TD - Licence 3 MASS

Exercice 1 On appelle le rendement instantané d'un titre S_k au temps k, la quantité R_k^S définie par

$$R_k^S = \frac{S_k - S_{k-1}}{S_{k-1}} = \frac{\Delta S_k}{S_{k-1}}$$

On rappelle que S_k représente le prix d'une part d'un titre donné au temps k. On note $(S_k^1, S_k^2)_{k=0,1}$ le modèle à deux états décrit par le tableau

$$\Omega \quad S_0 = (S_0^1, S_0^2) \quad S_1 = (S_1^1, S_1^2)
\omega^1 \quad (1; s_0) \quad ((1+r); s_{1,1})
\omega^2 \quad (1; s_0) \quad ((1+r); s_{1,2})$$

On suppose que ce marché est viable

$$s_{1,1} < s_0(1+r) < s_{1,2}$$

et l'on note \mathbb{P}^* la mesure à risque neutre définie par

$$\mathbb{P}^{\star}(\omega^{1}) = p^{\star} =_{\text{def.}} \frac{s_{1,2} - s_{0}(1+r)}{(s_{1,2} - s_{1,1})} \in (0,1)$$

1. Soit \mathbb{P} une mesure de probabilité sur $\Omega = \{\omega^1, \omega^2\}$ avec

$$\mathbb{P}(\omega^1) = p = 1 - \mathbb{P}(\omega^2)$$

Vérifier que l'on a

$$\mathbb{E}(R_1^{S^1}) = r$$
 et $\mathbb{E}(R_1^{S^2}) = \frac{s_{1,2} - s_0}{s_0} - p \times \frac{s_{1,2} - s_{1,1}}{s_0}$

- 2. Déduire de la question précédente que le rendement instantané du titre risqué est supérieur à celui du titre non risqué, si la probabilité p est suffisamment petite.
- 3. Montrer que sous \mathbb{P}^* , le rendement instantané du titre risqué est le même que celui du titre non risqué.

Exercice 2 On considère le modèle de marché viable décrit dans l'exercice 1.

- 1. Décrire les prix des actifs réactualisés $(\overline{S}_k^1, \overline{S}_k^2)_{k=0,1}$, ainsi que les valeurs réactualisées d'un portefeuille $(\overline{V}_k(\Phi))_{k=0,1}$ associé à une stratégie d'aménagement $\Phi_1 = (\Phi_1^1, \Phi_1^2)$.
- 2. Vérifier que l'on a

$$\Phi_1^1 = \overline{V}_0(\Phi) - \Phi_1^2 \ s_0$$

et montrer que

$$\overline{V}_0(\Phi) = \Phi_1^1 + \Phi_1^2 s_0$$
 et $\overline{V}_1(\Phi) = \overline{V}_0(\Phi) + \Phi_1^2 [\overline{S}_1^2 - \overline{S}_0^2]$

3. En déduire que les valeurs réactualisées des portefeuilles $(\overline{V}_k(\Phi))_{k=0,1}$ sont des \mathbb{P}^* -martingales.

Exercice 3 Déterminer les valeurs réactualisées des portefeuilles $\overline{V}_k(\Phi) = V_k(\Phi)/(1+r)^k$ aux instants k = 0, 1, en fonction des prix des actifs réactualisés $\overline{S}_k^i = S_k^i/(1+r)^k$. Vérifier les formules suivantes :

$$\Delta \overline{V}_1(\Phi) = \Phi_1^2 \times \Delta \overline{S}_1^2 \quad \text{et} \quad \Phi_1^1 = \overline{V}_0(\Phi) - \Phi_1^2 \times \overline{S}_0^2$$

Exercice 4 On considère le modèle de marché à deux états sur une période $(S_k^1, S_k^2)_{k=0,1}$ décrit par le tableau suivant

$$\begin{array}{lll} \Omega & S_0 = (S_0^1, S_0^2) & S_1 = (S_1^1, S_1^2) \\ \omega^1 & (1; s_0) & ((1+r); s_{1,1}) \\ \omega^2 & (1; s_0) & ((1+r); s_{1,2}) \end{array}$$

- 1. Décrire le tableau, et l'arbre des épreuves correspondant au marché réactualisé $(\overline{S}_k^1, \overline{S}_k^2)_{k=0,1}$.
- 2. Déterminer les valeurs réactualisées d'un portefeuille associé à une stratégie d'aménagement sans investissement initial.
- 3. Discuter les situations où l'on peut enrichir son portefeuille $\Delta \overline{V}_1(\Phi) > 0$, sans apport initial.
- 4. Discuter les possibilités d'arbitrage dans les neuf modèles de marchés suivants :

$$\Omega \quad S_0 = (S_0^1, S_0^2) \quad S_1 = (S_1^1, S_1^2)
\omega^1 \quad (1; 5) \quad ((1+5 \ 10^{-2}); s_{1,1})
\omega^2 \quad (1; 5) \quad ((1+5 \ 10^{-2}); s_{1,2})$$

