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Abstract. In this paper we cast the idea of antithetic sampling, widely used in standard
Monte Carlo simulation, into the framework of sequential Monte Carlo methods. A version
of the standard auxiliary particle filter (Pitt and Shephard, 1999) is proposed where the
particles are mutated blockwise in such a way that all particles within each block are, firstly,
offspring of a common ancestor and, secondly, negatively correlated conditionally on this
ancestor. By deriving and examining the weak limit of a central limit theorem describing
the convergence of the algorithm, we conclude that the asymptotic variance of the produced
Monte Carlo estimates can be straightforwardly decreased by means of antithetic techniques
when the particle filter is close to fully adapted, which involves approximation of the so-
called optimal proposal kernel. As an illustration, we apply the method to optimal filtering
in state space models.

1. introduction

Sequential Monte Carlo (SMC) methods—alternatively termed particle filters—refer to a
collection of algorithms which approximate recursively a sequence (often called the Feynman-
Kac flow) of target measures by a sequence of empirical distributions associated with prop-
erly weighted samples of particles. These methods have received a lot of attention during the
last decade and are at present applied within a wide range of scientific disciplines. Doucet et
al. (2001) provides a survey of recent developments of the SMC methodology from a practical
viewpoint and a comprehensive treatment of theoretical aspects of basic SMC algorithms is
given by Del Moral (2004).

In standard SMC methods two main operations are alternated: in the mutation step the
particles are propagated according to a Markovian kernel and associated with importance
sampling weights proportional to the Radon-Nikodym derivative of the target measure with
respect to the instrumental distribution of the particles. In the subsequent selection step the
particle sample is transformed by selecting new particles from the current (mutated) ones
using the normalized importance weights as probabilities of selection. This step serves to
eliminate or duplicate particles with small or large weights, respectively.

In this paper we propose a modification of the auxiliary particle filter (APF) (introduced
originally by Pitt and Shephard, 1999) which relies on the classical idea of antithetic sampling
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used in standard Monte Carlo estimation: when estimating the expectation

I(f) ,

∫

R

f(x)p(x) dx ,

where p is a probability density function and f is a given real-valued target function, the
unbiased estimator

ÎN(f) ,
1

2N

N
∑

i=1

[f(ξi) + f(ξ′i)]

of I(f), where {ξi}Ni=1 and {ξ′i}Ni=1 are two samples from p, is more efficient (has lower
variance) than the standard Monte Carlo estimator based on a sample of 2N independent
and identically distributed draws, if the variables f(ξi) and f(ξ′i) are negatively correlated for
all i ∈ {1, . . . , N}. In this setting, the variables {ξ′i}Ni=1 are referred to as antithetic variables.
Antithetically coupled variables can be generated in different ways, and in Section 2 we
discuss how this can be achieved by means of the well-known permuted displacement method
(Arvidsen and Johnsson, 1982). In order to allow for antithetic acceleration within the SMC
framework we introduce (in Section 2) a version of the standard APF where the particles
are mutated blockwise in such a way that all particles within each block are, firstly, offspring
of a common ancestor and, secondly, statistically dependent conditionally on this ancestor.
Moreover, in Section 3 we establish convergence results for our proposed method in the
sense of convergence in probability and weak convergence. By examining the weak limit of
the obtained central limit theorem (CLT) in Corollary 3.2 we conclude that the asymptotic
variance of the produced Monte Carlo estimates is decreased when the particle filter is close
to fully adapted (in which case close to uniform importance weights are obtained by means
of approximation of the so-called optimal kernel, see Pitt and Shephard, 1999) and the
inherent correlation structure of each block is negative. Finally, in the implementation part,
Section 4, we apply our algorithm to optimal filtering in state space models and benchmark
its performance on a nosily observed ARCH model as well as a univariate growth model.
The outcome of the simulations indicates that introducing antithetically coupled particles
provides, besides a lowered computational burden, a significant gain of precision for these
models.

2. Auxiliary particle filter with blockwise correlated mutation

2.1. Notation and definitions. In order to state precisely our results and keep the presen-
tation streamlined, we preface the description of the algorithm with some measure-theoretic
notation. In the following we assume that all random variables are defined on a common
probability space (Ω,F ,P). A state space Ξ is called general if it is equipped with a countably
generated σ-field B(Ξ), and we denote by P(Ξ) and B(Ξ) the sets of probability measures on
(Ξ,B(Ξ)) and measurable functions from Ξ to R, respectively. For any measure µ ∈ P(Ξ)
and function f ∈ B(Ξ) satisfying

∫

Ξ
|f(ξ)|µ(dξ) <∞ we let µ(f) ,

∫

Ξ
f(ξ)µ(dξ) denote the

expectation of f under µ. A kernel K from (Ξ,B(Ξ)) to some other state space (Ξ̃,B(Ξ̃))

is called finite if K(ξ, Ξ̃) < ∞ for all ξ ∈ Ξ and Markovian if K(ξ, Ξ̃) = 1 for all ξ ∈ Ξ.
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Moreover, a kernel K induces two operators, the first transforming a function f ∈ B(Ξ× Ξ̃)

satisfying
∫

Ξ̃
|f(ξ, ξ̃)|K(ξ, dξ̃) <∞ into the function

ξ 7→ K(ξ, f) ,

∫

Ξ̃

f(ξ, ξ̃)K(ξ, dξ̃)

in B(Ξ); the other transforms any measure ν ∈ P(Ξ) into the measure

A 7→ νK(A) ,

∫

Ξ

K(ξ, A) ν(dξ)

in P(Ξ̃). Finally, in order to describe lucidly joint distributions associated with Markovian
transitions, we define the outer product, denoted by K ⊗ T , of a kernel K from (Ξ,B(Ξ)) to

(Ξ̃,B(Ξ̃)) and a kernel T from (Ξ× Ξ̃,B(Ξ)⊗B(Ξ̃)) to some other state space (Ξ̄,B(Ξ̄)) as
the kernel from (Ξ,B(Ξ)) to the product space Ξ̃× Ξ̄, equipped with the product σ-algebra

B(Ξ̃)⊗ B(Ξ̄), given by

K ⊗ T (ξ, A) ,

∫∫

Ξ̃×Ξ̄

1A(ξ̃, ξ̄)K(ξ, dξ̃)T (ξ, ξ̃, dξ̄) , ξ ∈ Ξ , A ∈ B(Ξ̃)⊗ B(Ξ̄) . (2.1)

2.2. Blockwise correlated mutation. In the following we say that a collection of random
variables (particles) {ξN,i}MN

i=1 , taking values in some state space Ξ, and associated nonneg-

ative weights {ωN,i}MN

i=1 targets a probability measure ν ∈ P(Ξ) if, denoting the weight sum

by ΩN ,
∑MN

i=1 ωN,i,

Ω−1
N

MN
∑

i=1

ωN,if(ξN,i) ≈ ν(f) ,

for all functions f in some specified subset of B(Ξ). Here {MN}∞N=0 is an increasing sequence

of integers. The set {(ξN,i, ωN,i)}MN

i=1 is referred to as a weighted sample on Ξ. In this paper

we study the problem of transforming a weighted sample {(ξN,i, ωN,i)}MN

i=1 targeting ν ∈ P(Ξ)

into a weighted sample {(ξ̃N,i, ω̃N,i)}αMN

i=1 , α ∈ N∗, targeting the probability measure

µ(A) =
νL(A)

νL(Ξ̃)
=

∫

Ξ
L(ξ, A) ν(dξ)

∫

Ξ
L(ξ′, Ξ̃) ν(dξ′)

, A ∈ B(Ξ̃) , (2.2)

where L is a finite transition kernel from (Ξ,B(Ξ)) to (Ξ̃,B(Ξ̃)). Feynman-Kac transitions
of type (2.2) occur within a variety of fields (see Del Moral, 2004, for examples from, e.g.,
quantum physics and biology) and in Section 4 we show how the flow of posterior distributions
of the noisily observed Markov chain (state signal) of a state space model can be generated
according to (2.2). The transformation is carried out by, firstly, drawing particle positions

