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Maria Prandini∗ and Oliver J. Watkins†

Abstract

In this deliverable we study algorithms for mid-term aircraft conflict detection. A two-
aircraft conflict occurs when some prescribed separation distance between two aircraft is
violated. In a mid-term time scale, the contribution of the different sources of uncertainty
affecting the aircraft motion cannot be neglected when predicting the aircraft future posi-
tions. Based on this consideration, we address mid-term aircraft conflict detection according
to a probabilistic viewpoint. We consider, in particular, the probability of conflict as criti-
cality measure. Computing the probability of conflict is generally a difficult task. A possible
solution to this issue is the simulation-based approach, characterized by repeated simulations
of the aircraft trajectories according to the model describing their motion: the fraction of
trajectories that generate a conflict is an unbiased estimate of the probability of conflict.
This approach has the advantage of being applicable to general models and general contexts.
Obviously, the more complex the model, the more time-consuming is generating simulations
according to it. Given the time constraints of our specific application context, we look into
solutions to speed-up the simulation-based method. These solutions are inspired by the
multi-level approach to rare-event probability estimation and the sequential Monte Carlo
approach.
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1 Introduction

This is the second deliverable under workpackage 3 of the HYBRIDGE project, dealing with
aircraft conflict detection.

The primary concern of all advanced air traffic management systems (ATMs) is to guarantee
safety of air travel. In particular, one of the main objectives in ATM is ensuring appropriate
separation between flight trajectories. Examples of separation criteria are the minimum vertical
separation between flight levels and the minimum horizontal separation between two aircraft
that have been assigned the same flight level. Currently, for en-route airspace the minimum
horizontal separation is 5 nautical miles (nmi), while inside the Terminal Radar Approach Con-
trol (TRACON) area it is reduced to 3 nmi. The minimum vertical separation is 1000 feet (ft).
A conflict occurs when two aircraft violate these separation criteria.

To prevent conflicts, ATMS resorts to a two stage process. In the first stage conflict detection
is performed: the positions of the aircraft in the future are predicted based on their current
positions and flight plans, and they are compared so as to detect potential situations of conflict.
Once a potential conflict has been detected, the trajectories of the aircraft involved in the conflict
are re-planned in the conflict resolution stage.

Conflict detection and resolution is actually given consideration at three different levels of the
ATM process, which can be classified according to the considered look-ahead time horizon as:

i) long term conflict detection and resolution, where flight plans and airline schedules are
composed (on a daily basis, for example) to ensure that airport and sector capacities are
not exceeded ([1, 2, 3]);

ii) mid-term conflict detection and resolution, carried out by Air Traffic Controllers (ATCs),
over horizons of the order of tens of minutes. It involves modifying the pre-planned flight
plan on-line to ensure adequate aircraft separation.

iii) short term conflict prediction and resolution over horizons of seconds to minutes, carried
out both on the ground at the ATC level (Short Term Conflict Alert System - STCA),
and on board the aircraft at the Flight Management System (FMS) level (Traffic Alert
and Collision Avoidance System - TCAS, [4, 5]).

Here we consider mid-term aircraft conflict detection.

Mid-range conflict detection involves challenging issues, such as predicting the aircraft positions
along the look-ahead time horizon, predicting a conflict, issuing an alert to ATCs sufficiently in
advance so that effective remedial actions may be taken, as opposed to emergency actions.

At the ATC level, the information available for predicting the aircraft future positions are the
radar measurements on the aircraft current positions and their flight plans. Some information
are also available regarding weather and wind perturbations.

One of the difficulties in predicting the aircraft future position consists in modeling the pertur-
bations influencing its motion. The actual motion of the aircraft is in fact affected by uncer-
tainty, due mainly to wind, but also to errors in tracking, navigation, and control. In mid-term
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time-horizons, the different sources of uncertainty affecting the aircraft motion generally cause
deviations from the nominal flight path that cannot be neglected when performing conflict de-
tection. In [6, 7, 8], a description of the global effect of the perturbations affecting the aircraft
motion over a 20 minutes time horizon is given in probabilistic terms, by characterizing the
resulting tracking error at each time instant along the look-ahead time horizon as a Gaussian
random variable with time varying variance. This model was indeed verified by air traffic data
in [9, 10]

In the probabilistic approach to conflict detection, the uncertainty affecting the aircraft motion
is taken into account by considering the ensemble of sample paths and computing the probability
of projected conflicts. Conflict assessment based on this criticality measure, which weights the
admissible aircraft trajectories according to their likelihood, avoids the conservativeness of the
worst-case approach where the admissible aircraft trajectories are all considered equally likely.

The use of realistic models for predicting the aircraft positions makes the problem of computing
the probability of conflict impossible to solve analytically. Various methods have been proposed
to address the issue of conflict probability estimation. Here, we investigate the simulation-based
approach. Simulation-based methods are characterized by repeated simulations of the two-
aircraft trajectories according to the model describing their motion: the fraction of trajectories
that generate a conflict is an unbiased estimate of the probability of conflict. This approach
has the advantage of being applicable to general models and general contexts. However, the
more complex the model, the more time-consuming is generating simulations according to it.
Given the time constraints of our specific application, we look into solutions to speed-up the
simulation-based method. These solutions are inspired by the multi-level approach for rare-
event probability estimation and the particle filtering approach. In both cases, the computational
burden is reduced by decreasing the number of simulations needed for achieving certain accuracy
and confidence levels with respect to the standard simulation-based approach.

Starting from the observation that the larger is a probability, the lower is the number of sim-
ulations needed to estimate it with a certain accuracy, the idea of the multi-level approach for
probability estimation is to decompose the probability of interest into the product of a certain
number of (larger) probabilities. The estimate of the probability of interest can be obtained as
the product of the estimates of the component probabilities.

The probability of conflict has to be updated at each time instant when new radar measure-
ments on the aircraft positions become available. According to the standard simulation-based
approach, this would require simulating new trajectories starting from the newly updated initial
positions. The idea of the particle filtering-based approach is to update the probability of conflict
based on the re-use of the trajectories previously simulated after appropriately weighting their
contribution according to their likelihood, suitably refreshed based the new radar measurements.
This leads to the so-called Sequential Monte Carlo (SMC) method.

Based on the value of the probability of conflict, a decision should be taken on whether alerting
air traffic controllers and pilots of forthcoming conflict situations or not. A threshold-based
alerting logic is typically used where as soon as a certain value is overcome then an alert is
issued. This value is typically chosen so as to compromise between the number of successful
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alerts and missed detections, without taking the geometry of the encounter into account. In
this work we point out the dependence of the ‘optimal’ conflict alert threshold from the airspace
configuration.

The deliverable is structured as follows. We start by presenting a comparative study of prob-
abilistic methods for conflict detection (Section 2). We then review basic notions on the
simulation-based approach to probability estimation (Section 3.1), and propose improvements
of the computational efficiency of the standard simulation-based method through the multi-level
decomposition approach (Section 3.2) and the sequential Monte Carlo method (Section 3.3).

The application of Sequential Monte Carlo methods to aircraft conflict detection is presented in
the final section 4. In this section, the sequential Monte Carlo method is compared with other
methods in the literature for probabilistic conflict detection.
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2 Probabilistic methods for aircraft conflict detection

A comprehensive overview of the different conflict detection and resolution schemes presented
in the literature is given in the survey paper [11], the main classification criterion being the
modeling method used for projecting the aircraft position in the future. Here we restrict our
attention to probabilistic conflict detection, hence the approaches are classified with a greater
detail level than in [11].

Figure 1: Conflict detection process

A conflict detection scheme is characterized by the following blocks (see figure 1): i) a prediction
component that projects the aircraft positions in the look-ahead time horizon, and ii) a con-
flict detection component that computes a criticality measure to assess how unsafe is a certain
configuration of the airspace and that decides based on it whether issuing an alert to ATCs or
not.

We next describe different approaches for the different tasks involved in the implementation of
these blocks. This will lead to the classification of probabilistic conflict detection methods in
Table 1.

2.1 Classification criteria

2.1.1 Prediction of the aircraft position

Prediction of the aircraft future position is performed using radar measurements of the aircraft
current position and a prediction model, which incorporates information on the aircraft flight
plan and the characteristics of the disturbances affecting the aircraft motion. The prediction
model is one of the characteristics by which the most high-level distinctions are made; along
with the measure of criticality this tends to be one of the elements by which authors distinguish
their work.

The prediction model is normally composed of three elements:

1. Flight Plan. The flight plan is typically given in terms of a sequence of waypoints and
speeds between waypoints. We distinguish between conflict detection methods using

• Full flight plan [FP].
• Straight line flight plan [SL].

9



Although a complete flight plan is undoubtedly more accurate, the detection horizon tends
to be of the order of 20 minutes, during which only one or even no waypoints may be
passed. This motivates the use of a straight line flight plans, which represent subsections
of complete flight plans.

2. Model of the aircraft motion. There is great scope for variation in the complexity of
the model of aircraft flight. Most models will fit at points along a continuum between the
following ones:

• Basic [B]: The aircraft proceeds along a known straight line flight path at known
velocity.

• Kinematic [K]: Inclusion of basic kinematic equations of aircraft flight enables control
of the aircraft and tracking of reference trajectories given disturbances.

• Dynamic [D]: Dynamic models typically include all factors with a significant effect on
aircraft trajectory. The BADA model [12], for instance takes account of the dynamics
of individual aircraft, their changing mass, thrust, lift, atmospheric conditions and
flight phase (procedural information).

It is worth noting that while a “Basic” model cannot capture complex behavior, in the
majority of cases it adequately replicates the straight and level nominal flight of most
models.

3. Uncertainty. The uncertainty may directly enter the equations governing the aircraft
motion or being superimposed to the nominal aircraft motion. We then distinguish be-
tween:

• Stochastic difference/differential equation [SDE]: The uncertainty is modeled via
some disturbance entering the equations describing the aircraft motion. The distur-
bance may be either independent [SDE,I] or correlated in either space or time (or
both) [SDE,C].

• Superimposed stochastic component [SSC]: Uncertainty is modeled by superimposing
onto the deterministic trajectory a stochastic component.

2.1.2 Conflict detection

1. Criticality measure. The criticality measure is one of key elements in characterizing a
conflict detection method. Most methods focus on conflicts between aircraft pairs. The
most well known measures in the literature for assessing the criticality of a two-aircraft
encounter are:

• Overall probability of conflict [PC]: This is the probability at a conflict will occur
during the look-ahead time horizon.

• Maximum probability of conflict [max-PC]: This is the maximum value over the
look-ahead time horizon of the instantaneous probability of conflict.
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• Collision probability [CP]: This is the probability at a collision will occur during the
look-ahead time horizon.

• Incrossing probability [IC]: An incrossing is defined as the event of one aircraft en-
tering the exclusion zone of another. The incrossing probability depends on the
incrossing risk, which is the integral over the prediction horizon of the incrossing
rate. Incrossing probability is used to evaluate collisions rather than conflicts.

2. Computation Method. It is generally difficult to compute a criticality measure exactly,
especially in the case of complex prediction models. Different approximation methods have
been considered in the literature. The choice of the approximation method is strongly de-
pendent on the adopted criticality measure and prediction model. For instance, calculating
the overall conflict probability for complex models may only be practical through Monte
Carlo simulation.

• Analytical approximation [AA]: Analytic –though approximate– solutions to the
problem of computing the criticality measure are adopted. The drawback is that,
when the assumptions made to enable an analytical solution will break down under
certain conditions, then conflict detection will become unreliable.

• Randomized algorithms [RA]: The max-PC measure of conflict probability is esti-
mated using stochastic methods. A randomized estimation is performed for com-
puting the instantaneous probability of conflict and for maximizing it. This is less
efficient than an analytical approximation but typically straightforward.

• Gridding methods [GM]: Grid-based methods are characterized by a discretization
both in time and in space of the stochastic processes describing the aircraft motions.
Grid-based methods are computationally intensive. On the other hand, the outcome
of the grid-based algorithms is a map that associates to each admissible aircraft
position pairs the corresponding estimate of the criticality measure, which could be
used not only for conflict detection, but also for designing feedback control for conflict
avoidance.

• Monte Carlo methods [MC]: Monte Carlo methods are characterized by repeated
simulations of the two-aircraft trajectories according to the model describing their
motion to estimate the criticality measure of interest by an averaging procedure.
They do have the advantage that sophisticated models for the aircraft motion may
be used. They are generally less computationally intensive than gridding methods.