avec

$$1) \begin{cases} s_{1,1} &= 1,05 \times 6 \\ s_{1,2} &= 1,05 \times 4 \end{cases} \qquad 2) \begin{cases} s_{1,1} &= 1,05 \times 6 \\ s_{1,2} &= 1,05 \times 7 \end{cases} \qquad 3) \begin{cases} s_{1,1} &= 1,05 \times 10 \\ s_{1,2} &= 1,05 \times 1 \end{cases}$$

$$4) \begin{cases} s_{1,1} &= 1,05 \times 3 \\ s_{1,2} &= 1,05 \times 2 \end{cases} \qquad 5) \begin{cases} s_{1,1} &= 1,05 \times 5 \\ s_{1,2} &= 1,05 \times 6 \end{cases} \qquad 6) \begin{cases} s_{1,1} &= 1,05 \times 5 \\ s_{1,2} &= 1,05 \times 4 \end{cases}$$

$$7) \begin{cases} s_{1,1} &= 1,05 \times 3 \\ s_{1,2} &= 1,05 \times 10 \end{cases} \qquad 8) \begin{cases} s_{1,1} &= 1,05 \times 8 \\ s_{1,2} &= 1,05 \times 9 \end{cases} \qquad 9) \begin{cases} s_{1,1} &= 1,05 \times 2 \\ s_{1,2} &= 1,05 \times 10 \end{cases}$$

Exercice 5 On considère un modèle de marché viable décrit par le tableau suivant

$$\begin{array}{lll} \Omega & \overline{S}_0 = (\overline{S}_0^1, \overline{S}_0^2) & \overline{S}_1 = (\overline{S}_1^1, \overline{S}_1^2) \\ \omega^1 & (1; \overline{s}_0) & (1; \overline{s}_{1,1}) & \text{avec} & 0 < \overline{s}_{1,1} < \overline{s}_0 < \overline{s}_{1,2} \\ \omega^2 & (1; \overline{s}_0) & (1; \overline{s}_{1,2}) \end{array}$$

Une banque émet une option de vente de fonction de paiement $f(\omega^i) = f_i$, avec i = 1, 2. On note $\overline{f}_i = f_i/(1+r)$ les valeurs réactualisées de cette option.

- 1. Déterminer les stratégies de couverture de cette option, en fonction des portefuilles et des actifs réactualisés.
- 2. Montrer qu'une stratégie de couverture est donnée par

$$\phi^{2, \star} = \left(\overline{f}_1 - \phi^{1, \star}\right) / \overline{s}_{1,1}$$

où $\phi^{1, \star}$ désigne le point d'intersection des deux droites $(\Delta_i)_{i=1,2}$ déterminées par les équations suivantes :

$$\Delta_i : \phi^1 \mapsto \frac{\overline{s}_0}{\overline{s}_{1,i}} \overline{f}_i + \phi^1 \left(1 - \frac{\overline{s}_0}{\overline{s}_{1,i}}\right)$$

On Vérifiera que la stratégie de couverture $(\phi^{1, \star}, \phi^{2, \star})$ est l'unique solution du système d'équations

$$\left\{ \begin{array}{lcl} \phi^1 + \phi^2 \ \overline{s}_{1,1} & = & \overline{f}_1 \\ \phi^1 + \phi^2 \ \overline{s}_{1,2} & = & \overline{f}_2 \end{array} \right.$$

3. Montrer que le coût initial du portefeuille (réactualisé) permettant de couvrir l'option est donné par la formule

$$\overline{V}_0(\Phi) = \overline{f}_1 \left(\frac{\overline{s}_{1,2} - \overline{s}_0}{\overline{s}_{1,2} - \overline{s}_{1,1}} \right) + \overline{f}_2 \left(1 - \frac{\overline{s}_{1,2} - \overline{s}_0}{\overline{s}_{1,2} - \overline{s}_{1,1}} \right)$$

Exercice 6 Vérifier la viabilité des marchés suivants, et déterminer les prix C(f), et les stratégies de couverture $(\phi^{1, *}, \phi^{2, *})$ dans chaque situation.

$$\begin{array}{lll} \Omega & \overline{S}_0 = (\overline{S}_0^1, \overline{S}_0^2) & S_1 = (\overline{S}_1^1, \overline{S}_1^2) \\ \omega^1 & (1;5) & (1; \overline{s}_{1,1}) \\ \omega^2 & (1;5) & (1; \overline{s}_{1,2}) \end{array}$$

avec

1)
$$\left\{ \begin{array}{llll} \overline{s}_{1,1} & = & 3 \\ \overline{s}_{1,2} & = & 6 \end{array} \right.$$
 2) $\left\{ \begin{array}{llll} \overline{s}_{1,1} & = & 1 \\ \overline{s}_{1,2} & = & 10 \end{array} \right.$ 3) $\left\{ \begin{array}{llll} \overline{s}_{1,1} & = & 4 \\ \overline{s}_{1,2} & = & 7 \end{array} \right.$

$$4) \left\{ \begin{array}{lll} \overline{s}_{1,1} & = & 1 \\ \overline{s}_{1,2} & = & 6 \end{array} \right. \quad 5) \left\{ \begin{array}{lll} \overline{s}_{1,1} & = & 1 \\ \overline{s}_{1,2} & = & 20 \end{array} \right. \quad 6) \left\{ \begin{array}{lll} \overline{s}_{1,1} & = & 2 \\ \overline{s}_{1,2} & = & 7 \end{array} \right.$$

$$7) \left\{ \begin{array}{lll} \overline{s}_{1,1} & = & 3 \\ \overline{s}_{1,2} & = & 50 \end{array} \right. \quad 8) \left\{ \begin{array}{lll} \overline{s}_{1,1} & = & 4 \\ \overline{s}_{1,2} & = & 100 \end{array} \right. \quad 9) \left\{ \begin{array}{lll} \overline{s}_{1,1} & = & 2 \\ \overline{s}_{1,2} & = & 1000 \end{array} \right.$$