{ξ̃N,i}αMN

i=1 according to, for j ∈ {1, . . . ,MN}, k ∈ {1, . . . , α} and A ∈ B(Ξ̃),

P

(

ξ̃N,α(j−1)+k ∈ A
∣

∣

∣
FN,α(j−1)+k−1

)

= Rk(ξN,j, ξ̃N,α(j−1)+1, . . . , ξ̃N,α(j−1)+k−1, A) ,
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where we have defined the σ-fields FN,ℓ , σ({(ξN,i, ωN,i)}MN

i=1 , {ξ̃N,j}ℓj=1), ℓ ∈ {0, . . . , αMN},
and each Rk is a Markovian kernel from (Ξ× Ξ̃

k−1
,B(Ξ× Ξ̃

k−1
)) to (Ξ̃,B(Ξ̃)). Hence, using

the kernel outer product notation ⊗ defined in (2.1), the joint distribution, conditional on

FN,α(j−1), the each block {ξ̃N,α(j−1)+k}αk=1 can be expressed as
⊗α

k=1Rk(ξN,IN,j
, ·). Secondly,

these particles are associated with the weights

ω̃N,α(j−1)+k = ωN,jΦk(ξN,j, ξ̃N,α(j−1)+k)

with

Φk(ξ, ξ̃) ,
dL(ξ, ·)

dR0,k(ξ, ·)
(ξ̃) , (ξ, ξ̃) ∈ Ξ× Ξ̃ ,

and, for integers 0 ≤ m < k and A ∈ B(Ξ̃),

Rm,k(ξ, ξ̃1:m, A) ,

k
⊗

i=m+1

Ri(ξ, ξ̃1:m, Ξ̃
k−m−1 × A)

=

∫

Ξ̃

· · ·
∫

Ξ̃

Rk(ξ, ξ̃1:k−1, A)
k−1
∏

ℓ=m+1

Rℓ(ξ, ξ̃1:ℓ−1, dξ̃ℓ) ,

where we have introduced vector notation am:n , (am, am+1, . . . , an) with the convention

am:n = ∅ if m > n. Thus Rm,k(ξN,j, ξ̃N,α(j−1)+1:α(j−1)+m, ·) is the distribution of ξ̃N,α(j−1)+k

conditionally on FN,α(j−1)+m. Finally, we take {(ξ̃N,i, ω̃N,i)}αMN

i=1 as an approximation of µ.
This blockwise mutation operation, which extends, since it allows for statistically depen-
dent particles within each block, the blockwise mutation operation suggested by Douc and
Moulines (2005), is summarized in Algorithm 1.

Algorithm 1 Blockwise correlated mutation

Require: {(ξN,i, ωN,i)}MN

i=1 targets ν.

1: for j = 1, . . . , M̃N do
2: draw {ξ̃N,α(j−1)+k}αk=1 ∼

⊗α
k=1Rk(ξN,IN,j

, ·),
3: set, for k ∈ {1, . . . α},

ω̃N,α(j−1)+k ← Φk(ξN,IN,j
, ξ̃N,α(j−1)+k) ,

4: end for
5: let {(ξ̃N,i, ω̃N,i)}αM̃N

i=1 approximate µ.

Here the mutation step (2) is expressed using the kernel outer product notation ⊗ defined
in (2.1).
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2.3. Blockwise correlated mutation with resampling. In the sequential context, where
the problem consists in estimating a sequence of measures generated according to the map-
ping (2.2), it is, in order to avoid weight degeneracy, essential to combine the correlated
blockwise mutation operation described in Algorithm 1 with a prefatory resampling oper-
ation where particles having small weights are eliminated and those having large ones are
duplicated. As observed by Pitt and Shephard (1999) (see also Douc et al., 2008, for a
theoretical study), the variance of the produced SMC estimates can be reduced efficiently

by introducing, as in the APF, a set {ψN,i}MN

i=1 of adjustment multiplier weights and select-

ing the particles with probabilities proportional to {ωN,iψN,i}MN

i=1 . This gives us the scheme
described in Algorithm 2.

Algorithm 2 APF with blockwise correlated mutation

Require: {(ξN,i, ωN,i)}MN

i=1 targets ν.

1: Draw {IN,j}M̃N

j=1 ∼M(M̃N , {ωN,iψN,i/
∑MN

ℓ=1 ωN,ℓψN,ℓ}MN

i=1 ),

2: for j = 1, . . . , M̃N do
3: draw {ξ̃N,α(j−1)+k}αk=1 ∼

⊗α
k=1Rk(ξN,IN,j

, ·),
4: set, for k ∈ {1, . . . α},

ω̃N,α(j−1)+k ← ψ−1
N,IN,j

Φk(ξN,IN,j
, ξ̃N,α(j−1)+k) ,

5: end for
6: let {(ξ̃N,i, ω̃N,i)}αM̃N

i=1 approximate µ.

2.4. Antithetic blockwise mutation with resampling. The main motivation of Pitt and
Shephard (1999) for introducing the adjustment multiplier weights was the possibility of de-

signing these in such a manner that the resulting (second stage) particle weights {ω̃N,i}αM̃N

i=1

become close to uniform; in this case, in which the APF is referred to as fully adapted, the
instrumental and target distributions of the APF coincide. Adapting fully the APF involves
typically some approximation of the so-called optimal proposal kernel L(ξ, ·)/L(ξ, Ξ̃). In-

deed, let L be a kernel from (Ξ,B(Ξ)) to (Ξ̃,B(Ξ̃)) such that L(ξ, A) ≈ L(ξ, A) for all ξ ∈ Ξ

and A ∈ B(Ξ̃); then Algorithm 2 with ψN,i = L(ξN,i, Ξ̃) and R0,k(ξ, ·) = L(ξ, ·)/L(ξ, Ξ̃) for
all i ∈ {1, . . . ,MN} and k ∈ {1, . . . , α} returns, since then

ω̃N,α(j−1)+k = L−1(ξN,IN,j
, Ξ̃)

dL(ξN,IN,j
, ·)

dR0,k(ξN,IN,j
, ·)(ξ̃N,α(j−1)+k) =

dL(ξN,IN,j
, ·)

dL(ξN,IN,j
, ·)(ξ̃N,α(j−1)+k) ≈ 1 ,

a close to uniformly weighted particle sample. Thus, methods for approximating the optimal
kernel have been proposed by several authors; see e.g. Pitt and Shephard (1999) and Doucet
et al. (2000).

For our purposes, putting the APF in a close to fully adapted mode is attractive from
another point of view: the close to uniform weights render efficient antithetic acceleration of
the standard APF possible, which might reduce the variance of the produced SMC estimates
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significantly. Hence, the aim of this paper is to justify, in theory as well as in simulations,
the following algorithm in which L and f denote a given approximation of L and a given
target function, respectively.

Algorithm 3 APF with antithetic blockwise mutation

Require: {(ξN,i, ωN,i)}MN

i=1 targets ν.

1: Draw {IN,j}M̃N

j=1 ∼M(M̃N , {ωN,iL(ξN,i, Ξ̃)/
∑MN

ℓ=1 ωN,ℓL(ξN,ℓ, Ξ̃)}MN

i=1 ),

2: for j = 1, . . . , M̃N do
3: simulate, using an appropriate family of kernels {Rk}αk=1, a block {ξ̃N,α(j−1)+k}αk=1 ∼

⊗α
k=1Rk(ξN,IN,j

, ·) of particles such that R0,k(ξN,IN,j
, ·) = L(ξN,IN,j

, ·)/L(ξN,IN,j
, Ξ̃) and

the real-valued variables {f(ξ̃N,α(j−1)+k)}αk=1 are, conditionally on ξN,IN,j
, mutually neg-

atively correlated,
4: set, for k ∈ {1, . . . , α},

ω̃N,α(j−1)+k ← L−1(ξN,IN,j
, Ξ̃)Φk(ξN,IN,i

, ξ̃N,α(i−1)+k) ,

5: end for
6: let {(ξ̃N,i, ω̃N,i)}αM̃N

i=1 approximate µ.

