∣∣∣∣
〈η̂nt+1, ϕg

Yt+1

t+1 〉
〈η̂t+1, g

Yt+1

t+1 〉
− 〈η̂t+1, ϕg

Yt+1

t+1 〉
〈η̂t+1, g

Yt+1

t+1 〉

∣∣∣∣∣

≤ ‖ϕ‖∞
〈η̂t+1, g

Yt+1

t+1 〉

∣∣∣〈η̂nt+1, g
Yt+1

t+1 〉 − 〈η̂t+1, g
Yt+1

t+1 〉
∣∣∣

+
1

〈η̂t+1, g
Yt+1

t+1 〉

∣∣∣〈η̂nt+1, ϕg
Yt+1

t+1 〉 − 〈η̂t+1, ϕg
Yt+1

t+1 〉
∣∣∣



3.2. Convergence 11

almost surely. Since the right hand side converges to zero almost surely as n → ∞
due to (3.2.9), condition (3.2.7) gives

dM
(
ηnt+1, ηt+1

)
≤ dM

(
ηnt+1, η̄

n
t+1

)
+ dM

(
η̄nt+1, ηt+1

)
→ 0

almost surely, as n→∞.

”⇒”: We now assume that dM (ηnt , ηt) and dM
(
η̂nt+1, η̂t+1

)
converge to zero al-

most surely, for all t ∈ N0. This implies in particular condition (3.2.5). Since
η̂t+1 = 〈ηt, Kt〉, we have furthermore

dM
(
η̂nt+1, 〈ηnt , Kt〉

)
≤ dM

(
η̂nt+1, η̂t+1

)
+ dM (〈ηnt , Kt〉, 〈ηt, Kt〉) a.s.

Applying again (3.2.8) and Remark 3.2.2, we obtain condition (3.2.6). Finally, we
get condition (3.2.7) along the lines of (3.2.10) by using the triangle inequality

dM(ηnt+1, η̄
n
t+1) ≤ dM(ηnt+1, ηt+1) + dM(η̄nt+1, ηt+1).

�
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4. Particle Filters

Particle filters provide a convenient approach to approximate the distribution of
interest without restriction to the linear and Gaussian case. This technique is also
known as bootstrap filtering [GoSS93], condensation [IsBl98], Monte Carlo filters
[KiGe96], interacting particle approximations [Mora04] and survival of the fittest
[KaKR95] depending on the area of research. In the following, we introduce a basic
particle filter and discuss its mathematical properties, such as convergence and rate
of convergence.

4.1 Generic Particle Filter

As in Chapter 3, we assume that the signal process X = (Xt)t∈N0 is an R
d-valued

Markov process with a family of transition kernels (Kt)t∈N0 satisfying the Feller
property and initial distribution η0 and that the observation process Y = (Yt)t∈N0 is
an R

m-valued stochastic process.

The generic particle filter (Algorithm 4.1) is a commonly used particle filter that
provides a basis for further developments and modifications for diverse applications.
The algorithm consists of the four steps “Initialisation”, “Prediction”, “Updating”
and “Resampling”. During the initialisation, we sample n times from the initial dis-
tribution η0. By saying that we sample x(i) from a distribution µ, for i = 1, . . . , n,
we mean that we simulate n independent random samples, also named particles,
according to µ. Hence, the n random variables (X

(i)
0,0)1≤i≤n are independent and

identically distributed (i.i.d.) according to η0. Afterwards, the values of the par-
ticles are predicted for the next time step according to the dynamics of the signal
process. During the “Updating” step, each predicted particle is weighted by the
likelihood function gt(yt − ht(·)), which is determined by the observation process.
The “Resampling” step can be regarded as a special case of a “Selection” step. The
particles are selected in accordance with the weighting function gt. This step gives
birth to some particles at the expense of light particles which die. The “Resampling”
step is not unique for the particle filters, for example, branching procedures are also
used, see for instance [CrGr99], [CrML99] or [DoFG01]. We restrict ourselves to
algorithms using the stated resampling procedure. The particle system is also called
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Algorithm 4.1 Generic Particle Filter

Requires: n number of particles and η0, (Kt)t∈N0 , (gt)t∈N, (ht)t∈N as defined in
Chapter 3

1. Initialisation

• t← 0

• For i = 1, . . . , n, sample x
(i)
0,0 from η0

2. Prediction

• For i = 1, . . . , n, sample x̄
(i)
t+1,0 from Kt(x

(i)
t,0, ·)

3. Updating

• For i = 1, . . . , n, set π
(i)
t+1,0 ← gt+1(yt+1 − ht+1(x̄

(i)
t+1,0))

• For i = 1, . . . , n, set π
(i)
t+1,0 ←

π
(i)
t+1,0

Pn
j=1 π

(j)
t+1,0

4. Resampling

• For i = 1, . . . , n, set x
(i)
t+1,0 ← x̄

(j)
t+1,0 with probability π

(j)
t+1,0

• t← t + 1 and go to step 2

interacting particle system [Mora98] since the particles are not independent after
resampling.

For the case of a one-dimensional signal process, the operation of the algorithm is
illustrated in Figure 4.1, where the grey circles represent the unweighted particles
after the “Prediction” step and the black circles represent the weighted particles
after the “Updating” step. While the horizontal positions of the particles indicate
their values in the state space of the signal process, the diameters of the black
circles indicate the particle weights, that is the larger the diameter the greater the
weight. As illustrated, the particles with great weight generate more offspring than
particles with lower weight during the “Resampling” step. In order to discuss the
mathematical properties of the algorithm, we use the following definitions.

Definition 4.1.1. [MacC00] A weighted particle is a pair (x, π) where x ∈ R
d and

π ∈ [0, 1]. A weighted particle set S is a sequence of finite sets of random variables
whose values are weighted particles: the nth member of the sequence is a set of n
random variables

S(n) = {(X (1),Π(1)), . . . , (X (n),Π(n))} ,

such that
∑n

i=1 Π
(n)
i = 1.

It is clear that every weighted particle set determines a sequence of random proba-
bility measures by

n∑

i=1

Π(i)δX(i) ,
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Resampling:

Prediction:

Updating:

particle

weighted particle

likelihood

Figure 4.1: Operation of the generic particle filter.

for n ∈ N.

The idea now is to approximate the conditional distribution ηt (3.1.1) by an appro-
priate weighted particle set. We note that each step of the generic particle filter
defines a particle set and consequently a random probability measure:

ηn0 (ω) :=
1

n

n∑

i=1

δ
X

(i)
0,0(ω)

(Initialisation);

η̂nt (ω) :=
1

n

n∑

i=1

δ
X̄

(i)
t,0(ω)

(Prediction);

η̄nt (ω) :=
n∑

i=1

Π
(i)
t,0(ω)δ

X̄
(i)
t,0(ω)

(Updating);

ηnt (ω) :=
1

n

n∑

i=1

δ
X

(i)
t,0(ω)

(Resampling).

Using these definitions, the algorithm is illustrated by the three separate steps

ηnt
Prediction−−−−−−−−→ η̂nt+1

Updating−−−−−−−−→ η̄nt+1

Resampling−−−−−−−−→ ηnt+1.

4.2 Convergence
Before we use the results from Section 3.2 to prove the convergence of the generic
particle filter, we need to establish that η̄nt satisfies (3.2.4). Obviously, η̄nt is ab-
solutely continuous with respect to η̂nt for t, n ∈ N. Let A ∈ B(Rd). Then we
have

η̄nt (ω)(A) =

1
n

∑n

i=1 gt(Yt(ω)− ht(X̄(i)
t,0(ω)))δ

X̄
(i)
t,0(ω))

(A)

1
n

∑n

i=1 gt(Yt(ω)− ht(X̄(i)
t,0(ω)))

=

∫
A
gt(Yt(ω)− ht(x)) η̂nt (ω)(dx)∫

Rd gt(Yt(ω)− ht(x)) η̂nt (ω)(dx)
,
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for all ω ∈ Ω, which yields (3.2.4).

Since the assumptions for Theorem 3.2.3 are satisfied, we have

P
(
ω : ηnt (ω)

w−→ ηt(ω)
)

= 1,

for all t ∈ N0, if the equations (3.2.5), (3.2.6) and (3.2.7) hold for all t ∈ N0. We
will prove by the following three lemmas that these equations are achieved by the
generic particle filter.

Lemma 4.2.1.
P
(
ω : ηn0 (ω)

w−→ η0

)
= 1.

Proof: (X
(i)
0,0)1≤i≤n are n i.i.d. random variables, which are distributed according to

η0 as mentioned above. Let ϕ ∈ Cb(Rd). Then by the strong law of large numbers
[Baue91, Theorem 12.1], we have

P

(
ω : lim

n→∞

1

n

n∑

i=1

ϕ
(
X

(i)
0,0(ω)

)
= 〈η0, ϕ〉

)
= 1,

and thus
P
(
ω : lim

n→∞
〈ηn0 (ω), ϕ〉 = 〈η0, ϕ〉

)
= 1.

Hence, the lemma follows from Remark 3.2.2. �

Lemma 4.2.2.

P
(
ω : lim

n→∞
dM
(
η̂nt+1(ω), 〈ηnt (ω), Kt〉

)
= 0
)

= 1 ∀t ∈ N0.

Proof: We note that the value of x̄
(i)
t+1,0 during the prediction step depends only on

x
(i)
t,0 and not on the values of x

(j)
t,0 for j 6= i, i.e.

E
[
X̄

(i)
t+1,0

X(1)
t,0 = x

(1)
t,0 , . . . , X

(n)
t,0 = x

(n)
t,0

]
= E

[
X̄

(i)
t+1,0

X(i)
t,0 = x

(i)
t,0

]
,

for all i. We define Ht := σ(X
(j)
t ; 1 ≤ j ≤ n), and let A ∈ B(Rd)⊗ . . .⊗ B(Rd) and

ϕ ∈ Cb(Rd). Then we obtain, similarly to (2.3.5),

∫

{(X
(1)
t,0 ,...,X

(n)
t,0 )∈A}

ϕ(X̄
(i)
t+1,0) dP

=

∫

A

E
[
ϕ(X̄

(i)
t+1,0)

X(1)
t,0 = x

(1)
t,0 , . . . , X

(n)
t,0 = x

(n)
t,0

]
P
X

(1)
t,0 ⊗...⊗X

(n)
t,0

(d(x
(1)
t,0 , . . . , x

(n)
t,0 ))

=

∫

A

〈Kt, ϕ〉(x(i)
t,0)PX(1)

t,0 ⊗...⊗X
(n)
t,0

(d(x
(1)
t,0 , . . . , x

(n)
t,0 ))

=

∫

{(X
(1)
t,0 ,...,X

(n)
t,0 )∈A}

〈Kt, ϕ〉(X (i)
t,0) dP .

Hence, we have

E
[
ϕ(X̄

(i)
t+1,0) | Ht

]
= 〈Kt, ϕ〉(X (i)

t,0) a.s., (4.2.1)
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for all 1 ≤ i ≤ n, ϕ ∈ Cb(Rd) and t ∈ N0.

Since the random variables X̄
(i)
t+1,0 are conditionally independent w.r.t. Ht, we get

E
[(
〈η̂nt+1, ϕ〉 − 〈〈ηnt , Kt〉, ϕ〉

)4]

=
1

n4
E




(

n∑

i=1

(
ϕ(X̄

(i)
t+1,0)− 〈Kt, ϕ〉(X (i)

t,0)
))4





=
1

n4

{
n∑

i=1

E

[(
ϕ(X̄

(i)
t+1,0)− 〈Kt, ϕ〉(X (i)

t,0)
)4
]

+ 6
∑

1≤i<j≤n

E

[(
ϕ(X̄

(i)
t+1,0)− 〈Kt, ϕ〉(X (i)

t,0)
)2 (

ϕ(X̄
(j)
t+1,0)− 〈Kt, ϕ〉(X (j)

t,0 )
)2
]

+

n∑

i=1

E
[(
ϕ(X̄

(i)
t+1,0)− 〈Kt, ϕ〉(X (i)

t,0)
)
Ai

]}
,

where Ai can be written as the sum of the terms

c
n∏

j=1
j 6=i

(
ϕ(X̄

(j)
t+1,0)− 〈Kt, ϕ〉(X (j)

t,0 )
)kj

with c ∈ N and kj ∈ N0, such that
∑

j 6=i kj = 3. Since X̄
(i)
t+1,0 and Ai are conditionally

independent w.r.t. Ht for all i, (4.2.1) yields

E
[(
ϕ(X̄

(i)
t+1,0)− 〈Kt, ϕ〉(X (i)

t,0)
)
Ai

]

= E
[
E
[(
ϕ(X̄

(i)
t+1,0)− 〈Kt, ϕ〉(X (i)

t,0)
)
Ai

Ht

]]

= E
[
E
[
ϕ(X̄

(i)
t+1,0)− 〈Kt, ϕ〉(X (i)

t,0)
Ht

]
E
[
Ai

Ht

]]
= 0.

Therefore we have

E
[(
〈η̂nt+1, ϕ〉 − 〈〈ηnt , Kt〉, ϕ〉

)4] ≤ 1

n4

(
48n2 ‖ ϕ ‖4∞ −32n ‖ ϕ ‖4∞

)
≤ 48 ‖ ϕ ‖4∞

n2
.

Let ε > 0. Markov’s inequality [Bill95, Section 21] gives

∞∑

n=1

P
(
| 〈η̂nt+1, ϕ〉 − 〈〈ηnt , Kt〉, ϕ〉 |≥ ε

)
≤ 1

ε4

∞∑

n=1

E
[(
〈η̂nt+1, ϕ〉 − 〈〈ηnt , Kt〉, ϕ〉

)4]
<∞,

and thus the Borel-Cantelli lemma [Shir84, Chapter II.10] yields

P

(
lim sup

n

{
| 〈η̂nt+1, ϕ〉 − 〈〈ηnt , Kt〉, ϕ〉 |≥ ε

})
= 0.

Consequently, the lemma is proved according to [Shir84, Corollary II.10.1] and Re-
mark 3.2.2. �

The “Resampling” step can be modelled as follows. Let (Ω′,F ′, Q) be another prob-
ability space on which a sequence of i.i.d. real random variables (κi)1≤i≤n, uniformly
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distributed on the interval [0, 1], is defined. We set on the extended probability space
(Ω̃, F̃ , P̃ ) := (Ω× Ω′,F ⊗ F ′, P ⊗Q) the resampling process

X
(i)
t,0(ω, ω

′) := X̄
(Ji

t(ω,ω
′))

t,0 (ω),

for 1 ≤ i ≤ n, where

J it (ω, ω
′) :=

n∑

l=1

l × 1ιlt(ω)(κi(ω
′))

and

ι1t (ω) :=
[
0,Π

(1)
t,0 (ω)

)
,

ιlt(ω) :=

[
l−1∑

i=1

Π
(i)
t,0(ω),

l∑

i=1

Π
(i)
t,0(ω)

)
for 1 < l < n,

ιnt (ω) :=

[
n−1∑

i=1

Π
(i)
t,0(ω), 1

]
.

Without loss of generality, we assume that the random variables (κi)1≤i≤n are defined
on (Ω,F , P ), i.e.

ηnt (ω) =
1

n

n∑

i=1

δ
X

(i)
t,0(ω)

=
1

n

n∑

i=1

δ
X̄

(Ji
t
(ω))

t,0 (ω)
.

Lemma 4.2.3.

P
(
ω : lim

n→∞
dM
(
ηnt+1(ω), η̄nt+1(ω)

)
= 0
)

= 1 ∀t ∈ N0.

Proof: First, we note that

P
(
J it+1 = l | H̄t+1

)
= Π

(l)
t+1,0 a.s.,

for 1 ≤ i, l ≤ n, where H̄t+1 := σ(X̄
(i)
t+1,0; 1 ≤ i ≤ n). Let ϕ ∈ Cb(Rd). Then we have

E
[
ϕ(X̄

(Ji
t+1)

t+1,0 )
 H̄t+1

]
=

n∑

l=1

E
[
ϕ(X̄

(l)
t+1,0)

 H̄t+1

]
P
(
J it+1 = l

 H̄t+1

)

=

n∑

l=1

ϕ(X̄
(l)
t+1,0)Π

(l)
t+1,0

= 〈η̄nt+1, ϕ〉 a.s. (4.2.2)

Since the random variables X̄
(Ji

t+1)

t+1,0 are conditionally independent w.r.t. H̄t+1, we get

E
[(
〈ηnt+1, ϕ〉 − 〈η̄nt+1, ϕ〉

)4]

=
1

n4

{
n∑

i=1

E

[(
ϕ(X̄

(Ji
t+1)

t+1,0 )− 〈η̄nt+1, ϕ〉
)4
]

+ 6
∑

1≤i<j≤n

E

[(
ϕ(X̄

(Ji
t+1)

t+1,0 )− 〈η̄nt+1, ϕ〉
)2
(
ϕ(X̄

(Jj
t+1)

t+1,0 )− 〈η̄nt+1, ϕ〉
)2
]

+

n∑

i=1

E
[(
ϕ(X̄

(Ji
t+1)

t+1,0 )− 〈η̄nt+1, ϕ〉
)
Ai

]}
,
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where X̄
(Ji

t+1)

t+1,0 and Ai are conditionally independent w.r.t. H̄t+1 for all i. Thus (4.2.2)
yields

E
[(
ϕ(X̄

(Ji
t+1)

t+1,0 )− 〈η̄nt+1, ϕ〉
)
Ai

]

= E
[
E
[
ϕ(X̄

(Ji
t+1)

t+1,0 )− 〈η̄nt+1, ϕ〉
 H̄t+1

]
E
[
Ai

H̄t+1

]]
= 0.

Therefore we have

E
[(
〈ηnt+1, ϕ〉 − 〈η̄nt+1, ϕ〉

)4] ≤ 48 ‖ ϕ ‖4∞
n2

.

The lemma follows by the same arguments as used in Lemma 4.2.2. �

In summary, we have proved the convergence of the generic particle filter in the sense
of

Theorem 4.2.4.
P
(
ω : ηnt (ω)

w−→ ηt(ω)
)

= 1.

4.3 Rate of Convergence

The convergence of the mean square error toward zero follows directly from Theo-
rem 4.2.4, as seen from equation (3.2). When applying, however, one is not only
interested in the convergence of the generic particle filter but also in the rate of con-
vergence. The latter additionally provides an estimate for the number of particles
needed to achieve a certain level of error.

