Simulation estimators in a dynamic model for food contaminant exposure

Joint work with P. Bertail (CREST LS and Paris X)

and Stéphan Clémençon (INRA Mét@risk and Paris X)

Jessica Tressou

INRA-Mét@risk, Food Risk Analysis Methodologies, Paris Hong Kong University of Science and Technology, Information and Systems ManagemenT

Workshop: New Directions in Monte Carlo Simulations, Fleurance, June 25-29, 2007

Outline of the talk

- Food risk assessment
- Interior Dietary Exposure Model (KDEM)
- Stochastic stabilility of the process
 - Discrete time
 - Continuous time
- Simulation based estimators
 - Convergence of the Monte Carlo estimators
 - Bootstrap confidence intervals
- Rare Event Analysis: a particle filtering algorithm
- Conclusions, Perspectives, Other interests in Monte Carlo methods

(雪) (ヨ) (ヨ)

э.

Basic facts about Food Risk Analysis

Food Risk Assessment

- Hazard identification and characterization
- Exposure Assessment
- Risk Characterization

2 Different kind of risks

- Chemical / Microbiological / Nutritional (+ Benefit)
- Acute / Chronic

Studied example: methylmercury (MeHg)

- Present in fish and seafood
- Hazard: brain damage in foetus, young children

Exposure assessment and risk characterization

Current approach for chronic risks related to chemical contaminants

Exposure/intake assessment

- Not observed directly
- Combination of consumption *Q* and contamination *K* data
- Correlation in the Q_p 's, left censorship in K_p
- Parametric / non parametric models:

$$U = \sum_{p=1}^{P} K_p Q_p$$

• Unit: µg/kgbw/w

8 Risk characterization

- Comparison of the usual intake with the Provisional Tolerable Weekly Intake "*PTWI*"
- Estimation of $\mathbb{P}(U > PTWI)$?
 - Plug-in estimator
 - Extreme Value-based estimator

Accumulation, Elimination?

ロトス値とスヨトスヨト

Exposure assessment and risk characterization

Current approach for chronic risks related to chemical contaminants

Exposure/intake assessment

- Not observed directly
- Combination of consumption *Q* and contamination *K* data
- Correlation in the Q_p 's, left censorship in K_p
- Parametric / non parametric models:

$$U = \sum_{p=1}^{P} K_p Q_p$$

• Unit: µg/kgbw/w

8 Risk characterization

- Comparison of the usual intake with the Provisional Tolerable Weekly Intake "*PTWI*"
- Estimation of $\mathbb{P}(U > PTWI)$?
 - Plug-in estimator
 - Extreme Value-based estimator

Accumulation, Elimination?

・ 同 ト ・ ヨ ト ・ ヨ ト …

• Pharmacokinetics: elimination in between intakes at rate $\dot{x}(t) = -r(x(t), \theta)$

Example: $r(x, \theta), \theta = \ln(2)/HL$ (Biological half-life)

3 Intake history: a marked point process (T_n, Q_n, K_n)

- T_1, \ldots, T_n are the intake times,
- $U_1 = \langle K_1, Q_1 \rangle, \ldots$ are the intakes at times T_1, \ldots, T_n
- Independence between the $(\Delta T_n)_n$ and the $(U_n)_n$

The exposure process X(t)

$$X(t) = X(0) + \sum_{n=1}^{N(t)} U_n - \sum_{n=1}^{N(t)+1} \int_{T_{n-1}}^{T_n \wedge t} r(X(s), \theta_n) ds,$$

where θ_n is the elimination rate between time T_n and T_{n+1}

ヘロン ヘアン ヘビン ヘビン

ъ

Pharmacokinetics: elimination in between intakes at rate $\dot{x}(t) = -r(x(t), \theta)$

Example: $r(x, \theta), \theta = \ln(2)/HL$ (Biological half-life)

2 Intake history: a marked point process (T_n, Q_n, K_n)

- T_1, \ldots, T_n are the intake times,
- $U_1 = \langle K_1, Q_1 \rangle, \ldots$ are the intakes at times T_1, \ldots, T_n
- Independence between the $(\Delta T_n)_n$ and the $(U_n)_n$