3. Alerting Mechanism. The alerting mechanism describes the method by which a critical-
ity measure is converted into an alert for ATC. It is typically a threshold-based mechanism
where as soon as the criticality measure overcomes a certain threshold value, an alert is
issued. This can be combined with an hysteresis mechanism, such as in the sequential
probability ratio test. Multiple thresholds can be adopted to issue alerts of different sever-
ity level, eventually combined with a hysteresis mechanism.
An alerting mechanism is an extra layer of functionality, and some authors do not include
details of such a mechanism, but conclude with the calculation of the criticality measure.
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The air traffic controller is faced with a dynamical decision problem under uncertainty.
This problem can be directly formulated as a stochastic control problem where the critical-
ity measure is embedded in the cost function to optimize and the appropriate timing of the
resolution action is automatically selected. This is, for instance, the point of view in [13].
In [14], the criticality measure is used for continuously adjusting the aircraft trajectories
according to a decentralized control scheme, inspired by the potential field method.

We distinguish among the following alerting mechanisms:

• Single threshold [T].
• Single threshold with hysteresis [H].
• Multiple thresholds [MT], eventually with hysteresis [MH].

2.1.3 Performance assessment

1. Validation. Validation data are critical for evaluating the performance of a conflict detec-
tion scheme. Genuine aircraft track data is the most appealing in performing validation,
however, being proprietary to the air traffic service providers, it is not easy to obtain.
Other evaluation methods are therefore used in most areas of the literature. We dis-
tinguish two cases: validation data are generated by the same model as used to perform
conflict prediction (the prediction model), and validation data are generated by the a more
complex model than the prediction model. It is worth noting at this point that ‘validation’
is a contentious term in the ATC community as it implies testing in a real ATC setting.
We therefore use the term ‘Complementary Model Evaluation’. The following methods
have been used to generate data suitable for complementary model evaluation.

• Track data [TD]: A significant drawback of using real track data is that it will
contain either very few or, more likely, no conflicts; as conflict data is both rare
and sensitive. Validation or tuning of a conflict probe then becomes impossible. The
validation performed in [15] is achieved by translating different tracks into potentially
conflicting positions, then testing the probe. While appealing, this method destroys
potential information on spatial and temporal correlation of wind disturbances.

• Erzberger-Paielli model [EP]: The Erzberger-Paielli model [6] is a simple kinematic
model which incorporates the most pertinent features of aircraft dynamics, and as
such is a good first step in generating synthetic trajectory information. The drawback
of this model is that disturbances are not explicitly included.

• SDEs replicating EP statistics [SDE]: A variety of these have been proposed ([14,
16, 17]) to generate stochastic synthetic track data. Although Erzberger and Paielli’s
seminal flight deviation statistics [15] are of great use they do not give sufficient
information for the development of a dynamic model. A question mark therefore
hangs over all SDE models, in that there is an unlimited number of models which can
be formulated to respect EP statistics, so some other insight is required to generate
trajectories.
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• Detailed models [DM]: Few detailed models for conflict detection validation have
been proposed. The BADA model [12] is an excellent model of dynamics in the
vertical plane although takes little account of turning maneuvers and no account of
disturbances. Models in [18, 19] make the relatively simple extension to three dimen-
sions. The concept of wind correlation in space and time is introduced in [20] and
[19, 21], and appears to apply time and space correlated disturbances successfully,
while respecting EP statistics. Although complex and therefore somewhat computa-
tionally intensive, these models appear to generate valuable synthetic track data.

Alternatively, one can adopt the following methodology for validation:

• Bias and uncertainty assessment [B&U]: The model used for predicting the aircraft
position tries to cover the significant aspects of the reality that are believed to be
relevant for conflict detection. In bias and uncertainty assessment, the effect of model
assumptions on the estimated risk measure is evaluated, providing an expected (“re-
alistic”) value with a corresponding credibility assessment ([22]).

2. Performance measure. All methods rely on some off-line tuning of the alerting thresh-
old, to achieve an optimal trade off between false and missed alerts. Other cost measures
can be introduced to quantify the alerting system performance. In those methods using
a simulation-based approximation, the number of simulations used is tuned to trade off
the accuracy against the computation time. Another parameter that may be tuned is the
prediction horizon.

The following performance measures have been either explored or had their value high-
lighted in the literature:

• SOC curves [SOC]: Introduced in [23], SOC curves have gained a substantial fol-
lowing as a performance measure (see e.g. [14, 17, 24]). The SOC curve plots the
probability of false alert against the probability of successful alert, parameterized by
alert threshold. The closer the approach of the curve to the point (0, 1) (the ideal
situation of zero probability of false alert, certainty of successful alert), the better the
performance of the conflict probe.

• Sensitivity to encounter geometry [SEG]: This topic is considered only in a few con-
tributions. In a real ATC setting conflict geometries of all types will be encountered,
and the ability of the alerting mechanism to successfully detect conflicts across this
range is crucial to its performance.

• Cost function [CF]: The problem of conflict avoidance can be directly formulated as
an optimal control problem with the cost function to be optimized incorporating the
safety requirements. In this case, conflict detection and resolution are accomplished
at the same time, and performance can be measured in terms of the value taken by
the cost function.

• Computational intensity [CI]: Many conflict detection schemes are designed with
efficiency in mind. Even though here must be a trade off between accuracy and
prohibitively high computation times, this is a difficult measure to quantify due to
the continuing leaps in available computing power.
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• Controller acceptance [CA]: In the near and mid-term ATC situation, air traffic
controllers will be responsible for the implementation of conflict probe output to air
traffic situations. Any conflict detection method therefore must be acceptable to
air traffic controllers. This topic has been considered in a number of human factors
studies ([25]).

It is worth noticing these performance measures can be jointly used to quantify the alerting
system performance.

2.2 Classification of probabilistic methods

Table 1 shows the classification of the methods for probabilistic conflict detection most prominent
in the literature. Several of these methods do not attempt to address all aspects of conflict
detection, but concentrate on one or two particular elements. These models will therefore have
several fields with a ‘–’ entry. This is no reflection on the results of the particular paper cited,
simply the scope of the work within. Each entry contains either a single bibliography reference
or multiple references when they belong to the same research stream. The acronyms appearing
in Table 1 have been defined in the previous subsection.

Prediction Conflict detection Performance

Flight

plan

Aircraft

motion

Uncertainty Criticality

measure

Comput.

method

Alert.

mech.

Valid.

data

Perform.

measure

[6] SL K SSC PC AA – SDE,C –
[24] FP B SDE,I PC MC T SDE,I SOC
[26] SL K SSC – AA – – –
[16] SL B SDE,I PC AA – PE –
[14] FP B SSC maxPC RA T SDE,I SOC
[27] SL B SSC PC AA – – –
[28] FP K SDE,C maxPC RA – – –
[29] FP D SDE,C PC MC – PE –
[17] SL B SDE,I PC MC T SDE,I SOC
[20, 30, 31] FP K SDE,C PC GM – – –
[32, 33, 34, 35] FP K SDE,C IC,CP AA,MC – B&U SEG,CI,CA

Table 1: Classification of probabilistic conflict detection methods in the literature.
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3 Simulation-based approach

The problem of estimating the probability of some event can be reformulated as that of esti-
mating the mean of the indicator function of the event of interest, which is a binary random
variable equal to 1 when the event is verified, 0 otherwise. In turn, the mean of this random
variable can be estimated according to the Monte Carlo method, that is by extracting multiple
samples and taking the average of the outcomes of the extractions. By appropriately selecting
the number of extractions, one can ensure a desired accuracy of the estimate with a probability
arbitrarily close to 1.

In order to estimate small probabilities with adequate accuracy, a large number of extractions
is needed. This is particularly evident in the extreme case of rare events: only by extracting
many samples, one can get a nonzero estimate of the probability of a rare event.

In the multi-level approach to rare event probability estimation, the number of extractions
is reduced by considering a set of nested events containing the event of interest so that its
probability can be expressed as the product of the conditional probabilities of the nested events.
These conditional probabilities are larger than the probability of interest, thus their estimate
requires a smaller number of extractions, which results in an improvement of the computational
efficiency for the overall probability estimation.

A stochastic reachability problem consists in determining the probability that the trajectories
of a given stochastic process enters a target set starting from some initial state. The event
of interest is related to the evolution of the stochastic process, and computing its probability
is generally a difficult problem to solve analytically. The Monte Carlo approach turns out to
be a convenient solution to this issue. In this case, extracting a sample from the indicator
function of the event translates into running a simulation of the process and verifying if the
resulting trajectory enters the target set. For this reason, we refer to the Monte Carlo approach
for reachability analysis as “simulation-based approach”. In a dynamically evolving setting,
as soon as updated information on the current process position is available, the estimation of
the probability should be updated. According to the standard Monte Carlo approach, new
simulations should be run. Inspired by the particle filtering method, in the sequential Monte
Carlo approach simulations are re-used for updating the probability estimate thus improving
computational efficiency.

In our ATM application context, the event of interest is that of two aircraft coming closer than
a minimum allowed distance along a 20 minutes horizon, given their flight plans and current
positions made available by radar measurements. The two aircraft motions are described through
a pair of coupled stochastic difference/differential equations. An extraction from the indicator
function of the event of interest can be obtained by generating an instance of the two aircraft
trajectories: if the generated trajectories get closer than the prescribed separation minima, then
a conflict occurs and the outcome of the random extraction is 1, otherwise no conflict occurs
and the outcome is 0. As soon as a new radar measurement becomes available, the estimate of
the probability of conflict should be updated. The use of both the multi-level and the particle-
filtering approaches to improve the computational efficiency of the simulation-based approach
is investigated.
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We start by recalling some fundamental notions on the Monte Carlo method for estimating
probabilities. We then describe the multi-level decomposition and the sequential Monte Carlo
methods. We study in particular the finite sample properties of these methods.

3.1 Monte Carlo method

We recall some basic concepts on the Monte Carlo method for mean estimation. We then apply
these concepts to the problem of probability estimation. The application of the Monte Carlo
method to stochastic reachability analysis is also briefly discussed.

3.1.1 Mean estimation

Let X be a random variable defined on some probability space (Ω,F , P ). Denote by µX its
mean.
The empirical average estimator of µX based on n independent extractions from X is given by

Xn =
1
n

n∑
i=1

X(i),

where X(i), i = 1, 2, . . . , n, are independent random variables identically distributed as X. Xn

is a random variable defined over the product probability space (Ωn,Fn, Pn), where Ωn :=
Ω× Ω× . . .× Ω, Fn := F ⊗ F ⊗ . . .⊗F , and Pn := P × P × . . .× P , (n times). To assess
the asymptotic properties of the estimator as n → ∞, we shall refer to the infinite product
probability space denoted as (Ω̄, F̄ , P̄ ).

Let Ē be the expectation operator with respect to the probability P̄ . For any integer n the
empirical average estimator is unbiased, i.e., its expected value is equal to the quantity to be
estimated:

µXn
= Ē[Xn] = Ē

[
1
n

n∑
i=1

X(i)

]
=
1
n

n∑
i=1

Ē[X(i)] =
1
n

n∑
i=1

µX = µX .

The estimate obtained for a given realization of the random variables X(i), i = 1, 2, . . . , n, is
generally different from µX , and depends on the realization. One would expect that, as n grows
to infinity, the estimate will get closer to µX , for any realization. This is formalized in the
following notion of consistency.

Definition 1 The estimator Xn of µX is consistent (in probability) if

lim
n→∞ P̄ (|Xn − µX | > ε) = 0.

Since by Chebyshev inequality

P̄ (|Xn − µX | > ε|) ≤ Ē[(Xn − µX)2]
ε2

,
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and

Ē[(Xn − µX)2] = Ē

[( 1
n

n∑
i=1

X(i) − µX

)2
]
=
1
n2

n∑
i=1

Ē[(X(i) − µX)2] =
1
n
Ē[(X − µX)2],

it follows that, if the variance ofX is bounded, then the empirical average estimator is consistent.

To decide how many extractions are needed to adequately estimate µX , it is important to
evaluate the quality of the estimate for finite n (finite sample properties).

The estimate of µX depends on the value taken by X(1), X(2), . . . , X(n). Even if n is large, there
are realizations of X(1), X(2), . . . , X(n) such that the corresponding estimate is not accurate.
This means that the quality of the estimate can only be assessed in probabilistic terms. If bad
samples may occur, but with small probability, then, the quality of the estimate is good.
The quality of the estimator is quantified in probabilistic terms through two parameters: the
accuracy parameter ε and the confidence parameter δ.