We omit the proof for the following theorem, which gives an estimate for the con-
vergence rate and can be found in [CrDo02], since similar arguments as in Section
4.2 are used.

Theorem 4.3.1. For all t ∈ N0, there exists ct independent of n such that

E
[
(〈ηnt , ϕ〉 − 〈ηt, ϕ〉)2

]
≤ ct
‖ϕ‖2∞
n

, (4.3.1)

for all ϕ ∈ B(Rd).

Equation (4.3.1) shows that the rate of convergence of the mean square error is of
order 1/n. However, ct depends on t and, without any additional assumption, ct
actually increases over time. This is not very satisfactory in applications as this
implies that one needs an increasingly larger number of particles as time t increases
to ensure a given precision. We will establish an in time uniform convergence result
under additional assumptions on the filtering problem. The idea of preventing an
increasing error is to ensure that any error is forgotten fast enough. For this purpose,
we define a so-called mixing condition in accordance with [GlOu04] and [MoGu01].

Definition 4.3.2. A kernel on E is called mixing if there exists a constant 0 < ε ≤ 1
and a measure µ on E such that

εµ(B) ≤ K(x,B) ≤ 1

ε
µ(B), (4.3.2)

for all x ∈ E and B ∈ E .
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This strong assumption means that the measure K(x, ·) depends very “weakly” on
x. It can typically only be established when E ⊂ R

d is a bounded subset. We give
two examples where the kernels are not mixing.

Example 4.3.3. Let E = {a, b} and K(x,B) := εx(B) for all x ∈ E and B ∈ E,
where E = {∅, {a}, {b}, E}. Assume that K is mixing. Then from inequality (4.3.2),
we get the following contradiction

K(a, {b}) = εa({b}) = 0 ⇒ µ({b}) = 0,

K(b, {b}) = εb({b}) = 1 ⇒ µ({b}) > 0.

Example 4.3.4. Let E = R and

K(x,B) :=
1√

2πσ2

∫

B

exp

(−(x− y)2

2σ2

)
dy.

Suppose there exists an ε > 0 and a measure µ such that the inequality (4.3.2) is
satisfied. We note that for any x ∈ R

K(x,B) = 0 ⇔ µ(B) = 0,

where B ∈ B(R). If, in particular, B = [0, 1], then K(x,B) > 0 yields µ(B) > 0.
Hence, there exists ε∗ > 0 such that for all x ∈ R

ε∗ := ε µ(B) ≤ K(x,B).

By putting x < −
√
− ln(2πσ2ε2

∗)σ, however, we obtain

K(x,B) =
1√

2πσ2

∫ 1

0

exp

(−(x− y)2

2σ2

)
dy ≤ 1√

2πσ2
exp

(−x2

2σ2

)
< ε∗.

This example demonstrates that if E is not bounded then the kernel is not mixing
even in the Gaussian case.

0,2

1

0,1

0

0,4

0,3

Figure 4.2: A Gaussian kernel K(x,B) satisfies the mixing condition only if the set
is bounded. When the set is R and thus unbounded, one simply moves x, which is
the mean, to −∞ such that the integral over B = [0, 1] gets smaller than any given
ε∗ > 0.

Le Gland and Oudjane [GlOu04] showed the uniform convergence of the generic
particle filter (Theorem 4.3.5) by using the mixing condition as follows. Let us
consider for all ω ∈ Ω the family of random kernels (Rt)t∈N0 defined by

Rt(x,B)(ω) :=

∫

B

gt+1(Yt+1(ω)− ht+1(y))Kt(x, dy),

for all x ∈ E ⊂ R
d, B ∈ E and t ∈ N0.
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Theorem 4.3.5. If the family of random kernels (Rt)t∈N0 is mixing with εt ≥ ε > 0,
then there exists a constant c(ε) independent of n such that

E
[
(〈ηnt , ϕ〉 − 〈ηt, ϕ〉)2] ≤ c(ε)

‖ϕ‖2∞
n

,

for all t ∈ N0 and ϕ ∈ B(Rd).

Remark 4.3.6. The mixing condition (4.3.2) can be relaxed such that the density
dK(x, ·)/dµ is not µ-almost surely greater than or equal to ε > 0 but may vanish
on a part of the state space, as shown in [ChLi04].
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5. Interacting Annealing
Algorithm

We derive an interacting annealing algorithm that combines the idea of annealing
with particle filtering. For this purpose, we introduce the Metropolis-Hastings algo-
rithm that is relevant for annealed importance sampling, which is an algorithm that
uses annealing for sampling. The latter forms the basis of the interacting annealing
algorithm. Moreover, we draw up a mathematical model and prove the convergence
of the two algorithms.

5.1 Introduction

Before we go into detail, we sketch the idea of annealing. As seen in the top left
image of Figure 5.1, it may happen that the predicted particles differ significantly
from the“true”state resulting in a poor estimate for the signal. This could be caused
by a rare event in the context of the filtering problem or by a fast movement of the
observed object in the context of tracking. In order to obtain a better estimate in
this situation, the idea is to move the particles towards the global maximum of the
weighting function. One approach is to repeat the procedure, that means diffusing
the particles, weighting the particles and resampling, several times before the next
time step, as illustrated in Figure 5.1. We refer to it as repetition effect . This may
work well as long as there are no local maxima. However, as seen on the left hand
side of Figure 5.2, the particles might get stuck in a local maximum. Then the
repetition effect fails since the particles are misguided by the local maximum. For
avoiding this misbehaviour, the particles are weighted by the weighting function only
in a final step. Previously, the particles are weighted by smoothed versions of the
original weighting function, where the influence of the local maxima is reduced first
but increases gradually. This approach helps to overcome the problem with the local
maxima, as demonstrated on the right hand side of Figure 5.2. We call it annealing
effect . In the following sections, we discuss how to take advantage of this effect in
the context of the filtering problem.
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Figure 5.1: Repetition effect: the particles move to the maximum.

5.2 Metropolis-Hastings Algorithm

The Metropolis-Hastings algorithm is a method for sampling from a target distribu-
tion ν(dx) = f(x)λ(dx) defined on (X ,B(X )), where X ⊆ R

k. It was introduced by
Metropolis [MRRT+53] and generalised by Hastings [Hast70]. The basic principle is
to use a Markov process (Yk)k∈N0, such that the probability measure ν is invariant
for the transitions. The initial distribution µ of the Markov process is usually the
Dirac measure δx for a given x ∈ X . The transitions are determined by the following
procedure:

Algorithm 5.1 Metropolis-Hastings Algorithm
Requires: target distribution ν, initial distribution µ and proposal distribution T

1. • k ← 0

• Sample y0 from µ

2. • Sample y′k from T (yk, ·)
• Take

yk+1 =

{
y′k with probability p(yk, y

′
k)

yk otherwise,

where

p(x, y) = min

{
f(y)

f(x)

g(y, x)

g(x, y)
, 1

}
.

• k ← k + 1 and go to step 2
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Figure 5.2: Without an annealing effect, the particles get stuck in the local maximum
(left). In order that the particles escape from the local maximum, the annealing effect
is used (right).
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Suppose that yk ∈ X is generated by the algorithm. Then y′k is sampled from
the distribution T (yk, ·), termed proposal distribution, where we assume that the
distribution possesses a density, that is T (x, dy) = g(x, y)λ(dy). The new value
y′k is always accepted if the ratio f(y′k)/g(yk, y

′
k) is greater than or equal to the

previous value f(yk)/g(y
′
k, yk). If g is symmetric, the acceptance is controlled by the

likelihood ratio f(y′k)/f(yk). However, if the ratio decreases, y′k is not automatically
rejected. Instead, it is possible that the new value is accepted. An useful feature
of the method is that if the process forgets its initial distribution µ, for a sufficient
large k∗, Yk∗ can be considered as distributed from ν.

The algorithm generates a Markov process with initial distribution µ and transition
kernel

K(x, dy) = p(x, y)T (x, dy) + (1− r(x)) δx(dy), (5.2.1)

where r(x) =
∫
p(x, y)T (x, dy). Under the assumption that f and g are strictly

positive, it can be shown that the process is reversible and f is invariant. If, in
addition, f is bounded on every compact set and there exist ε > 0 and δ > 0 such
that g(x, y) > ε for all x and y with |x− y| < δ, then

lim
n→∞

∥∥∥∥
∫
Kn(x, ·)µ(dx)− ν

∥∥∥∥
TV

= 0.

For a more extensive discussion and proofs, see [RoCa02, Chapter 6] for instance.

Example 5.2.1. Let us suppose that the target distribution is a Boltzmann-Gibbs
measure, which is the case in many applications. It is defined in terms of a common
“energy” function V ≥ 0 and an inverse “temperature” β ≥ 0 by

ν(dx) :=
1

Z
exp (−βV (x)) λ(dx),

where Z := 〈λ, exp(−βV )〉. Whenever g is symmetric we find that

p(x, y) = exp
(
−β (V (y)− V (x))+) ,

where (a)+ denotes max{a, 0}.

5.3 Annealed Importance Sampling

The annealed importance sampling method was proposed by Neal [Neal98] and is
motivated by simulated annealing ([KiJV83], [AaKo89]). A sequence of densities
(fs)1≤s≤t is used to interpolate between some initial distribution µ0 with density f0

and the target density ft+1 in order to generate weighted particles (y
(i)
t+1, π

(i)). It is
assumed that 〈λ, ft+1〉 < ∞ and supp(fs) ⊂ supp(fs+1), i.e. fs+1(x) > 0 whenever
fs(x) > 0. Furthermore, we denote by f norm the normalised density, i.e.

fnorm(x) =
1

〈λ, f〉f(x).

In order to sample from the sequence of densities, transition kernels Ts(ys, ·) with
densities gs are used that leave fnorm

s+1 invariant for 0 ≤ s ≤ t. This can be achieved by
Gibbs sampling [GeGe84], see [RoCa02, chapter 7] for instance, or by the Metropolis-
Hastings algorithm with target density fs+1 and initial distribution δys

.



5.3. Annealed Importance Sampling 27

Algorithm 5.2 Annealed Importance Sampling

Requires: number of particles n, number of runs t, initial distribution µ0, densities
(fs)1≤s≤t and transitions (Ts)0≤s≤t

1. • s← 0

• For i = 1, . . . , n, set π(i) ← 1

• For i = 1, . . . , n, sample y
(i)
0 from µ0

2. • For i = 1, . . . , n, set π(i) ← fs+1(y
(i)
s )

fs(y
(i)
s )

π(i)

• For i = 1, . . . , n, sample y
(i)
s+1 from Ts(y

(i)
s , ·)

• Until s < t: s← s+ 1 and go to step 2

3. • For i = 1, . . . , n, set π(i) ← π(i)
Pn

j=1 π
(j)

The sequence (fs)1≤s≤t is defined as

fs(x) = ft+1(x)
βsf0(x)

1−βs

according to some appropriate schedule 0 < β1 < β2 < . . . < βt < 1. We note that
〈λ, fs〉 < ∞ for all s. Furthermore, we will use the notation d(x1, . . . , xt) to denote
an infinitesimal neighbourhood of (x1, . . . , xt) ∈ X × . . .× X , where X ⊂ R

d is the
state space.

To validate the sampling scheme, we extend the state space to
∏t+1

s=0X and define
on
⊗t+1

s=0 B(X ) the measure

Pft+1(d(y0, . . . , yt+1)) := ψ(y0, . . . , yt+1)λ
t+2(d(y0, . . . , yt+1)),

where λt+2 :=
⊗t+1

s=0 λ,

ψ(y0, . . . , yt+1) := g′0(y1, y0) g
′
1(y2, y1) . . . g

′
t(yt+1, yt) f

norm

t+1 (yt+1)

and T ′
s(x, dy) := g′s(x, y)λ(dy) is the reversal of the transition kernel Ts. That is

g′s(x, y) =
gs(y, x) f

norm

s+1 (y)

fnorm

s+1 (x)
=
gs(y, x) fs+1(y)

fs+1(x)
. (5.3.1)

The invariance of fnorm

s+1 with respect to Ts ensures that
∫
T ′
s(x, dy) =

∫
gs(y, x) f

norm

s+1 (y)

fnorm

s+1 (x)
λ(dy) = 1.

Thus we have that Pft+1 is a probability measure.

The weighted particle set defined by the algorithm determines a sequence of random
probability measures by

pnt+1(ω) :=
n∑

i=1

Π(i)(ω)δ
Y

(i)
t+1(ω)

that converges to the probability measure pt+1(dx) := fnorm

t+1 (x)λ(dx) as the following
lemma shows.



28 5. Interacting Annealing Algorithm

Lemma 5.3.1.
P
(
ω : pnt+1(ω)

w−→ pt+1

)
= 1.

Proof: The joint distribution Pf0 of (Y0, . . . , Yt+1), which is defined by the annealed
importance sampling procedure, possesses a density

φ(y0, . . . , yt+1) = gt(yt, yt+1) gt−1(yt−1, yt) . . . g0(y0, y1) f0(y0)

with respect to λt+2. Using (5.3.1) on the other hand, we obtain

ψ(y0, . . . , yt+1) =
fnorm

t+1 (yt+1)

ft+1(yt+1)
gt(yt, yt+1) . . .

f2(y1)

f1(y1)
g0(y0, y1) f1(y0).

The unnormalised weight π̃ can now be expressed as

π̃(y0, . . . , yt+1) =

t∏

s=0

fs+1(ys)

fs(ys)
= 〈λ, ft+1〉

fnorm

t+1 (yt+1)

ft+1(yt+1)

t∏

s=0

fs+1(ys)

fs(ys)

= 〈λ, ft+1〉
ψ(y0, . . . , yt+1)

φ(y0, . . . , yt+1)
. (5.3.2)

Let ϕ ∈ Cb(X ) and ϕ̄ ∈ Cb(
∏t+1

s=0X ) defined by ϕ̄(y0, . . . , yt+1) := ϕ(yt+1). Since the

random variables Ȳ (i) := (Y
(i)
0 , . . . , Y

(i)
t+1) are i.i.d. by definition, it follows from the

strong law of large numbers [Baue91, Theorem 12.1] that

lim
n→∞

1

n

n∑

i=1

ϕ̄
(
Ȳ (i)

) ψ
(
Ȳ (i)

)

φ
(
Ȳ (i)

) =

∫
ϕ̄(ȳ)ψ(ȳ)

φ(ȳ)
Pf0(dȳ) a.s.

and

lim
n→∞

1

n

n∑

i=1

ψ
(
Ȳ (i)

)

φ
(
Ȳ (i)

) =

∫
ψ(ȳ)

φ(ȳ)
Pf0(dȳ) =

∫
Pft+1(dȳ) = 1 a.s.

Using the two limit values, we obtain

〈pnt+1, ϕ〉 =
n∑

i=1

Π(i)ϕ
(
Y

(i)
t+1

)
=

1
n

∑n

i=1
1

〈λ,ft+1〉
π̃
(
Ȳ (i)

)
ϕ̄
(
Ȳ (i)

)

1
n

∑n
i=1

1
〈λ,ft+1〉

π̃
(
Ȳ (i)

)

=

1
n

∑n
i=1 ϕ̄

(
Ȳ (i)

) ψ(Ȳ (i))
φ(Ȳ (i))

1
n

∑n

i=1

ψ(Ȳ (i))
φ(Ȳ (i))

n→∞−→
∫ ∫

. . .

∫
ϕ(yt+1)T

′
0(y1, dy0) . . . T

′
t (yt+1, dyt) pt+1(dyt+1)

=

∫
ϕ(yt+1) pt+1(dyt+1)

almost surely. Hence, the lemma follows from Remark 3.2.2. �

Remark 5.3.2. The original algorithm introduced by Neal [Neal98] does not sample
yt+1 from Tt(yt, ·) in the last iteration and uses pnt+1(ω) :=

∑n

i=1 Π(i)(ω)δ
Y

(i)
t (ω)

as

approximation instead. Indeed, one would omit the last sampling procedure in
practice. Moreover, Lemma 5.3.1 would still hold. This can be proved along the
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lines of the proof above. In this case the probability measure Pft+1 on
⊗t

s=0 B(X )
is defined by the density

ψ(y0, . . . , yt) := g′0(y1, y0) . . . g
′
t−1(yt, yt−1) f

norm

t+1 (yt),

and φ becomes

φ(y0, . . . , yt) = gt−1(yt−1, yt) . . . g0(y0, y1) f0(y0).

Hence, the unnormalised weight satisfies the equation (5.3.2) since

〈λ, ft+1〉
ψ(y0, . . . , yt)

φ(y0, . . . , yt)
= 〈λ, ft+1〉

fnorm

t+1 (yt)

ft(yt)

t−1∏

s=0

fs+1(ys)

fs(ys)
= π̃(y0, . . . , yt).

Example 5.3.3. As in Example 5.2.1, we consider a Boltzmann-Gibbs measure,
namely

ν(dx) :=
1

〈λ, g〉g(x)λ(dx),

where g(x) := exp(−V (x)). Let µ0 be the initial distribution with density h.
We set the target density ft+1(x) := h(x)g(x). Then we get for a given schedule
0 = β0 < β1 < β2 < . . . < βt < βt+1 = 1

fs(x) = h(x)g(x)βs,

for 0 ≤ s ≤ t+ 1. Hence, the unnormalised weight reduces to

π̃ =

t∏

s=0

exp (−(βs+1 − βs)V (ys)) .

There can be problems of degeneracy in the particle filter when the conditional distri-
bution ηt (3.1.1) does not overlap significantly with the predicted conditional proba-
bility measure η̂t (3.1.2) in the context of the filtering problem. One way to overcome
the deficiency is to incorporate annealed importance sampling (Algorithm 5.2) into
the generic particle filter (Algorithm 4.1). However as in [DoMo02], we found in our
simulations that this is not efficient, which is not astonishing. During the t annealing
steps the information of the n particles is not shared and the benefit of the algorithm
is devoured by the additional costs. In [DoFG01, chapter 7], the authors suggest to
combine the annealed importance sampling with resampling.

