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Basic facts about Food Risk Analysis

1 Food Risk Assessment

Hazard identification and characterization
Exposure Assessment
Risk Characterization

2 Different kind of risks

Chemical / Microbiological / Nutritional (+ Benefit)
Acute / Chronic

3 Studied example: methylmercury (MeHg)
Present in fish and seafood
Hazard: brain damage in foetus, young children
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Exposure assessment and risk characterization
Current approach for chronic risks related to chemical contaminants

1 Exposure/intake assessment
Not observed directly
Combination of consumption Q and contamination K data
Correlation in the Qp’s, left censorship in Kp

Parametric / non parametric models:

U =
P∑

p=1

KpQp

Unit: µg/kgbw/w

2 Risk characterization
Comparison of the usual intake with the Provisional
Tolerable Weekly Intake "PTWI"
Estimation of P(U > PTWI)?

Plug-in estimator
Extreme Value-based estimator

Accumulation, Elimination?
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Integration of time
The Kinetic Dietary Exposure Model (KDEM)

1 Pharmacokinetics: elimination in between intakes at rate
ẋ(t) = −r(x(t), θ)

Example: r(x, θ), θ = ln(2)/HL (Biological half-life)

2 Intake history: a marked point process (Tn, Qn, Kn)
T1, . . . , Tn are the intake times,
U1 =< K1, Q1 >, . . . are the intakes at times T1, . . .,
Independence between the (∆Tn)n and the (Un)n

The exposure process X(t)

X(t) = X(0) +
N(t)∑
n=1

Un −
N(t)+1∑

n=1

∫ Tn∧t

Tn−1

r(X(s), θn)ds,

where θn is the elimination rate between time Tn and Tn+1.
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Kinetic Dietary Exposure Model (KDEM)
A piecewise deterministic Markov process
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Kinetic Dietary Exposure Model (KDEM)

A KDEM is defined by
1 the set of independent distributions (FU, G, H)

(Un)n≥1 ∼iid FU(du), (∆Tn+1)n≥1 ∼iid G(ds), (θn)n≥1 ∼iid H(dθ)

2 the release rate r(., θ)

General release rate / linear release rate r(x, θ) = θ × x

X(t) = X(0) +
N(t)∑
n=1

Un −
N(t)+1∑

n=1

∫ Tn∧t

Tn−1

r(X(s), θn)ds

Discrete time: X̃ = (X(Tn))n

Autoregressive with random
coef.

Xn+1 = e−θn∆Tn+1Xn + Un+1

Continuous time: X = (X(t))t≥0

A trivariate Markov process
(X(t), θ(t), A(t))t≥0

X(t) = e−θ(t)A(t)XN(t)

Jessica Tressou Simulation estimators...



Stochastic stability of the KDEM

Under regularity assumptions on FU, G and H,

Positive recurrence and geometric ergodicity

Explicit transition density of the discrete chain

π(x, y) =
∫

θ∈Θ

∫ ∞

t= 1
θ

log(1∨ x
y )

fU(y− xe−θt)G(dt)H(dθ)

Similarly, explicit generator of the trivariate Markov process
Existence of the stationary distributions µ̃ and µ

Convergence at geometric rate in both cases.
Proof based on minorization and drift conditions.

The stationary distributions µ̃ and µ inherit the moment and
heavy tail properties of the intake distribution FU
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Time to steady state
Illustration

Model: Exp(mFU )-Exp(mG)-Dirac, µ is a Γ(HL/(mG ln 2), mFU).

Convergence to µ̃ Convergence to µ

Computable bounds for the time to steady state... theoretically!

Jessica Tressou Simulation estimators...



Simulation-based estimators

1 Toxicologists’interest: distrib. or expectation of

Maximum exposure value −→ sup0≤t≤T X(t)

Mean exposure value −→ T−1 R T
t=0 X(t)dt

Average time spent over u −→ T−1 R T
t=0 I{X(t)≥u}dt

First passage times −→ τ+
x = inf{t ≥ 0, X(t) ≥ x}

2 The trajectories of X(t) are not observed
3 Obs.: (Un), (∆Tn+1), (θn)
4 Estimators F̂U,n, Ĝn, Ĥn for the 3 distrib. FU, G, and H

Associated stochastic exposure process: X̂(n).
5 Quantities of interest = complex functionals of FU, G, and H

⇒ No Plug-In estimator ⇒ Simulation
6 Convergence of the simulation-based estimators?