The exposure process *X*(*t*

$$X(t) = X(0) + \sum_{n=1}^{N(t)} U_n - \sum_{n=1}^{N(t)+1} \int_{T_{n-1}}^{T_n \wedge t} r(X(s), \theta_n) ds,$$

where θ_n is the elimination rate between time T_n and T_{n+1}

ヘロン ヘアン ヘビン ヘビン

ъ

Pharmacokinetics: elimination in between intakes at rate $\dot{x}(t) = -r(x(t), \theta)$

Example: $r(x, \theta), \theta = \ln(2)/HL$ (Biological half-life)

2 Intake history: a marked point process (T_n, Q_n, K_n)

- T_1, \ldots, T_n are the intake times,
- $U_1 = \langle K_1, Q_1 \rangle, \ldots$ are the intakes at times T_1, \ldots, T_n
- Independence between the $(\Delta T_n)_n$ and the $(U_n)_n$

The exposure process X(t)

$$X(t) = X(0) + \sum_{n=1}^{N(t)} U_n - \sum_{n=1}^{N(t)+1} \int_{T_{n-1}}^{T_n \wedge t} r(X(s), \theta_n) ds,$$

where θ_n is the elimination rate between time T_n and T_{n+1} .

・ロト ・ 理 ト ・ ヨ ト ・

э

Kinetic Dietary Exposure Model (KDEM) A piecewise deterministic Markov process

토 🛌 🗉

Kinetic Dietary Exposure Model (KDEM)

A KDEM is defined by

(1) the set of independent distributions (F_U, G, H)

 $(U_n)_{n\geq 1}\sim_{\mathrm{iid}} F_U(du),\quad (\Delta T_{n+1})_{n\geq 1}\sim_{\mathrm{iid}} G(ds),\quad (\theta_n)_{n\geq 1}\sim_{\mathrm{iid}} H(d\theta)$

2 the release rate $r(., \theta)$

General release rate / linear release rate $r(x, \theta) = \theta \times x$

$$X(t) = X(0) + \sum_{n=1}^{N(t)} U_n - \sum_{n=1}^{N(t)+1} \int_{T_{n-1}}^{T_n \wedge t} r(X(s), \theta_n) ds$$

Discrete time: $\tilde{X} = (X(T_n))_n$ Autoregressive with random coef. $X_{n+1} = e^{-\theta_n \Delta T_{n+1}} X_n + U_{n+1}$

Continuous time: $X = (X(t))_{t \ge 0}$

A trivariate Markov process $(X(t), \theta(t), A(t))_{t \ge 0}$ $X(t) = e^{-\theta(t)A(t)}X_{N(t)}$

Stochastic stability of the KDEM

Under regularity assumptions on F_U , G and H,

Positive recurrence and geometric ergodicity

• Explicit transition density of the discrete chain

$$\pi(x, y) = \int_{\theta \in \Theta} \int_{t = \frac{1}{\theta} \log(1 \lor \frac{x}{y})}^{\infty} f_U(y - xe^{-\theta t}) G(dt) H(d\theta)$$

- Similarly, explicit generator of the trivariate Markov process
- Existence of the stationary distributions $\tilde{\mu}$ and μ
- Convergence at geometric rate in both cases.
- Proof based on minorization and drift conditions.

The stationary distributions $\tilde{\mu}$ and μ inherit the moment and heavy tail properties of the intake distribution F_U

Time to steady state

Model: $\text{Exp}(m_{F_U})$ - $\text{Exp}(m_G)$ -Dirac, μ is a $\Gamma(HL/(m_G \ln 2), m_{F_U})$.

Computable bounds for the time to steady state... theoretically!