Step (3) in Algorithm 3 can be carried out in several different ways. The simplest way
to introduce negative correlation between two real-valued random variables is to use a pair
(U,U ′) of uniforms, where U = r, U ′ = 1 − r, and r ∼ U(0, 1) is uniformly distributed
(on (0, 1)). Such a coupling has the extreme antithetis (EA) property : if F is an arbitrary
distribution function, then the correlation between ξ = F←(U) and ξ′ = F←(U ′), F←

denoting the inverse of F , achieves the minimal possible value subject to the constraint that
ξ, ξ′ ∼ F . This implies immediately that the strategy also achieves EA for variates g(ξ) and
g(ξ′), where g : R→ R is any monotone function such that

∫

g2(ξ)F (dξ) <∞, since (U,U ′)
achieves EA simultaneously for all F and g(ξ) (and g(ξ′)) has distribution function F ◦ g←.
This remarkable observation is related to the fact that the construction (U,U ′) satisfies the
stronger property of negative association, which requires that the negative correlation is
preserved by monotone transformations. The following definition, adopted form Craiu and
Meng (2005), extends this property to an arbitrary number of variates.

Definition 2.1 (Pairwise negative association). The random variables ξ1, ξ2, . . . , ξn are said
to be pairwise negatively associated (PNA) if, for any nondecreasing (or non-increasing)
functions f1, f2 and (i, j) ∈ {1, . . . , n}2 such that i 6= j,

Cov[f1(ξi), f2(ξj)] ≤ 0

whenever this covariance is well defined.

In the light of the previous it is appealing to mutate the particles in such a way that the
α offspring particles of a certain block are conditionally EA given the common ancestor. A
rather generic way to achieve this goes via the permuted displacement method (developed
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by Arvidsen and Johnsson, 1982) presented below, where Sα denotes the set of all possible
permutations of the numbers {1, . . . , α}.

Algorithm 4 Permuted displacement method

1: Draw r1 ∼ U(0, 1),
2: for k = 2, . . . , α− 1 do
3: set rk = 〈2k−2r1 + 1/2〉,
4: end for
5: set rα = 1− 〈2α−2r1〉,
6: pick a random σ ∈ Sα,
7: for k = 1, . . . , α do
8: set Uk , rσ(k),
9: end for

In this setting, Craiu and Meng (2005, Theorem 3) showed that the uniformly distributed
variates {Ui}αi=1 produced in Algorithm 4 are PNA for α ≤ 3. For α ≥ 4 one has not at
present been able to neither prove nor refute a similar result. Thus, Step (3) of Algorithm 3
can be carried out by producing, using Algorithm 4, PNA uniforms {Uk}αk=1 and setting, for
k ∈ {1, . . . , α},

ξ̃N,α(j−1)+k = F←k,ξN,j
[f ](Uk) ,

where Fk,ξ[f ](x) , L(ξ, {f(ξ̃) ≤ x})/L(ξ, Ξ̃), x ∈ R, denotes the conditional distribution

function of the f(ξ̃N,α(j−1)+k)’s given ξN,j = ξ ∈ Ξ. Since each function F←k,ξ[f ] is monotone,

it follows that {f(ξ̃N,α(j−1)+k)}αk=1 are conditionally EA. Of course, this method is applicable
only when Fk,ξ[f ] is easy to invert; this is however not always the case and in Section 4 we
present some alternative techniques for introducing negative correlation between the offspring
particles.

3. Theoretical results

In this section we justify theoretically Algorithm 3 using novel results on triangular arrays
obtained by Douc and Moulines (2005). The arguments rely on results describing the weak
convergence of Algorithms 1 and 2 in a rather general setting.

3.1. Notation and definitions. From now on the quality of a weighted sample will be
described in terms of the following asymptotic properties, adopted from Douc and Moulines
(2005), where a set C of real-valued functions on Ξ is said to be proper if the following
conditions hold: i) C is a linear space; ii) if g ∈ C and f is measurable with |f | ≤ |g|, then
|f | ∈ C; iii) for all c ∈ R, the constant function f ≡ c belongs to C.
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Definition 3.1 (Consistency). A weighted sample {(ξN,i, ωN,i)}MN

i=1 on Ξ is said to be con-
sistent for the probability measure µ and the proper set C if, for any f ∈ C, as N →∞,

Ω−1
N

MN
∑

i=1

ωN,if(ξN,i)
P−→ µ(f) ,

Ω−1
N max

1≤i≤MN

ωN,i
P−→ 0 .

Definition 3.2 (Asymptotic normality). A weighted sample {(ξN,i, ωN,i)}MN

i=1 on Ξ is called
asymptotically normal (AN) for (µ,A,W, σ, γ, {aN}∞N=1) if A and W are proper and, as
N →∞,

aNΩ−1
N

MN
∑

i=1

ωN,i[f(ξN,i)− µ(f)]
D−→ N [0, σ2(f)] for any f ∈ A ,

a2
NΩ−1

N

MN
∑

i=1

(ωN,i)
2f(ξN,i)

P−→ γ(f) for any f ∈ W ,

aNΩ−1
N max

1≤i≤MN

ωN,i
P−→ 0 .

We impose the following assumptions.

(A1) The initial sample {(ξN,i, ωN,i)}MN

i=1 is consistent for (ν,C).

(A2) The initial sample {(ξN,i, ωN,i)}MN

i=1 is AN for (ν,A,W, σ, γ, {aN}∞N=1).

Under (A1) and (A2), we define

C̃ , {f ∈ L
1(Ξ̃, µ) : L(·, |f |) ∈ C} ,

Ã ,
{

f : L(·, |f |) ∈ A,R0,k(·,Φ2
kf

2) ∈ W; k ∈ {1, . . . , α}
}

,

W̃ ,
{

f : R0,k(·,Φ2
k|f |) ∈ W; k ∈ {1, . . . , α}

}

.

(3.1)

Moreover, let, for f ∈ Ã and ξ ∈ Ξ, assuming that m ≤ n,

Mm,n(ξ, f)

, E

[

Φm(ξN,j, ξ̃N,α(j−1)+m)Φn(ξN,j, ξ̃N,α(j−1)+n)f(ξ̃N,α(j−1)+m)f(ξ̃N,α(j−1)+n)
∣

∣

∣
ξN,j = ξ

]

= E

[

E

[

Φn(ξN,j, ξ̃N,α(j−1)+n)f(ξ̃N,α(j−1)+n)
∣

∣

∣
ξN,j = ξ, ξ̃N,α(j−1)+1:α(j−1)+m

]

×Φm(ξN,j, ξ̃N,α(j−1)+m)f(ξ̃N,α(j−1)+m)
∣

∣

∣
ξN,j = ξ

]

=

∫

Ξ̃

· · ·
∫

Ξ̃

Rm,n(ξ, ξ̃1:m,Φn(ξ, ·)f)Φm(ξ, ξ̃m)f(ξ̃m)
m

⊗

ℓ=1

Rℓ(ξ, dξ̃1 × · · · × dξ̃m) ,
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and introduce the conditional covariances

Cm,n(ξ, f)

, Cov
[

Φm(ξN,j, ξ̃N,α(j−1)+m)f(ξ̃N,α(j−1)+m),Φn(ξN,j, ξ̃N,α(j−1)+n)f(ξ̃N,α(j−1)+n)
∣

∣

∣
ξN,j = ξ

]

= Mm,n(ξ, f)− L2(ξ, f) . (3.2)

3.2. Convergence of Algorithms 1 and 2. Under the assumptions above we have the
following convergence results, whose proofs are found in the appendix.

Theorem 3.1. Assume (A1) and suppose that L(·, Ξ̃) ∈ C. Then the set C̃ defined in (3.1)

is proper and the weighted sample {(ξ̃N,i, ω̃N,i)}αMN

i=1 produced in Algorithm 1 is consistent for

(µ, C̃).

Theorem 3.2. Let the assumptions of Theorem 3.1 hold. In addition, assume (A2) and
suppose that all functions R0,k(·,Φ2

k), k ∈ {1, . . . , α}, belong to W. Moreover, assume that

L(·, Ξ̃) belongs to A. Then the sets Ã and W̃ defined in (3.1) are proper and the weighted

sample {(ξ̃N,i, ω̃N,i)}αMN

i=1 produced in Algorithm 1 is AN for (µ, Ã, W̃, σ̃, γ̃, {aN}∞N=1), where,

for f ∈ Ã,

σ̃2(f) , σ2{L[f − µ(f)]}/[νL(Ξ̃)]2 +
∑

(m,n)∈{1,...,α}2

γCm,n[f − µ(f)]/[ανL(Ξ̃)]2 , (3.3)

and, for f ∈ W̃,

γ̃(f) ,

α
∑

k=1

γR0,k(Φ
2
kf)/[ανL(Ξ̃)]2 .