5.4 Interacting Metropolis Model

In the following sections of this chapter, we derive an interacting annealing algorithm
that combines the idea of annealing, as used for annealed importance sampling, with
particle filtering. The mathematical framework of the algorithm is described by an
interacting Metropolis model, which is a special Feynman-Kac model ([Mora04],
[MoDP04], [MoMi00]). This gives us the possibility to prove the convergence of the
algorithm and to estimate the rate of convergence.
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5.4.1 Feynman-Kac Model

Let (Xt)t∈N0 be anE-valued Markov process with family of transition kernels (Kt)t∈N0

and initial distribution η0. We denote by Pη0 the distribution of the Markov process,
i.e., for t ∈ N0,

Pη0 (d(x0, x1, . . . , xt)) = Kt−1(xt−1, dxt)Kt−2(xt−2, dxt−1) . . .K0(x0, dx1) η0(dx0),

and by E [·]η0 the expectation with respect to Pη0 . Moreover, let (gt)t∈N0 be a family
of nonnegative, bounded E-measurable functions such that

E

[
t∏

s=0

gs (Xs)

]

η0

> 0,

for any t ∈ N0. We now present the Feynman-Kac model associated with the se-
quence of pairs (gt, Kt).

Definition 5.1. The sequence of distributions (ηt)t∈N0 on E defined for any ϕ ∈ B(E)
as

〈ηt, ϕ〉 :=
〈γt, ϕ〉
〈γt, 1〉

,

where

〈γt, ϕ〉 := E

[
ϕ (Xt)

t−1∏

s=0

gs (Xs)

]

η0

, (5.4.1)

is called the Feynman-Kac model associated with the pair (gt, Kt).

Example 5.4.1. The functions (gt)t∈N0 are often unnormalised Boltzmann-Gibbs
measures

gt(x) = exp (−βt Vt(x)) .

Equation (5.4.1) then becomes

〈γt, ϕ〉 := E

[
ϕ (Xt) exp

(
−

t−1∑

s=0

βs V (Xs)

)]

η0

.

We now show that the Feynman-Kac model, as defined above, satisfies the recursive
equation

ηt+1 = 〈Ψt(ηt), Kt〉, (5.4.2)

where the Boltzmann-Gibbs transformation Ψt is defined by

Ψt (ηt) (dxt) :=
1

〈ηt, gt〉
gt(xt) ηt(dxt). (5.4.3)

Let ϕ ∈ B(E) and Ft = σ(Xt, . . . , X0). Then we get by the Markov property (2.3.5)

〈γt+1, ϕ〉 = E

[
E [ϕ (Xt+1) |Ft]η0

t∏

s=0

gs (Xs)

]

η0

= E

[
〈Kt, ϕ〉 (Xt)

t∏

s=0

gs (Xs)

]

η0

= E

[
(〈Kt, ϕ〉 gt) (Xt)

t−1∏

s=0

gs (Xs)

]

η0

= 〈γt, 〈Kt, ϕ〉 gt〉.
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Therefore 〈γt+1, 1〉 = 〈γt, gt〉, and we have

〈ηt+1, ϕ〉 =
〈γt+1, ϕ〉
〈γt+1, 1〉

=
〈γt, 〈Kt, ϕ〉 gt〉/〈γt, 1〉
〈γt, gt〉/〈γt, 1〉

=
〈ηt, 〈Kt, ϕ〉 gt〉
〈ηt, gt〉

=

∫

E

〈Kt, ϕ〉(xt)
gt(xt)

〈ηt, gt〉
ηt(dxt) = 〈Ψt(ηt), 〈Kt, ϕ〉〉

= 〈〈Ψt(ηt), Kt〉, ϕ〉.

The particle approximation of the flow (5.4.2) depends on a chosen family of Markov
transition kernels (Kt,ηt

)t∈N0 satisfying the compatibility condition

〈Ψt (ηt) , Kt〉 := 〈ηt, Kt,ηt
〉.

These families are not unique, we can choose, as in [Mora04, Chapter 2.5.3],

Kt,ηt
= St,ηt

Kt, (5.4.4)

where

St,ηt
(xt, dyt) = εt gt(xt) δxt

(dyt) + (1− εt gt(xt)) Ψt (ηt) (dyt), (5.4.5)

with εt ≥ 0 and εt ‖gt‖∞ ≤ 1. It is interesting to remark that the parameters εt are
allowed to depend on the current distribution ηt.

Example 5.4.2. Let us continue Example 5.4.1. Then the selection kernel becomes

St,ηt
(xt, dyt) = εt exp (−βt Vt(xt)) δxt

(dyt) + (1− εt exp (−βt Vt(xt))) Ψt (ηt) (dyt),

where

Ψt (ηt) (dyt) =
E
[
exp

(
−∑t−1

s=0 βs V (Xs)
)]
η0

E
[
exp

(
−∑t

s=0 βs V (Xs)
)]
η0

exp (−βt Vt(yt)) ηt(dyt).

Next, we describe the approximation by a particle set using equation (5.4.4). The

particle system is initialised by n i.i.d. random variables X
(i)
0 with common law η0

determining the random probability measure

ηn0 (ω) :=
1

n

n∑

i=1

δ
X

(i)
0 (ω)

.

Since Kt,ηt
can be regarded as the composition of a pair of selection and mutation

Markov kernels, we split the transitions into the following two steps

ηnt
Selection−−−−−−−−→ η̌nt

Mutation−−−−−−−−→ ηnt+1, (5.4.6)

where

ηnt (ω) :=
1

n

n∑

i=1

δ
X

(i)
t (ω)

,

η̌nt (ω) :=
1

n

n∑

i=1

δ
X̌

(i)
t (ω)

.
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During the selection step each particle X
(i)
t evolves according to the Markov tran-

sition kernel St,ηn
t
(X

(i)
t , ·). That means X

(i)
t is accepted with probability εtgt(X

(i)
t ),

and we set X̌
(i)
t = X

(i)
t . Otherwise, X̌

(i)
t is randomly selected with distribution

n∑

i=1

gt(X
(i)
t )

∑n
j=1 gt(X

(j)
t )

δ
X

(i)
t

.

The mutation step consists in evolving each selected particle X̌
(i)
t according to the

Markov transition kernel Kt(X̌
(i)
t , ·).

5.4.2 Interacting Metropolis Model

In this section, we establish an algorithm based on annealed importance sampling
(Algorithm 5.2) that allows additional interaction of the particles during the steps.
We use a Feynman-Kac model as introduced in Section 5.4.1 to describe the math-
ematical framework of the algorithm. To go about doing it, we enlarge the state
space E = (X × X ). In addition, we associate with a Markov kernel K on X the
Markov kernel K̄ on E defined by

K̄((x, x′), B × B′) :=

∫

B

K(y, B′) δx′(dy),

for (B × B′) ∈ E = B(X ) ⊗ B(X ). That means if (Yt)t∈N0 is a X -valued Markov
process with the family of transition kernels (Kt)t∈N0 , then (K̄t)t∈N is the family of
transition kernels of the Markov process defined on E by

Xt = (Yt, Yt+1) ∈ E.

Note that K̄t are the transitions from Xt−1 to Xt. Finally, we introduce the following
notations for any µ ∈ P(X ) and any Markov kernel K on X :

(µ×K)1(B ×B′) =

∫

B

K(y, B′)µ(dy),

(µ×K)2(B ×B′) =

∫

B′

K(y′, B)µ(dy′),

for all (B × B′) ∈ E .
We assume that (Tt)t∈N0 and (T ′

t )t∈N0 are families of Markov kernels on X and
µt ∈ P(X ), for all t ∈ N0, such that (µt+1 × T ′

t )2 is absolutely continuous with
respect to (µt × Tt)1, for all t ∈ N0, and the Radon-Nikodym derivatives

gt(yt, yt+1) :=
d(µt+1 × T ′

t )2

d(µt × Tt)1
(yt, yt+1) (5.4.7)

are strictly positive and bounded functions on E. The Feynman-Kac model asso-
ciated with the pair (gt, T̄t+1) is called the Feynman-Kac-Metropolis model . The
distributions Pµ0 and Pµt

are defined as above by

Pµ0 (d(y0, y1, . . . , yt)) = Tt−1(yt−1, dyt)Tt−2(yt−2, dyt−1) . . . T0(y0, dy1)µ0(dy0),

Pµt
(d(y0, y1, . . . , yt)) = T ′

0(y1, dy0)T
′
1(y2, dy1) . . . T

′
t−1(yt, dyt−1)µt(dyt).

Using these notations, we show the following key lemma.
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Lemma 5.4.3 (reversal formula). For any t ∈ N0 and any ϕ ∈ B(X t+1), we have

E [ϕ(Y0, Y1, . . . , Yt)]µt
= E

[
ϕ(Y0, Y1, . . . , Yt)

t−1∏

s=0

gs(Ys, Ys+1)

]

µ0

.

Proof: Let ϕ ∈ B(X t+1) and set ȳt = (y0, y1, . . . , yt). Since the case t = 0 is trivial,
we assume that t > 0. Then we have

E

[
ϕ(Y0, Y1, . . . , Yt)

t−1∏

s=0

gs(Ys, Ys+1)

]

µ0

=

∫

X

∫

X

. . .

∫

X

ϕ(ȳt)

(
t−1∏

s=0

gs(ys, ys+1)Ts(ys, dys+1)

)
µ0(dy0)

=

∫

E

. . .

∫

X

ϕ(ȳt)

(
t−1∏

s=1

gs(ys, ys+1)Ts(ys, dys+1)

)
. . .

. . .
d(µ1 × T ′

0)2

d(µ0 × T0)1
(y0, y1) (µ0 × T0)1(d(y0, y1))

=

∫

E

. . .

∫

X

ϕ(ȳt)

(
t−1∏

s=1

gs(ys, ys+1)Ts(ys, dys+1)

)
(µ1 × T ′

0)2(d(y0, y1))

=

∫

X

. . .

∫

X

∫

X

ϕ(ȳt)T
′
0(y1, dy0)

(
t−1∏

s=1

gs(ys, ys+1)Ts(ys, dys+1)

)
µ1(dy1)

...

=

∫

X

∫

X

. . .

∫

X

ϕ(ȳt)T
′
0(y1, dy0) . . . T

′
t−1(yt, dyt−1)µt(dyt).

�

Example 5.4.4. As in Examples 5.4.2 and 5.4.1, we consider the unnormalised
Boltzmann-Gibbs measures

gs(ys) = exp (−βs V (ys)) ,

for 0 ≤ s < t and a given t ∈ N0. Suppose there exist (Ts)0≤s<t, (T ′
t )0≤s<t, µ0

and µt such that the functions gs are the Radon-Nikodym derivatives in accordance
with (5.4.7). Note that gs depends only on the value ys and not on ys+1, for all
s. Let ϕ ∈ B(X ). Then we define the extension ϕ̄(y0, y1, . . . , yt) := ϕ(yt) for all
(y0, y1, . . . , yt) ∈ X t+1, which is a bounded B(X t+1)-measurable function. Hence,
the reversal formula gives

E

[
ϕ(Yt) exp

(
−

t−1∑

s=0

βs V (Ys)

)]

µ0

= E [ϕ(Yt)]µt
=

∫

X

ϕ(yt)µt(dyt).

In the following, we do not restrict ourself to Boltzann-Gibbs measures as in the
example above. By putting Xt := (Yt, Yt+1), we get from the reversal formula

E

[
ϕ(Xt)

t−1∏

s=0

gs(Xs)

]

(µ0×T0)1

= E [ϕ(Xt)](µt×Tt)1
,
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for any ϕ ∈ B(E) and any t ∈ N0. Since

∫

E

∫

X

. . .

∫

X

T ′
0(y1, dy0) . . . T

′
t−1(yt, dyt−1)ϕ(yt, yt+1) (µt × Tt)1(d(yt, yt+1))

=

∫

E

ϕ(xt) (µt × Tt)1(dxt),

we are able to state the following corollary, which will be useful for designing an
algorithm.

Corollary 5.4.5. For any t ∈ N0 and any ϕ ∈ B(E), we have

E

[
ϕ(Xt)

t−1∏

s=0

gs(Xs)

]

(µ0×T0)1

= 〈(µt × Tt)1, ϕ〉.

Furthermore, the Feynman-Kac model associated with the pair (gt, T̄t+1) is described
by

ηt = (µt × Tt)1.

5.4.3 Interacting Annealing Algorithm

In this section, we develop a Feynman-Kac-Metropolis model for Example 5.3.3.
This model is used afterwards to design an algorithm that can be regarded as an
interacting annealed importance sampling scheme.

Let us consider as above a sequence of Boltzmann-Gibbs measures

νs(dx) :=
1

〈λ, exp(−βsV )〉 exp (−βsV (x)) λ(dx)

according to some schedule 0 = β0 < β1 < β2 < . . . < βt < βt+1 = 1. We assume
that µ0 ∈ P(X ) is absolutely continuous with respect to λ and define the sequence
of distributions (µs)0≤s≤t+1 by

µs(dx) :=
1

〈µ0, exp(−βsV )〉 exp (−βsV (x)) µ0(dx). (5.4.8)

We choose a family of Markov kernels (Ts)0≤s≤t such that Ts(ys, ·) is absolutely
continuous with respect to µs+1, for all ys ∈ X and 0 ≤ s ≤ t, and such that Ts
leaves the measure µs+1 invariant, i.e.

µs+1(B) =

∫

X

Ts(ys, B)µs+1(dys), (5.4.9)

for all B ∈ B(X ). Then, we set

T ′
s(ys+1, B) :=

∫

B

dTs(ys, ·)
dµs+1

(ys+1)µs+1(dys),

for B ∈ B(X ) and 0 ≤ s ≤ t. It is easy to see by equation (5.4.9) that all T ′
s are

well defined Markov kernels. The Radon-Nykodym derivatives, defined in (5.4.7),
are given by the following lemma.
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Lemma 5.4.6. For any 0 ≤ s ≤ t, we have

gs(ys, ys+1) =
〈µ0, exp(−βsV )〉
〈µ0, exp(−βs+1V )〉 exp (−(βs+1 − βs)V (ys)) .

Proof: Let 0 ≤ s ≤ t and (Bs, Bs+1) ∈ E . Then we obtain
∫

Bs

∫

Bs+1

gs(ys, ys+1)Ts(ys, dys+1)µs(dys)

=

∫

Bs

∫

Bs+1

1

〈µ0, exp(−βs+1V )〉 exp (−βs+1V (ys)) Ts(ys, dys+1)µ0(dys)

=

∫

Bs

∫

Bs+1

Ts(ys, dys+1)µs+1(dys)

=

∫

Bs+1

∫

Bs

dTs(ys, ·)
dµs+1

(ys+1)µs+1(dys)µs+1(dys+1)

=

∫

Bs+1

∫

Bs

T ′
s(ys+1, dys)µs+1(dys+1).

�

Metropolis-Hastings updates (5.2.1) are suitable choices for Markov transitions Ts
that leave µs+1 invariant. What this means in practice is that we use one cycle of
the Metropolis-Hastings algorithm (Algorithm 5.1) to sample from Ts. For instance,
we have

Ts(ys, dys+1) = ps(ys, ys+1)Ms(ys, dys+1) + (1− rs(ys)) δys
(dys+1), (5.4.10)

where

rs(ys) =

∫

X

ps(ys, ys+1)Ms(ys, dys+1),

ps(ys, ys+1) = exp
(
−βs+1 (V (ys+1)− V (ys))

+)

and Ms leaves µ0 invariant, for all 0 ≤ s ≤ t.

Example 5.4.7. Suppose Ms is a Markov kernel that is absolutely continuous with
respect to µ0 and the Radon-Nykodym derivative dMs(ys, ·)/dµ0 is symmetric. Then
we have for any B ∈ B(X )

∫

X

Ms(ys, B)µ0(dys) =

∫

X

∫

B

dMs(ys, ·)
dµ0

(ys+1)µ0(dys+1)µ0(dys)

=

∫

B

∫

X

dMs(ys+1, ·)
dµ0

(ys)µ0(dys)µ0(dys+1)

= µ0(B).

In the case that µ0 possesses a density with respect to λ, we can also modify the
Markov kernels (5.4.10) by setting

ps(ys, ys+1) = min

{
dµ0

dλ
(ys+1)

dµ0

dλ
(ys)

exp (−βs+1 (V (ys+1)− V (ys))) , 1

}
.

Then it is sufficient that Ms possesses a symmetric density with respect to λ, e.g.
Ms is Gaussian.
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By Corollary 5.4.5, we have that the sequence of distributions ((µs×Ts)1)0≤s≤t+1 on
E = (X × X ) is a Feynman-Kac model associated with the pair (gs, T̄s+1). Hence,
the particle approximation of the flow

(µs+1 × Ts+1)1 = 〈Ψs((µs × Ts)1), T̄s+1〉,

where Ψs is the Boltzmann-Gibbs transformation (5.4.3), can be processed according
to the Markov kernel

Ks,(µs×Ts)1 = Ss,(µs×Ts)1 T̄s+1,

where Ss,(µs×Ts)1 is defined in (5.4.5). The interacting annealing algorithm (Algo-
rithm 5.3) results from these observations.

Algorithm 5.3 Interacting Annealing Algorithm

Requires: parameters (εs)0≤s≤t, number of particles n, number of runs t, initial
distribution µ0, weighting functions (gs)0≤s≤t and transitions (Ts)0≤s≤t

1. Initialisation

• s← 0

• For i = 1, . . . , n, sample y
(i)
0 from µ0

2. Mutation

• For i = 1, . . . , n, sample ỹ
(i)
s+1 from Ts(y

(i)
s , ·)

3. Selection

• For i = 1, . . . , n, set π(i) ← gs(y
(i)
s , ỹ

(i)
s+1)

• Set π̄ ←∑n

j=1 π
(j)

• For i from 1 to n:

Sample κ from U [0, 1]

If κ ≤ εsπ
(i) then

? Set y
(i)
s+1 ← ỹ

(i)
s+1

Else

? Set y
(i)
s+1 ← ỹ

(j)
s+1 with probability π(j)

π̄

• Until s < t: s← s+ 1 and go to step 2

Before we discuss the convergence of the algorithm, we comment on the approxima-
tion model described by the algorithm. We will use the notations X

(i)
s := (Z

(i)
s , Z

(i)
s+1)

and X̌
(i)
s := (Ž

(i)
s , Ž

(i)
s+1) to avoid any confusion. Initially, X

(i)
0 = (Y

(i)
0 , Ỹ

(i)
1 )1≤i≤n are

i.i.d. random variables with common law (µ0 × T0)1 determining the random prob-
ability measure

(µ0 × T0)1
n(ω) :=

1

n

n∑

i=1

δ
X

(i)
0 (ω)

.
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Since the first mutation step is part of the initialisation, the order of the selection
step and mutation step is exactly the same as described in (5.4.6). At each run
0 ≤ s ≤ t, (µs × Ts)1 is approximated as usual by

(µs × Ts)1
n(ω) :=

1

n

n∑

i=1

δ
X

(i)
s (ω)

. (5.4.11)

During the selection step, each particle X
(i)
s = (Z

(i)
s , Z

(i)
s+1) is accepted with prob-

ability εsgs(X
(i)
s ) and we set X̌

(i)
s = X

(i)
s . Otherwise, we have X̌

(i)
s = (Z

(i)
s , Ž

(i)
s+1),

where Ž
(i)
s+1 is randomly selected with distribution

n∑

i=1

gs(X
(i)
s )

∑n
j=1 gs(X

(j)
s )

δ
Z

(i)
s+1

.