Definition 2 The average mean estimator Xn is characterized by an accuracy ε > 0 with
confidence 1− δ ∈ (0, 1) if P̄ (|Xn − µX | ≤ ε) > 1− δ. �

Note that in this definition ε is an absolute accuracy parameter. One can also assess the accuracy
in terms of a relative accuracy parameter α:

P̄

(∣∣∣∣Xn − µX

µX

∣∣∣∣ ≤ α

)
> 1− δ.

We now consider the problem of determining the value of n that guarantees a certain accuracy
and confidence level for the average mean estimator.

Hoeffding’s inequality is fundamental in this respect. We recall it here according to our notations.

Theorem 1 (Hoeffding’s inequality) Suppose that X takes values in some bounded interval
[a, b]. Then,

P̄ (|Xn − µX | > ε) < 2e
− 2nε2

(b−a)2 . �

Fix ε > 0 and δ ∈ (0, 1). If n is such that e−
2nε2

(b−a)2 ≤ δ, that is

n ≥ log(2/δ)(b− a)2

2ε2
,

then by Hoeffding’s inequality, one guarantees an accuracy ε for the average mean estimator of
µX with confidence 1− δ.

It is important to note that this result is distribution-free, in that it does not depend on the
distribution of X. This is a main strength of Hoeffding’s inequality, which makes it applicable
in general contexts. However, it is also its weak point, since the bounds derived based on it are
generally conservative. Improved bound can be found when the probability distribution of X
is known. The point is that in many cases of interest the probability distribution of X is not
known explicitly and difficult to determine.
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3.1.2 Probability estimation

Given the probability space (Ω,F , P ). Consider an event A ∈ F .

Let us introduce the random variable X: Ω→ R on (Ω,F , P ):

X(ω) =

{
1 se ω ∈ A
0 se ω �∈ A

This is the indicator function of A. It is easily seen that µX = P (A). The probability of the
event A can then be estimated by estimating the mean of X.

If one can execute independent extractions from X, PA := P (A) can be estimated through the
average mean estimator:

P̂A =
1
n

n∑
i=1

X(i).

The estimator P̂A has the same properties of the average mean estimator.

As for the asymptotic properties, it is unbiased and consistent.

As for the finite sample properties, the results obtained by Hoeffding’s inequality still holds true.
In this case X takes values in [a, b] = [0, 1]. The number of extraction n to guarantee a certain
accuracy ε with confidence 1− δ is then given by

n =
⌈
log(2/δ)
2ε2

⌉
. (1)

From this expression for n, one can see that confidence is “cheap”, because the dependence of
n on δ is logarithmic, whereas accuracy is “expensive”, because the dependence of n on ε is
quadratic.
Accuracy should be chosen based on the order of the probability to be estimated. Hence,
estimating rare events probability by standard Monte Carlo method is not possible in practice.
A possible solution to this issue is the multi-level decomposition method.

3.1.3 Stochastic reachability analysis

In general terms, a reachability analysis problem consists in verifying if the trajectory of a given
system will enter some set within a certain time horizon. In a stochastic setting the system
evolution is described in probabilistic terms, and the reachability analysis problem is formulated
as that of determining the probability that the system trajectory will enter the set.

Let Xt be the stochastic process in R
n defined on (Ω,F , P ). Suppose that Xt is the solution to

the stochastic differential equation (SDE)

dXt = a(Xt)dt+ b(Xt)dWt (2)

where a : Rn → R
n, b : Rn → R

n×n andWt is a Wiener process in R
n. The SDE (2) is initialized

with X0, which is a random variable independent of Wt and with probability density µ0 with
support on B0 ⊂ R

n.

18



We consider the problem of computing the probability PA that Xt enters some given set A

within some time horizon [0, T ]. In the ATM application of interest, the SDE (2) may describe
the aircraft relative position and A the protection area surrounding an aircraft.

The probability PA is generally difficult to determine analytically. One can estimate it by the
Monte Carlo method.

By introducing the indicator function of the set A:

IA(x) =

{
1, x ∈ A

0, x /∈ A
,

the indicator function of the event of interest is given by ϕX[0,T ]
:= maxτ∈[0,T ] IA(Xτ ), and the

probability PA can be expressed as

PA = P (ϕX[0,T ]
= 1) = E[ϕX[0,T ]

].

By considering n = �log(2/δ)/(2ε2)� independent extractions from ϕX[0,T ]
and taking their

average, we obtain an estimate of PA with accuracy ε and confidence 1 − δ. The estimator
P̂A can then be expressed as

P̂A =
1
n

n∑
i=1

ϕ
(i)
X[0,T ]

,

with ϕ
(i)
X[0,T ]

, i = 1, . . . , n, random variables independent and identically distributed as ϕX[0,T ]
.

An extraction from ϕX[0,T ]
can be obtained by simulating first a trajectory of Xt over the time

interval [0, T ], according to the SDE (2) initialized at time 0 with the value for X0 extracted
from µ0, and then computing ϕX[0,T ]

= maxτ∈[0,T ] IA(Xτ ) for this realization. The estimator P̂A

can then be reformulated as

P̂A =
1
n

n∑
i=1

ϕ
X

(i)
[0,T ]

, (3)

where X
(i)
[0,T ], i = 1, . . . , n, are independent and distributed as X[0,T ].

In practice, the estimate of PA is the fraction of the n simulated trajectories that enters A.

3.2 Multi-level decomposition method

3.2.1 Description of the approach

Given an event A ∈ F in some probability space (Ω,F , P ), let us consider a sequence of nested
events Bi, i = 1, . . . ,m: A = Bm ⊂ ... ⊂ B1.

Then, the probability of the event A can be expressed as follows: PA = Πm
i=1Pi, where we set

Pi := P (Bi|Bi−1), i = 2, . . . ,M , and P1 = P (B1).

The idea of the multi-level decomposition method is to estimate PA by

P̂A = Πm
i=1P̂i,

19



where P̂i denotes the estimate of Pi, i = 1, . . . ,m. If each one of the Pi’s is large compared
with PA, then the number of samples needed to estimate each Pi by the Monte Carlo method is
significantly smaller than that needed to estimate PA.

The following proposition shows how is it possible to determine the accuracy of P̂A = Πm
i=1P̂i

given the accuracy of each single P̂i.

Proposition 1 Let |qi − pi| ≤ εi, i = 1, . . . ,m, where qi, pi, and εi, i = 1, . . . ,m, are positive
real numbers. Then ∣∣Πm

i=1pi −Πm
i=1qi

∣∣ ≤ [
Πm
i=1(1 + αi)− 1

]
Πm
i=1pi, (4)

where αi := εi/pi, i = 1, . . . ,m.

Proof: The proof is by induction on m.

It is immediately verified that q1q2 − p1p2 can be expressed as follows:

q1q2 − p1p2 = (p1 − q1)(p2 − q2)− 2p1p2 + p1q2 + p2q1

= (p1 − q1)(p2 − q2)− p1(p2 − q2)− p2(p1 − q1).

From this equation, we have

|p1p2 − q1q2| = |q1q2 − p1p2|
≤ |(p1 − q1)(p2 − q2)|+ |p1(p2 − q2)|+ |p2(p1 − q1)|
= |p1 − q1||p2 − q2|+ p1|p2 − q2|+ p2|p1 − q1|.

Since |qi − pi| ≤ εi, i = 1, 2, we get

|p1p2 − q1q2| ≤ ε1ε2 + p1ε2 + p2ε1.

If we set α1 := ε1/p1 and α2 := ε2/p2, then

|p1p2 − q1q2| ≤ (α1α2 + α2 + α1)p1p2 = [(1 + α1)(1 + α2)− 1]p1p2,

which is equation (4) for m = 2.

Assume now by induction hypothesis that∣∣Πk
i=1pi −Πk

i=1qi
∣∣ ≤ [

Πk
i=1(1 + αi)− 1

]
Πk
i=1pi.

We next show that ∣∣Πk+1
i=1 pi −Πk+1

i=1 qi
∣∣ ≤ [

Πk+1
i=1 (1 + αi)− 1

]
Πk+1
i=1 pi,

which concludes the proof of (4).

Define p̄k := Πk
i=1pi e q̄k := Πk

i=1qi. By the induction hypothesis,∣∣p̄k − q̄k
∣∣ ≤ ε
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with ε := αp̄k and α := Πk
i=1(1 + αi)− 1.

Based on the same derivations as for m = 2 with p1 and p2 replaced by p̄k and pk+1(hence α1

and α2 replaced by α and αk+1), and q1 and q2 replace by q̄k and qk+1 we obtain:

|p̄kpk+1 − q̄kqk+1| ≤ [(1 + α)(1 + αn+1)− 1]p̄kpk+1.

Substituting in this equation the expressions for p̄k, q̄k and α, we finally have
∣∣Πk+1

i=1 pi −Πk+1
i=1 qi

∣∣ = |p̄kpk+1 − q̄kqk+1|
≤

[
(1 + Πk

i=1(1 + αi)− 1)(1 + αk+1)− 1
]
Πk+1
i=1 pi

=
[
Πk+1
i=1 (1 + αi)− 1

]
Πn+1
i=1 pi.

Suppose now that each Pi is estimated with accuracy εi and confidence 1− δi by the standard
Monte Carlo method with ni = �log(2/δi)/(2ε2i )� extractions (see (1)). Denote by (Ω,F , P ) the
probability space where all the random variables involved in the estimates P̂i, i = 1, . . . ,m, are
defined. Then,

P
(
|Pi − P̂i| > εi

)
< δi, i = 1, . . . ,m.

This implies that

P
(
|Pi − P̂i| ≤ εi, i = 1, . . . ,m

)
≥ 1−

m∑
i=1

δi.

Then, by Proposition 1 with pi := Pi and qi := P̂i, we have

P
(
|PA − P̂A| ≤ αPA

)
≥ 1− δ (5)

where we set α := [Πm
i=1(1 + αi)− 1] with αi = εi/Pi, and δ :=

∑m
i=1 δi. The overall number of

extractions to estimate PA is

n =
m∑
i=1

ni =
m∑
i=1

⌈
log(2/δi)
2ε2i

⌉
. (6)

From (5) and the definition of α and δ, it follows that to ensure a relative accuracy α for the
estimate P̂A, with confidence 1− δ, we can choose

εi = αPi, i = 1, . . . ,m, with α ≤ m
√
1 + α− 1,

δi = δ
m , i = 1, . . . ,m.

(7)

Equation (7) combined with equation (6) provides the number of extractions needed to ensure a
certain desired relative accuracy α and confidence 1−δ for the estimate of PA. Below we provide
an example of evaluation of the computational efficiency of the multi-level decomposition method
for different values of the probabilities Pi.

Example 1 Let PA = 10−10. Suppose that we introduce 5 nested events such that:
Case a: P1 = P2 = P3 = P4 = P5 = 10−2.
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Case b: P1 = P2 = P3 = P4 = 10−1 and P5 = 10−6.
To achieve a relative accuracy α = 0.1 (absolute accuracy ε = αP = 10−11) and a confidence
1− 10−6, we can choose δi = 0.2 · 10−6, i = 1, . . . , 5, and α = 1.92 · 10−2.
The resulting number of extractions in case a and case b is, respectively, na =

∑5
i=1 na,i � 109

and nb =
∑5

i=1 nb,i � ·1016, whereas in the standard Monte Carlo approach the number of
extractions would be n � 1022. �

The problem is that this procedure cannot be used in practice to decide the number of extractions
for guaranteeing a certain relative accuracy α and confidence 1− δ for P̂A. This is because the
value for εi is chosen based on the value of the probability Pi, which is not known.

In the standard Monte Carlo approach a similar problem arises, since the number of simulations
to guarantee a relative accuracy α depends on PA through ε = αPA, and PA is not known.
However, it is often the case that the objective is actually verifying if PA is greater than some
value P̃ . Hence, ε can be chosen based on P̃ . In the multi-level approach the same kind of
information on P̃ is not useful for deciding the single εi: is we set εi base on P̃ we would not
get any computational advantage with respect to the standard Monte Carlo approach.

The novel idea presented in the following subsection is to make an a-posteriori evaluation of the
accuracy, based on the obtained estimated value for Pi.