Remark 3.1. In the case where Rk(ξ, ξ̃i:k−1, ·) = R(ξ, ·) and Φk = Φ = dL/dR, that is, the
particles within a block are mutated independently of each other, we have that Cm,n = 0 for
all m 6= n. This yields an asymptotic variance (3.3) of form

σ̃2(f) = σ2{L[f − µ(f)]}/[νL(Ξ̃)]2 +

α
∑

m=1

γCm,m[f − µ(f)]/[ανL(Ξ̃)]2

= σ2{L[f − µ(f)]}/[νL(Ξ̃)]2 + α−1{γR(Φ2[f − µ(f)]2)− γL2[f − µ(f)]}/[νL(Ξ̃)]2 ,
(3.4)

which is exactly the expression obtained by Douc and Moulines (2005, Theorem 2).

We move on to the convergence of Algorithm 2. Throughout the rest of this paper assume,
entirely in line with Algorithm 3, that the adjustment multiplier weights satisfy the following
assumption.

(A3) There exists a function Ψ : Ξ→ R
+ such that ψN,i = Ψ(ξN,i) and Ψ ∈ C ∩ L

1(Ξ, ν).
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Define

C̄ , {f ∈ L
1(µ, Ξ̃) : L(·, |f |) ∈ C ∩ L

1(ν, Ξ̃)} ,
Ā ,

{

Ψ−1L2(·, |f |) ∈ C ∩ L
1(ν,Ξ), L(·, |f |) ∈ A, L2(·, |f |) ∈ W,

Ψ−1R0,k(·,Φ2
kf

2) ∈ C ∩ L
1(ν,Ξ); k ∈ {1, . . . , α}

}

,

W̄ ,
{

Ψ−1R0,k(·,Φ2
k|f |) ∈ C ∩ L

1(ν,Ξ); k ∈ {1, . . . , α}
}

;

(3.5)

now, by combining Theorem 3.2 with results obtained by Douc et al. (2008) we establish the
convergence of Algorithm 2. This is the contents of the following corollaries whose proofs
are omitted for brevity.

Corollary 3.1. Let the assumptions of Theorem 3.1 hold and assume (A3). Then the set C̄

defined in (3.5) is proper and the weighted sample {(ξ̃N,i, ω̃N,i)}αM̃N

i=1 obtained in Algorithm 2
is consistent for (µ, C̄).

Corollary 3.2. Let the assumptions of Theorem 3.1 hold and assume (A2) with a2
N/MN →

β, β ∈ [0,∞). In addition, suppose that Ψ ∈ A, Ψ2 ∈ W and that all functions Ψ−1R0,k(·,Φ2
k),

k ∈ {1, . . . , α}, belong to C ∩ L1(ν, Ξ̃). Moreover, assume that Ψ−1L2(·, Ξ̃) ∈ C ∩ L1(ν, Ξ̃),

L(·, Ξ̃) ∈ A, and L2(·, Ξ̃) ∈ W. Then the sets Ā and W̄ defined in (3.5) are proper and the

weighted sample {(ξ̃N,i, ω̃N,i)}αM̃N

i=1 obtained in Algorithm 2 with M̃N/MN → ℓ, ℓ ∈ [0,∞], is
AN for (µ, Ā, W̄, σ̄, γ̄, {aN}∞N=1), where, for f ∈ Ā,

σ̄2[Ψ](f) , σ2{L[·, f − µ(f)]}/[νL(Ξ̃)]2

+ βℓ−1ν(Ψ)
∑

(m,n)∈{1,...,α}2

ν(ΨMm,n{·,Ψ−1[f − µ(f)]})/[ανL(Ξ̃)]2 (3.6)

and, for f ∈ W̄,

γ̄[Ψ](f) , βℓ−1ν(Ψ)
α

∑

k=1

ν[Ψ−1R0,k(·,Φ2
kf)]/[ανL(Ξ̃)]2 .

Remark 3.2. The resampling step (1) in Algorithm 2 can, of course, be based on resam-
pling techniques different from multinomial resampling, e.g., residual resampling or Bernoulli
branching. However, we believe that the convergence results stated in Theorems 3.1 and 3.2
as well as the methodology developed above can be extended straightforwardly to these selec-
tion schemes, since their asymptotic behaviour is well investigated (see Chopin, 2004; Douc
and Moulines, 2005).

3.3. Theoretical justification of Algorithm 3. In order to justify the use of antithetic
variables in Algorithm 3, we examine the asymptotic variance given in (3.6). Since the first
term is not at all effected by the way the particles are mutated, we direct focus to the second
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term and write, using (3.2),

βℓ−1ν(Ψ)
∑

(m,n)∈{1,...,α}2

ν(ΨMm,n{·,Ψ−1[f − µ(f)]})/[ανL(Ξ̃)]2

= βℓ−1ν(Ψ)ν(ΨL2{·,Ψ−1[f − µ(f)]})/[νL(Ξ̃)]2

+ βℓ−1ν(Ψ)
∑

(m,n)∈{1,...,α}2

ν(ΨCm,n{·,Ψ−1[f − µ(f)]})/[ανL(Ξ̃)]2 ,

where the first term on the RHS is again independent of the correlation structure of the
mutation step. The second term will be smaller than in the case where all particles within
each block are mutated independently if the covariances Cm,n{·,Ψ−1[f −µ(f)]} are negative

for all m 6= n; however, since Ψ−1(ξ)Φ(ξ, ξ̃) ≈ 1 for all (ξ, ξ̃) ∈ Ξ × Ξ̃ in the close to fully
adapted case, it holds that

Cm,n{ξ,Ψ−1[f − µ(f)]} ≈ Cov
[

f(ξ̃N,α(j−1)+m), f(ξ̃N,α(j−1)+n)
∣

∣

∣
ξN,j = ξ

]

, (3.7)

which is negative when the f(ξ̃N,α(j−1)+k)’s are negatively correlated.
In addition, it is possible to relate the performance of the antithetic SMC scheme in

Algorithm 3 to that of the standard APF (for which α = 1). More specifically, we establish a
criterion (depending on the model and target function under consideration) which guarantees
that introducing antithetic variates yields a strictly more accurate (in terms of variance)
and computationally more efficient algorithm than the standard APF. In order to keep the
particle population size constant, i.e. having M̃N = MN , through a run of Algorithm 3 for
a given block size α, only a fraction M̃N = ⌈MN/α⌉ (yielding ℓ = 1/α in Corollary 3.2) of
the original particle population should be selected at the resampling operation. In this case
Corollary 3.2 provides, using (3.2), the asymptotic variance

σ̄2[Ψ](f) , σ2{L[·, f − µ(f)]}/[νL(Ξ̃)]2

+ βαν(Ψ)
∑

(m,n)∈{1,...,α}2

ν(ΨMm,n{·,Ψ−1[f − µ(f)]})/[ανL(Ξ̃)]2 . (3.8)

On the other hand, letting α = 1 and ℓ = 1, corresponding to the uncorrelated standard
APF, in Corollary 3.2 yields the asymptotic variance

σ̄2
α=ℓ=1[Ψ](f) , σ2{L[·, f−µ(f)]}/[νL(Ξ̃)]2+βν(Ψ)ν(ΨM1,1{·,Ψ−1[f−µ(f)]})/[νL(Ξ̃)]2 ,

and, under the assumption that the inherent covariance structure of each block is uniform
with Mm,n = M∗ for all (m,n) ∈ {1, . . . , α}2 such that m 6= n, the citerion

σ̄2[Ψ](f) ≤ σ̄2
α=ℓ=1[Ψ](f)

⇔
−ν(ΨC

∗{·,Ψ−1[f − µ(f)]}) ≥ ν(ΨL2{·,Ψ−1[f − µ(f)]}) .
(3.9)
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Remark 3.3. From the criterion (3.9) it is evident that mutating the particles in blocks
without any (or positive) inherent correlation structure (that is, letting C∗ ≥ 0) will, not
surprisingly, increase the asymptotic variance vis-à-vis the standard APF. Moreover, since
the correlation C∗ ≥ 0 is a decreasing function of α, we conclude that there is a critical block
size above which (3.9) will not hold even if the offspring particles of a block have the EA
property conditionally on their ancestor.