By the mutation step, each selected particle X̌
(i)
s = (Ž

(i)
s , Ž

(i)
s+1) evolves into X

(i)
s+1 =

(Ž
(i)
s+1, Z

(i)
s+2), where Z

(i)
s+2 is distributed according to the Markov transition kernel

Ts+1(Ž
(i)
s+1, ·). Note that Ž

(i)
s is not used for mutating. Therefore, we do not have

to care about it during the selection step. In the last run, the selection/mutation
cycle is not executed completely, instead we perform just a selection. If we added an
additional mutation step, we would obtain Xt+1 = (Zt+1, Zt+2). Since we are usually
only interested in Zt+1 and since Zt+1 = Žt+1, X̌t = (Žt, Žt+1) already contains the
information needed.

The weighting functions gs calculated in Lemma 5.4.6 have a constant term

cs :=
〈µ0, exp(−βsV )〉
〈µ0, exp(−βs+1V )〉

that is difficult to evaluate in many applications. However, that is not necessary.
By setting

ε′s = εs cs,

we use

g′s(ys) := exp (−(βs+1 − βs)V (ys))

instead. Note that gs(ys, ys+1) does not depend on ys+1 and that a constant term
does not play any role for the expression π(j)/π̄.

Finally, we remark that we get an annealed importance sampling algorithm with
resampling (Algorithm 5.4) as special case of the interacting annealing algorithm
(Algorithm 5.3) when we put εs = 0 for all s.

5.4.4 Convergence of the Interacting Annealing Algorithm

This section investigates the asymptotic behaviour of the particle approximation
model determined by the interacting annealing algorithm (Algorithm 5.3). We know
from Section 5.4.3 that the sequence of distributions

((µs × Ts)1)0≤s≤t+1
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Algorithm 5.4 Annealed Importance Sampling with Resampling

Requires: number of particles n, number of runs t, initial distribution µ0, weighting
functions (gs)0≤s≤t and transitions (Ts)0≤s≤t

1. • s← 0

• For i = 1, . . . , n, sample y
(i)
0 from µ0

2. • For i = 1, . . . , n, set π(i) ← exp(−(βs+1 − βs)V (ys))

• For i = 1, . . . , n, set π(i) ← π(i)
Pn

j=1 π
(j)

• For i = 1, . . . , n, sample ỹ
(i)
s+1 from Ts(y

(i)
s , ·)

• For i = 1, . . . , n, set y
(i)
s+1 ← ỹ

(j)
s+1 with probability π(j)

• Until s < t: s← s+ 1 and go to step 2

is a Feynman-Kac model associated with the pair (gs, T̄s+1). Furthermore, we have
established that this Feynman-Kac model is approximated by

(µs × Ts)1
n(ω) =

1

n

n∑

i=1

δ
X

(i)
s (ω)

as defined in (5.4.11). Hence, we obtain the following convergence theorem from
[Mora04, Theorem 7.4.4].

Theorem 5.4.8. For any ϕ̄ ∈ B(E),

E [|〈(µt+1 × Tt+1)1
n, ϕ̄〉 − 〈(µt+1 × Tt+1)1, ϕ̄〉|] ≤

2 osc(ϕ̄)√
n

t+1∑

s=0

rsβ(Ms),

where

rs :=

{
supx,y∈E

(
Qt

r=s gr(x)
Qt

r=s gr(y)

)
for 0 ≤ s ≤ t

1 for s = t+ 1
,

〈Ms, f̄〉(xs) :=

∫

E

. . .

∫

E

f̄(xt+1) T̄t+1(xt, dxt+1) . . . T̄s+1(xs, dxs+1),

for 0 ≤ s ≤ t, and 〈Mt+1, f̄〉 := f̄ for all xs ∈ E and f̄ ∈ B(E). Moreover,
osc(ϕ̄) := sup{|ϕ̄(x)− ϕ̄(y)| ; x, y ∈ E} and β(Ms) is the Dobrushin contraction
coefficient of Ms, cf. Definition 2.3.2.

When we consider any ϕ ∈ B(X ) and set ϕ̄(yt+1, yt+2) := ϕ(yt+1) for all (yt+1, yt+2) ∈ E,
we observe

∫

X

∫

X

ϕ(yt+1)Tt+1(yt+1, dyt+2)µt+1(dyt+1) =

∫

X

ϕ(yt+1)µt+1(dyt+1)

and

〈(µt+1 × Tt+1)1
n(ω), ϕ̄〉 =

1

n

n∑

i=1

ϕ(Y
(i)
t+1(ω)).
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Additionally, Lemma 5.4.6 yields

∏t

r=s gr(x, x
′)∏t

r=s gr(y, y
′)

= exp (−(1− βs)(V (x)− V (y))) ,

for all (x, x′), (y, y′) ∈ E and 0 ≤ s ≤ t. Finally, we remark that the Markov kernel
Tt+1 is not used in the interacting annealing algorithm (Algorithm 5.3). Thus for
any yt+1 ∈ X and f̄ ∈ B(E), we set Tt+1(yt+1, ·) := δyt+1 and f(yt+1) := f̄(yt+1, yt+1).
Then we obtain

〈Ms, f̄〉(xs) =

∫

X

. . .

∫

X

f(yt+1)Tt(yt, dyt+1) . . . Ts+1(ys+1, dys+2),

for 0 ≤ s < t. In summary, we have the following corollary:

Corollary 5.4.9. For any ϕ ∈ B(X ), we have

E
[∣∣〈µnt+1, ϕ〉 − 〈µt+1, ϕ〉

∣∣] ≤ 2 osc(ϕ) exp(osc(V ))√
n

t+1∑

s=0

rsβ(Ms),

where

rs = exp (−βs osc(V )) ,

〈Ms, f〉(ys+1) =

∫

X

. . .

∫

X

f(yt+1)Tt(yt, dyt+1) . . . Ts+1(ys+1, dys+2),

for 0 ≤ s < t, and 〈Mt, f〉 = 〈Mt+1, f〉 = f for all ys+1 ∈ X and f ∈ B(X ).

This corollary gives us a rough estimate for the number of particles

n ≥ 4 osc(ϕ)2 exp(2 osc(V ))

δ2

(
t+1∑

s=0

rsβ(Ms)

)2

(5.4.12)

needed to achieve a mean error less than a given δ > 0. For evaluating the right hand
side, we must calculate the Dobrushin contraction coefficient of a Markov kernel K
on X . The coefficient lies in the range 0 to 1, and the more the probability measure
K(x, ·) “depends” on x ∈ X , the higher the coefficient is. We will illustrate this
property in the following four examples where we always assume that X = [0, 1].

Example 5.4.10. If K(x, ·) := δx and x1, x2 ∈ X with x1 6= x2, then we get
supB∈B(X ) |δx1(B)− δx2(B)| = 1. This yields β(K) = 1.

Example 5.4.11. If K(x, ·) := λ, then we have β(K) = supB∈X |λ(B)− λ(B)| = 0.

Example 5.4.12. SupposeK := Ts+1Ts+2 . . . Tt, where (Tk)s<k≤t are Markov kernels
and s < t. Furthermore, we assume that there exists for all s < k ≤ t some εk ∈ (0, 1)
satisfying for all x1, x2 ∈ X

Tk(x1, ·) ≥ εk Tk(x2, ·). (5.4.13)

Let x1, x2 ∈ X and B ∈ B(X ). Then we get |Tk(x1, B)− Tk(x2, B)| ≤ 1− εk. Hence,
it follows from inequality (2.3.1) that β(K) ≤ ∏t

k=s+1(1− εk).
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Example 5.4.13. Let µs be the Boltzmann-Gibbs measure defined in (5.4.8) and
let Ks be a Markov kernel like (5.2.1) that leaves µs invariant with a proposal
distribution Ts. If Ts satisfies condition (5.4.13) with some εs ∈ (0, 1), then we have

β(Ks) ≤ 1− εs exp (− osc(V )) ,

as stated in [MoDo03].

Note that the right hand side of (5.4.12) is minimised if we are able to choose Markov
kernels Ts such that β(Ms) is very small. However, if we compare the examples, we
see that this corresponds to the fact that we do not trust our particles. In practice,
it would be preferable to select the Markov kernels by means of the “quality” of the
particles in the previous step. One approach is to select kernels that depend on a set
of parameters, for example Gaussian kernels with the entries of the covariance matrix
as parameters. The values of the parameters are then determined automatically by
the particles, for example the variance is set proportional to the sampling variance
of the particles. This is realised by a dynamic variance scheme, which we will discuss
in Section 7.1.4.



6. Generalised Annealed Particle
Filter

When we combine the generic particle filter (Algorithm 4.1) discussed in Chapter
4 and the interacting annealing algorithm (Algorithm 5.3) developed in Chapter 5,
we obtain the generalised annealed particle filter (Algorithm 6.1). For it, we have to
make the crucial assumption that the density gt defined in Chapter 3 can be written
as

gt(x) =
1

〈λ, exp(−Vt)〉
exp (−Vt(x)) ,

where Vt ≥ 0 for all t ∈ N. Furthermore, we suppose that the state space is X ⊂ R
d

and that Kt(x, ·) is absolutely continuous with respect to λ, for all x ∈ X . Let
0 = βt,M+1 < βt,M < βt,M−1 < . . . < βt,1 < βt,0 = 1 be some schedules in accordance
with Section 5.4.3, where t ∈ N and M denotes the number of annealing runs. Note
that, for each t, the schedules start with index m = M + 1 instead of m = 0. We
write µt+1,M+1 := Kt(xt, ·), where xt denotes the signal. It follows from Lemma 5.4.6
that

gt,m(x
(i)
t,m, x

(i)
t,m−1) = ct,m exp

(
−(βt,m−1 − βt,m)Vt(yt − ht(x(i)

t,m))
)

,

where

ct,m :=
〈µt,M+1, exp(−βt,mVt(yt − ht))〉
〈µt,M+1, exp(−βt,m−1Vt(yt − ht))〉

,

yt denotes the observation at time t and ht is defined in Chapter 3 for all t ∈ N

and 1 ≤ m ≤ M + 1. Note that the constant ct,m does not have to be calculated as
mentioned in Section 5.4.3.

We proved the convergence of the generic particle filter (Algorithm 4.1) and the
convergence of the interacting annealing algorithm (Algorithm 5.3) in the previous
chapters, see Theorem 4.3.5 and Corollary 5.4.9, respectively. However, we cannot
immediately conclude that the generalised annealed particle filter (Algorithm 6.1)

converges since the random variables X
(i)
t+1,M+1 at the beginning of each updating

step are not i.i.d. as assumed in Chapter 5, but conditionally independent.
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Algorithm 6.1 Generalised Annealed Particle Filter
Requires: number of particles n, number of annealing runs M , pa-
rameters (εt,m)1≤m≤M+1,t∈N, weighting functions (gt,m)1≤m≤M+1,t∈N, transitions
(Tt,m)1≤m≤M+1,t∈N, η0 and (Kt)t∈N0 as defined in Chapter 3

1. Initialisation

• t← 0

• For i = 1, . . . , n, sample x
(i)
0,0 from η0

2. Prediction

• For i = 1, . . . , n, sample x
(i)
t+1,M+1 from Kt(x

(i)
t,0, ·)

3. Update (Interacting Annealing)

• For m from M to 0:

∗ For i = 1, . . . , n, sample x̃
(i)
t+1,m from Tt+1,m+1(x

(i)
t+1,m+1, ·)

∗ For i = 1, . . . , n, set π(i) ← gt+1,m+1(x
(i)
t+1,m+1, x̃

(i)
t+1,m)

∗ Set π̄ ←∑n
j=1 π

(j)

∗ For i from 1 to n:

Sample κ from U [0, 1]

If κ ≤ εt+1,m+1π
(i) then

? Set x
(i)
t+1,m ← x̃

(i)
t+1,m

Else

? Set x
(i)
t+1,m ← x̃

(j)
t+1,m with probability π(j)

π̄

• t← t + 1 and go to step 2
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For studying the convergence, one can introduce the function ι(l)  (t,m) defined
by

t =

⌈
l

M + 2

⌉

m = t(M + 2)− l,

where dae denotes the smallest integer greater than or equal to a. This yields
that Xl := Xι(l) is a X -valued stochastic process with initial distribution η0 and
transitions (Tι(l))l∈N0 when putting Tt,0 := Kt. Next, one constructs a Feynman-Kac
model such that the algorithm describes a corresponding particle approximation
and proves the convergence as in Chapter 5. However, we must pay attention to the
assumption that the transitions Tt,m leave

1

〈µt,M+1, exp(−βt,m−1Vt(yt − ht))〉
exp (−βt,m−1Vt(yt − ht(x))) µt,M+1(dx)

invariant, for all t ∈ N and 1 ≤ m ≤ M + 1. This means that Tt,m depends on
µt,M+1 and thus on the signal xt. Therefore, the process (Xι(l))l∈N0 does not satisfy
the condition (2.3.2). A solution could be to consider the Markov process (Xt,0)t∈N0

or (Xt,M+1)t∈N on the one side and to model the“Update”steps as Markov transitions

St,ηt
:= Tt,M+1S(t,M+1),ηt,M+1

Tt,MS(t,M),ηt,M
. . . Tt,1S(t,1),ηt,1

on the other, where S(t,m),ηt,m
denote the selection kernels and Tt,m the mutation

kernels used for the algorithm. The Markov transitions of the process (Xt,M+1)t∈N

are then Kt,ηt
= St,ηt

Kt. Another approach would be to choose transitions T ′
t and

Tt in equation (5.4.7) that are more suitable.

Anyway, it is worth to mention two special cases of the generalised annealed particle
filter (Algorithm 6.1). If εt,m = 0 for all 1 ≤ m ≤ M + 1 and t ∈ N, we get a com-
bination of the generic particle filter (Algorithm 4.1) and the annealed importance
sampling with resampling (Algorithm 5.4), see Algorithm 6.2. This particle filter is
comparable with the annealed particle filter (Algorithm 7.1) established by Jonathan
Deutscher et al. in [DeRe05] and [DeBR00]. These algorithms differ mainly in the
weighting functions gt,m and the transitions Tt,m.

The second special case occurs when we set the parameters

εt,m(ηt,m) :=
ε′t,m

〈ηt,m, gt,m〉
,

where 0 < ε′t,m ≤ 1/g and

g := sup
1≤m≤M+1

t∈N

(
sup
x,y∈E

(
gt,m(x)

gt,m(y)

))
<∞, (6.0.1)

for all 1 ≤ m ≤ M + 1 and t ∈ N, as proposed in [MoDo03]. The selection kernels
(5.4.5) get

S(t,m),ηt,m
(xt,m, ·) = ε′t,m

gt,m(xt,m)

〈ηt,m, gt,m〉
δxt,m

+

(
1− ε′t,m

gt,m(xt,m)

〈ηt,m, gt,m〉

)
Ψt,m (ηt,m) . (6.0.2)
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Note that the necessary condition

∥∥∥∥ε
′
t,m

gt,m
〈ηt,m, gt,m〉

∥∥∥∥
∞

≤ 1

is satisfied since gt,m/〈ηt,m, gt,m〉 ≤ g. If we set the number of particles n ≥ g,

then we can choose ε′t,m = 1/n. For some random variables X
(i)
t,m and the random

probability measure ηnt,m =
∑n

j=1 δX(i)
t,m

/n, we thus have

ε′t,m
gt,m(X

(i)
t,m)

〈ηnt,m, gt,m〉
=

gt,m(X
(i)
t,m)

∑n
j=1 gt,m(X

(j)
t,m)

.

Pierre del Moral showed in [Mora04, Chapter 9.4] that for any t ∈ N and ϕ ∈ B(X )
the sequence of random variables

√
n(〈ηnt , ϕ〉 − 〈ηt, ϕ〉)

converges in law to a Gaussian random variable W when the selection kernel in
(5.4.5) is used to approximate the flow (5.4.2). It turns out that when we use
ε′t = 1/n, the variance of W is strictly smaller than in the case with εt = 0. This
seems to indicate that it is preferable to use Algorithm 6.3 instead of Algorithm 6.2.