3.2.2 The problem of evaluating the quality of the multi-level probability estimate:
a solution based on an a-posteriori evaluation

We propose an approach for guaranteeing a desired quality for the estimate of the overall prob-
ability PA obtained by multi-level decomposition. The key characteristic of the approach is the
a-posteriori assessment of the actual value for the accuracy εi, based on the value of P̂i, so as to
achieve the desired accuracy ε for P̂A.

The following algorithm is formulated to determine an estimate P̂A for PA with guaranteed
relative accuracy β ∈ (0, 1) and confidence 1− δ.

Algorithm 1 (A-posteriori guaranteed quality estimate)

Input: Fix β, δ ∈ (0, 1), ε̄ > 0, and r ∈ (0, 1).

Initialization: Set α = m
√
1 + β/(1 + β)− 1, δk = δ/m and εk = ε̄, k = 1, . . . ,m, i = 1.

For i = 1 to m do:

1. Determine an estimate P̂i of Pi with absolute accuracy εi and confidence 1− δi.

2. If εi/P̂i > α, then set εi := rεi and go to step 1, else i := i+ 1.

Output: Set P̂A := Πm
i=1P̂i.

ᾱ is the relative accuracy for each P̂i estimate, which would correspond to the desired relative
accuracy β for the overall P̂A estimate. The value for the absolute accuracy εi for each P̂i is
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selected a-posteriori, based on P̂i, so as to guarantee the relative accuracy ᾱ. This is done
iteratively, by eventually rescaling the current value of εi by an r < 1 factor.

We now show that P̂A obtained through this algorithm is an estimate of PA with relative accuracy
β and confidence 1− δ.

The proof relies on the proposition below, which directly follows from Proposition 1.

Proposition 2 Let |Pi − P̂i| ≤ εi, i = 1, . . . ,m. Then∣∣Πm
i=1Pi −Πm

i=1P̂i

∣∣ ≤ α

1− α
Πm
i=1Pi, (8)

where α :=
[
Πm
i=1(1 + αi)− 1

]
with αi := εi/P̂i, i = 1, . . . ,m.

Proof: By Proposition 1 with qi = Pi and pi = P̂i, i = 1, . . . ,m, we have∣∣Πm
i=1Pi −Πn

i=1P̂i

∣∣ ≤ [
Πm
i=1(1 + αi)− 1

]
Πm
i=1P̂i (9)

Based on (9), Πm
i=1P̂i ≤ 1

1−αΠ
m
i=1Pi.

Plugging this bound into (9), we get (8).

Denote by (Ω,F , P ) the probability space where all the random variables involved in the esti-
mates P̂i, i = 1, . . . ,m, are defined. Then,

P
(
|Pi − P̂i| > εi

)
< δi, i = 1, . . . ,m.

This implies that

P
(
|Pi − P̂i| ≤ εi, i = 1, . . . ,m

)
≥ 1−

m∑
i=1

δi = 1− δ.

Then, by Proposition 2, we have

P

(
|PA − P̂A| ≤

α

1− α
PA

)
≥ 1− δ, (10)

where α :=
[
Πm
i=1(1 + αi) − 1

]
with αi := εi/P̂i, i = 1, . . . ,m. Since εi is adaptively chosen so

that αi := εi/P̂i ≤ ᾱ, by the definition of ᾱ we have that α ≤ β/(1 + β). If we plug this bound
in (10), we finally get that

P
(
|PA − P̂A| ≤ βPA

)
≥ 1− δ.

As for the computational efficiency of the algorithm, by Hoeffding’s inequality, for estimating
each Pi with accuracy εi and confidence 1 − δi, we need ni = �log(2/δi)/(2ε2i )� independent
extractions from the indicator function of the event Bi. The value for εi is decided a-posteriori
based on the resulting value for P̂i, starting from the initialization ε̄. This means that we cannot
determine a-priori the computational effort needed to estimate PA with given relative accuracy
β and confidence 1− δ.

This is in fact not surprising, since we do not know the Pi values a-priori: the computational
effort will be comparable with that of the standard Monte Carlo method if some Pi is close to
PA, and much lower if all the Pi’s are equal.
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3.2.3 Application to stochastic reachability analysis

Let us consider the stochastic reachability analysis problem described in Subsection 3.1.3.

Our objective is computing the probability PA that the solution Xt to SDE equation (2) enters
some given set A within some time horizon [0, T ].

We next illustrate how the multi-level decomposition method can be used to estimate PA. For
this purpose it is convenient to introduce the stopping time τA := inf{t ≥ 0 : Xt ∈ A} and
express PA as

PA := P (τA ≤ T ).

Under suitable assumptions on the a and b coefficients of the SDE equation (2), its solution Xt

is a strong time-homogeneous Markov process with continuous trajectories.

Consider a sequence of m nested sets Bi, i = 1, . . . ,m, in the state space R
n of the Xt process,

such that:
A = Bm ⊂ ... ⊂ B1 B1 ∩B0 = ∅.

An example is shown in figure 2 for the case of n = 2 and m = 4, with the target set A that is
a circle of unitary radius centered at the origin. The sets Bi, i = 1, 2, 3, 4 are circles centered at
the origin defined by Bi =

{
(x, y) ∈ R

2 : x2 + y2 ≤ (5− i)2
}
, i = 1, 2, 3, 4.

O

x

y

1 2 3 4

B4

B3

B1

B2

Figure 2: Example of multi-level decomposition in R
2

Define the random variable τi representing the first time the process enters Bi:

τi := inf{t ≥ 0 : Xt ∈ Bi}, i = 1, 2, ...,m.

Based on the continuity properties of the Xt process trajectories, Xt has to enter the sets B1,
B2, . . . , Bm−1, in this order, before entering the target set A = Bm. This implies that the
probability of interest PA = P (τm < T ) can be expressed as follows ([36, 37]):

PA = P (τk ≤ T, k = 1, . . . ,m)

= P (τm ≤ T |τk ≤ T, k = 1, . . . ,m− 1)P (τk ≤ T, k = 1, . . . ,m− 1)
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= P (τm ≤ T |τm−1 ≤ T )P (τk ≤ T, k = 1, . . . ,m− 1)
= . . .

= P (τm ≤ T |τm−1 ≤ T )P (τm−1 < T |τm−2 ≤ T ) . . . P (τ1 ≤ T ).

If we let Pi = P (τi ≤ T |τi−1 < T ) and P1 = P (τ1 ≤ T ), then, PA = Πm
i=1Pi.

Recalling the notations in subsection 3.2.1, the event A and the nested events Bi are defined as

A = {inf{t ≥ 0 : Xt ∈ A} ≤ T},
Bi = {τi ≤ T} = {inf{t ≥ 0 : Xt ∈ Bi} ≤ T}, i = 1, . . . ,m,

whereas the probabilities Pi are given by

Pi = P (Bi|Bi−1), i = 2, . . . ,m, P1 = P (B1).

In order to estimate PA, one should be able to estimate each single probability Pi, i = 1, . . . ,m.
For i = 1, one can simply run simulations of the process Xt according to the SDE (2) initialized
with the given initial distribution π0 of X0. Instead, for i > 1, the event Bi depends on the
evolution of the strong Markov process Xt after entering the set Bi−1. Given the strong Markov
property of Xt, if the distribution of the process arrested at the hitting time τi−1, were known,
then one could run simulations according to the SDE (2), re-initialized on the contour of Bi−1

with such distribution. The problem is that the distribution of Xτi−1 is not known and difficult
to determine.

This problem is addressed in the different implementations of the multi-level decomposition
method for stochastic reachability based on the following idea. The trajectories simulated for
estimating Pi−1 are stopped on the contour of Bi−1, as soon as they enter this set within time
T . Multiple trajectories are then generated starting from these points, according to the SDE
(2), so as to estimate Pi.

In the Interacting Particle System (IPS) algorithm ([37, 39, 36]), Np trajectories are generated
starting from Np initial conditions extracted according to the empirical distribution obtained
on the contour of Bi−1. Under strong Markov condition, the asymptotic analysis in [37] shows
that the so-obtained estimator for PA is unbiased and consistent. In the REpetitive Simulation
Trials After Reaching Thresholds (RESTART) algorithm developed in [40], a fixed number of
trajectories per hitting point is generated. It is important to note, however, that RESTART does
not assume that the process is a strong Markov process, and does not provide any asymptotic
analysis.

By letting Np depend on the level i, one can easily integrate the IPS method in Algorithm 1 of
subsection 3.2.2, by using it to determine the estimate P̂i at step 1. However, it is important to
note that, given the approximation of the distribution on the contour of Bi−1, the conclusions
on the analysis of the algorithm are still valid only under some restrictive assumptions such as
that the probability of entering Bi does not depend on the starting point on the contour of Bi−1.

An example of application of Algorithm 1 incorporating the IPS method is provided next. This
example allows to verify the IPS algorithm performance, given that it is possible to compute
the probability of interest exactly.
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Example 2 (algebraic Brownian motion) Consider the algebraic Brownian motion in R,
solution to the SDE:

dXt = αdt+ σdWt, (11)

initialized with X0 = x, where α and σ are positive constants.

Suppose that we want to estimate the probability that Xt hits the barrier d = 0 within time T

starting from x > 0. If we set A = {y ∈ R : y ≤ 0} and τ(x) = inf{t > 0 : Xt ∈ A;X0 = x},
then the probability of interest can be expressed as

PA(x) = P (τ(x) ≤ T ).

Now, τ(x) is a random variable with probability density function:

fτ(x)(t) =
x

σ
√
2πt3

· e−
(x+αt)2

2σ2t .

Therefore PA(x) can be computed as follows

PA(x) = P (τ(x) ≤ T ) =
∫ T

0
fτ(x)(t)dt.

We set T = 1, α = 1, σ = 1. The corresponding values for PA(x), x ∈ [1, 5], are reported in
figure 3.
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Figure 3: Probability PA(x) of hitting d = 0 as a function of the initial position x, x ∈ [1, 5].

Let us consider the set of nested events Bi = {y ∈ R : y ≤ di}, i = 1, . . . ,m, where the thresholds
di are such that 0 = dm < dm−1 < · · · < d1 < x. In the reported examples, di are chosen so that
the corresponding probabilities Pi are all greater than or equal to 0.1.

The results obtained through Algorithm 1 incorporating the IPS method are provided in Table
2. We set the desired relative accuracy and confidence for the estimate of PA(x) equal to β = 0.5
and 1− δ = 0.999. The values for the relative accuracy and confidence of each single P̂i are

αi = α = m
√
1 + β/(1 + β)− 1, 1− δi = 1− δ/m,
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Figure 4: Actual relative accuracy as a function of the initial position x.

which depend on the number m of levels.
To implement the IPS model in practice we use a discrete-time approximation of (11) based on
the Euler scheme with 1000 discretization time steps.

x m α PA P̂A time [s]
1 6 4.86 · 10−2 9.04 · 10−2 8.56 · 10−2 76
2 12 2.4 · 10−2 4.26 · 10−3 3.80 · 10−3 129
3 20 1.4 · 10−2 8.8 · 10−5 7.65 · 10−5 174
4 26 1.1 · 10−2 7.39 · 10−7 6.47 · 10−5 222
5 32 9 · 10−3 2.42 · 10−9 1.72 · 10−9 238

Table 2: Results of Algorithm 1 incorporating the IPS method (β = 0.5, δ = 0.01)

In Figure 4 the relative accuracy for P̂A(x) is plotted as a function of x. Note that the actual
relative accuracy is smaller than β = 0.5. A reason for this is that the value for εi adaptively
selected in Algorithm 1 may be much smaller than necessary, if the r factor is small. �

3.3 Sequential Monte Carlo approach to stochastic reachability analysis

The Sequential Monte Carlo (SMC) approach is introduced to improve the computational ef-
ficiency of the standard Monte Carlo approach to stochastic reachability analysis for systems
evolving in a highly dynamic uncertain environment, where reachability has to be repeatedly
verified on-line based on the updated information on the system behavior.

This is relevant to our application context, since in fact the probability of conflict has to be
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updated at each time instant when new radar measurements on the aircraft positions become
available. According to the standard Monte Carlo approach, this would require simulating new
trajectories starting from the newly updated initial positions.
The idea of the SMC approach is to update the probability of conflict based on the re-use of
the trajectories previously simulated after appropriately weighting their contribution according
to their likelihood, suitably refreshed based the new radar measurements. This idea is inspired
by the particle filtering methods for nonlinear filtering, whose main principle is recursively
generating random measures that approximate distributions of interest. These random measures
are represented by samples extracted from relevant distributions and propagated through the
system dynamics, appropriately weighted based on the observations on the system.