(★ 臣 ▶ (★ 臣 ▶)) 臣

< 🗇 ▶

Toxicologists'interest: distrib. or expectation of

Maximum exposure value $\longrightarrow \sup_{0 \le t \le T} X(t)$

Mean exposure value $\longrightarrow T^{-1} \int_{t=0}^{T} X(t) dt$

Average time spent over $u \longrightarrow T^{-1} \int_{t=0}^{T} \mathbb{I}_{\{X(t) \ge u\}} dt$

First passage times $\longrightarrow \tau_x^+ = \inf\{t \ge 0, X(t) \ge x\}$

- ② The trajectories of X(t) are not observed
- 3 Obs.: $(U_n), (\Delta T_{n+1}), (\theta_n)$
- I Estimators $\hat{F}_{U,n}$, \hat{G}_n , \hat{H}_n for the 3 distrib. F_U , G, and H Associated stochastic exposure process: $\hat{X}^{(n)}$.
- **(**) Quantities of interest = complex functionals of F_U, G , and H

 \Rightarrow No Plug-In estimator \Rightarrow Simulation

Convergence of the simulation-based estimators?

Topology in the space of exposure processes: the one induced by the Hausdorff distance between completed graphs

Toxicologists'interest: distrib. or expectation of

Maximum exposure value $\longrightarrow \sup_{0 \le t \le T} X(t)$

Mean exposure value $\longrightarrow T^{-1} \int_{t=0}^{T} X(t) dt$

Average time spent over $u \longrightarrow T^{-1} \int_{t=0}^{T} \mathbb{I}_{\{X(t) \ge u\}} dt$

First passage times $\longrightarrow \tau_x^+ = \inf\{t \ge 0, X(t) \ge x\}$

- 2 The trajectories of X(t) are not observed
- 3 Obs.: $(U_n), (\Delta T_{n+1}), (\theta_n)$
- Settimators $\hat{F}_{U,n}$, \hat{G}_n , \hat{H}_n for the 3 distrib. F_U , G, and HAssociated stochastic exposure process: $\hat{X}^{(n)}$.
- Solution Quantities of interest = complex functionals of F_U, G , and H

 \Rightarrow No Plug-In estimator \Rightarrow Simulation

Convergence of the simulation-based estimators?

Topology in the space of exposure processes: the one induced by the Hausdorff distance between completed graphs

Toxicologists'interest: distrib. or expectation of

Maximum exposure value $\longrightarrow \sup_{0 \le t \le T} X(t)$

Mean exposure value $\longrightarrow T^{-1} \int_{t=0}^{T} X(t) dt$

Average time spent over $u \longrightarrow T^{-1} \int_{t=0}^{T} \mathbb{I}_{\{X(t) \ge u\}} dt$

First passage times $\longrightarrow \tau_x^+ = \inf\{t \ge 0, X(t) \ge x\}$

- 2 The trajectories of X(t) are not observed
- 3 Obs.: $(U_n), (\Delta T_{n+1}), (\theta_n)$
- Settimators $\hat{F}_{U,n}$, \hat{G}_n , \hat{H}_n for the 3 distrib. F_U , G, and HAssociated stochastic exposure process: $\hat{X}^{(n)}$.
- Solution Quantities of interest = complex functionals of F_U , G, and H

\Rightarrow No Plug-In estimator \Rightarrow Simulation

Convergence of the simulation-based estimators?

Topology in the space of exposure processes: the one induced by the Hausdorff distance between completed graphs

Toxicologists'interest: distrib. or expectation of

Maximum exposure value $\longrightarrow \sup_{0 \le t \le T} X(t)$

Mean exposure value $\longrightarrow T^{-1} \int_{t=0}^{T} X(t) dt$

Average time spent over $u \longrightarrow T^{-1} \int_{t=0}^{T} \mathbb{I}_{\{X(t) \ge u\}} dt$

First passage times $\longrightarrow \tau_x^+ = \inf\{t \ge 0, X(t) \ge x\}$

- 2 The trajectories of X(t) are not observed
- 3 Obs.: $(U_n), (\Delta T_{n+1}), (\theta_n)$
- Settimators $\hat{F}_{U,n}$, \hat{G}_n , \hat{H}_n for the 3 distrib. F_U , G, and HAssociated stochastic exposure process: $\hat{X}^{(n)}$.
- Solution Quantities of interest = complex functionals of F_U , G, and H

 \Rightarrow No Plug-In estimator \Rightarrow Simulation

Convergence of the simulation-based estimators?