4. Application to state space models

In state space models a time series Y , {Yn}∞n=0, taking values in some state space
(Y,B(Y)), is modeled as noisy observation of an unobservable (possibly time-inhomogenous)
Markov chain X , {Xn}∞n=0. The Markov chain, also referred to as the state sequence, is
assumed to take values in some state space (X,B(X)). In the examples discussed below we
will exclusively let X ≡ R. The observed values are assumed to be conditionally independent
given the latent process X in such a way that the distribution of Yn depends on Xn only.
For a model of this type, all inference about the hidden states has to be made through the
observations only.

Denote by {Qn}∞n=0 and ν0 the Markov transition kernel and initial distribution of the
hidden chain, respectively. In addition, suppose that the conditional distribution of Yn given
Xn admits a density gn on Y with respect to some reference measure η, that is,

P(Yn ∈ A|Xn) =

∫

A

gn(Xn, y) η(dy) , A ∈ B(Y) .

This gives us a the following complete description of a state space model:

X0 ∼ ν0 ,

Xn+1|Xn ∼ Qn(Xn, ·) ,
Yn|Xn ∼ gn(Xn, ·) .

In this setting, the optimal filtering problem consists in computing, recursively in time as
new observations become available, the filter posterior distributions

φn(A) , P(Xn ∈ A|Y0:n) , A ∈ B(X), n ≥ 0 .

A straightforward application of Bayes’s rule yields, for A ∈ B(X), the recursion

φ0(A) =

∫

A
g0(x, Y0) ν0(dx)

∫

X
g0(x, Y0) ν0(dx)

,

φn+1(A) =

∫

X

∫

A
gn+1(x

′, Yn+1)Qn(x, dx′)φn(dx)
∫∫

X2 gn+1(x′, Yn+1)Qn(x, dx′)φn(dx)
,

(4.1)

referred to as the filtering recursion. Since closed form solutions to the filtering recursion are
obtainable only in the case of a linear/Gaussian model or when the state space X is finite, we
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apply the SMC methodology described in the previous; indeed, having defined, for A ∈ B(X)
and x ∈ X, the unnormalized transition kernels

Ln(x,A) =

∫

A

gn+1(x
′, Yn+1)Qn(x, dx′) , (4.2)

yielding the equivalent Feynman-Kac representation

φn+1(A) =
φnLn(A)

φnLn(X)
, A ∈ B(X) ,

of (4.1), we conclude that the optimal filtering problem can be perfectly cast into the frame-

work of Section 2 with Ξ = Ξ̃ = X, ν = φn, L = Ln, and µ = φn+1.

4.1. ARCH model. As a first example we consider the classical Gaussian autoregressive
conditional heteroscedasticity (ARCH) model observed in noise (Bollerslev et al., 1994) given
by

Xn+1 = Wn+1

√

β0 + β1X2
n ,

Yn = Xn + σVn .

where {Wn}∞n=1 and {Vn}∞n=0 are mutually independent sequences of standard normal dis-
tributed variables such that Wn is independent of {(Xk, Yk)}nk=0 and Vn is independent of
{(Xk, Yk)}n−1

k=0 and Xn. In this case the optimal kernel Ln(x, ·)/Ln(x,X), x ∈ R, which in the
state space model setting is the conditional distribution of the state Xn+1 given Xn = x and
the observation Yn+1, is Gaussian with mean mn(x) and variance σ̂2

n(x), where

mn(x) =
β0 + β1x

2

β0 + β1x2 + σ2
Yn+1 , σ̂2

n(x) =
β0 + β1x

2

β0 + β1x2 + σ2
σ2 .

Thus, the optimal adjustment multiplier weight function Ψn(x) = Ln(x,X) can be expressed
on closed form as

Ψn(x) = N (Yn+1; 0, β0 + β1x
2 + σ2) (4.3)

where N (x;µ, σ2) , exp[−(x − µ)2/(2σ2)]/
√

2πσ2 denotes the univariate Gaussian density
function, yielding exactly uniform importance weights ω̃N,i ≡ 1, i ∈ {1, . . . , αMN}.

In this setting we used SMC to estimate posterior filter means {φn(IX)}30n=0, where IX
denotes the identity mapping IX(x) = x on X. Initially, to form an idea of the effect of the
antithetic coupling we compared the auxiliary particle filter in Algorithm 2, using α ∈ {2, 3}
conditionally independent offspring of each particle ξN,i, i ∈ {1, . . . ,MN}, in the mutation
step, to the filter in Algorithm 3 using equally many antithetically coupled offspring. In the
case α = 2 we used the standard coupling

ξ̃
(n+1)
N,α(i−1)+1 = mn(ξ

(n)
N,i) + σ̂n(ξ

(n)
N,i)ǫ

(n)
i ,

ξ̃
(n+1)
N,α(i−1)+2 = 2mn(ξ

(n)
N,i)− ξ̃(n+1)

N,α(i−1)+1 ,
(4.4)

where {ǫ(n)
i }MN

i=1 is a sequence of mutually independent standard normal distributed random
variables being independent of everything else. This coupling yields largest possible negative



14 S. BIZJAJEVA AND J. OLSSON

correlation (that is, is EA) conditionally on ξ
(n)
N,i, i.e. Corr(ξ̃

(n+1)
N,α(i−1)+1, ξ̃

(n+1)
N,α(i−1)+2|ξ

(n)
N,i) = −1,

and in the kernel language of Section 2 it holds that R1(ξ, A) =
∫

A
N (ξ̃;mn(ξ), σ̂2

n(ξ)) dξ̃

and R2(ξ, ξ̃1, A) = δ2mn(ξ)−ξ̃1
(A) for any Borel set A. A similar coupling was used in the case

α = 3; here we set

ξ̃
(n+1)
N,α(i−1)+1 = mn(ξ

(n)
N,i) + σ̂n(ξ

(n)
N,i)ǫ

(n)
i,1 ,

ξ̃
(n+1)
N,α(i−1)+2 =

1

2

(

3mn(ξ
(n)
N,i)− ξ̃

(n+1)
N,α(i−1)+1 +

√
3σ̂n(ξ

(n)
N,i)ǫ

(n)
i,2

)

,

ξ̃
(n+1)
N,α(i−1)+3 = 3mn(ξ

(n)
N,i)− ξ̃

(n+1)
N,α(i−1)+1 − ξ̃

(n+1)
N,α(i−1)+2 ,

(4.5)

where the independent sequences {ǫ(n)
i,1 }MN

i=1 and {ǫ(n)
i,2 }MN

i=1 are as above. The coupling (4.5)

yields the conditional correlation Corr(ξ̃
(n+1)
N,α(i−1)+m, ξ̃

(n+1)
N,α(i−1)+m′ |ξ(n)

N,i) = −1/2, for (m,m′) ∈
{1, 2, 3} and m 6= m′.

The comparison was done for two different data sets obtained by simulation of ARCH
models parametrized by (β0, β1, σ) = (0.9, 0.6, 1) and (β0, β1, σ) = (0.9, 0.6, 10), correspond-
ing to informative and non-informative observations, respectively. The mean squared errors
(MSEs) for 400 runs of each filter with MN = 6,000/α are, for the different values of α,
displayed in Figure 1(a) (the informative case) and Figure 1(b) (the non-informative case).
The MSEs are based on reference posterior filter mean values obtained by means of the stan-
dard APF (for which α = ℓ = 1) using as many as 500,000 particles. From both figures it is
evident that letting the particles of a block be antithetically coupled instead of conditionally
independent decreases the variance significantly. Moreover, the improvement is especially
noticeable in the informative case.