The improvement obtained by re-using the trajectories previously simulated is particularly sig-
nificant in the case when generating trajectories is computationally demanding.

We formulate the SMC method in a discrete time setting.

Let (Ω, F, P ) be a probability space on which two vector-valued stochastic processes are defined;
X = {Xt, t ∈ N} and Y = {Yt, t ∈ N}. X is the state process and Y the observation process.
Let nd be the dimension of the state space of each of X and Y , and let B(Rnd) be the Borel
σ-algebra on R

nd .

We assume that X is a Markov Process with initial probability density µX0 and probability
transition kernel Kt(xt, xt−1), such that for all S ∈ B(Rnd):

P{Xk ∈ S|Xk−1 = xk−1} =
∫
S
Kk(x, xk−1)dx. (12)

To simplify notation we shall denote the time varying kernel Kk(·, ·) by K(·, ·). Although the
kernel is time-varying, the mapping being performed is implicit from the subscript k in xk.

The joint probability density of X0:t := (X0, X1, . . . , Xt) is given by

µX0:t(x0:t) := µX0(x0)
t∏

k=1

K(xk, xk−1).

The probability density of Xt can then be expressed by

µXt(xt) =
∫

µX0(x0)
t−1∏
k=1

K(xk, xk−1)K(xt, xt−1)dx0:t−1,

where dx0:t−1 is a short-hand-notation for dx0dx1 . . . dxt−1.

We consider the full information case where at each time step t the exact observation process
state is received (Yt = Xt). While this is unrealistic for highly complex systems, at the level of
complexity at which we shall operate, information of the most significant state elements can be
gathered.

At each time t, we wish to estimate the probability that the state of the system will reach a
given set A over a time horizon of length T , given the observations Yk collected up to time t:

PA(t) := P (Xk ∈ A, for some k ∈ [t, t+ 1, . . . , t+ T ]|Yk = yk, k = 0, . . . , t).
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As X is a Markov process and Yk = Xk, k = 0, . . . t, this is equivalent to:

PA(t) = P (Xk ∈ A, for some k ∈ [t, t+ 1, . . . , t+ T ]|Yt = Xt = yt). (13)

Let ϕXt:t+T
:= maxτ∈[t,t+1,...,t+T ] IA(Xτ ), where IA is the indicator function of set A and Xt:t+T

is the collection of random variables Xk, k = t, . . . , t+ T . Then, the probability PA(t) can then
be expressed as

PA(t) = P (ϕXt:t+T
= 1|Yt = xt) = E[ϕXt:t+T

|Yt = yt].

The conditional probability density of Xt:t+T given Yt = Xt = yt is given by

µXt:t+T |Yt=yt
(xt:t+T |yt) = δyt(xt)

t+T∏
k=t+1

K(xk, xk−1),

where δy(·) is the δ function in y. As a result, PA(t) can be expressed as

PA(t) =
∫

ϕXt:t+T
δyt(xt)

t+T∏
k=t+1

K(xk, xk−1)dxt:t+T . (14)

Analytical solutions to equation (14) can be obtained only in a limited set of cases. We can
use the standard Monte Carlo method to estimate PA(t). By extracting a certain number n of
independent identically distributed (i.i.d.) paths according to the conditional joint distribution
of positions across the time horizon

X̃
(i)
t:t+T ∼ δyt(xt)

t+T∏
k=t+1

K(xk, xk−1), i = 1, . . . , n, (15)

we can then compute the estimate

P̂A(t) =
1
n

n∑
i=1

ϕ
X̃

(i)
t:T+t

. (16)

By Hoeffding’s inequality:
P̄ (|P̂A(t)− PA(t)| > ε) < e−2nε2 ,

where P̄ is the probability measure in the probability space where all random variables involved
are defined. Then, to get an estimate of PA with accuracy ε and confidence 1 − δ we have to
take n = �log(2/δ)/(2ε2)�.

The concept of particles arises naturally in the Monte Carlo method; rather than referring to
n i.i.d. sampled paths, we may simply refer to n ‘particles’. A particle is a pair (X̃(i)

t:t+T , ξ
(i)),

consisting of a trajectory X̃
(i)
t:t+T and an associated weight ξ

(i) representing the ‘significance’ of
this particle. The weights add up to 1:

n∑
i=1

ξ(i) = 1.
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In the case of equation (16), for instance, the weight ξ(i) = 1/n, as all particles are equally
significant. The Monte Carlo estimate can then be expressed as

P̂A(t) =
n∑

i=1

ξ(i)ϕ
X̃

(i)
t:T+t

.

In this section we demonstrate how ‘old’ trajectories (e.g. from time 0) may be used to gives
unbiased estimates of PA(t), up to certain values of t. This process is known as ‘particle filtering’.
Particle filtering methods have generated considerable research interest in recent years [41, 42,
43], principally as a method for performing non-linear filtering. Non-linear stochastic processes
commonly do not admit analytical descriptions of their probability distributions, however, if the
trajectories may be simulated then an empirical probability distribution may be constructed.
Sequential Monte Carlo methods are usually used to weight the prior (simulated) distribution,
given an uncertain state observation, to give a posterior distribution taking into account the
effect of the observation on the state estimate. Resampling is then performed according to this
weighted distribution and simulation continues. The ultimate goal is to achieve convergence
to a stationary distribution, from which empirical properties may be estimated. In the case
we present the circumstances are quite different: we have exact state observation (and hence
perfect knowledge of the posterior distribution over the time horizon), but due to the potential
complexity of our dynamical system are concerned with the possibly unwarranted computational
effort of drawing new sample trajectories at each time step. We therefore introduce a novel
method for re-using old sample paths in an optimal fashion.

Lemma 1 (SMC estimation) The probability PA(t), given the observation Yt = yt, can be
expressed as follows

PA(t) =
∫

ϕyt,xt+1:t+T q(x0:t+1)
K(xt+1, yt)

δy0(x0)
∏t+1

k=1 K(xk, xk−1)
δy0(x0)

t+T∏
k=1

K(xk, xk−1)dx0:t+T , (17)

where q(x0:t+1) is any function satisfying q(x0:t+1) > 0, for all x0:t+1, and
∫
q(x0:t, xt+1)dx0:t =

1, for all xt+1.

Proof: At time t, the standard MC estimation of PA(t) is:

PA(t) =
∫

ϕxt:t+T δyt(xt)
t+T∏

k=t+1

K(xk, xk−1)dxt:t+T ,

which may be re-written as

PA(t) =
∫

ϕyt,xt+1:t+T K(xt+1, yt)
t+T∏

k=t+2

K(xk, xk−1)dxt+1:t+T . (18)

Given that q(x0:t+1) is such that
∫
q(x0:t, xt+1)dx0:t = 1 and q(x0:t+1) > 0, we may write:

PA(t) =
∫

ϕyt,xt+1:t+T q(x0:t+1)K(xt+1, yt)
t+T∏

k=t+2

K(xk, xk−1)dx0:t+T .
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Multiplying and dividing by δy0(x0)
∏T

k=1 K(xk, xk−1), we get (17).

The choice of q(·, ·) is entirely free within the given constraints; the estimate of PA(t) will be
unaffected as long as the distribution at time steps t+ 1 and beyond are not skewed; hence the
condition that

∫
q(x0:t, xt+1)dx0:t = 1 . The choice of q(·, ·) depends on some considerations

discussed later in this section.

Note now that

δy0(x0)
t+T∏
k=1

K(xk, xk−1)

appearing in (17) is the conditional probability density of X0:t+T given the observation Y0 = y0

µX0:t+T |Y0=y0
. This is the probability density according to which sample paths are drawn for

estimating PA(0) (see equation (15) with t = 0).

Define the weighting function

ξ(x0:t+1; y0, yt) = q(x0:t+1)
K(xt+1, yt)

δy0(x0)
∏t+1

k=1 K(xk, xk−1)
.

By Lemma 1, we were able to express PA(t) as

PA(t) = EµX0:t+T |Y0=y0
[ϕyt,Xt+1:t+T

ξ(X0:t+1; y0, yt)] (19)

where EµX0:t+T |Y0=y0
denotes expectation with respect to the conditional density µX0:t+T |Y0=y0

.

This reformulation allows to obtain an estimate of PA(t) at time step t, from sample paths
originating at time step 0, according to the standard Monte Carlo approach. Note however
that for large values of t it will generally be the case that only a small number of the paths
sampled according to µX0:t+T |Y0=y0

will match the yt observation (and hence will give a significant
contribution to the estimate). The Hoeffding’s result still holds, since it is distribution-free. The
problem is that the fraction of paths that give a significant contribution to the integral has a
small probability, and it may end up being in the δ probability region where the accuracy ε is
not guaranteed.
This is known as the degeneracy phenomenon in the particle filtering literature. We shall now
show how it can be alleviated by appropriately selecting the q function.

We reiterate at this point that this is not SMC in a standard sense; due to the challenge of re-
using sample paths given an exact state observation we introduce the new concept of weighting
according to probability of transition to particle locations at the next time step.

3.3.1 SMC estimate

Based on the expression in Lemma 1, the SMC estimate is given by

P̂A(t) =
n∑

i=1

ϕ
yt,X̃

(i)
t+1:t+T

ξ(i), (20)
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ξ(i) ∝ q(X̃(i)
0:t+1)

K(X̃(i)
t+1, yt)

δy0(X̃
(i)
0 )

∏t+1
k=1 K(X̃

(i)
k , X̃

(i)
k−1)

,
n∑

i=1

ξ(i) = 1, (21)

where X̃
(i)
0:t+T , i = 1, . . . , n, are independent identically distributed (i.i.d.) paths according to

the conditional joint distribution of positions across the time horizon [0, t+ T ]:

X̃
(i)
0:t+T ∼ δy0(x0)

t+T∏
k=1

K(xk, xk−1), i = 1, . . . , n. (22)

The weight normalization (21) is a standard step in SMC estimation, ensuring that P̂A(t) lies
in the range [0, 1]. Weighting in this manner assigns high weights to those particles closely
matching the observation yt, and low weights to those far from yt. As n → ∞ the convergence
becomes ‘almost sure’: realizations leading to a failure of the SMC estimation exist, but have zero
measure. In practice, however, i.e., when n is finite, the degeneration phenomenon deteriorate
the estimate accuracy.

Degeneracy of the particle approximation is typically measured by the Effective Sample Size
(ESS) criterion ([44, 45]):

ness =
1∑n

i=1

(
ξ(i)

)2 , (23)

which takes values in [1, n], given that ξ(i) ≥ 0 and
∑n

i=1 ξ
(i) = 1. ness = 1 when one weight is

1, and the others are 0, whereas ness = n is all the weights are equal to 1/n. High degeneracy
corresponds to ness = 1. When the ness is below some threshold, then a new set of sample paths
are drawn starting from the current yt observation to estimate PA(t). This set will eventually
be re-used for estimating PA(τ) for τ > t.

The larger the value of ness, the better the estimate. Given that the ξ(i), i = 1, . . . , n, are
identically distributed and they add up to 1, their mean is 1/n. This jointly with the definition
of ness in equation (23) leads to the fact that to maximize the ness the variance of ξ(i) must be
minimized. The freedom available to achieve this is the choice of q. The optimal choice of q(·, ·)
is:

qopt(x0:t+1) =
δy0(x0)

∏t+1
k=1 K(xk, xk−1)∫

δy0(x0)
∏t+1

k=1 K(xk, xk−1)dx0:t

,

and is a particularization of the more general result in [45].

The corresponding weighting function is

ξ(xt+1; y0, yt) =
K(xt+1, yt)

µXt+1|Y0=y0
(xt+1|y0)

,

where µXt+1|Y0=y0
(xt+1|y0) =

∫
δy0(x0)

∏t+1
k=1 K(xk, xk−1)dx0:t is the probability density of Xt

given Y0 = y0. Note that in this case the weighting function depends only on xt+1.