Topology in the space of exposure processes: the one induced by the Hausdorff distance between completed graphs

Toxicologists'interest: distrib. or expectation of

Maximum exposure value $\longrightarrow \sup_{0 \le t \le T} X(t)$

Mean exposure value $\longrightarrow T^{-1} \int_{t=0}^{T} X(t) dt$

Average time spent over $u \longrightarrow T^{-1} \int_{t=0}^{T} \mathbb{I}_{\{X(t) \ge u\}} dt$

First passage times $\longrightarrow \tau_x^+ = \inf\{t \ge 0, X(t) \ge x\}$

- 2 The trajectories of X(t) are not observed
- 3 Obs.: $(U_n), (\Delta T_{n+1}), (\theta_n)$
- Settimators $\hat{F}_{U,n}$, \hat{G}_n , \hat{H}_n for the 3 distrib. F_U , G, and HAssociated stochastic exposure process: $\hat{X}^{(n)}$.
- Solution Quantities of interest = complex functionals of F_U , G, and H

 \Rightarrow No Plug-In estimator \Rightarrow Simulation

Convergence of the simulation-based estimators?

Topology in the space of exposure processes: the one induced by the Hausdorff distance between completed graphs

◆□ > ◆□ > ◆ 三 > ◆ 三 > ● ○ ○ ○ ○

Under Mallows- L_1 consistency of the estimators $\hat{F}_{U,n}, \hat{G}_n, \hat{H}_n$

- **1** Finite horizon: $T < \infty$
 - Convergence in distribution for continuous functionals Ex: mean exposure, mean time above *u*
 - Convergence in mean for Lipschitz functionals Ex: Maximum exposure
 - Uniform integrability arguments yield convergence in mean for the mean exposure, mean time above *u*
- Steady state quantities: T → ∞ Additional conditions:
 - $T^2 \times (M_1(\hat{G}^{(n)}, G) + M_1(\hat{H}^{(n)}, H)) \to 0$, a.s.
 - *T* × *M*₁(*F̂*⁽ⁿ⁾_U, *F*_U) → 0, a.s.
 ⇒ Convergence in distrib. and in mean of the MC estimation of the mean exposure and the time spent over *u*.
- **③** + bootstrap confidence intervals: $T < \infty$

▶ ▲□ ▶ ▲ □ ▶ ▲ □ ▶ ▲□ ● ● ●

Application to the French data on MeHg

Def. of the Kinetic Tolerable Intake (KTI) based on the Provisional Tolerable Weekly Intake (PTWI) and the half life (HL) of the contaminant: $KTI = PTWI/(1 - 2^{-1/HL})$

 $\mu(KTI, +\infty)$?

・ 同 ト ・ ヨ ト ・ ヨ ト

Application to the French data on MeHg

Def. of the Kinetic Tolerable Intake (KTI) based on the Provisional Tolerable Weekly Intake (PTWI) and the half life (HL) of the contaminant: $KTI = PTWI/(1 - 2^{-1/HL})$

 $\mu(KTI, +\infty)$?

・ 同 ト ・ ヨ ト ・ ヨ ト

Bootstrap (95%-)confidence intervals for the simulation based estimators

Probab. of exceeding the KTI based on the (U.S.) National Research Council reference dose of $0.7 \ \mu g/w/kgbw$, that is $6.41 \ \mu g/kgbw$)

Naive MC simulation is not sufficient for estimating the probability of exceeding the KTI based on the PTWI (14.67 $\mu g/kgbw$)

ヘロト ヘアト ヘビト ヘビト

ъ

Bootstrap (95%-)confidence intervals for the simulation based estimators

Probab. of exceeding the KTI based on the (U.S.) National Research Council reference dose of $0.7 \ \mu g/w/kgbw$, that is $6.41 \ \mu g/kgbw$)