More relevant is to compare the performance of Algorithm 3, again with α ∈ {2, 3} and
MN = 6,000/α, to that of the standard fully adapted APF using 6,000 particles without
any block structure. In this setting, both antithetic filters are clearly more computationally
efficient since, firstly, only a half and a third of the particles are selected at each resampling
operation, and, secondly, a half and a third of the random moves at each mutation step are
replaced by simple assignments (matrix manipulations) in the two cases α = 2 and α = 3,
respectively. The outcome is displayed in Figure from which it is clear that performances
of the antithetic filters are, despite being less costly, superior, especially in the case of
informative observations (Figure 2(a)); indeed, the improvement is over 20 Decibel at some
time steps. Moreover, it is evident that the computational gain of using α = 3 instead of
α = 2 offspring in each block is at the expense of a slight decrease of precision.

4.2. Growth model. The univariate growth model given by, for n ≥ 0,

Xn+1 = an(Xn) + σwWn+1 ,

Yn = bX2
n + σvVn , (4.6)

where
an(x) = α0x+ α1

x

1 + x2
+ α2 cos(1.2n) , x ∈ R ,
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Figure 1. Plot of MSEs (in Decibel) of filters being implementations of Algo-
rithm 3 with α = 2 antithetically coupled (�) and conditionally independent
(•) offspring for the ARCH model with informative (a) and non-informative
(b) observations. The MSE values are based on 400 runs of each algorithm
with MN = 3,000.
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Figure 2. Plot of MSEs (in Decibel) of the standard optimal APF (∗) with
6,000 particles and antithetic filters with α = 2 (�) and α = 3 (△) for
the ARCH model with informative (a) and non-informative (b) observations.
αMN = 6, 000 for both antithetic filters and the MSE values are based on 400
runs of each algorithm.

and the sequences {Wn}∞n=1 and {Wn}∞n=1 are as in the previous example, was discussed
by Kitagawa (1987) (see also Polson et al., 2002) and has served as a benchmark for state
space filtering techniques during the last decades. We will follow the lines of Cappé et al.
(2005) and consider the parameter vector (α0, α1, α2, b, σ

2
v) = (0.5, 25, 8, 0.05, 1) and σ2

w ∈
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{1, 10}, the values of the latter parameter corresponding to non-informative and informative
observations, respectively. The initial state is set deterministically to X0 = 0.1. For a given
observation Yn in R, the local likelihood for the state at time n is given by the function

x ∈ R 7→ g(x, Yn) = N (Yn; bx
2
n, σ

2
v) ∈ R

+ . (4.7)

which is symmetric about zero for any observation Yn. Interestingly, functions (4.7) associ-
ated with negative observations Yn ≤ 0 are unimodal, while those associated with positive
observations Yn > 0 are bimodal with modes located at ±

√

Yn/b. This bimodality is chal-
lenging from a filtering point of view and puts heavy demands on the applied SMC method.

Unlike the ARCH model in the previous section, direct simulation from the optimal kernel
is infeasible in this case since the measurement equation (4.6) is nonlinear in the state. Thus,
in order to mimic efficiently the optimal kernel and adjustment multiplier weights we take a
novel approach and approximate the local likelihood (4.7) by a mixture

G(x, Yn) , N (x;µ1(Yn), ς2(Yn))/2 +N (x;µ2(Yn), ς
2(Yn))/2

of two Gaussian densities, where

(µ1(Yn), µ2(Yn), ς
2(Yn)) ,

{

(0, 0,−σ2
v/(2bYn)) for Yn ≤ 0 ,

(−
√

Yn/b,
√

Yn/b, σ
2
v/(4bYn)) for Yn > 0 .

Consequently, we let the means and standard deviations of the two strata be the locations
(which coincide when Yn ≤ 0) and (common) inverted negated log curvature of the modes of
the local likelihood, respectively; more specifically, ς2(Yn) = −1/(d2 log g(x, Yn)/dx

2)|x=µ1(Yn).
From now on we omit for brevity the dependence on the observation from the notation of
the quantities above and write (µ1, µ2, ς

2) instead of (µ1(Yn), µ2(Yn), ς
2(Yn)). Plugging the

approximation G into the expression (4.2) of the unnormalized optimal kernel yields straight-
forwardly the mixture

Ln(x,A) ,

∫

A

G(x′, Yn+1)Qn(x, dx′)

= β(1)
n (x)G(1)

n (x,A) + β(2)
n (x)G(2)

n (x,A) , x ∈ X , A ∈ B(X) ,

where each Gaussian stratum

G(d)
n (x,A) ,

∫

A

N (x′; τ (d)
n (x), η2

n) dx′ , d ∈ {1, 2} ,

with means and variance (recall that µd, d ∈ {1, 2}, and ς2 depend on Yn+1)

τ (d)
n (x) ,

σ2
wµd + ς2an(x)

σ2
w + ς2

,

η2
n ,

σ2
wς

2

σ2
w + ς2

,

is weighted by
β(d)

n (x) , N (µd; an(x), σ2
w + ς2) , d ∈ {1, 2} .
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By normalizing we obtain the approximation

Ln(x,A)/Ln(x,X) = β̄n(x)G(1)
n (x,A) + (1− β̄n(x))G(2)

n (x,A) , x ∈ X , A ∈ B(X) , (4.8)

of the optimal kernel, where we have defined the normalized weight

β̄n(x) ,
β

(1)
n (x)

β
(1)
n (x) + β

(2)
n (x)

, x ∈ X .

Moreover, in this setting the approximate optimal adjustment multiplier weights are given
by

Ψn(x) = Ln(x,X) = β(1)
n (x) + β(2)

n (x) , x ∈ X .

Using (4.8) as proposal, the experiment of the previous example (in which we estimated
filter posterior means {φn(IX)}30n=0) was repeated with focus set on the case α = 2. In order
impose a conditionally negative correlation structure we let each pair of offspring particles
evolve according to

ξ̃
(n+1)
N,α(i−1)+1 = τ (1)

n (ξ
(n)
N,i)1{U (n)

i <β̄n(ξ
(n)
N,i

)}
+ τ (2)

n (ξ
(n)
N,i)1{U (n)

i ≥β̄n(ξ
(n)
N,i

)}
+ ηnǫ

(n)
i ,

ξ̃
(n+1)
N,α(i−1)+2 = τ (1)

n (ξ
(n)
N,i)1{1−U

(n)
i <β̄n(ξ

(n)
N,i

)}
+ τ (2)

n (ξ
(n)
N,i)1{1−U

(n)
i ≥β̄n(ξ

(n)
N,i

)}
− ηnǫ

(n)
i ,

(4.9)

where {U (n)
i }MN

i=1 and {ǫ(n)
i }MN

i=1 are independent sequences of mutually independent uniformly
(on [0, 1]) and standard normal distributed random variables, respectively, such that each

pair (U
(n)
i , ǫ

(n)
i ) is independent of everything else. It is easily established that each of the

offspring particles ξ̃
(n+1)
N,α(i−1)+1 and ξ̃

(n+1)
N,α(i−1)+2 of the copuling (4.9) is marginally distributied

according to the approximate optimal kernel (4.8). In addition, one can show that (see
Section A.3 for details) the correlation between the offspring of a block is given by, for ξ ∈ X,

Corr
[

ξ̃
(n+1)
N,α(i−1)+1, ξ̃

(n+1)
N,α(i−1)+2

∣

∣

∣
ξ

(n)
N,i = ξ

]

= −(τ
(1)
n (ξ)− τ (2)

n (ξ))2[β̄2
n(ξ)1{β̄n(ξ) ≤ 1/2}+ (β̄2

n(ξ)− 1)21{β̄n(ξ) > 1/2}] + η2
n

(τ
(1)
n (ξ)− τ (2)

n (ξ))2β̄n(ξ)(1− β̄n(ξ)) + η2
n

, (4.10)

which is always negative and simplifies to −1 in the unimodal case (as τ
(1)
n (ξ) = τ

(2)
n (ξ) for

all ξ ∈ X when Yn+1 < 0). Figure 3 displays MSE (in Decibel) comparisons between the
antithetic APF with α = 2 and αMN = 5,000, a (close to) fully adapted APF, based on the
proposal kernel (4.8) and 5,000 particles, and the plain bootstrap filter using 5,000 particles.
Like in the ARCH example, we let the filters approximate filter posterior means φn(IX) for
observation records of length 30, and since the initial value is known deterministically the log
MSE is null at time zero. The comparison was made for informative (σ2

w = 10, Figure 3(a))
as well as non-informative (σ2

w = 1, Figure 3(b)) observations and the MSEs, measured with
respect to reference values obtained with the fully adapted APF using 500,000 particles,
were based on 400 runs of each algorithm. Also for this demanding model the variance
reduction introduced by the antithetic coupling is significant; indeed, despite being clearly
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Figure 3. Plot of MSEs (in Decibel) of the plain bootstrap filter (◦) using
5,000 particles, the standard optimal APF (∗) using 5,000 particles, and the
antithetic filter (�) with α = 2 and αMN = 5,000 for the growth model with
informative (a) and non-informative (b) observations. The MSE values are
based on 400 runs of each algorithm.

less computationally costly (see the discussion in the previous example), the antithetic filter
improves the MSE performances of the APF and the bootstrap filter by more than 10 Decibels
at several time points for both observation records. Moreover, from the figures it is evident
that proposing particles according to the approximate optimal kernel (4.8) instead of the
prior kernel yields, as we may expect, generally more precise posterior filter mean estimates,
since the APF outperforms the bootstrap particle filter at most time steps.