By plugging this expression in (20) and (21), we get

P̂A(t) =
n∑

i=1

ϕ
yt,X̃

(i)
t+1:t+T

ξ(i), (24)

32



ξ(i) ∝
K(X̃(i)

t+1, yt)

µXt+1|Y0=y0
(X̃(i)

t+1|y0)
,

n∑
i=1

ξ(i) = 1. (25)

The weighting strategy is quite natural in its formulation. We are only interested in the future,
given exact knowledge of yt and the Markov property of the process. Our weighting must
therefore skew the distribution µXt+1|Y0=y0

(xt+1|y0) to give the posterior distribution that would
have been obtained had a new simulation been run starting at yt. Figure 5 give a graphical
representation of the weighting process. The weighting function is chosen such that it maps the
prior distribution µXt+1|Y0=y0

(xt+1|y0) onto the posterior distribution K(xt+1, yt).

y0

Time 0

yt

Time t

Time t+ 1

µXt+1|Y0=y0
(xt+1|y0)

weighting function
ξ(xt+1; y0, yt)

K(xt+1, yt)

Figure 5: Prior distribution µXt+1|Y0=y0
(xt+1|y0), posterior K(xt+1, yt), and weighting function.

Inspection of Figure 5 leads to a natural conclusion on the nature of particle algorithms. If
either a particularly unlikely observation is received, or the particle cloud grows in a particularly
unlikely way, then the resulting weighting function will concentrate all the weight to one or few
particles.

Throughout the above discussion we have assumed the particles were originated at time 0. If,
however, we wish to start particles at time t0 from position yt0 we need simply replace time 0
with time t0 throughout and the results hold as before. Notational simplicity precluded this in
the original discussion.

3.3.2 Implementation of SMC

A potential implementation of the SMC estimates above seems clear: perform Monte Carlo to
obtain the necessary sample paths, then repeat SMC estimation at each time step until some
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time tcrit at which ness drops below some critical threshold n̄ess where accuracy is no longer
deemed acceptable. At this point SMC is restarted, by resampling paths initiating from ytcrit .
This procedure is quite appealing in its simplicity, but has the drawback that when n̄ess is set
high many resampling steps are required and efficiency is lost. To alleviate this problem we
propose a novel method using two particle clouds. When the combined ness of the two sets
drops below a threshold, we discard and resample the set of particles with the smallest ness.
Two sets of particles S1 and S2 are sampled, and at each time step their trajectories are extended
and checked for conflicts. If necessary the set with the lowest individual ness is resampled. This
process will smooth the joint ness and reduce the overall computational effort, resulting in a
larger number of re-uses for each set of particles. With two particle clouds, however, we will
have two estimates P̂A,i, i = 1, 2, of the probability PA, which must be combined in some way.
We consider the linear combination

P̂A(t) = αP̂A,1(t) + (1− α)P̂A,2(t).

The coefficient α should be chosen so as to minimize the variance of the estimator P̂A(t). Since

var(P̂A(t)) = α2var(P̂CA,1(t)) + (1− α)2var(P̂A,2(t)),

one should choose

α� =
var(P̂A,2(t))

var(P̂A,2(t)) + var(P̂A,1(t))
.

By interpreting ness,i as the number of independent samples in a standard MC estimate of PA

to obtain the same quality as the SMC estimate P̂A,i(t) ([44]), we can approximate var(P̂A,i(t))
with 1

ness,i
PA(t)(1−PA(t)), which in turn can be approximated by 1

ness,i
P̂A,i(t)(1− P̂A,i(t)). This

finally leads to the following choice for α:

α = α̂� =
ness,1P̂A,2(t)(1− P̂A,2(t))

ness,1P̂A,2(t)(1− P̂A,2(t)) + ness,2P̂A,1(t)(1− P̂A,1(t))
. (26)

In combining the P̂A,1 and P̂A,2 estimates we are essentially performing a two-step weighting
procedure, which results in weighting cloud 1 by αξ1 and cloud 2 by (1 − α)ξ2. The effective
sample size of the combined estimate is therefore given by:

ness =
1

α2
∑n

i=1

(
ξ
(i)
1

)2
+ (1− α)2

∑n
i=1

(
ξ
(i)
2

)2 ,

which reduces to:

ness =
[ness,2P̂A,1(t)(1− P̂A,1(t)) + ness,1P̂A,2(t)(1− P̂A,2(t))]2

ness,1[P̂A,2(t)(1− P̂A,2(t))]2 + ness,2[P̂A,1(t)(1− P̂A,1(t))]2
. (27)

Having established these results SMC probability estimation with two sets of particles may be
performed with a horizon of T , for some time τ , using the following algorithm.
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Algorithm 2 (Efficient MC estimation of PA(t), t = 0, 1, . . . , τ)

Initialization:
Generate S1 and S2 by extracting the i.i.d. sample paths X̃

(i)
j,0:T i = 1, . . . , n, j = 1, 2 from

δy0(x0)
∏T

k=1 K(xk, xk+1).

Set t0 = 0 and t = 0.

While t < τ

Repeat

For j = 1, 2 compute

P̂A,j(t) =
n∑

i=1

ϕ
yt,X̃

(i)
j,t+1:t+T

ξ
(i)
j ,

ness,j =
1∑n

i=1

(
ξ
(i)
j

)2

ξ
(i)
j ∝

K(X̃(i)
j,t+1, yt)

µXt+1|Yt0=yt0
(X̃(i)

j,t+1|yt0)
,

n∑
i=1

ξ
(i)
j = 1.

Compute

P̂A(t) = αP̂A,1(t) + (1− α)P̂A,2(t),

α =
ness,1P̂A,2(t)(1− P̂A,2(t))

ness,1P̂A,2(t)(1− P̂A,2(t)) + ness,2P̂A,1(t)(1− P̂A,1(t))
.

Set

ness =
[ness,2P̂A,1(t)(1− P̂A,1(t)) + ness,1P̂A,2(t)(1− P̂A,2(t))]2

ness,1[P̂A,2(t)(1− P̂A,2(t))]2 + ness,2[P̂A,1(t)(1− P̂A,1(t))]2
.

t← t+ 1

Receive yt

Extend sample paths to T + t: X
(i)
j,t+T ∼ K(xT+t, X

(i)
j,t+T−1), j = 1, 2.

Until ness < n̄ess

Resample Sj with lowest ness,j by extracting the i.i.d. sample paths X̃
(i)
j,t:t+T i = 1, . . . , n, j = 1, 2

from δyt(xt)
∏t+T

k=t+1 K(xk, xk+1).

Set t0 = t.

end

If the process Xk is a discrete time version of an underlying continuous time process X(t), then
one should check if it is the case that the discrete time state Xk ‘jumps over’ the target set,
while the continuous state X(t) passes through it, not to underestimate the true probability of
interest.
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Suppose that X(t) is governed by a SDE and Xk is obtained by some discretization scheme.
Firstly we must ensure that ∆t, the time step of the discrete time SDE, is small enough that
the trajectory may be reasonably approximated by a straight line. We can then check whether
if the straight line between consecutive points enters the target set:

{γxk + (1− γ)xk−1 : γ ∈ [0, 1]} ∩A �= ∅.

To account for this function ϕ can be modified as follows:

ϕxt:T+t = max
k∈[t:T+t]

Ik =

{
1, {γxk + (1− γ)xk−1 : γ ∈ [0, 1]} ∩A �= ∅
0, otherwise.

For large values of ∆t relative to A, this refinement gives valuable improvements in accuracy.
Although this may be implemented analytically, with 2n line segments to check per time step
(number of particle clouds × number of particles), it can be time consuming. A method to
reduce the complexity of this checking is to first verify if the discrete time sampled path already
enters A and apply the more complex expression for ϕ only to the remaining sample paths.
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4 Application to probabilistic aircraft conflict detection

4.1 Models of the aircraft motion

One of the difficulties in predicting the aircraft future position consists in modeling the perturba-
tions influencing its motion. The actual motion of the aircraft is in fact affected by uncertainty,
due mainly to wind, but also to errors in tracking, navigation, and control. On a mid-term time
horizon uncertainty cannot be neglected.

Paielli & Erzberger [15] conducted an extensive study, comparing track data to initial flight plans
and on this basis proposed a set of statistics for flight path deviations. The resulting description
of the global effect of the perturbations affecting the aircraft motion over a 20 minutes time
horizon is given distinguishing the resultant uncertainty in the along-track and in the cross-
track directions. Specifically, the tracking errors are described as zero mean Gaussian random
variables with the variance of the along-track component, σ2

a(t), growing quadratically with
time:

σ2
a(t) ∼ r2

at
2, (28)

the variance of the horizontal cross-track component, σ2
c (t), growing quadratically with the

traveled distance, s(t), and then saturating at a fixed value:

σ2
c (t) ∼ r2

cs
2(t), sat{σ2

c (t)} = σ̄2
c , (29)

and, finally, the variance of the vertical cross-track component remaining constant. The instan-
taneous position in the local coordinate frame of each aircraft (origin at initial position, axes
aligned with along-track and cross-track directions) has the following distribution:

χ(t) ∼ N (µ(t), V̄ (t))

In which µ(t) describes the nominal reference position, and V̄ (t) the position variance, given by:

V̄i(t) =

[
σ2
a(t) 0
0 σ2

c (t)

]
.

The most widely adopted values for these figures in the conflict detection literature are those
for an ensemble of all types of aircraft, with ra = 0.25 nmi/min, rc = 1/57 and σ̄c = 1 nmi. In
terms of the separation minima these values are substantial, for instance after 20 minutes an
aircraft is expected to be 5nmi off course in the along track direction.
In [6], it is argued that this model is fairly accurate for predicting the position of an aircraft over
a mid-term horizon, as it reflects the fact that the flight management systems correct cross-track
errors in the short term, while pilots deal with along-track errors in the long term, using small
changes in speed.

In this work we consider two models from the literature. The first is a simple model which
does not take into account the aircraft dynamics, and has independent wind disturbances acting
at each step. The second is a substantially more complex model which attempts to replicate
aircraft dynamics as closely as possible, and also includes correlated wind disturbances whereby
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the wind innovation at a particular time step will tend to have the same magnitude and direction
as those at previous time steps. Both models are tuned to fit Paielli & Erzberger statistics on
flight plan deviations.

We describe more in detail the first model, since it is the one used for aircraft conflict detection.

The second model is only used for evaluating the performance of the proposed conflict detection
method and is the model implemented in the simulator described in [19, 21] and proposed for,
amongst other things, the evaluation of conflict detection method. The model implemented in
the simulator is more sophisticated in a number of ways than other existing evaluation models.
The deterministic dynamics of the model are based on the BADA Total Energy Model (TEM),
which has been shown to provide an accurate model of aircraft flight, including procedural
factors, such as rate of climb or descent, standard thrusts and airspeeds at different altitudes
and realistic modeling of turns. Perhaps a more significant contribution is the inclusion of
temporally and spatially correlated wind disturbances affecting the positions of aircraft sharing
the same areas of the airspace.
Analysis of data from the rapid update cycle, a weather system operated by t he National Center
for Environmental Prediction in the USA, has enabled estimation of a spatial correlation function
and its coefficients. Over the range of a few thousand kilometers the following expression gives
good approximation of wind correlation in the horizontal plane for aircraft at the same flight
level.
For a description of the simulator the reader is referred to [19, 21].

4.1.1 Aircraft model for conflict probability estimation

A simple model we choose to implement here is characterized by the fact that wind disturbances
are independent at each time step. In composing this model we assume that we have constant
nominal heading angle and velocity. This assumption is maintained throughout this work;
while not entirely necessary, it is a realistic reflection of aircraft flight between waypoints. A
minimum requirement is some a priori knowledge of nominal heading angle and velocity, such
that predictions of nominal position may be made.

The state in the local coordinate frame is given by the along track and cross track positions;
χ(t) = [χa(t), χc(t)]T . Wind is assumed to be independent, which gives rise to the following
model:

χ̇(t) = Dv + η(t), (30)

in which D = [1, 0]T , v is the velocity and η(t) represents the wind innovations, acting additively
on state; η(t) = [Wa,Wc]T . Wa and Wc are noise processes ideally characterized by:∫ t

0
Wadt ∼ N (0, r2

at
2),∫ t

0
Wcdt ∼ N (0,min{σ̄c, r2

cs
2(t)}),

therefore giving rise to P&E deviation statistics. In general η(t) will take the form η(t) =
k(t)B(t) where k(t) is some time dependent coefficient multiplying B(t); a standard Brownian
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motion. In order to implement this it is essential that the rate of change of variance is everywhere
differentiable (k(t) = d

dtV (t), where V is the time dependent variance). In the case of Wc this is
not the case, as there exists some time t at which the variance will saturate. A characterizable
approximation may be made, which enables expression of η(t):

min{σ̄c, r2
cs

2(t)} ≈ σ̄2
c

(
1− e−2 rc

σ̄c
vt

)
,

so that

Wa = 2r2
atBa(t),

Wc = 2σ̄crcve
−2 rc

σ̄c
vtBc(t),

where Ba(t) and Bc(t) are the two components of the 2-dimensional Brownian motion B(t). The
nature of the approximation is such that it initially overestimates the cross track variance (w.r.t.
the original model), then underestimates it as time increases. The overall effect is that similar
trajectories are produced. The P&E statistics are in any case an approximation. This model
is similar to that presented in [14], but includes time varying noise in the cross-track direction,
which better reflects the lower posterior uncertainty in predicting cross-track deviations after
several observations have been made.