45

Algorithm 6.2 Generalised Annealed Particle Filter with εt,m = 0

Requires: number of particles n, number of annealing runs M , weighting func-
tions (gt,m)1≤m≤M+1,t∈N, transitions (Tt,m)1≤m≤M+1,t∈N, η0 and (Kt)t∈N0 as defined in
Chapter 3

1. Initialisation

• t← 0

• For i = 1, . . . , n, sample x
(i)
0,0 from η0

2. Prediction

• For i = 1, . . . , n, sample x
(i)
t+1,M+1 from Kt(x

(i)
t,0, ·)

3. Update (Interacting Annealing)

• For m from M to 0:

∗ For i = 1, . . . , n, set

π(i) ← exp
(
−(βt+1,m − βt+1,m+1)Vt+1(yt+1 − ht+1(x

(i)
t+1,m+1))

)

∗ For i = 1, . . . , n, set π(i) ← π(i)
Pn

j=1 π
(j)

∗ For i = 1, . . . , n, sample x̃
(i)
t+1,m from Tt+1,m+1(x

(i)
t+1,m+1, ·)

∗ For i = 1, . . . , n, set x
(i)
t+1,m ← x̃

(j)
t+1,m with probability π(j)

• t← t + 1 and go to step 2
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Algorithm 6.3 Generalised Annealed Particle Filter with ε′t,m = 1
n

Requires: number of particles n, number of annealing runs M , weighting func-
tions (gt,m)1≤m≤M+1,t∈N, transitions (Tt,m)1≤m≤M+1,t∈N, η0 and (Kt)t∈N0 as defined in
Chapter 3

1. Initialisation

• t← 0

• For i = 1, . . . , n, sample x
(i)
0,0 from η0

2. Prediction

• For i = 1, . . . , n, sample x
(i)
t+1,M+1 from Kt(x

(i)
t,0, ·)

3. Update (Interacting Annealing)

• For m from M to 0:

∗ For i = 1, . . . , n, set

π(i) ← exp
(
−(βt+1,m − βt+1,m+1)Vt+1(yt+1 − ht+1(x

(i)
t+1,m+1))

)

∗ For i = 1, . . . , n, set π(i) ← π(i)
Pn

j=1 π
(j)

∗ For i = 1, . . . , n, sample x̃
(i)
t+1,m from Tt+1,m+1(x

(i)
t+1,m+1, ·)

∗ For i from 1 to n:

Sample κ from U [0, 1]

If κ ≤ π(i) then

? Set x
(i)
t+1,m ← x̃

(i)
t+1,m

Else

? Set x
(i)
t+1,m ← x̃

(j)
t+1,m with probability π(j)

• t← t + 1 and go to step 2



7. Applications

In this chapter, we give some applications for the evaluation. Before discussing
the applications, we state the annealed particle filter (Algorithm 7.1), which was
introduced by Jonathan Deutscher et al., for convenience. As mentioned in Chapter
6, there are various possibilities to specify the selection kernels (5.4.5) for resampling.
The first occurs when the parameters εt of the selection kernels are equal to zero.
These selection kernels are implemented for the annealed particle filter, denoted by
APF . For the second possibility, the parameters εt(ηt) = 1/(n 〈ηt, gt〉) are used
assuming the number of particles is large enough, see Chapter 6. For implementing
the second case for the APF , we only need to replace the lines

• For i = 1, . . . , n, set x
(i)
t+1,m ← x̃

(j)
t+1,m with probability π

(j)
t+1,m

in Algorithm 7.1 by

• For i from 1 to n:

Sample κ from U [0, 1]

If κ ≤ π
(i)
t+1,m then

? Set x
(i)
t+1,m ← x̃

(i)
t+1,m

Else

? Set x
(i)
t+1,m ← x̃

(j)
t+1,m with probability π

(j)
t+1,m

for 0 ≤ m ≤ M . We denote the annealed particle filter with the second version
of the selection kernels by APFε. In the sections below, we will make use of the
following abbreviations:

GPF : Generic Particle Filter;

APF : Annealed Particle Filter (εt = 0);
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Algorithm 7.1 Annealed Particle Filter
Requires: number of particles n, number of annealing runs M , weighting functions
(gt)t∈N, transitions (Tt,m)1≤m≤M,t∈N, η0 and (Kt)t∈N0 as defined in Chapter 3

1. Initialisation

• t← 0

• For i = 1, . . . , n, sample x
(i)
0,0 from η0

2. Prediction

• For i = 1, . . . , n, sample x̃
(i)
t+1,M from Kt(x

(i)
t,0, ·)

3. Update (Annealing)

• For m from M to 1:

∗ For i = 1, . . . , n, set π
(i)
t+1,m ← gt+1

(
yt+1, x̃

(i)
t+1,m

)βt+1,m

∗ For i = 1, . . . , n, set π
(i)
t+1,m ←

π
(i)
t+1,m

Pn
j=1 π

(j)
t+1,m

∗ For i = 1, . . . , n, set x
(i)
t+1,m ← x̃

(j)
t+1,m with probability π

(j)
t+1,m

∗ For i = 1, . . . , n, sample x̃
(i)
t+1,m−1 from Tt+1,m(x

(i)
t+1,m, ·)

• For i = 1, . . . , n, set π
(i)
t+1,0 ← gt+1

(
yt+1, x̃

(i)
t+1,0

)

• For i = 1, . . . , n, set π
(i)
t+1,0 ←

π
(i)
t+1,0

Pn
j=1 π

(j)
t+1,0

4. Resampling

• For i = 1, . . . , n, set x
(i)
t+1,0 ← x̃

(j)
t+1,0 with probability π

(j)
t+1,0

• t← t + 1 and go to step 2



7.1. Tracking Articulated Arm 49

APFε: Annealed Particle Filter (εt = 1/(n 〈ηt, gt〉)).

For evaluating these three algorithms, we consider two applications. The first ap-
plication is in the field of visual tracking of articulated body motion, to where
Jonathan Deutscher et al. ([DeBR00], [DeRe05]) apply the APF . In this connexion,
the weighting function gt does not represent a density as in Chapter 3. Instead, it
should be regarded as a fitness function that measures the “quality” of a particle
relative to an observation yt. Whereas the application to the filtering problem is
discussed in the second example.

7.1 Tracking Articulated Arm
In this section, we use the task of tracking an articulated arm for evaluating the
algorithms. The arm consists of three limbs and three joints, namely shoulder,
elbow and wrist. The shoulder is fixed at the origin of the coordinate system and
the movement of the arm is restricted to the two-dimensional case. Hence, the
position of the arm is completely described by the vector x = (α, β, γ)T , where
α ∈ [−170, 170], β ∈ [−125, 125] and γ ∈ [−125, 125] denote the joint angles, as
depicted in Figure 7.1(a). Note that the angles are measured in degrees. The arm
is implemented in OpenGL by using quadrics, as shown in Figure 7.1(b).

α

β

γ

(a) The postion of the arm is
described by the vector x =
(α, β, γ)T .

(b) Image of the OpenGL implementation of
the arm.

Figure 7.1: Model of the articulated arm.

A sequence of images is generated by a stochastic process with state space E :=
[−170, 170] × [−125, 125] × [−125, 125] ⊂ R

3. For initialisation, X0 is uniformly
distributed in E. That means that we do not know the position of the arm at the
beginning. As transitions, we choose the Markov kernels

Kt(xt, B) := ct

∫

B

exp

(
−1

2
(x− xt)T Σ−1 (x− xt)

)
dx, (7.1.1)
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for xt ∈ E and B ∈ E , where

Σ :=




20 0 0
0 40 0
0 0 30




and

ct :=

∫

E

exp

(
−1

2
(x− xt)T Σ−1 (x− xt)

)
dx.

This process models a difficult system for tracking since the velocity and the direction
of the movement may change from frame to frame and the start position is unknown.

For calculating the weighting functions gt, the image is converted to a binary image
yt by thresholding, as seen in Figure 7.2. The images yt can be regarded as the
observations of the signals xt.

Figure 7.2: Image after thresholding: yt.

Each particle x
(i)
t,m takes values in the space E and determines a template for the

articulated arm, as shown in Figure 7.3(a). The template consists of three rectangles
with fixed size, where the positions of the rectangles are described by the joint
angles. The conversion from an element x ∈ E to the binary image is denoted by
the function h(x). When we have the template h(x

(i)
t,m) and the observation yt, then

an error map is calculated by the point operation ¬yt ∧ h(x(i)
t ), as shown in Figure

7.3(b). When the particle x
(i)
t,m is equal to the signal xt, the error map is nearly black

but not completely since the model used for the template does not exactly match
the articulated arm.

Using the template and the error map, we introduce the following two variables:

Np: Sum of the pixel values in the template;

Ne: Sum of the pixel values in the error map.
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(a) Template h(x
(i)
t,m) (b) Error map ¬yt ∧ h(x

(i)
t )

Figure 7.3: Template and error map defined by a particle.

The weighting functions gt are defined for t ∈ N by

gt(yt, x
(i)
t,m) := exp

(
−4

Ne

Np

)
. (7.1.2)

Note that Jonathan et al. utilise similar weighting functions for tracking articulated
body motion in [DeRe05] and [DeBR00]. However, they use edges as second image
feature whereas we only use the silhouette. The edges are necessary when parts
of the articulated object are in front of other parts. Since we restrict to the two-
dimensional case in our example, this situation cannot occur. Hence, the edges
would not give us more information about the position of the arm. Another aspect
is the use of the factor 4 in the equation (7.1.2). It increases the difference between
the minimum and the maximum of the weighting function, and it turned out in our
simulations that the GPF performs better when using the factor for the weighting
function. The factor is no longer necessary when more than one camera or more
than one image feature is used since the difference between the minimum and the
maximum is thereby greater, cf. [DeRe05] and [DeBR00]. The weighting function is
plotted in Figure 7.4. In Figure 7.4(b), the graph of gt over α is shown. As seen in
Figure 7.4(a), the observation yt, the elbow angle β and the wrist angle γ are fixed
as the shoulder angle of the template α increases from −50 to 50. The graph of gt
over α and β is plotted in Figure 7.4(c) and Figure 7.4(d).

We observed that 4
√
gt is in the range of 0.382 to 0.957 in our example. Hence, we

get by equation (6.0.1) that

g = sup
t∈N



 sup
x1,x2∈E

yt

(
gt(yt, x1)

gt(yt, x2)

)

 =

(
0.957

0.382

)4

< 40.

This means that the selection kernel (6.0.2) is valid if the number of particles is
greater than or equal to 40.

For the simulation, we generated 201 images by the process mentioned above and
applied the algorithms, implemented in MATLAB, to the sequence of images. Since
the algorithms do not return an estimate for the first image, we got 200 estimates for
the positions of the arm, where the estimates were computed between the“Updating”
step and the “Resampling” step by

x̂t :=

n∑

i=1

π
(i)
t,0 x̃

(i)
t,0,
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(a) Changing shoulder angle α of the
template
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(b) Graph of gt over α ∈ [−50, 50]
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(c) Graph of gt over (α, β) ∈
[−40, 20]× [−85, 35]
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β

α

(d) Graph of gt over (α, β) ∈ [−40, 20]×
[−85, 35]

Figure 7.4: Weighting function.
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for 1 ≤ t ≤ 200. As measurement of the error, we used the weighting function
without the factor 4:

gt(yt, x̂t) := exp (−Ne/Np) , (7.1.3)

where Np and Ne are the sums of the pixel values in the template and the error map
generated by the estimate x̂t, respectively. We computed the minimum of the error,
the maximum of the error and the mean of the squared error for each sequence. This
procedure describes one simulation run. Each simulation run was repeated 50 times,
and the averages of the minimum, maximum and mean square error were calculated
and are given in the tables below. The computations for 50 simulation runs took
about 6 hours on a system equipped with an AMD Athlon XP 2800+ (2.09 GHZ)
CPU and 1 GB RAM.

In the following Sections 7.1.1 - 7.1.4, we evaluate the performance of the APF and
the APFε for a wide range of parameters and compare the results with the GPF .
In Section 7.1.5, we investigate the case where the measurements are very noisy.
Furthermore, the simulations are repeated with unknown dynamics of the arm in
Sections 7.1.6 and 7.1.7. Finally in Section 7.1.8, we demonstrate the impact of the
mixing condition on the APF .

7.1.1 Annealing Scheme

We evaluated the performance of the algorithms for various annealing schemes
0 < β4 < β3 < β2 < β1 < 1, where we used the same scheme for the whole sequence
1 ≤ t ≤ 200. Some examples are shown in Figure 7.5. The number of annealing
runs M was set to 4, the initial distribution was the uniform distribution on E,
and we chose the transitions Tt,m = Kt, as defined in (7.1.1), for 1 ≤ m ≤ 4 and
1 ≤ t ≤ 200.

1234
0

0.2

0.4

0.6

0.8

1

m

β

Constant
Increasing (1.8)
Decreasing (1.8)

Figure 7.5: Annealing schemes with constant, increasing and decreasing increments.

In Table 7.1, the second column contains the used algorithm, namely GPF , APF
and APFε, with the selected annealing scheme. There are three different schemes:
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1. Constant increments by 0.2: βm = 0.2× (5−m) (rows 2, 8);

2. Increasing increments with factor c = 1.5 and 1.8: βm = c−m (rows 3, 9 and 4,
10, respectively);

3. Decreasing increments with factor c = 1.5 and 1.8: βm = 1− cm−5 (rows 5, 11
and 6, 12, respectively).

Additionally, we evaluated the case where all βm are equal to 1.0 in rows 7 and 13.
To achieve the same computation time and to enable a fair comparison between the
algorithms, the number of particles used for the GPF is divided by M + 1 for the
other algorithms, as seen in column 3. The last three columns contain the minimum,
the maximum and the mean of the squared error, as mentioned at the beginning of
this section.

β4 ≤ β3 ≤ β2 ≤ β1 n MIN MAX MSE

1. GPF 250 0.0540 0.5825 0.0443

2. APF (0.2 0.4 0.6 0.8) 50 0.0773 0.4351 0.0381
3. APF (0.2 0.3 0.44 0.67) 50 0.0711 0.4778 0.0418
4. APF (0.1 0.17 0.31 0.56) 50 0.0662 0.5189 0.0441
5. APF (0.33 0.66 0.7 0.8) 50 0.0620 0.4214 0.0294
6. APF (0.44 0.69 0.83 0.9) 50 0.0582 0.3849 0.0239
7. APF (1.0 1.0 1.0 1.0) 50 0.0649 0.3471 0.0285

8. APFε (0.2 0.4 0.6 0.8) 50 0.0588 0.4575 0.0280
9. APFε (0.2 0.3 0.44 0.67) 50 0.0610 0.5000 0.0331
10. APFε (0.1 0.17 0.31 0.56) 50 0.0664 0.5340 0.0400
11. APFε (0.33 0.66 0.7 0.8) 50 0.0538 0.4010 0.0215
12. APFε (0.44 0.69 0.83 0.9) 50 0.0504 0.3486 0.0204
13. APFε (1.0 1.0 1.0 1.0) 50 0.0643 0.3553 0.0279

Table 7.1: 50 simulations with different values of β4 ≤ β3 ≤ β2 ≤ β1.

The maximum of the error appears exceptional high at first glance. However, we
said that the position of the articulated arm is unknown at the beginning. Thus the
algorithms need about 4 - 6 frames until achieving good results, as demonstrated in
Figures 7.6 - 7.8. Comparing the various annealing schemes for the APF , we find, cf.
row 6, that the algorithm performs best using a scheme with decreasing increments,
in particular with factor 1.8. Indeed, the mean square error is reduced by 46% in
comparison to the GPF . The schemes with increasing increments are least efficient.
The results for the APFε are similar. In row 12, we get the best performance and
an error reduction of 54%. Moreover, the APFε outperforms the APF independent
of the annealing scheme.

7.1.2 Number of Annealing Runs

We took the best annealing scheme 0.44 < 0.69 < 0.83 < 0.9 and the parameter
settings from Section 7.1.1 except for the number of annealing runs M . We set
M = 3, M = 4 and M = 5 for evaluating. Note that the number of particles n
were reduced to 62, 50 and 41, respectively, to achieve the same computation time.
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Figure 7.6: From top left to bottom right: Estimates (coloured) by the GPF for the
articulated arm (white) at time t = 1, . . . , 6.

Figure 7.7: From top left to bottom right: Estimates (coloured) by the APF with
annealing scheme 0.44 < 0.69 < 0.83 < 0.9 for the articulated arm (white) at time
t = 1, . . . , 6.
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Figure 7.8: From top left to bottom right: Estimates (coloured) by the APFε with
annealing scheme 0.44 < 0.69 < 0.83 < 0.9 for the articulated arm (white) at time
t = 1, . . . , 6.

It can be seen from Table 7.2 that the least mean square error was obtained by
M = 4, for both the APF and the APFε. Indeed, the number of annealing runs
should be small. Jonathan Deutscher et al. ([DeBR00], [DeRe05]), for instance, used
ten annealing runs for tracking human motion. On the one hand, a large number
of annealing runs increases the annealing effect and reduces the error. On the other
hand, the computation cost increases for each additional annealing run. This leads to
a reduced number of particles and an increased error provided that the computation
cost is fixed. Therefore, a compromise has to be found so that the advantage of
the annealing effect exceeds the disadvantage of the reduced number of particles.
Generally, we observed in our experiments that the particle filters perform poorly
when the number of particles is below 30. When we compare the results of the APF
and the APFε, we find that the APFε also outperforms the APF independent of
the number of annealing runs.

7.1.3 Variance Scheme

The last parameters of the annealed particle filter for evaluating are the transitions
Tt,m. We focus on Markov transitions of the form

Tt,m(xt,m, B) := ct,m

∫

B

exp

(
−1

2
(x− xt,m)T Σ−1

m (x− xt,m)

)
dx, (7.1.4)

for xt ∈ E and B ∈ E , where

Σm :=



σ2
m,1 0 0
0 σ2

m,2 0
0 0 σ2

m,3



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βM ≤ βM−1 ≤ . . . ≤ β1 M n MIN MAX MSE

1. GPF - 250 0.0540 0.5825 0.0443

2. APF (0.44 0.69 0.83) 3 62 0.0591 0.4320 0.0252
3. APF (0.44 0.69 0.83 0.9) 4 50 0.0582 0.3849 0.0239
4. APF (0.44 0.69 0.83 0.9 0.95) 5 41 0.0472 0.3623 0.0269

5. APFε (0.44 0.69 0.83) 3 62 0.0511 0.4364 0.0204
6. APFε (0.44 0.69 0.83 0.9) 4 50 0.0504 0.3486 0.0204
7. APFε (0.44 0.69 0.83 0.9 0.95) 5 41 0.0541 0.3706 0.0222

Table 7.2: 50 simulations with different values of M .

Variance (σ2
1 σ

2
2 σ

2
3) n MIN MAX MSE

1. GPF 250 0.0540 0.5825 0.0443

2. APF (15 35 25) 50 0.0604 0.3784 0.0234
3. APF (20 40 30) 50 0.0582 0.3849 0.0239
4. APF (25 45 35) 50 0.0569 0.3792 0.0267
5. APF (15 40 35) 50 0.0553 0.3778 0.0220
6. APF (25 40 25) 50 0.0608 0.3929 0.0253

7. APFε (15 35 25) 50 0.0537 0.3789 0.0222
8. APFε (20 40 30) 50 0.0504 0.3486 0.0204
9. APFε (25 45 35) 50 0.0609 0.3658 0.0224
10. APFε (15 40 35) 50 0.0637 0.3611 0.0250
11. APFε (25 40 25) 50 0.0660 0.3699 0.0247

Table 7.3: 50 simulations using a constant variance scheme with different values of
Σ.

and

ct,m :=

∫

E

exp

(
−1

2
(x− xt,m)T Σ−1

m (x− xt,m)

)
dx,

for 1 ≤ m ≤ 4 and 1 ≤ t ≤ 200. Hence, the transitions are determined by the
four covariance matrices Σ4, Σ3, Σ2 and Σ1, termed variance scheme. One could
generalise the variance scheme by setting not all values that are not on the diagonal
of the covariance matrix to zero. The introduction of correlation, however, makes it
harder to find an optimal scheme. In the following, we write (σ2

m,1 σ
2
m,2 σ

2
m,3) instead

of Σm. The number of annealing runs M was set to 4, and the other parameters
were chosen as in Section 7.1.2.