Naive MC simulation is not sufficient for estimating the probability of exceeding the KTI based on the PTWI (14.67 $\mu g/kgbw$)

ヘロト ヘアト ヘビト ヘビト

3

Rare event analysis: a particle filtering algorithm

Estimation of $\mathbb{P}_{x_0}(\tau_u^+ \leq T)$ with *u* large and a finite horizon

T. Based on Cérou, Del Moral, LeGland & Lezaud (2006)

- *m* intermediary levels $u_1 \leq \ldots \leq u_m \leq u_{m+1} = u$.
- 2 *N* particles from $X(0) = x_0 < u_1$ to *T*.
- So For each level u_j $(j = 1, \ldots, m)$:
 - $I_{1,j} = \{ \text{particles that reached } u_j \text{ before } \mathsf{T} \}$
 - $I_{0,j} = \{ \text{particles that have not reached } u_j \text{ at } \mathsf{T} \}$
 - For particles in $I_{0,j}$,

Selection: Randomly select a particle in $I_{1,j}$ **Mutation:** Create an offspring from $\tau_{u_i}^+$ to *T*.

• $P_j = |I_{1,j}|/N$ and pass onto next level u_{j+1} .

Estimator of $\mathbb{P}_{x_0}(\tau_u^+ \leq T)$: $P_1 \times \ldots \times P_{m+1}$

御下 不是下 不是下 一度

Multilevel Splitting Algorithm

Illustration for N = 5 particules starting from $x_0 = 2.99$ with m = 2 intermediary levels (u = (4, 5, 6)) and a horizon *T* equal to one year. (Women subpopulation, Log-Gamma/Gamma/Dirac model)

Application: $u = KTI = 14.67 \ \mu g/kgbw$, Intermediary levels from the adaptive algorithm of Cérou & Guyader (2005),

$$\mathbb{P}_{2.99}(\tau_{KTI}^+ \le 20y) \approx 0.5\%, m_{20y} = 8; \mathbb{P}_{2.99}(\tau_{KTI}^+ \le 10y) \approx 0.08\%, m_{10y} = 12.$$

イロト イポト イヨト イヨト

Good properties of the KDEM model, Some solutions for the estimation of quantities of interest for toxicologists **BUT**

- Validation of the multilevel splitting on the basic Exp-Exp-Dirac model Kella & Stadje (2001): explicit Laplace Transform for τ_u⁺
- Pseudo-regenerative Extreme Value Estimators Comparison with the results of particle filtering
- Multivariate marked point process

▲圖 ▶ ▲ 国 ▶ ▲ 国 ▶ …

Other work with Monte carlo methods

- Bayesian nonparametrics
- Dirichlet process, Chinese Restaurant Process
- Lancelot F. James, Albert Y. Lo (HKUST-ISMT)

▲ (□) ト → 三

Thank you for your attention

Main References

- S. Asmussen (2003). Applied Probability and Queues, Springer-Verlag, New York, Second Edition.
- P. Bertail, S. Clémençon & J. Tressou (2006). A storage model for modelling exposure to food contaminants. https://hal.archives-ouvertes.fr/hal-00138279
- P. Bertail, S. Clémençon & J. Tressou (2007). Statistical analysis of a dynamic model for food contaminant exposure with applications to dietary methylmercury contamination.
- F. Cérou, P. Del Moral, F. LeGland & P. Lezaud (2006). Genetic Genealogical Models in Rare Event Analysis. *Alea* 1, 183-196.
- S.P. Meyn & R.L. Tweedie (1996). *Markov Chains and Stochastic Stability*, Springer-Verlag.
- G.O. Roberts & R.L. Tweedie (2000). Rates of convergence of stochastically monotone and continuous time Markov models. J. Appl. Probab. 37, 359-373.
- P. Verger, J. Tressou & S. Clémençon (2007). Integration of time as a description parameter in risk characterisation: application to methyl mercury. *Regulatory Toxicology and Pharmacology*.
- W. Whitt (2002). Stochastic-Process Limits. An Introduction to Stochastic-Process Limits and their Application to Queues, Springer.