Appendix A. Proofs

A.1. Proof of Theorem 3.1. The result follows straightforwardly from Slutsky’s theorem
and results obtained by Douc and Moulines (2005) in the case of independently mutated
particles. Indeed, by (Douc and Moulines, 2005, Equation (36)) we have, for any 1 ≤ k ≤ α,

Ω−1
N

MN
∑

j=1

ω̃N,α(j−1)+kf(ξ̃N,α(j−1)+k)
P−→ νL(f) ,

yielding immediately

(αΩN)−1

αMN
∑

i=1

ω̃N,if(ξ̃N,i) = α−1
α

∑

k=1

Ω−1
N

MN
∑

j=1

ω̃N,α(j−1)+kf(ξ̃N,α(j−1)+k)
P−→ νL(f) . (A.1)
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By applying (A.1) for this limit for f ≡ 1 (recall that L(·, Ξ̃) ∈ C by assumption, implying

that the constant function belongs to C̃) we obtain, using again Slutsky’s theorem,

Ω̃−1
N

αMN
∑

i=1

ω̃N,if(ξ̃N,i)
P−→ νL(f)/νL(Ξ̃) = µ(f) .

To prove the second property in Definition 3.1, write

(αΩN)−1 max
1≤i≤αMN

ω̃N,i ≤ α−1

α
∑

k=1

Ω̃−1
N max

1≤j≤MN

ω̃N,α(j−1)+k ; (A.2)

however, by inspecting the proof of (Douc and Moulines, 2005, Theorem 1) we conclude that
each term on the RHS of (A.2) tends to zero in probability, which in combination with (A.1)
implies that

Ω̃−1
N max

1≤i≤αMN

ω̃N,i = (αΩN/Ω̃N)(αΩN )−1 max
1≤i≤αMN

ω̃N,i
P−→ 0 .

This completes the proof.

A.2. Proof of Theorem 3.2. Let f ∈ Ã and assume without loss of generality that µ(f) =
0. Then write, following the lines of the proof of (Douc and Moulines, 2005, Theorem 2),

aN Ω̃−1
N

αMN
∑

i=1

ω̃N,if(ξ̃N,i) = αΩN Ω̃−1
N (AN +BN) , (A.3)

where

AN ,

MN
∑

j=1

E
[

UN,j

∣

∣FN,α(j−1)

]

, BN ,

MN
∑

j=1

{

UN,j − E
[

UN,j

∣

∣FN,α(j−1)

]}

,

and UN,j , aN (αΩN)−1
∑α

k=1 ω̃N,α(j−1)+kf(ξ̃N,α(j−1)+k). Since, by (A.1), Ω̃N/(αΩN)
P−→

νL(Ξ̃), as N →∞, it is enough to prove that

AN +BN
D−→ N{0, σ2[L(·, f)] + η2(f)} ,

where

η2(f) , α−2
∑

(m,n)∈{1,...,α}2

γCm,n(f) .
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For AN it holds, since the weighted sample {(ξN,i, ωN,i)}MN

i=1 is AN for (µ,A,W, σ, γ, {aN}∞N=1)
by assumption and L(·, f) ∈ A, that

AN = aN(αΩN)−1

MN
∑

j=1

α
∑

k=1

E

[

ω̃N,α(j−1)+kf(ξ̃N,α(j−1)+k)
∣

∣

∣
FN,α(j−1)

]

= aNΩ−1
N

MN
∑

j=1

ωN,jL(ξN,j, f)
D−→ N{0, σ2[L(·, f)]} ,

We now consider BN and establish that, for any u ∈ R,

E [exp(iuBN)| FN,0]
P−→ exp(−u2η2(f)/2) (A.4)

from which the result of the theorem follows. The proof of (A.4) consists in showing that the
two conditions of Theorem 13 in (Douc and Moulines, 2005) are satisfied for the triangular
array {(UN,j,FN,αj)}MN

j=1.
For establishing condition i) of the theorem in question, write

E
[

U2
N,j

∣

∣FN,α(j−1)

]

= a2
N (αΩN)−2

∑

(k,m)∈{1,...,α}2

E

[

ω̃N,α(j−1)+kf(ξ̃N,α(j−1)+k)ω̃N,α(j−1)+mf(ξ̃N,α(j−1)+m)
∣

∣FN,α(j−1)

]

= a2
N (αΩN)−2

MN
∑

j=1

ω2
N,j

∑

(k,m)∈{1,...,α}2

Mk,m(ξN,j, f) .

(A.5)

However, for all (k,m) ∈ {1, . . . , α}2, Mk,m(·, f) ≤ R0,k(·,Φ2
kf

2) +R0,m(·,Φ2
mf

2) ∈ W; since
W is proper, this implies (under (A2)) the limit

a2
N(αΩN )−2

MN
∑

j=1

ω2
N,j

∑

(k,m)∈{1,...,α}2

Mk,m(ξN,j, f)
P−→ α−2

∑

(k,m)∈{1,...,α}2

γMk,m(f) . (A.6)

Now consider

MN
∑

j=1

E
2
[

UN,j | FN,α(j−1)

]

= a2
N (αΩN)−2

MN
∑

j=1

ω2
N,jE

2

[

α
∑

k=1

Φk(ξN,j, ξ̃N,α(j−1)+k)f(ξ̃N,α(j−1)+k)
∣

∣FN,α(j−1)

]

= a2
NΩ−2

N

MN
∑

j=1

ω2
N,jL

2(ξN,j, f) ; (A.7)
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here, for any k ∈ {1, . . . , α}, L2(·, f) = R2
0,k(·,Φkf) ≤ R0,k(·,Φ2

kf
2) ∈ W, and reusing the

asymptotic normality of {(ξN,i, ωN,i)}MN

i=1 yields

a2
NΩ−2

N

MN
∑

j=1

ω2
N,jL

2(ξN,j, f)
P−→ γL2(f) . (A.8)

Finally, by combining Equations (A.5)–(A.8) we conclude that

MN
∑

j=1

{

E
[

U2
N,j

∣

∣FN,α(j−1)

]

− E
2
[

UN,j

∣

∣FN,α(j−1)

]}

P−→ α−2
∑

(k,m)∈{1,...,α}2

γMk,m(f)− γL2(f) = η2(f) ,

which establishes condition i).
It remains to check condition ii), that is, for any ǫ > 0,

CN ,

MN
∑

j=1

E
[

UN,j1{|UN,j |≥ǫ}

∣

∣FN,α(j−1)

]

P−→ 0 .