At this point we may observe some of the salient features of this model. Firstly we note the
implicit inclusion of the effects of cross-track control in the cross-track variance. The saturation
of cross-track error variance occurs due to control effort to bring the aircraft back on course.
We also note the implicit inclusion of wind correlation in the across track variances. Were the
errors caused by a Brownian motion type of uncertainty the variance would grow in proportion
to time. In this case, however, the variance grows quadratically with time as a result of the fact
that in the real system disturbances are likely to be similar at consecutive time steps. While
this control and correlation are reflected in the structure of the model it is important to note
that control and correlated disturbances are not features of the model.

In order to build a two-aircraft system model, we add a subscript i to all the quantities. The
reference heading angle of each aircraft, in the global coordinate frame, is defined as θi. The
position of each aircraft in the global coordinate frame, relative to the last waypoint (also defined
in the global coordinate frame), is therefore distributed according to:

Xi(t) ∼ N (Oj +R(θi)Dvi, Vi(t)),

Vi(t) = R(θi)V̄i(t)R(θi),

V̄i(t) =

[
r2
at

2 0
0 σ̄2

c (1− e−2 rc
σ̄c

vit)

]

R(θi) =

[
cos(θi) − sin(θi)
sin(θi) cos(θi)

]
.

R(θi) is a rotation matrix mapping positions from the local to global coordinate frame, and Oj is
the location of the jth waypoint. There is no modeling of the correlation of wind perturbations
between aircraft, so the dynamics of the relative separation of two aircraft are given by:

Ẋ = R(θ2)Dv2 −R(θ1)Dv1 + ηr(t)
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Where v1 and v2 are the velocities of each aircraft and ηr(t) = R(θ2)η2(t) + R(θ1)η1(t). ηi(t)
refers to the disturbances acting on each aircraft. From this equation we then have:

X(t) ∼ N (µr(t), V2(t) + V1(t)),

µr(t) = O
(2)
j −O

(1)
j +R(θ2)Dv2 −R(θ1)Dv1.

On top of the implicit control of cross track variance discussed above, limited control of cross
track deviations is implemented in this model through maintenance of the flight plan. At any
time all way points that have been passed are discarded and the current position of the aircraft
is encoded as the first waypoint, the heading (θi) is set towards the next waypoint. No similar
control is implemented in the along-track direction, leading to the unbounded quadratic growth
in position variance in this direction.

4.2 Sequential Monte Carlo method for conflict probability estimation

We adopt the SMC Algorithm 2 described in Section 3.3 for estimating the probability of conflict
for two-aircraft level flight encounters. In this context, the process X represent the relative
aircraft position and Y represents the radar measurements of the aircraft relative position.

This algorithm is composed of the following major steps:

1. Sample n trajectories from initial position y0, estimate PA(0) accordingly using standard
Monte Carlo.

2. On receiving an observation yt, weight the original sample trajectories such that an esti-
mate of PA(t) may be obtained using Sequential Monte Carlo.

3. When t is sufficiently large that the accuracy of the estimate PA(t) is no longer acceptable,
resample n new trajectories with initial position yt.

While other steps are involved, associated with the complexities of handling two particle clouds,
the steps above encapsulate the main issues in implementing SMC. We next describe how these
issues can be solved with reference to the model described in subsection 4.1.1.

This model in discrete time takes the form

Xk+1 = Xk + (R(θ2)Dv2 −R(θ1)Dv1)∆t+Wk, (31)

with Wk, k = 0, 1, . . . , independent random variables distributed according to:

Wk ∼ N (0, V1((k + 1)∆t) + V2((k + 1)∆t)− V1(k∆t)− V2(k∆t)).

The radar sampling interval is typically 12 seconds, although some systems operate with a
sampling interval of 6 seconds. in this work we consider it 12 seconds.

In the context of aircraft conflict prediction PA(t) is the probability of conflict at time t: the
Y and X processes represent the aircraft relative position, and PA(t) is the probability of the
relative position becoming smaller than a safety distance. For this reason we shall refer to it as
PC(t).
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4.2.1 Extracting sample paths

Each time sampling or resampling requires extracting sample paths from the following distribu-
tion:

δyt(xt)
t+T∏

k=t+1

K(xk, xk−1) (32)

The transition kernels are not usually explicitly calculated. In the case of (31), it is easily seen
that

K(xk+1, xk) = N (xk + (R(θ2)Dv2 −R(θ1)Dv1)∆t, Vr,k) ,

Vr,k = (V1((k + 1)∆t) + V2((k + 1)∆t))− (V1(k∆t) + V2(k∆t)) .

Having formulated the dynamics in this form generation of large numbers of trajectories becomes
straightforward. Appropriate application of data assignment structures available in program-
ming tools (e.g. Matlab) enable very fast generation of large numbers of independent trajectories,
as required for MC estimation.

4.2.2 Computing the particles weights

When applying weights at time step t we wish to evaluate the expression:

K(xt+1, yt)
µXt+1|Yt0=yt0 )(xt+1|yt0)

.

Now we have that

K(xt+1, yt) = N (yt + (R(θ2)Dv2 −R(θ1)Dv1)∆t, Vr,t) ,

whereas

µ(xt+1, yt0) = N (x̂t+1, Vr(t+ 1, t0)).

In the latter expression,

x̂t+1 = yt0 + (R(θ2)Dv2 −R(θ1)Dv1)∆t(t+ 1− t0),

where R(θ2)Dv2 − R(θ1)Dv1 is the relative velocity and (t + 1 − t0) the time over which the
distribution has developed. Similarly,

Vr(t+ 1, t0) = (V1((t+ 1)∆t) + V2((t+ 1)∆t))− (V1(t0∆t) + V2(t0∆t)) ,

As mentioned before we maintain the assumption of constant velocity and heading. In the general
setting this is not necessary, the sole necessity for application of weights using this scheme being
knowledge of all the transition kernels over the prediction horizon. The formulation presented
above is dependent on the flight plans being straight lines. There is no barrier, however, to the
formulation of multi-step transition probabilities for general flight plans. Various authors have
tackled conflict detection for more general flight plans, for instance [14].
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4.3 Alerting logic and performance measure

In most approaches to conflict detection described in the literature, alerting logic is not given
a great deal of attention. In [6, 16] for example, no alerting strategy is given: the probabilistic
method concludes with calculation of conflict probability. Alerting logic describes the method
used to make the binary decision of whether or not to alert air traffic control to an impending
conflict. In more sophisticated future architectures it may be that conflict probabilities are used
as a cost in some form of optimal resolution strategy. In the current air space architecture,
however, alerting will remain a binary decision, so irrespective of the method behind making
the alert decision (geometric, probabilistic etc.) a 1/0 decision must be made at some point.

In [23], the concept of a System Operating Characteristic (SOC) curve is introduced for conflict
probability. We now review the SOC trade off between false alerts and successful alerts as a
baseline for tuning an alerting logic, pointing out the issue of the geometrical sensitivity. [23]
has considered the SOC approach when the criticality measure is the probability of conflict. It
is worth noticing that the SOC approach can be combined with other criticality measures such
as, for example, collision probability. Actually, the SOC approach can be applied to any kind of
well defined statistical decision problem.

4.3.1 SOC curve

An SOC curve is obtained by plotting the probability of false alert against the probability of
successful alert, parameterized by the alert threshold (an example of SOC curve is shown in
Figure 7). The trade-off between false and successful alerts is suggested in [23] as a method for
evaluating the trade-off between safety and workload in conflict alerting systems.

We are interested in four closely-related event classes; conflict, alert, successful alert and false
alert. With reference to some flight time horizon [0, Tf ], these may be defined as follows:

1. Conflict. The aircraft pair under consideration enter conflict at some time t ∈ [0, Tf ].

2. Alert. The conflict detection mechanism issues an alert at some time t ∈ [0, Tf ].

3. Successful Alert. A conflict alert is issued; the aircraft pair under consideration subse-
quently enter conflict.

4. False Alert. An alert is issued, although the aircraft pair under consideration do not
subsequently enter conflict.

We wish to investigate the trade-off between probability of false alert, P(FA), and probability
of successful alert, P(SA). In order to cast this investigation in a more rigorous setting we
introduce the conflict detection time-line in Figure 6. This figure shows window in which conflict
alerts may be made. The look-ahead cannot be greater than the overall horizon, and an alert is
successful if it is issued at some time tw before a conflict occurs.

We now define some useful concepts in evaluating a conflict detection scheme (conflict probe)
performance. We first define a realization of the observation process trajectory over a flight time
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t0

. . .

t tc − tw

PC(0) PC(t)

Alerting Window Tftc t+ T

PC(t+ T )

Figure 6: Time-line for reduced horizon conflict detection. Only those probabilities of conflict
calculated at times earlier than tc − tw are relevant for successful alerts.

horizon [0, Tf ]:
yi(·) : {0, 1, . . . , Tf} −→ R

2.

As a function of this trajectory, we may define an indicator function IC(·) returning a 1 if the
realization enters conflict, 0 otherwise:

IC(yi(·)) = {∃t ∈ {0, . . . , Tf} : yi(t) ∈ A}.

The measure of criticality used in our conflict detection scheme is the estimate of the probability
of conflict PC(t) obtained by the SMC method. This will depend on the encounter configuration,
say γ, and on the realization of the observation process. This consideration is valid for other
measures of criticality. We generally refer to a criticality measure as C(yi(·), γ, t) and to the
alert threshold as C̄. This enables us to define the indicator function for alert, IA:

IA(yi(·); C̄, γ) = {∃t ∈ {0, . . . , Tf} : C(yi(·), γ, t) ≥ C̄},

where C̄ and γ have to be interpreted as parameters. The definitions of indicator functions for
successful and false alerts are more complex, as there is a limited range of times over which the
alert may be given in order to be successful. As shown in Figure 6 we must alert at some time
tw before the first time at which the realization is in conflict, tc. This required warning time is
a procedural constraint in ATC; alerts issued very shortly before conflict are of no use to ATC
as no resolution action may be taken. Given this constraint the indicator function for successful
alert is defined as:

ISA(yi(·); C̄, γ, tw) = {∃tc ∈ {0, . . . , Tf} :(∀s ∈ {0, . . . , tc − 1}(yi(s) /∈ A) ∧ (yi(tc) ∈ A))

∧ (∃τ ∈ {0, . . . , tc − tw} : C(yi(·), γ, τ) ≥ C̄)}.

Defining the false alert indicator function is more straightforward as there is no restriction on
times when a false alert may be issued:

IFA(x(·); γ, C̄) = {∃t ∈ {0, . . . , Tf} : (C(yi(·), γ, t) ≥ C̄) ∧ ∀τ ∈ {0, . . . , Tf}(yi(·) /∈ T )},
= IA(yi(·); C̄, γ)Īc(yi(·)).

where Ī represents the event ‘not I’. Given these indicator functions we may approximate PFA

and PSA through MC simulation:

PFA(γ, C̄) ≈
∑M

i=1 IA(yi(·), C̄, γ)Īc(yi(·))∑M
i=1 Īc(yi(·))

, (33)
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Figure 7: An example SOC curve. The ‘◦’ shows the point closest to [0,1].