Topology in the space of exposure processes: the one induced by the
Hausdorff distance between completed graphs

Jessica Tressou Simulation estimators...



Simulation-based estimators

1 Toxicologists’interest: distrib. or expectation of

Maximum exposure value −→ sup0≤t≤T X(t)

Mean exposure value −→ T−1 R T
t=0 X(t)dt

Average time spent over u −→ T−1 R T
t=0 I{X(t)≥u}dt

First passage times −→ τ+
x = inf{t ≥ 0, X(t) ≥ x}

2 The trajectories of X(t) are not observed
3 Obs.: (Un), (∆Tn+1), (θn)
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Summary of the main results, obtained by coupling arguments

Under Mallows-L1 consistency of the estimators F̂U,n, Ĝn, Ĥn

1 Finite horizon: T < ∞
Convergence in distribution for continuous functionals
Ex: mean exposure, mean time above u
Convergence in mean for Lipschitz functionals
Ex: Maximum exposure
Uniform integrability arguments yield convergence in mean
for the mean exposure, mean time above u

2 Steady state quantities: T →∞
Additional conditions:

T2 × (M1(Ĝ(n), G) + M1(Ĥ(n), H)) → 0, a.s.
T ×M1(F̂

(n)
U , FU) → 0, a.s.

⇒ Convergence in distrib. and in mean of the MC
estimation of the mean exposure and the time spent over u.

3 + bootstrap confidence intervals: T < ∞
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Application to the French data on MeHg

Def. of the Kinetic Tolerable Intake (KTI) based on the Provisional Tolerable Weekly
Intake (PTWI) and the half life (HL) of the contaminant: KTI = PTWI/(1− 2−1/HL)

µ(KTI, +∞)?
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Bootstrap (95%-)confidence intervals for the simulation
based estimators
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Probability to exceed 6.41

Probab. of exceeding the KTI based on the (U.S.) National Research Council reference
dose of 0.7 µg/w/kgbw, that is 6.41 µg/kgbw)

Naive MC simulation is not sufficient for estimating the probability of exceeding the KTI

based on the PTWI (14.67 µg/kgbw)
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Rare event analysis: a particle filtering algorithm

Estimation of Px0(τ
+
u ≤ T) with u large and a finite horizon

T. Based on Cérou, Del Moral, LeGland & Lezaud (2006)

1 m intermediary levels u1 ≤ . . . ≤ um ≤ um+1 = u.

2 N particles from X(0) = x0 < u1 to T.

3 For each level uj (j = 1, . . . , m) :
I1,j = {particles that reached uj before T}
I0,j = {particles that have not reached uj at T}

For particles in I0,j,
Selection: Randomly select a particle in I1,j

Mutation: Create an offspring from τ+
uj

to T.

Pj = |I1,j|/N and pass onto next level uj+1.

Estimator of Px0(τ
+
u ≤ T): P1 × . . .× Pm+1
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Multilevel Splitting Algorithm

Init.: N = 5 Iteration 1: u = 4 Iteration 2: u = 5

Illustration for N = 5 particules starting from x0 = 2.99 with m = 2 intermediary levels
(u = (4, 5, 6)) and a horizon T equal to one year.
(Women subpopulation, Log-Gamma/Gamma/Dirac model)

Application: u = KTI = 14.67 µg/kgbw,
Intermediary levels from the adaptive algorithm of Cérou & Guyader (2005),

P2.99(τ
+
KTI ≤ 20y) ≈ 0.5%, m20y = 8; P2.99(τ

+
KTI ≤ 10y) ≈ 0.08%, m10y = 12.
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Conclusion and Perspectives

Good properties of the KDEM model,
Some solutions for the estimation

of quantities of interest for toxicologists
BUT

1 Validation of the multilevel splitting on the basic
Exp-Exp-Dirac model
Kella & Stadje (2001): explicit Laplace Transform for τ+

u

2 Pseudo-regenerative Extreme Value Estimators
Comparison with the results of particle filtering

3 Multivariate marked point process
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Other work with Monte carlo
methods

Bayesian nonparametrics
Dirichlet process, Chinese
Restaurant Process
Lancelot F. James, Albert Y. Lo
(HKUST-ISMT)

Thank you for your attention
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