Thus, argue along the lines of the proof of (Douc and Moulines, 2005, Theorem 2) and write,
for any C > 0,

CN ≤ a2
N(αΩN )−2

MN
∑

j=1

ω2
N,j

∑

(k,m)∈{1,...,α}2

Mk,m

(

ξN,j, f1{|Pα
k=1 Φkf |≥C}

)

+ 1{aN (αΩN )−1 maxi ωN,i≥εC−1}

MN
∑

j=1

E
[

U2
N,j

∣

∣FN,α(j−1)

]

. (A.9)

Under (A2) the indicator function of the second term on the RHS of (A.9) tends to zero in
probability and since, for all (k,m) ∈ {1, . . . , α}2, Mk,m(·, f1{|Pα

k=1 Φkf |≥C}) ≤ R0,k(·,Φ2
kf

2)+
R0,m(·,Φ2

mf
2) ∈ W we obtain

a2
N(αΩN )−2

MN
∑

j=1

ω2
N,j

∑

(k,m)∈{1,...,α}2

Mk,m

(

ξN,j, f1{|Pα
k=1 Φkf |≥C}

)

P−→ α−2
∑

(k,m)∈{1,...,α}2

γMk,m

(

f1{|Pα
k=1 Φkf |≥C}

)

. (A.10)

By dominated convergence, the RHS of (A.10) can be made arbitrarily small by taking C
sufficiently large. Therefore, also condition ii) is satisfied, implying the convergence (A.4).
This establishes (A.3).
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We turn to the second property of Definition 3.2 and show that, for any f ∈ W̃,

a2
N Ω̃−2

N

αMN
∑

i=1

ω̃2
N,if(ξ̃N,i)

P−→ γ̃(f) . (A.11)

However, since R0,k(·,Φ2
kf) ≤ 1{· :|f(·)|>1}R0,k(·,Φ2

kf
2) + 1{· :|f(·)|≤1}R0,k(·,Φ2

k) ∈ W, a direct
application of (Douc and Moulines, 2005, Equation (39)) yields that, for any k ∈ {1, . . . , α},

a2
NΩ−2

N

MN
∑

j=1

ω̃2
N,α(j−1)+kf(ξ̃N,α(j−1)+k)

P−→ γR0,k(Φ
2
kf) .

Combining (A.11) with the limit Ω̃N/(αΩN)
P−→ νL(Ξ̃) (see (A.1)) we obtain, using Slutsky’s

theorem,

a2
N Ω̃−2

N

αMN
∑

i=1

ω̃2
N,if(ξ̃N,i) = (αΩN/Ω̃N)2α−2

α
∑

k=1

a2
NΩ−2

N

MN
∑

j=1

ω̃2
N,α(j−1)+kf(ξ̃N,α(j−1)+k)

P−→ α−2
α

∑

k=1

γR0,k(Φ
2
kf)/[νL(Ξ̃)]2 = γ̃(f) .

Finally, we establish the last property of Definition 3.2, that is,

aN Ω̃−1
N max

1≤i≤αMN

ω̃N,i
P−→ 0 . (A.12)

However, since, as shown by Douc and Moulines (2005, p. 30), for any k ∈ {1, . . . , α},
a2

N(αΩN )−2 max
1≤j≤MN

ω̃2
N,α(j−1)+k

P−→ 0 ,

we immediately obtain

a2
N Ω̃−2

N max
1≤i≤αMN

ω̃2
N,i ≤ (αΩN/Ω̃N)2

α
∑

k=1

a2
N(αΩN )−2 max

1≤j≤MN

ω̃2
N,α(j−1)+k

P−→ 0 ,

from which (A.12) follows.

It remains to show that the sets Ã and W̃ are proper. Since, by assumption, L(·, Ξ̃) ∈ A

and R0,k(·,Φ2
k) ∈ W, k ∈ {1, . . . , α}, we conclude immediately that all constant functions

f ≡ c belong to Ã. Now, let |f | ≤ |g|, where g belongs to Ã. Then L(·, |f |) ≤ L(·, |g|) ∈ A

and R0,k(·,Φ2
kf

2) ≤ R0,k(·,Φ2
kg

2) ∈ W, k ∈ {1, . . . , α}, implying, by property ii) in the

definition of a proper set, that f ∈ Ã. Finally, let f and g be any two functions in Ã. Then,
for any constants (a, b) ∈ R2, L(·, |af + bg|) ≤ |a|L(·, |f |) + |b|L(·, |g|) ∈ A; moreover, for all
k ∈ {1, . . . , α},

R0,k(·,Φ2
k[af + bg]2) ≤ (a2 + |a|)R0,k(·,Φ2

kf
2) + (b2 + |b|)R0,k(·,Φ2

kg
2) ∈ W ,

implying that af + bg ∈ Ã. The properness of W̃ is established in a similar manner. This
completes the proof.
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A.3. Demonstration of (4.10). Since U
(n)
i and ǫ

(n)
i are independent, it holds that

Cov
[

ξ̃
(n+1)
N,α(i−1)+1, ξ̃

(n+1)
N,α(i−1)+2

∣

∣

∣
ξ

(n)
N,i = ξ

]

= [(τ (1)
n (ξ))2 + (τ (2)

n (ξ))2] Cov
[1
{U

(n)
i <β̄n(ξ)}

,1
{1−U

(n)
i <β̄n(ξ)}

∣

∣

∣
ξ

(n)
N,i = ξ

]

+ 2τ (1)
n (ξ)τ (2)

n (ξ) Cov
[1
{U

(n)
i <β̄n(ξ)}

,1
{1−U

(n)
i ≥β̄n(ξ)}

∣

∣

∣
ξ

(n)
N,i = ξ

]

− η2
n . (A.13)

In addition, as U
(n)
i is independent of ξ

(n)
N,i we obtain

Cov
[1
{U

(n)
i <β̄n(ξ)}

,1
{1−U

(n)
i <β̄n(ξ)}

∣

∣

∣
ξ

(n)
N,i = ξ

]

= P

(

1− β̄n(ξ) < U
(n)
i < β̄n(ξ)

∣

∣

∣
ξ

(n)
N,i = ξ

)

− β̄2
n(ξ)

= 1{β̄n(ξ)>1/2}(2β̄n(ξ)− 1)− β̄2
n(ξ) ,

(A.14)

and, analogously,

Cov
[1
{U

(n)
i <β̄n(ξ)}

,1
{1−U

(n)
i ≥β̄n(ξ)}

∣

∣

∣
ξ

(n)
N,i = ξ

]

= P

(

U
(n)
i ≤ min{β̄n(ξ), 1− β̄n(ξ)}

∣

∣

∣
ξ

(n)
N,i = ξ

)

− β̄n(ξ)(1− β̄n(ξ))

= 1{β̄n(ξ)≤1/2}β̄n(ξ) + 1{β̄n(ξ)>1/2}(1− β̄n(ξ))− β̄n(ξ)(1− β̄n(ξ)) .

(A.15)

Now, assume that β̄n(ξ) > 1/2; then, using (A.13)–(A.15),

Cov
[

ξ̃
(n+1)
N,α(i−1)+1, ξ̃

(n+1)
N,α(i−1)+2

∣

∣

∣
ξ

(n)
N,i = ξ

]

= −[(τ (1)
n (ξ))2 + (τ (2)

n (ξ))2](1− β̄n(ξ))2 + 2τ (1)
n (ξ)τ (2)

n (ξ)(1− β̄n(ξ))2 − η2
n

= −(τ (1)
n (ξ)− τ (2)

n (ξ))2(1− β̄n(ξ))2 − η2
n .

Moreover, that assuming β̄n(ξ) ≤ 1/2 yields similarly

Cov
[

ξ̃
(n+1)
N,α(i−1)+1, ξ̃

(n+1)
N,α(i−1)+2

∣

∣

∣
ξ

(n)
N,i = ξ

]

= −(τ (1)
n (ξ)− τ (2)

n (ξ))2β̄2
n(ξ)− η2

n .

Finally, since ξ̃
(n+1)
N,α(i−1)+1 and ξ̃

(n+1)
N,α(i−1)+2 have, conditionally on ξ

(n)
N,i, the same marginal dis-

tributions, and

Var
[

ξ̃
(n+1)
N,α(i−1)+1

∣

∣

∣
ξ

(n)
N,i = ξ

]

= (τ (1)
n (ξ)− τ (2)

n (ξ))2 Var
[1
{U

(n)
i <β̄n(ξ)}

∣

∣

∣
ξ

(n)
N,i = ξ

]

+ η2
n

= (τ (1)
n (ξ)− τ (2)

n (ξ))2β̄n(ξ)(1− β̄n(ξ)) + η2
n ,

the identity (4.10) follows.
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