Exercice 7 On considère un modèle de marché viable décrit par le tableau suivant

$$\begin{array}{lll} \Omega & \overline{S}_0 = (\overline{S}_0^1, \overline{S}_0^2) & \overline{S}_1 = (\overline{S}_1^1, \overline{S}_1^2) \\ \omega^1 & (1; \overline{s}_0) & (1; \overline{s}_{1,1}) & \text{avec} & 0 < \overline{s}_{1,1} < \overline{s}_0 < \overline{s}_{1,2} \\ \omega^2 & (1; \overline{s}_0) & (1; \overline{s}_{1,2}) \end{array}$$

1. Déterminer l'unique probabilité \mathbb{P}^{\star} sur $\Omega=\{\omega^{1},\omega^{2}\}$ telle que

$$\mathbb{E}^{\star}(\overline{S}_{1}^{2} \mid \overline{S}_{0}^{2}) = \overline{S}_{0}^{2}$$

2. Montrer que pour tout portefeuille autofinancé, nous avons

$$\mathbb{E}^{\star}(\overline{V}_{1}(\Phi) \mid \overline{S}_{0}^{2}) = \overline{V}_{0}(\Phi)$$

- 3. Déterminer la valeur moyenne sous \mathbb{P}^* d'une fonction de paiement réactualisée \overline{f} .
- 4. Décrire une stratégie de couverture $\Phi^* = (\phi^{1, *}, \phi^{2, *})$ de l'option \overline{f} , et vérifier que le coût initial d'acquisition du portefeuille de couverture est tel que $\overline{V}_0(\Phi^*) = \mathbb{E}^*(\overline{f}) = C(f)$.

Exercice 8 Déterminer les prix, et les stratégies de couverture des options de vente suivantes

1)
$$\Omega$$
 $\overline{S}_0 = (\overline{S}_0^1, \overline{S}_0^2)$ $S_1 = (\overline{S}_1^1, \overline{S}_1^2)$ $\overline{f} = (10 - \overline{S}_1^2)_+$
 ω^1 (1;5) (1;3) 7
 ω^2 (1;5) (1;6) 4

2)
$$\Omega$$
 $\overline{S}_0 = (\overline{S}_0^1, \overline{S}_0^2)$ $S_1 = (\overline{S}_1^1, \overline{S}_1^2)$ $\overline{f} = (8 - \overline{S}_1^2)_+$
 ω^1 $(1; 5)$ $(1; 1)$ 7
 ω^2 $(1; 5)$ $(1; 10)$ 0

3)
$$\Omega$$
 $\overline{S}_0 = (\overline{S}_0^1, \overline{S}_0^2)$ $S_1 = (\overline{S}_1^1, \overline{S}_1^2)$ $\overline{f} = (8 - \overline{S}_1^2)_+$
 ω^1 (1;5) (1;2) 6
 ω^2 (1;5) (1;7) 1

4)
$$\Omega$$
 $\overline{S}_0 = (\overline{S}_0^1, \overline{S}_0^2)$ $S_1 = (\overline{S}_1^1, \overline{S}_1^2)$ $\overline{f} = (10 - \overline{S}_1^2)_+$
 ω^1 $(1;5)$ $(1;5)$ $(1;50)$ 0

5)
$$\Omega$$
 $\overline{S}_0 = (\overline{S}_0^1, \overline{S}_0^2)$ $S_1 = (\overline{S}_1^1, \overline{S}_1^2)$ $\overline{f} = (100 - \overline{S}_1^2)_+$
 ω^1 $(1;5)$ $(1;1)$ 99
 ω^2 $(1;5)$ $(1;20)$ 80

6)
$$\Omega$$
 $\overline{S}_0 = (\overline{S}_0^1, \overline{S}_0^2)$ $S_1 = (\overline{S}_1^1, \overline{S}_1^2)$ $\overline{f} = (6 - \overline{S}_1^2)_+$
 ω^1 $(1;5)$ $(1;2)$ 4
 ω^2 $(1;5)$ $(1;7)$ 0

7)
$$\Omega$$
 $\overline{S}_0 = (\overline{S}_0^1, \overline{S}_0^2)$ $S_1 = (\overline{S}_1^1, \overline{S}_1^2)$ $\overline{f} = (6 - \overline{S}_1^2)_+$
 ω^1 $(1;5)$ $(1;3)$ 3
 ω^2 $(1;5)$ $(1;50)$ 0