PSA(γ, tw, C̄) ≈
∑

i=1 ISA(yi(·), C̄, γ)∑M
i=1 IC(yi(·))

. (34)

The SOC curve interpretation of these two probabilities investigates the trade-off between the
two as a function of C̄, the alert threshold. By plotting PFA against PSA, parameterized by C̄,
for a fixed γ, an SOC curve is generated. Figure 7 shows an example SOC curve. The curve
shown in Figure 7 takes into account only the evaluation of possible conflict given full prior
information. Other factors such as human error or changes at the strategic level were included
in [23]. Throughout this work however, we shall restrict ourselves to SOC curves dependent
only on flight plan deviations, with flight plans known a priori. A variety of factors influence the
choice of alert threshold, for instance in certain operational situations it may be preferable to
issue more alerts to ensure safety, even though the false alert rate will also rise. These operational
factors are, however, deemed to be beyond the scope of this work. We shall concern ourselves
principally with the optimal alert threshold the point on this curve nearest the ideal operation;
the point (0, 1), zero probability of false alert, certainty of successful alert. A measure of success
of a conflict probe is given by the minimum distance from this point to the SOC curve:

d(C̄, γ, tw) =
√
PFA(γ, C̄)2 + (1− PSA(γ, tw, C̄))2,

with the optimal alert threshold defined by:

C̄opt(γ, tw) = arg min
C̄∈[0,1]

d(C̄, γ, tw). (35)

Note that the optimal alert threshold depends on two factors: the airspace configuration γ and
the required warning time tw.
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4.3.2 Sensitivity to the encounter geometry

The sensitivity of alert threshold and therefore probe performance to changes in encounter
geometry was first investigated in [46], in which the variation of optimal alert threshold with
respect to crossing angle, relative velocity and minimum separation was demonstrated.

This dependence naturally suggests the formulation of a new alerting mechanism taking into
account the dependence on encounter geometry (the interested reader is referred to [47]).

Here, we investigate the effects of geometric sensitivity by applying a single, ‘globally optimal’
alert threshold that gives the best overall performance for a constant threshold. The best
performing conflict detection methods will be those that both give low vales of d(C̄opt, tw) (with
no dependence on γ) and have small variations in C̄opt with respect to changing geometry. Setting
a single threshold appears appealing: by simply assigning one alert threshold the alerting logic
becomes much simpler. It is possible, however, using this method that a probe with excellent
performance with a threshold tuned for specific geometries would perform poorly overall.

4.4 Performance of the proposed probabilistic conflict detection method

In this section we compare the proposed SMC method for conflict detection (conflict probe)
with other methods proposed in the literature. In particular, we consider the Erzberger and
Paielli probe (EP,[6]), the Incrossing probe (IC, [32]) and the Randomized probe (RAN, [14]).
The underlying models for evaluating the criticality measures (probability of conflict, incrossing
probability, and maximum instantaneous probability, respectively) are tuned to fit Paielli &
Erzberger statistics on the tracking errors [15].

It is important to observe that the incrossing method is actually not conceived for conflict de-
tection, but for risk assessment in ATM with reference to aircraft collisions. We shall verify that
the other probes will perform better than the incrossing probe under the SOC curve for conflict
probability. However, although we do not verify it here, we expect that the incrossing probe
would perform better than the other probes under the SOC curve for collision probability. Also,
since the incrossing method is designed to assess the low risk levels (10−9 incrossings/hour) asso-
ciated with aircraft collisions, it is expected to outperform the other methods in risk assessment.
Verification of this fact is not pursued in this work.

We assess the performance of the considered probes according to the SOC curve, on trajectories
obtained by the simple model described in 4.1.1 and by the high complexity model implemented
in the simulator developed in [19, 21]. We shall refer to these two models for performance
assessment as SDE and HC model, respectively.

We refer to the proposed probe as SMC-SDE.

For assessing the performance, we follow this procedure:

Choose a set of initial conditions similar to those used in studies in the literature. At each point
in this set perform sufficient simulations to achieve convergence to the properties of each method
for that particular geometry.
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The results presented in this section take the form of SOC curves, generated by performing MC
simulation of conflict detection on validation data for each of the methods under consideration,
as described in equations (33) and (34). The geometries and assessment method are chosen
based on other assessments made in the literature (e.g. [14, 6]). In each case the required
warning time tw is set to 1 minute.

The simulations were performed with all combinations of initial geometries with nominal min-
imum separation of 4, 6, 8 and 10 nmi, crossing angles of 0, 30, 60, 90, 120 and 150 degrees and
time to minimum separation of 10, 14 and 18 min, giving 72 simulation settings.

4.4.1 SDE complementary model evaluation

The reported figures show a selection of data gathered from simulations obtained by the model
described in 4.1.1. The four conflict probes applied in this case are; SMC probe (SMC-SDE), the
Erzberger and Paielli probe (EP), the Incrossing probe (IC) and the Randomized probe (RAN).
The probes all perform conflict detection on the same validation process trajectories; the alert
state of each of the probes is monitored.

Increasing time to minimum separation: We report in Figures 8, 9, 10 the SOC curves
for 90◦ crossing angle, 6 nmi nominal miss distance and increasing time to minimum separation.
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Figure 8: SOC curves for 90◦ crossing angle, 6 nmi nominal miss distance and 10 min time to
minimum separation.

Increasing nominal miss distance: We report in Figures 11, 12, 13 the SOC curves for 90◦

crossing angle, 14 min time to minimal separation, and increasing nominal miss distance.

46



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P(FA)

P
(S

A
)

Min. Sep. 6nmi, Time to Min. Sep. 14min, Crossing Angle 90deg.

EP
SMC−SDE
IC
RAN

Figure 9: SOC curves for 90◦ crossing angle, 6 nmi nominal miss distance and 14 min time to
minimum separation.
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Figure 10: SOC curves for 90◦ crossing angle, 6 nmi nominal miss distance and 18 min time to
minimum separation.

47



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P(FA)

P
(S

A
)

Min. Sep. 4nmi, Time to Min. Sep. 14min, Crossing Angle 90deg.

EP
SMC−SDE
IC
RAN

Figure 11: SOC curves for 90◦ crossing angle, 14 min time to minimal separation and 4 nmi
nominal miss distance.
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Figure 12: SOC curves for 90◦ crossing angle, 14 min time to minimal separation and 6 nmi
nominal miss distance.
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Figure 13: SOC curves for 90◦ crossing angle, 14 min time to minimal separation and 8 nmi
nominal miss distance.

Increasing nominal miss distance: We report in Figures 14, 15, 16, 17, 18 the SOC curves
for 14 min time to minimal separation, 6 nmi nominal miss distance, and increasing angle of
intersection of nominal flight paths.

We now briefly summarize the results gained for this set of experiments.

• The performances of the four probes tested on these data are quite similar. The randomized
code performs best overall, providing the best (or equal best) conflict detection in 47 out
of the 72 geometries. The SMC-SDE is the next highest performing, outperforming (or
matching) all others in 25 geometries. The average value of d(C̄opt, γ, tw) for each probe
is shown in Table 3.

Probe Mean d(C̄opt, ·, ·)
Ran 0.0725

SMC-SDE 0.0855
EP 0.097
IC 0.155

Table 3: Ranking of probe performances assessed using SOC curves.

• There is substantial variation in optimal threshold across the tested geometries. This may
lead to a degradation in probe quality if a single threshold is adopted for all encounter
geometries. A ranking of the conflict probes according to standard deviation of alert
threshold is shown in Table 4.
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Figure 14: SOC curves for 14 min time to minimal separation, 6 nmi nominal miss distance and
30◦ crossing angle.
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Figure 15: SOC curves for 14 min time to minimal separation, 6 nmi nominal miss distance and
60◦ crossing angle.
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Figure 16: SOC curves for 14 min time to minimal separation, 6 nmi nominal miss distance and
90◦ crossing angle.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P(FA)

P
(S

A
)

Min. Sep. 6nmi, Time to Min. Sep. 14min, Crossing Angle 120deg.

EP
SMC−SDE
IC
RAN

Figure 17: SOC curves for 14 min time to minimal separation, 6 nmi nominal miss distance and
120◦ crossing angle.
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Figure 18: SOC curves for 14 min time to minimal separation, 6 nmi nominal miss distance and
150◦ crossing angle.

Probe σ
(
C̄opt

)
Ran 0.22
EP 0.273

SMC-SDE 0.289
IC 0.361

Table 4: Ranking of standard deviations of alert thresholds.

4.4.2 HC complementary model evaluation

The sets of Figures 19, 20 and 21 show a selection of data gathered from simulations of the high-
complexity simulator. The same four conflict probes were used as for the SDE model-based
simulation, as well as an additional probe; the high-complexity model SMC probe (SMC-HC)
developed in [47], which is obtained by applying the SMC algorithm to the high complexity model
implemented in the simulator. This involves some approximation procedure when applying the
SMC algorithm, since the state of the process has to include wind samples to be Markov, but
then the full information assumption fails.

The same geometries and assessment method were used.

A brief summary of the results is given below:

• In parallel flight (0◦ crossing angle), either very few conflicts occurred or every simulation
resulted in conflict. Which of these occurred is predicated on the initial separation. Due
to the strong wind correlation those trajectories which started far apart tended not to
converge. Those which started close together were, or course, already in conflict. Mean-
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Figure 19: SOC curves for 90◦ crossing angle, 6 nmi nominal miss distance and increasing time
to minimum separation.
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Figure 20: SOC curves for 90◦ crossing angle, 14 min time to minimal separation and increasing
nominal miss distance.
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Figure 21: SOC curves for 14 min time to minimal separation, 6 nmi nominal miss distance and
increasing angle of intersection of nominal flight paths.

55



ingful results could not therefore be generated for any of the probes as there did not exist
a sufficient balance between conflict and no-conflict to achieve passable convergence to
PSA(·, ·, ·) and PFA(·, ·, ·).

• The SMC-HC probe outperformed all others in all but 7 of the 72 test geometries; the
performance was only marginally poorer in those three. The ‘ranking’ of probes according
to minimum average d(C̄opt, γ, tw) is shown in Table 5.

Probe Mean d(C̄opt, ·, ·)
SMC-HC 0.0325
Ran 0.053
EP 0.0577

SMC-SDE 0.0778
IC 0.232

Table 5: Ranking of probe performances assessed using SOC curves.

• There is substantial variation of alert threshold for some probes, pointing to a degradation
in performance where uniform thresholds were used for all geometries. The ranking of
probes according to minimum standard deviation of alert threshold is shown in Table 6

Probe σ
(
C̄opt

)
Ran 0.2006
EP 0.228

SMC-SDE 0.276
IC 0.326

SMC-HC 0.404

Table 6: Ranking of standard deviations of alert thresholds.

It is important to note that Table 6 does not necessarily relate the ranking of sensitivity to
alert threshold. To understand this statement, suppose that a probe is such that a large range
of threshold values provides performance close to the optimal one, uniformly over the different
encounter geometries, but that the optimal thresholds are different. Then, in this case, it is
actually the probe low sensitivity to the encounter geometry that causes a high optimal alert
threshold variance.

This appears to be the case for the SMC-HC method, as shown in the plot of Figure 22 repre-
senting the performance index d(C̄, γ, tw) as a function of the threshold C̄.

In general it appears that SMC methods are comparable or superior to existing methods for a
low-complexity validation model, and superior for a higher complexity model.
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Figure 22: Performance of the different probes as a function of the alerting threshold.

5 Conclusions

In this deliverable we have studied probabilistic mid-term aircraft conflict detection. We have
considered, in particular, the probability of conflict as criticality measure for a two-aircraft
encounter.

Computing the probability of conflict is generally a difficult task. Different methods have been
proposed in the literature to estimate it. Methods based on analytic approximation require sim-
ple models for predicting the aircraft positions. Numerical methods based on gridding techniques
do not require the prediction model to be simple, but become unpracticable as the dimension-
ality of the problem grows. The numerical evaluation of the probability of conflict by Monte
Carlo methods does not requires specific assumptions on the prediction model and does not
suffer of the curse of dimensionality issue. However, the standard Monte Carlo approach can be
computationally demanding when the prediction model is complex because of the time required
to draw simulations of the aircraft trajectories. This can make it impracticable in the ATM
application of interest, where the probability of conflict has to be repeated estimated every time
a new radar measurement becomes available.

These considerations have motivated our study of techniques to speed-up the Monte Carlo
method. The considered solutions are inspired by the multi-level approach to rare event proba-
bility estimation and the sequential Monte Carlo (SMC) approach to nonlinear filtering.
Simulation results show that both methods are promising. Theoretical results have been proven,
but only under some restrictive assumptions.
Further work is needed to determine the finite sample properties of these methods under more
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realistic assumptions than those adopted here.

The performance of an alerting system based on the conflict probability SMC estimate has
been assessed based on the SOC curve, without taking into account the human-in-the-loop
component. Air traffic controllers are facing a dynamical decision problem under uncertainty.
Their perception is a fundamental aspect that has to be taken into account when designing
support tools. This requires further investigation.
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