As seen in Table 7.3, we investigated various constant variance schemes, that means
Σ := Σ4 = Σ3 = Σ2 = Σ1. Comparing the mean square error of the APF , we find
that the covariance matrix determined by (15 40 35), in row 5, performs best. When
we look at the result of the APFε in row 10, we observe that the error is higher for
the same variance scheme. This is not surprising since the advantage of the APFε is
the variance reduction of the estimate, as discussed in Chapter 6. Therefore, the best
variance scheme for the APF does not have to be the best for the APFε. Indeed,
the best variance scheme for the APFε outperforms the best variance scheme for the
APF , cf. row 5 and 8. In general, we can say that a new best variance scheme has
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to be found after any modification or improvement of the APF . It is interesting to
remark that the transitions Kt of the stochastic process Xt (7.1.1) are determined
by (20 40 30) since the least mean square errors were achieved by selecting similar
variance schemes. The fact that we got better results for the APF with the scheme
(15 40 35), that means a lower variance for the shoulder angle and a higher variance
for the wrist angle, can be explained by the hierarchical structure of the articulated
arm. If the shoulder angle is well estimated, in contrast to the elbow angle and wrist
angle, the weighting function returns a higher value than if the estimates for the
elbow angle and wrist angle are correct but the shoulder angle is estimated poorly.
Hence, it is easier to estimate the shoulder angle than the wrist angle, as seen in
Figures 7.6 - 7.8.

In the following, we do not restrict to constant variance schemes but to deterministic
variance schemes, that means the variance schemes are given from the beginning.
There are three different schemes in Table 7.4:

1. Constant decrements (rows 1 - 6, 12 -17);

2. Increasing decrements (rows 7 - 8, 18 - 19);

3. Decreasing decrements (rows 9 - 11, 20 - 22).

Column 2 contains the used algorithm and the values for (σ2
4,1 σ

2
4,2 σ

2
4,3) determin-

ing Σ4. The decreasing scheme is described in column 3, whereby the notation is
explained through the following examples. The variance scheme (σ2

m,1 σ
2
m,2 σ

2
m,3) is

specified in

row 2 by ({27− (4−m)× 4} {49− (4−m)× 3} {41− (4−m)× 2}),

row 7 by ({34× β5−m} {90× β5−m} {79× β5−m}),

row 8 by ({23−∑4
k=m 1.54−k} {48−∑4

k=m 1.54−k} {43−∑4
k=m 1.54−k}).

Comparing the results of the APF , we find that the best constant variance scheme,
row 1, was not significantly improved. The mean square errors for schemes with
constant decrements, rows 2 - 6, are equal to the error of the constant variance
scheme in the best cases. The schemes with increasing decrements are even worse.
Only the schemes with decreasing decrements, rows 9 - 11, reduced the error. Before
looking at the performance of the APFε in terms of these deterministic variance
schemes, we should remark that the schemes were optimised for the APF . Thus,
as discussed above, the APFε may perform better than the results in Table 7.4
indicate. Nevertheless, the APFε with the deterministic scheme in row 17 performs
better than the best APF in row 9.

Furthermore, we observed in our experiments that the variance schemes for the APF
did well when (σ2

1,1 σ
2
1,2 σ

2
1,3) was approximately (15 40 35). According to this, we

selected the schemes in Table 7.4. Indeed, as seen in Table 7.5, the mean square
error for the increasing variance scheme given in row 3 is less than the error for the
corresponding decreasing variance scheme with (σ2

1,1 σ
2
1,2 σ

2
1,3) = (11 34 27) in row 2.

This is surprising since we expected that the increasing variance scheme would give
poor results.
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Variance (σ2
4,1 σ

2
4,2 σ

2
4,3) Decreasing Scheme n MIN MAX MSE

1. APF (15 40 35) (−0 − 0 − 0) 50 0.0553 0.3778 0.0220
2. APF (27 49 41) (−4 − 3 − 2) 50 0.0622 0.3778 0.0262
3. APF (27 58 59) (−4 − 6 − 8) 50 0.0470 0.3799 0.0221
4. APF (27 80 59) (−4 − 10 − 8) 50 0.0585 0.3653 0.0219
5. APF (27 52 47) (−4 − 4 − 4) 50 0.0596 0.3717 0.0224
6. APF (24 52 50) (−3 − 4 − 5) 50 0.0491 0.4037 0.0288
7. APF (34 90 79) ×β1 β2 β3 β4 50 0.0637 0.3725 0.0320
8. APF (22 47 42) −0 1.5 1.52 1.53 50 0.0632 0.3724 0.0287
9. APF (22 47 42) −0 1.53 1.52 1.5 50 0.0567 0.3658 0.0207
10. APF (36 97 85) ×0.8 0.82 0.83 0.84 50 0.0535 0.3874 0.0214
11. APF (22 60 53) ×0.9 0.92 0.93 0.94 50 0.0540 0.3947 0.0216

12. APFε (15 40 35) (−0 − 0 − 0) 50 0.0637 0.3611 0.0250
13. APFε (27 49 41) (−4 − 3 − 2) 50 0.0536 0.3716 0.0206
14. APFε (27 58 59) (−4 − 6 − 8) 50 0.0476 0.3693 0.0197
15. APFε (27 80 59) (−4 − 10 − 8) 50 0.0507 0.3862 0.0200
16. APFε (27 52 47) (−4 − 4 − 4) 50 0.0560 0.3851 0.0291
17. APFε (24 52 50) (−3 − 4 − 5) 50 0.0461 0.3575 0.0192
18. APFε (34 90 79) ×β1 β2 β3 β4 50 0.0545 0.3697 0.0258
19. APFε (22 47 42) −0 1.53 1.52 1.5 50 0.0551 0.3819 0.0269
20. APFε (22 47 42) −0 1.5 1.52 1.53 50 0.0566 0.3786 0.0273
21. APFε (36 97 85) ×0.8 0.82 0.83 0.84 50 0.0536 0.4100 0.0250
22. APFε (22 60 53) ×0.9 0.92 0.93 0.94 50 0.0507 0.3709 0.0247

Table 7.4: 50 simulations using a deterministic variance scheme with different values
of Σm.

Variance (σ2
4,1 σ

2
4,2 σ

2
4,3) Decreasing Scheme n MIN MAX MSE

1. APF (27 58 59) (−4 − 6 − 8) 50 0.0470 0.3799 0.0221
2. APF (23 52 51) (−4 − 6 − 8) 50 0.0704 0.3862 0.0269
3. APF (3 22 11) (+4 + 6 + 8) 50 0.0542 0.4035 0.0235

Table 7.5: 50 simulations using increasing and decreasing variance schemes, where
(σ2

1,1 σ
2
1,2 σ

2
1,3) = (11 34 27) in row 2, and (σ2

1,1 σ
2
1,2 σ

2
1,3) = (15 40 35) in row 1 and 3.
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7.1.4 Dynamic Variance Scheme

The deterministic variance schemes have the disadvantage that it is difficult to find
the best one for an application. When the state space is high dimensional, as it
is in tracking human motion, it is not feasible to determine for each joint angle an
efficient variance σ2. Moreover, the schemes are predefined for the complete sequence
and do not react to changes of the motion, for example, when the movement of the
articulated arm speeds up or slows down. Another drawback of these schemes is not
taking the “quality” of the particles into account. The particles may well estimate
the position of the arm already after the second annealing run, so a high variance
could degrade the estimate. On the contrary, the particles may be far away from
the real position after the second annealing run, then the variance predefined by the
scheme could be too low for obtaining a good estimate. A solution to this problem
is using dynamic variance schemes that depend on the particles and thus vary over
time t.

For this purpose we set the covariance matrix Σt,m proportional to the sampling
variance after resampling, as suggested in [DeRe05]. That is, for a constant c > 0,

Σt,m :=
c

n− 1

n∑

i=1

(x
(i)
t,m − µt,m) (x

(i)
t,m − µt,m)T ,

where

µt,m :=
1

n

n∑

i=1

x
(i)
t,m,

for 1 ≤ m ≤ 4 and 1 ≤ t ≤ 200. The other parameters were chosen as in Section
7.1.3. The algorithms with a dynamic variance scheme are denoted by APF s and
APF s

ε .

Constant c n MIN MAX MSE

1. GPF 250 0.0540 0.5825 0.0443
2. APF −0 1.53 1.52 1.5 50 0.0567 0.3658 0.0207

3. APF s 0.5 50 0.0479 0.5192 0.0311
4. APF s 0.25 50 0.0432 0.4961 0.0165
5. APF s 0.1 50 0.0497 0.4659 0.0163

6. APF s
ε 0.5 50 0.0512 0.4996 0.0325

7. APF s
ε 0.25 50 0.0430 0.4705 0.0145

8. APF s
ε 0.1 50 0.0450 0.4242 0.0143

Table 7.6: 50 simulations using a dynamic variance scheme with different values of
c.

For comparing the dynamic schemes with the deterministic schemes and the GPF ,
the results of the GPF and of the APF with the best deterministic scheme are
given in row 1 and row 2, respectively, of Table 7.6. The dynamic schemes are not
only easier to handle since they have just one parameter c but also give a better
performance, as seen in Table 7.6. Moreover, the APF s

ε outperforms the APF s

provided that an appropriate parameter c is chosen, cf. rows 4, 5, 7 and 8. In
comparison to the GPF , the mean square error was reduced by more than 67%.
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7.1.5 Noisy Measurements

In the sections above, the quality of the images was perfect for tracking since the
white model of the articulated arm was clearly silhouetted against the black back-
ground. In real world applications, however, we have to deal with noisy measure-
ments caused by clutter, film grain, bad lighting conditions, CCD camera noise, etc.
Therefore, we added strong noise to the weighting functions (7.1.2) by

gt(yt, x
(i)
t,m) := exp


−4

ϑ
(
Ne +W

(i)
t,m

)

Np


 , (7.1.5)

where

ϑ(N) :=





Np if N > Np,

N if 0 ≤ N ≤ Np,

0 if N < 0,

and W
(i)
t,m are independent zero-mean Gaussian random variables with variance 8000.

For comparison, a template (Figure 7.3(a)) consists of about 4000 pixels, that is
Np ≈ 4000. The error was measured by the function (7.1.3) as above.

β4 ≤ β3 ≤ β2 ≤ β1 n MIN MAX MSE

1. GPF 250 0.0578 0.5846 0.0444

2. APF (0.2 0.4 0.6 0.8) 50 0.0775 0.4602 0.0390
3. APF (0.2 0.3 0.44 0.67) 50 0.0742 0.4905 0.0442
4. APF (0.1 0.17 0.31 0.56) 50 0.0726 0.5207 0.0420
5. APF (0.33 0.66 0.7 0.8) 50 0.0779 0.4250 0.0359
6. APF (0.44 0.69 0.83 0.9) 50 0.0555 0.3613 0.0211
7. APF (1.0 1.0 1.0 1.0) 50 0.0537 0.3251 0.0179

8. APFε (0.2 0.4 0.6 0.8) 50 0.0676 0.4211 0.0410
9. APFε (0.2 0.3 0.44 0.67) 50 0.0672 0.4595 0.0311
10. APFε (0.1 0.17 0.31 0.56) 50 0.0802 0.5066 0.0485
11. APFε (0.33 0.66 0.7 0.8) 50 0.0705 0.3915 0.0310
12. APFε (0.44 0.69 0.83 0.9) 50 0.0663 0.3909 0.0319
13. APFε (1.0 1.0 1.0 1.0) 50 0.0712 0.3720 0.0283

Table 7.7: 50 simulations with different values of β4 ≤ β3 ≤ β2 ≤ β1.

As seen in Tables 7.7 - 7.11, we evaluated the algorithms for nearly the same pa-
rameter settings as in Sections 7.1.1 - 7.1.4. The rows and columns of the tables are
explained in the mentioned sections above. Comparing the results for the APF in
Table 7.7, we see that the “annealing” scheme with all βm = 1.0 performs best. This
shows that it may be suitable to relax the restriction that the annealing scheme is
strictly increasing. Indeed, there is no mathematical necessity for the assumption
that the difference of two succeeding βm+1 and βm is strictly positive in contrast
to the generalised annealed particle filter since the annealed particle filter uses βm
instead of the difference βm − βm+1 as exponent for the weighting function. Hence,
the schemes for the annealed particle filter should satisfy

0 < βt,M ≤ βt,M−1 ≤ . . . ≤ βt,1 ≤ 1, (7.1.6)
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βM ≤ βM−1 ≤ . . . ≤ β1 M n MIN MAX MSE

1. GPF - 250 0.0578 0.5846 0.0444

2. APF (0.44 0.69 0.83) 3 62 0.0512 0.4313 0.0206
3. APF (0.44 0.69 0.83 0.9) 4 50 0.0555 0.3613 0.0211
4. APF (0.44 0.69 0.83 0.9 0.95) 5 41 0.0537 0.3558 0.0220

5. APFε (0.44 0.69 0.83) 3 62 0.0548 0.4322 0.0242
6. APFε (0.44 0.69 0.83 0.9) 4 50 0.0663 0.3909 0.0319
7. APFε (0.44 0.69 0.83 0.9 0.95) 5 41 0.0715 0.3779 0.0379

Table 7.8: 50 simulations with different values of M .

Variance (σ2
1 σ

2
2 σ

2
3) n MIN MAX MSE

1. GPF 250 0.0578 0.5846 0.0444

2. APF (15 35 25) 50 0.0597 0.3997 0.0241
3. APF (20 40 30) 50 0.0555 0.3613 0.0211
4. APF (25 45 35) 50 0.0584 0.3962 0.0283
5. APF (15 40 35) 50 0.0467 0.3664 0.0176
6. APF (25 40 25) 50 0.0547 0.3337 0.0208

7. APFε (15 35 25) 50 0.0724 0.4040 0.0240
8. APFε (20 40 30) 50 0.0663 0.3909 0.0319
9. APFε (25 45 35) 50 0.0554 0.3614 0.0216
10. APFε (15 40 35) 50 0.0664 0.3677 0.0300
11. APFε (25 40 25) 50 0.0547 0.3337 0.0208

Table 7.9: 50 simulations using a constant variance scheme with different values of
Σ.

for all t ∈ N.

This time, the APFε does not outperform the APF for all schemes. It seems that
noisy measurements affect the APFε more than the APF , particularly when we
compare the results with those from Table 7.1. However, we have to consider that
the best variance scheme may have changed by the additional noise. In fact, as
seen in Table 7.9, the APFε performs poorly with the constant variance scheme
(20 40 30), which was used for evaluating the various annealing schemes.

In Table 7.8, the results for different number of annealing runs are given. Comparing
the errors for both algorithms, we see that the mean square error is less for a smaller
number of annealing runs while the maximum error is larger. The reason is that
the position of the articulated arm is more easily found with more annealing runs
at the beginning of the sequence but the algorithms work better with only few runs
afterwards since the arm is a very simple object for tracking.

The best constant variance scheme for the APF was (15 40 35) also in the case of
noisy measurements, cf. Table 7.9. Moreover, it was the best deterministic variance
scheme, as seen in Table 7.10. Looking at the results of the APFε, we have to consider
that the variance schemes were optimised for the APF . Hence, we may have achieved
better results with other deterministic schemes for the APFε. However, when we
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Variance (σ2
4,1 σ

2
4,2 σ

2
4,3) Decreasing Scheme n MIN MAX MSE

1. APF (15 40 35) (−0 − 0 − 0) 50 0.0467 0.3664 0.0176
2. APF (27 49 41) (−4 − 3 − 2) 50 0.0499 0.3528 0.0182
3. APF (27 58 59) (−4 − 6 − 8) 50 0.0606 0.3599 0.0272
4. APF (27 80 59) (−4 − 10 − 8) 50 0.0511 0.3641 0.0182
5. APF (27 52 47) (−4 − 4 − 4) 50 0.0528 0.3610 0.0201
6. APF (24 52 50) (−3 − 4 − 5) 50 0.0549 0.3604 0.0240
7. APF (22 47 42) −0 1.5 1.52 1.53 50 0.0554 0.4099 0.0224
8. APF (22 47 42) −0 1.53 1.52 1.5 50 0.0522 0.3759 0.0230
9. APF (22 60 53) ×0.9 0.92 0.93 0.94 50 0.0532 0.3829 0.0246

10. APFε (15 40 35) (−0 − 0 − 0) 50 0.0664 0.3677 0.0300
11. APFε (27 49 41) (−4 − 3 − 2) 50 0.0569 0.3933 0.0231
12. APFε (27 58 59) (−4 − 6 − 8) 50 0.0575 0.3537 0.0261
13. APFε (27 80 59) (−4 − 10 − 8) 50 0.0594 0.3706 0.0260
14. APFε (27 52 47) (−4 − 4 − 4) 50 0.0528 0.3593 0.0246
15. APFε (24 52 50) (−3 − 4 − 5) 50 0.0637 0.3760 0.0260
16. APFε (22 47 42) −0 1.53 1.52 1.5 50 0.0513 0.3614 0.0222
17. APFε (22 47 42) −0 1.5 1.52 1.53 50 0.0517 0.3651 0.0200
18. APFε (22 60 53) ×0.9 0.92 0.93 0.94 50 0.0568 0.3859 0.0217

Table 7.10: 50 simulations using a deterministic variance scheme with different values
of Σm.

compare the rows 2 and 4 of Table 7.11, we find that the best dynamic variance
scheme outperforms the best deterministic variance scheme. Furthermore, it seems
that the noisy measurements affect the APFε more than the APF indeed. While the
least mean square error for the APF is similar to the one in Table 7.6, we could not
achieve the same results for the APFε. Overall, the APF performs slightly better
than the APFε when the noise is strong. Compared to the GPF , the mean square
error was reduced by more than 63%. We finish this section with the following
remark.

Constant c n MIN MAX MSE

1. GPF 250 0.0578 0.5846 0.0444
2. APF (15 40 35) 50 0.0467 0.3664 0.0176

3. APF s 0.5 50 0.0485 0.5242 0.0270
4. APF s 0.25 50 0.0428 0.4693 0.0160
5. APF s 0.1 50 0.0447 0.4494 0.0170

6. APF s
ε 0.5 50 0.0483 0.5119 0.0294

7. APF s
ε 0.25 50 0.0459 0.4705 0.0195

8. APF s
ε 0.1 50 0.0474 0.4272 0.0172

Table 7.11: 50 simulations using a dynamic variance scheme with different values of
c.

Remark 7.1.1. When the measurements are not noisy and the values of the states
are exactly at the maximum of the weighting function, other algorithms such as
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optimisation algorithms may perform better than particle filters. This is due to the
fact that the particle filters return the weighted average of the particles as estimate
while optimisation algorithms usually return the best one. But these algorithms
are not able to deal with noise since their results are easily misled by the noisy
measurements. Particle filters, on the other side, compensate for this by using the
average and are therefore more robust to noise. This can be seen when comparing the
first rows of Table 7.6 and Table 7.11. The basic idea behind the robustness of the
annealed particle filter is the following fact: Suppose there exist n random variables
(Xi)1≤i≤n such that

∑n
i=1Xi/n converges almost surely to a random variable Z. If

(Wi)1≤i≤n are i.i.d. random variables with zero mean, we get by the law of large
numbers that

∑n

i=1(Xi +Wi)/n converges almost surely to Z.

7.1.6 Unknown Dynamics

In the previous sections, we assumed that the dynamics are exactly known. How-
ever, this is not the case in many applications. In this and the following sections,
the transitions used for the “Prediction” steps in the algorithms differ from those of
the process that generates the sequence of images. In return, the dynamics are rela-
tively simple compared to those used above. The articulated arm starts at position
a := (−30,−80,−40)T and moves to position b := (50, 30, 20)T with constant speed,
as illustrated in Figure 7.9. Before the arm returns to the start position, it remains
in this position for two frames. Moreover, we added some noise to each position
vector (αt, βt, γt)

T .

Figure 7.9: Motion sequence of the articulated arm.

Hence, the image sequence of length T := 200 is generated by the process

X0 := a,

Xt := a+ (t− 1)
(b− a)

98
+ Vt for 1 ≤ t ≤ 99,

Xt := b + Vt for 100 ≤ t ≤ 101,

Xt := b− (t− 102)
(b− a)

98
+ Vt for 102 ≤ t ≤ 200,
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where (Vt)1≤t≤200 are i.i.d. normal random variables with zero mean and covariance
matrix

1

98




(b1 − a1) 0 0
0 (b2 − a2) 0
0 0 (b3 − a3)


 .

β4 ≤ β3 ≤ β2 ≤ β1 n MIN MAX MSE

1. GPF 225 0.0517 0.1642 0.0115

2. APF (0.2 0.4 0.6 0.8) 45 0.0431 0.1762 0.0097
3. APF (0.2 0.3 0.44 0.67) 45 0.0432 0.1998 0.0119
4. APF (0.1 0.17 0.31 0.56) 45 0.0477 0.2263 0.0153
5. APF (0.33 0.66 0.7 0.8) 45 0.0416 0.1616 0.0083
6. APF (0.44 0.69 0.83 0.9) 45 0.0411 0.1573 0.0077
7. APF (1.0 1.0 1.0 1.0) 45 0.0409 0.1389 0.0064

8. APFε (0.2 0.4 0.6 0.8) 45 0.0432 0.1831 0.0100
9. APFε (0.2 0.3 0.44 0.67) 45 0.0443 0.2057 0.0119
10. APFε (0.1 0.17 0.31 0.56) 45 0.0467 0.2310 0.0155
11. APFε (0.33 0.66 0.7 0.8) 45 0.0420 0.1635 0.0085
12. APFε (0.44 0.69 0.83 0.9) 45 0.0419 0.1565 0.0077
13. APFε (1.0 1.0 1.0 1.0) 45 0.0404 0.1424 0.0066

Table 7.12: 40 simulations with different values of β4 ≤ β3 ≤ β2 ≤ β1.

Since we assume that the dynamics are not known, we did not use the initial distribu-
tion and the transitions of the process above for the algorithms. These were instead
initialised by the uniform distribution on [−20,−40]×[−60,−100]×[−20,−60] ⊂ E.
That means that even though the start position of the arm is unknown the potential
area is restricted by prior knowledge, which simplifies matters. For the “Prediction”
step, we chose the transitions Kt, as defined in (7.1.1). The transitions Tt,m were de-
termined by (σ2

m,1 σ
2
m,2 σ

2
m,3) in accordance with (7.1.4). As in the previous sections,

we evaluated the algorithms for various annealing and variance schemes, where the
meaning of the table rows and columns is the same.

In Tables 7.12 and 7.13, the constant variance scheme (5 5 5) was used for the
simulations. Since the motion of the articulated arm is simple, local maxima rarely
occur. Thus it is not astonishing that the scheme with all βm = 1.0 performs best,

βM ≤ βM−1 ≤ . . . ≤ β1 M n MIN MAX MSE

1. GPF - 225 0.0517 0.1642 0.0115

2. APF (1.0 1.0) 2 75 0.0391 0.1232 0.0056
3. APF (1.0 1.0 1.0) 3 62 0.0392 0.1295 0.0058
4. APF (1.0 1.0 1.0 1.0) 4 45 0.0409 0.1389 0.0064

5. APFε (1.0 1.0) 2 75 0.0383 0.1267 0.0056
6. APFε (1.0 1.0 1.0) 3 62 0.0387 0.1327 0.0059
7. APFε (1.0 1.0 1.0 1.0) 4 45 0.0404 0.1424 0.0066

Table 7.13: 40 simulations with different values of M .
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Variance (σ2
1 σ

2
2 σ

2
3) n MIN MAX MSE

1. GPF 225 0.0517 0.1642 0.0115

2. APF (0.5 0.5 0.5) 45 0.0411 0.1513 0.0075
3. APF (2 2 2) 45 0.0416 0.1467 0.0071
4. APF (5 5 5) 45 0.0411 0.1573 0.0077
5. APF (0.5 2 5) 45 0.0398 0.1561 0.0075
6. APF (5 2 0.5) 45 0.0406 0.1571 0.0077

7. APFε (0.5 0.5 0.5) 45 0.0420 0.1526 0.0076
8. APFε (2 2 2) 45 0.0399 0.1489 0.0072
9. APFε (5 5 5) 45 0.0419 0.1565 0.0077
10. APFε (0.5 2 5) 45 0.0407 0.1528 0.0073
11. APFε (5 2 0.5) 45 0.0408 0.1621 0.0079

Table 7.14: 40 simulations using a constant variance scheme with different values of
Σ.

see rows 7 and 13 of Table 7.12. This demonstrates that only the repeating effect and
not the annealing effect influences the results when the weighting function does not
have any local maxima. Furthermore, we observed that the simpler the system is the
lower the number of annealing runs is to choose, cf. Table 7.13. Finally, we remark
that the mean square errors of the APF and the APFε do not differ significantly.

Using the annealing scheme 0.44 < 0.69 < 0.83 < 0.9, we achieved the best result
for the APF with the constant variance scheme (2 2 2), as seen in Table 7.14. The
mean square error could not be reduced significantly neither by the deterministic
variance schemes, with the best result in row 4 of Table 7.15, nor by the best dynamic
scheme with c = 0.025, in row 5 of Table 7.16. However, the dynamic scheme is also
recommendable for simple motion since we achieved nearly the same error as by the
best deterministic scheme, cf. rows 2 and 5 of Table 7.16. For the APFε, we obtained
the best result with a dynamic variance scheme in conjunction with the parameter
c = 0.05. We see from Table 7.16 that the mean square error was reduced by more
than 39% relative to the GPF . It is interesting to note that the error could not be
reduced below 0.0070 by the various variance schemes using the annealing scheme
0.44 < 0.69 < 0.83 < 0.9, while the algorithm performed obviously better with a
lower number of annealing runs, as seen in Table 7.13. This leads to the conclusion
that all the parameters should be chosen carefully for optimal performance.

7.1.7 Unknown Dynamics and Noisy Measurements

We evaluated the algorithms using the same dynamics and settings as in Section
7.1.6 but adding noise to the measurements by (7.1.5). When we compare Tables
7.12 - 7.16 with Tables 7.17 - 7.21, we see that the mean square errors rarely differ
from those without noise by more than 0.0004. The only exceptions are in row 4
of Tables 7.15 and 7.20, and in row 10 of Tables 7.12 and 7.17. These are also the
best and worst results from the previous section. This indicates that the noise has
a low impact on the algorithms when the dynamics are simple. From the results of
Section 7.1.5, we already expected that this is the case for the GPF and the APF ,
but in contrast to the difficult system, the results are not worse even for the APFε.
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Variance (σ2
4,1 σ

2
4,2 σ

2
4,3) Decreasing Scheme n MIN MAX MSE

1. APF (2 2 2) (−0 − 0 − 0) 45 0.0416 0.1467 0.0071
2. APF (5 5 5) (−1 − 1 − 1) 45 0.0404 0.1524 0.0075
3. APF (8 8 8) (−2 − 2 − 2) 45 0.0416 0.1541 0.0078
4. APF (5 5 5) (−1.5 − 1.5 − 1.5) 45 0.0400 0.1433 0.0070
5. APF (5 6.5 8) (−1 − 1.5 − 2) 45 0.0402 0.1546 0.0076
6. APF (8 6.5 5) (−2 − 1.5 − 1) 45 0.0403 0.1541 0.0076
7. APF (9 9 9) −0 1.5 1.52 1.53 45 0.0407 0.1635 0.0079
8. APF (9 9 9) −0 1.53 1.52 1.5 45 0.0415 0.1592 0.0075
9. APF (3 3 3) ×0.9 0.92 0.93 0.94 45 0.0408 0.1540 0.0073

10. APF (2 2 2) (−0 − 0 − 0) 45 0.0399 0.1489 0.0072
11. APF (5 5 5) (−1 − 1 − 1) 45 0.0417 0.1506 0.0073
12. APF (8 8 8) (−2 − 2 − 2) 45 0.0407 0.1560 0.0077
13. APF (5 5 5) (−1.5 − 1.5 − 1.5) 45 0.0396 0.1537 0.0074
14. APF (5 6.5 8) (−1 − 1.5 − 2) 45 0.0413 0.1511 0.0073
15. APF (8 6.5 5) (−2 − 1.5 − 1) 45 0.0410 0.1561 0.0077
16. APF (9 9 9) −0 1.5 1.52 1.53 45 0.0422 0.1584 0.0078
17. APF (9 9 9) −0 1.53 1.52 1.5 45 0.0405 0.1569 0.0076
18. APF (3 3 3) ×0.9 0.92 0.93 0.94 45 0.0404 0.1502 0.0075

Table 7.15: 40 simulations using a deterministic variance scheme with different values
of Σm.

Constant c n MIN MAX MSE

1. GPF 225 0.0517 0.1642 0.0115
2. APF (−1.5 − 1.5 − 1.5) 45 0.0400 0.1433 0.0070

3. APF s 0.1 45 0.0413 0.1760 0.0078
4. APF s 0.05 45 0.0399 0.1513 0.0072
5. APF s 0.025 45 0.0404 0.1513 0.0071
6. APF s 0.01 45 0.0396 0.1584 0.0076

7. APF s 0.1 45 0.0410 0.1582 0.0075
8. APF s 0.05 45 0.0406 0.1502 0.0070
9. APF s 0.025 45 0.0404 0.1510 0.0074
10. APF s 0.01 45 0.0397 0.1521 0.0074

Table 7.16: 40 simulations using a dynamic variance scheme with different values of
c.
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Moreover, we can observe that the optimal value of the constant c for the dynamic
variance scheme increases when the measurements are noisy, cf. Tables 7.6, 7.11,
7.16 and 7.21. More precisely, this applies only for the APF since we obtained the
least error for the APFε with the same value of the parameter c. If the optimal value
of c were independent of the noise, it would be a great advantage of the APFε since
this would make it easier to find an optimal configuration for the algorithm. For a
conclusion, however, we need to evaluate the APFε for some more values of c.

β4 ≤ β3 ≤ β2 ≤ β1 n MIN MAX MSE

1. GPF 225 0.0503 0.1673 0.0114

2. APF (0.2 0.4 0.6 0.8) 45 0.0434 0.1806 0.0097
3. APF (0.2 0.3 0.44 0.67) 45 0.0438 0.1995 0.0116
4. APF (0.1 0.17 0.31 0.56) 45 0.0472 0.2304 0.0152
5. APF (0.33 0.66 0.7 0.8) 45 0.0416 0.1718 0.0087
6. APF (0.44 0.69 0.83 0.9) 45 0.0405 0.1563 0.0077
7. APF (1.0 1.0 1.0 1.0) 45 0.0408 0.1400 0.0065

8. APFε (0.2 0.4 0.6 0.8) 45 0.0442 0.1828 0.0096
9. APFε (0.2 0.3 0.44 0.67) 45 0.0471 0.2071 0.0120
10. APFε (0.1 0.17 0.31 0.56) 45 0.0465 0.2262 0.0146
11. APFε (0.33 0.66 0.7 0.8) 45 0.0430 0.1756 0.0088
12. APFε (0.44 0.69 0.83 0.9) 45 0.0410 0.1534 0.0076
13. APFε (1.0 1.0 1.0 1.0) 45 0.0393 0.1350 0.0065

Table 7.17: 40 simulations with different values of β4 ≤ β3 ≤ β2 ≤ β1.

7.1.8 Mixing Condition

In Section 4.3, we discussed that the mixing condition, cf. Definition 4.3.2, is suffi-
cient for the uniform convergence in time, where the idea is that any error is forgotten
after some time. We illustrate now what can happen if the mixing condition is not
met by the APF . For this purpose, we consider the task of tracking a stiff arm, i.e.
x = (α, 0, 0)T , for a finite sequence of images. In contrast to the sections above, α
is not restricted to the interval [−170, 170]. Since the angles of the elbow and the

βM ≤ βM−1 ≤ . . . ≤ β1 M n MIN MAX MSE

1. GPF - 225 0.0503 0.1673 0.0114

2. APF (1.0 1.0) 2 75 0.0393 0.1227 0.0056
3. APF (1.0 1.0 1.0) 3 62 0.0393 0.1313 0.0060
4. APF (1.0 1.0 1.0 1.0) 4 45 0.0408 0.1400 0.0065

5. APFε (1.0 1.0) 2 75 0.0390 0.1253 0.0057
6. APFε (1.0 1.0 1.0) 3 62 0.0380 0.1299 0.0060
7. APFε (1.0 1.0 1.0 1.0) 4 45 0.0393 0.1350 0.0065

Table 7.18: 40 simulations with different values of M .
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Variance (σ2
1 σ

2
2 σ

2
3) n MIN MAX MSE

1. GPF 225 0.0503 0.1673 0.0114

2. APF (0.5 0.5 0.5) 45 0.0411 0.1550 0.0075
3. APF (2 2 2) 45 0.0416 0.1472 0.0072
4. APF (5 5 5) 45 0.0405 0.1563 0.0077
5. APF (0.5 2 5) 45 0.0402 0.1526 0.0073
6. APF (5 2 0.5) 45 0.0407 0.1548 0.0078

7. APFε (0.5 0.5 0.5) 45 0.0406 0.1514 0.0074
8. APFε (2 2 2) 45 0.0400 0.1476 0.0073
9. APFε (5 5 5) 45 0.0410 0.1534 0.0076
10. APFε (0.5 2 5) 45 0.0416 0.1497 0.0073
11. APFε (5 2 0.5) 45 0.0425 0.1541 0.0077

Table 7.19: 40 simulations using a constant variance scheme with different values of
Σ.

Variance (σ2
4,1 σ

2
4,2 σ

2
4,3) Decreasing Scheme n MIN MAX MSE

1. APF (2 2 2) (−0 − 0 − 0) 45 0.0416 0.1472 0.0072
2. APF (5 5 5) (−1 − 1 − 1) 45 0.0411 0.1531 0.0075
3. APF (8 8 8) (−2 − 2 − 2) 45 0.0410 0.1584 0.0076
4. APF (5 5 5) (−1.5 − 1.5 − 1.5) 45 0.0415 0.1506 0.0076
5. APF (5 6.5 8) (−1 − 1.5 − 2) 45 0.0414 0.1523 0.0075
6. APF (8 6.5 5) (−2 − 1.5 − 1) 45 0.0415 0.1578 0.0078
7. APF (9 9 9) −0 1.5 1.52 1.53 45 0.0418 0.1624 0.0080
8. APF (9 9 9) −0 1.53 1.52 1.5 45 0.0419 0.1550 0.0079
9. APF (3 3 3) ×0.9 0.92 0.93 0.94 45 0.0417 0.1509 0.0074

10. APF (2 2 2) (−0 − 0 − 0) 45 0.0400 0.1476 0.0073
11. APF (5 5 5) (−1 − 1 − 1) 45 0.0415 0.1525 0.0075
12. APF (8 8 8) (−2 − 2 − 2) 45 0.0417 0.1523 0.0075
13. APF (5 5 5) (−1.5 − 1.5 − 1.5) 45 0.0414 0.1524 0.0074
14. APF (5 6.5 8) (−1 − 1.5 − 2) 45 0.0406 0.1493 0.0073
15. APF (8 6.5 5) (−2 − 1.5 − 1) 45 0.0415 0.1577 0.0079
16. APF (9 9 9) −0 1.5 1.52 1.53 45 0.0399 0.1548 0.0077
17. APF (9 9 9) −0 1.53 1.52 1.5 45 0.0407 0.1577 0.0076
18. APF (3 3 3) ×0.9 0.92 0.93 0.94 45 0.0412 0.1546 0.0075

Table 7.20: 40 simulations using a deterministic variance scheme with different values
of Σm.
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Constant c n MIN MAX MSE

1. GPF 225 0.0503 0.1673 0.0114
2. APF (2 2 2) 45 0.0416 0.1472 0.0072

3. APF s 0.1 45 0.0415 0.1630 0.0077
4. APF s 0.05 45 0.0409 0.1527 0.0072
5. APF s 0.025 45 0.0411 0.1515 0.0074
6. APF s 0.01 45 0.0423 0.1561 0.0078

7. APF s 0.1 45 0.0420 0.1652 0.0075
8. APF s 0.05 45 0.0412 0.1505 0.0071
9. APF s 0.025 45 0.0401 0.1570 0.0075
10. APF s 0.01 45 0.0401 0.1560 0.0076

Table 7.21: 40 simulations using a dynamic variance scheme with different values of
c.

wrist are fixed, we write x = α. We suppose that the motion of the articulated arm
can be modelled exactly and is defined by the process

X0 := 0,

Xt := Xt−1 + Vt for 1 ≤ t ≤ 400,

where Vt are i.i.d. uniform random variables on [−10, 10]. Let us examine the situ-
ations where Vt(ω) ∈ [9.75, 10] for 1 ≤ t ≤ 400. Even though the probability that
this occurs is very small, more precisely 0.0125400, it is strictly greater than zero.
We set the parameters of the APF as follows: 100 particles, one annealing run with
β1 = 0.8, initial distribution δ0 and as transitions Tt,1(x, ·) the uniform distributions
on [x− 2, x+ 2].

First, we used the uniform distribution on [x− 10, x+ 10] for the transition kernels
Kt(x, ·) in accordance with the process (Xt)0≤t≤400. These kernels do not fulfil the
mixing condition, which is obvious from Example 4.3.3. As we see from Figure 7.10,
the APF is not capable of tracking the articulated arm in this case. The tracking
process was aborted when the error exceeded 0.55. The algorithm not only lost
track of the arm after some time but was also not able to recover afterwards since
the prediction of a particle x

(i)
t,0 is restricted to the space [x

(i)
t,0 − 10, x

(i)
t,0 + 10]. For

a second simulation, the transition kernels Kt(x, ·) were Gaussian with mean x and
variance 100. Because of the circular motion of the arm, the state space is bounded,
and thus the kernels are mixing. The probability that a particle x

(i)
t,0 is inside the

interval [x
(i)
t,0 − 10, x

(i)
t,0 + 10] after the “Prediction” step is then about 0.68, i.e.

P
(
x

(i)
t,0 − 10 ≤ X̃

(i)
t+1,1 ≤ x

(i)
t,0 + 10

)
≈ 0.68.

We repeated the simulations 25 times and the maximal error of the estimate we
obtained was 0.2766, see Figure 7.11.

This shows that the APF may fail when the mixing condition is not met, even
though the particles are correctly predicted according to the dynamics. We re-
mark that it is not necessary that each kernel of the algorithm is mixing. In-
stead, it is sufficient that the composite kernels KtTt,MTt,M−1 . . . Tt,1 are mixing,
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Figure 7.10: When the mixing condition is not met, the APF loses track of the
articulated arm after some time and is not able to recover. From top left to bottom
right: t = 1, 5, 158, 165.

Figure 7.11: When the mixing condition is met, the APF is able to track the
articulated arm. From top left to bottom right: t = 1, 5, 158, 165.
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cf. [Mora04, Chapters 3.5.2 and 4]. In the example above, only the transitions Kt

and not the transitions Tt,1 actually satisfied the mixing condition.

7.2 Filtering Problem

We give an example showing that the APF is inapplicable for the filtering problem
as stated in Chapter 3. The reason for this is that the APF does not approximate
a distribution, particularly the posterior distribution (3.1.1), by a weighted particle
set but attempts to move the particles nearer to the global maximum of a fitness
function. In order to achieve convergence to the posterior distribution, we discussed
some modifications of the APF in Chapter 6, termed as generalised annealed particle
filter.

For this purpose, we apply the algorithms to a slightly modified one-dimensional
nonlinear example, where the extended Kalman filter does not work well, as shown
in [GoSS93], [KiGe96] and [DoFG01, Chapter 9]. The signal and observation process
are defined for t ∈ N by

Xt =
Xt−1

4
+ 5

Xt−1

1 +X2
t−1

+ 2 cos(1.2 t) + Vt, (7.2.1)

Yt =
X2
t

20
+
X3
t

100
+Wt, (7.2.2)

where Vt and Wt are independent zero-mean Gaussian random variables with vari-
ances 10 and 1, respectively, and X0 having a standard normal distribution. The
task is to estimate the unobserved signal xt from the observations yt assuming that
the model above is known. Paths of the signal and the observation process are
plotted in Figure 7.12(a) and Figure 7.12(a), respectively.
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Figure 7.12: Realisations of equations (7.2.1) and (7.2.2) for t = 0 . . . 100.

It follows from Chapter 3 and Chapter 4 that the weighting functions gt are given
by

gt(xt, yt) =
1√
2π

exp

(
−(yt − x2

t

20
− x3

t

100
)2

2

)
, (7.2.3)
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for t ∈ N. The functions have local and global maxima for different values of
the observations yt, as shown in Figure 7.13. But in contrast to the application
in Section 7.1, the functions gt represent densities determined by the observation
process. Thus, the signal xt is usually not located at the global maximum resulting
in a poor performance of the APF .
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(d) yt = 3

Figure 7.13: The function xt 7→ gt(xt, yt), see (7.2.3), has a local maximum for
different values of yt.

Likewise to the example with the articulated arm, we evaluated the algorithms
with various settings for the annealing scheme and the variance scheme. In our
experiments, we generated a sequence of 200 values according to the equations (7.2.1)
and (7.2.2). The estimates of the signal xt were computed between the “Updating”
step and the “Resampling” step by

x̂t :=

n∑

i=1

π
(i)
t,0 x̃

(i)
t,0,

for 1 ≤ t ≤ 200. We used the squared error

200∑

t=1

(xt − x̂t)2

as measurement of the performance, where we calculated the minimum, the max-
imum and the average of the squared error for each sequence. We repeated each
simulation 100 times, and the averages of the results are given in the tables be-
low. The computations and the implementations of the algorithms were done in
MATLAB.

The number of annealing runs was set to 4, and the Markov kernels

Tt,m(xt,m, B) :=
1√

2 π σ2

∫

B

exp

(
−(x− xt,m)2

2 σ2

)
dx

were used as transitions Tt,m. Table 7.22 contains the results for various annealing
schemes β4 < β3 < β2 < β1, where we set σ2 = 20. For evaluating the deter-
ministic and dynamic variance schemes for the APF , the best annealing scheme
0.2 < 0.3 < 0.44 < 0.67 in Table 7.22 was selected. When comparing the errors of
the APF both with different annealing schemes and with different variance schemes,
as seen in Tables 7.22 - 7.24, it is obvious that the GPF performs better than the
APF . This result agrees with our theoretical observations.
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β4 < β3 < β2 < β1 n MIN MAX AVG
1. GPF 300 0.0004 52.7474 6.7867
2. APF (0.2 0.4 0.6 0.8) 60 0.0005 56.9980 7.8547
3. APF (0.2 0.3 0.44 0.67) 60 0.0004 55.9007 7.8465
4. APF (0.1 0.17 0.31 0.56) 60 0.0003 56.2017 7.8629
5. APF (0.33 0.66 0.7 0.8) 60 0.0003 56.7339 7.8861
6. APF (0.44 0.69 0.83 0.9) 60 0.0005 55.9324 7.8617

Table 7.22: 100 simulations with different values of β4 < β3 < β2 < β1.

Variance σ2 n MIN MAX AVG
1. GPF 300 0.0002 53.1010 6.8672
2. APF 10 60 0.0008 63.6161 8.6935
3. APF 15 60 0.0006 56.1458 8.1201
4. APF 18 60 0.0005 55.9383 7.9897
5. APF 20 60 0.0004 55.2982 7.9422
6. APF 22 60 0.0005 56.3298 8.0193
7. APF 26 60 0.0004 58.4089 7.9957
8. APF 30 60 0.0003 59.4976 8.0778
9. APF 40 60 0.0004 60.4589 8.1517

Table 7.23: 100 simulations with different values of σ2.

σ2
4 ≥ σ2

3 ≥ σ2
2 ≥ σ2

1 n MIN MAX AVG
1. GPF 300 0.0003 50.9290 6.7794
2. APF (20 20 20 20) 60 0.0006 56.2248 7.8748
3. APF (26 24 22 20) 60 0.0004 56.5432 7.8331
4. APF (32 28 24 20) 60 0.0004 55.6429 7.8601
5. APF (38 32 26 20) 60 0.0005 55.1748 7.8894
6. APF (34 26 22 20) 60 0.0003 55.4868 7.8481
7. APF (26 25 23 20) 60 0.0006 56.4470 7.8630
8. APF 120 ∗ (0.67 0.44 0.3 0.2) 60 0.0004 56.0294 7.9001
9. APF 45 ∗ (0.8 0.64 0.51 0.41) 60 0.0006 55.5026 7.8727
10. APF 34 ∗ (0.9 0.81 0.73 0.66) 60 0.0004 56.5076 7.8506

c n MIN MAX AVG
11. APF s 4 60 0.0008 130.2932 11.4351
12. APF s 8 60 0.0008 129.6012 11.2247
13. APF s 16 60 0.0007 128.7720 11.1441

Table 7.24: 100 simulations with deterministic schemes (σ2
4 ≥ σ2

3 ≥ σ2
2 ≥ σ2

1) and
dynamic schemes (c).



8. Conclusion

We have developed a framework within which we discussed the mathematical prop-
erties of the annealed particle filter. For this purpose, we used the filtering problem
stated in Chapter 3 as a fundamental model for the application of the algorithm.
In accordance with the suggestion of Godsill and Clapp [DoFG01, Chapter 7], and
based on the same ideas as the heuristic annealed particle filter, we have derived
the generalised annealed particle filter in Chapter 6. It varies only slightly from the
annealed particle filter but imposes a strong restriction on the transitions during
the annealing step. This indicates that the annealed particle filter introduced by
Jonathan Deutscher et al. does not converge to the posterior distribution and thus
is not suitable for the filtering problem in contrast to other particle filters, like the
generic particle filter. In addition, we validated this conclusion by our simulations
in Section 7.2. The second difference concerns the annealing scheme. In contrast
to the generalised annealed particle filter and the algorithms in Chapter 5, there is
no mathematical reasoning for the requirement that the annealing schemes for the
APF increase strictly. Therefore, we relaxed the assumption, cf. condition (7.1.6).
Indeed, we discovered that the additional annealing schemes perform better in some
situations.

Furthermore, we found that the mixing condition is sufficient for uniform convergence
in time and should be fulfilled by the annealed particle filter even though it is not
clear to where the algorithm converges. We demonstrated in Section 7.1.8 what
might happen if the mixing condition is not met. Another important result from the
mathematical framework is the generalisation of the selection kernel. According to
this, we replaced the selection kernel of the APF by another selection kernel with
better mathematical properties. This novel modification of the annealed particle
filter was denoted by APFε. We showed that the APFε outperforms the APF as long
as the noise of the measurements is not too strong. It would be interesting to compare
the performance of the APF and the APFε in more sophisticated applications like
human body motion tracking, for example.

Even though the fundamental model for the mathematical framework bases on the
filtering problem, it is not restricted to this context. We can derive the convergence
of the annealed particle filter directly from this framework and state even uniform
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convergence in time as long as the mixing condition is satisfied. However, it remains
to solve the problem to which distribution the algorithm converges. More precisely,
the question is: How does the limiting distribution correspond to the optimal esti-
mate? For the filtering problem, we have seen that the limiting distribution does
not agree with the posterior distribution. In the context of genetic algorithms, one
would have to investigate if the algorithm converges to the global maximum of the
fitness function as M goes to infinity whereby this function changes with a new
observation yt. One approach would be to describe the algorithm as an annealed
Feynman Kac model, which was studied in [MoMi03] and [MoMi99]. However, an
essential assumption for the convergence is then that the “inverse” temperature goes
to infinity, similarly to simulated annealing [Haje88], and not to one, as it is the case
for the annealed particle filter. Therefore, we cannot apply the results for simulated
annealing, such as optimal temperature schemes [CoFi99], to the annealed particle
filter.

According to our experiments, we observed that the annealing schemes with de-
creasing increments performed better than the schemes with constant or decreasing
increments. Though we suspect that this is valid in most cases, the results do not
provide evidence for a general conclusion since the optimal annealing scheme is likely
to depend on the shape of the weighting function and thus on the application. Hence,
more simulations would be necessary not only to corroborate the observation but also
to evaluate different schemes with decreasing increments. Furthermore, we achieved
better results with the additional annealing schemes in some cases, as mentioned
above. Interestingly, this occurred when the measurements were noisy, as seen in
Section 7.1.5. Moreover, the simulations support the following rule of thumb: the
simpler the system the lower the optimal number of annealing runs. Finally, we found
that the dynamic variance schemes, which were suggested by Jonathan Deutscher
et al. in [DeRe05], outperform the deterministic variance schemes.

In addition to the already mentioned suggestions for further work, a better modelling
might improve the performance of the annealed particle filter. One approach could
be to allow correlation between the dimensions as suggested in Section 7.1.3. An-
other possibility for improvement is to use other branching procedures, like the ones
proposed in [CrML99], instead of the resampling procedure of the generic particle
filter as we remarked in Chapter 4. One could also relax the assumption that the
number of particles n is fixed such that n may depend on the “quality” of the parti-
cles in the previous step. Indeed, this condition is not essential for the convergence
of particle filters as shown in [CrML99].
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No. 1832 of Lecture Notes in Mathematics. Springer, 2003.

[MoDP04] Pierre Del Moral, Arnaud Doucet and Gareth W. Peters. Asymptotic
and Increasing Propagation of Chaos Expansions for Genealogical Par-
ticle Models. Publications du Laboratoire de Statistique et Probabilités,
2004. Preprint.

[MoGu01] Pierre Del Moral and Alice Guionnet. On the stability of interacting
processes with applications to filtering and genetic algorithms. Annales
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to non linear filtering. In Séminaire de Probabilités XXXIV, No. 1729
of Lecture Notes in Mathematics, p. 1–145. Springer, 2000.

[MoMi03] Pierre Del Moral and L. Miclo. Annealed Feynman-Kac Models. Com-
munications in Mathematical Physics vol. 235, 2003, p. 191–214.

[Mora98] Pierre Del Moral. Measure-valued Processes and Interacting Particle
Systems. Application to Nonlinear Filtering Problems. Annals of Ap-
plied Probability 8(2), 1998, p. 438–495.

[Mora04] Pierre Del Moral. Feynman-Kac Formulae. Genealogical and Interact-
ing Particle Systems with Applications. Probability and its Applica-
tions. Springer. 2004.

[MRRT+53] Nicholas Metropolis, Arianna W. Rosenbluth, Marshall N. Rosenbluth,
Augusta H. Teller and Edward Teller. Equations of State Calculations
by Fast Computing Machines. Journal of Chemical Physics 21(6), 1953,
p. 1087–1092.

[Neal98] Radford M. Neal. Annealed Inportance Sampling. Technical Report
9805, Department of Statistics, University of Toronto, 1998.

[PoWH88] A. Pole, M. West and P. J. Harrison. Bayesian Analysis of Time Series
and Dynamic, Chapter Non-normal and non-linear dynamic Bayesian
modelling. Dekker. 1988.

[RoCa02] Christian P. Robert and George Casella. Monte Carlo Statistical Meth-
ods. Springer. 2002.

[RoWi01] L. C. G. Rogers and David Williams. Diffusions, Markov Processes and
Martingales, Vol. 1. Cambridge University Press. 2 ed., 2001.

[SeVa05] Sunder Sethuraman and S. R. S. Varadhan. A martingale proof of
Dobrushin’s theorem for non-homogeneous Markov chains, 2005.

[Shir84] Albert N. Shiryaev. Probability. Springer. 1984.



Index 81

Index

A

Absolutely continuous . . . . . . . . . . . . . . 4
Annealed importance sampling . . . . 26
Annealing effect . . . . . . . . . . . . . . . . . . . 23
Annealing scheme . . . . . . . . . . . . . . . . . 53

B

Boltzmann-Gibbs measure. . . .26, 29 f,
33 f, 40

Boltzmann-Gibbs transformation . .30,
36

C

Convergence
Almost surely . . . . . . . . . . . . . . . . . . . 8
Weak . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

D

Dobrushin contraction . . . . . . . . . . . . . . 5
Dynamic variance scheme. . . . . . . . . .40

E

Ergodic coefficient . . . . . . . . . . . . . . . . . . 5

F

Feller property. . . . . . . . . . . . . . . . . . . . . .5
Feynman-Kac model . . . . . . . . . . . 30, 34
Feynman-Kac-Metropolis model . . . 32

I

Interacting annealing algorithm . . . . 36
Interacting particle system. . . . . . . . .14
Invariant . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

K

Kernel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
Markov . . . . . . . . . . . . . . . . . . . . . . . . . 4
Transition . . . . . . . . . . . . . . . . . . . . . . 5

M

Markov process . . . . . . . . . . . . . . . . . . . . . 5
Time-homogeneous . . . . . . . . . . . . . 5
Time-inhomogeneous. . . . . . . . . . . .5

Metropolis-Hastings algorithm . 24, 26
Mixing condition. . . . . . . . . . . . . . .19, 68

O

Observation process . . . . . . . . . . . . . . . . 7

P

Particle filter
Annealed . . . . . . . . . . . . . . . . . . . . . . 47
Generalised annealed . . . . . . . . . . 41
Generic . . . . . . . . . . . . . . . . . . . . 13, 47

Proposal distribution . . . . . . . . . . . . . . 26

R

Radon-Nikodym derivative . . . . . . . . . . 4
Repetition effect . . . . . . . . . . . . . . . . . . . 23
Resampling . . . . . . . . . . . . . . . . . . . . . . . . 13
Reversal formula . . . . . . . . . . . . . . . . . . 33

S

Selection kernel . . . . . . . . . . . . 31, 43, 47
Signal process . . . . . . . . . . . . . . . . . . . . . . 7
Supremum norm. . . . . . . . . . . . . . . . . . . . 3

T

Target distribution . . . . . . . . . . . . . . . . 24
Total variation distance . . . . . . . . . . . . . 3

V

Variance scheme . . . . . . . . . . . . . . . . . . . 57
Constant . . . . . . . . . . . . . . . . . . . . . . 57
Deterministic . . . . . . . . . . . . . . . . . . 58
Dynamic . . . . . . . . . . . . . . . . . . . . . . 60



82 Index

W

Weighted particle . . . . . . . . . . . . . . . . . . 14
Weighted particle set . . . . . . . . . . . . . . 14
Weighting function. . . . . . . . . . . . .13, 51


