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1 Introduction

The infinite mixture model has become a popular method for Bayesian nonparametric den-
sity estimation and clustering. It is assumed that a random sample y1, . . . , yn are indepen-
dent and that the density of yt is

f(yt) =
∞∑
k=1

wkk(yt | θk, φ) (t = 1, . . . , n) (1)

where k(x | θ, φ) is a probability density function for x with parameters θ and φ, wk >
0 (k = 1, 2, . . . ) and

∑∞
k=1 wk = 1, and θ1, θ2, · · ·

i.i.d.∼ H (whose density is h if H is
continuous). The most popular instance of this model is the Dirichlet process mixture (Es-
cobar and West, 1995) where w1, w2, . . . are derived from the Dirichlet process. This prior
is computationally attractive but the choice can restrict the forms of clustering available
and so tractable generalizations have been proposed. Ishwaran and James (2001) describe
the construction of stick-breaking priors and James et al. (2009) discuss inference in the
class of normalized random measures with independent increments (NRMI). This paper
will concentrate on mixtures using the latter class of priors and describe sequential Monte
Carlo methods for inference.

Constructing a method for posterior inference is challenging in infinite mixture models
since an infinite number of parameters is involved and the posterior is typically intractable.
Various Markov chain Monte Carlo methods have been developed which represent the pos-
terior in terms of finite-dimensional objects that can be sampled. In Dirichlet process mix-
ture models, Gibbs sampling methods for conjugate model, where

∫
h(θ)

∏m
j=1 k(ytj |

θ, φ) dθ for any subset {t1, . . . , tm} of {1, . . . , n} can be calculated analytically, were
proposed by Escobar and West (1995) and for non-conjugate model by MacEachern and
Müller (1998) and Neal (2000). These methods effectively integrate over the infinite di-
mensional prior using the Pólya urn scheme representation of the Dirichlet process to define
a finite-dimensional posterior. The conjugate approach can be directly extended to NRMI
mixtures using the Pólya urn scheme derived by James et al. (2009) but there has been no
work extending the methods of Neal (2000) to this wider class of priors.

Methods which use the Pólya urn scheme representation are often called marginal
methods. Alternatively, conditional methods include the random measure in the sampler
and are more suitable for non-conjugate models. A first step in this direction was taken
by Ishwaran and James (2001) where a finite approximation of a stick-breaking process is
derived which controls the truncation error of functions of the posterior distribution and
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leads to an efficient blocked Gibbs sampling scheme. Subsequently, it was discovered that
the truncation error can be completely removed using truncations of random length. Two
such Markov chain Monte Carlo methods for stick-breaking processes are retropsective
sampling (Papaspiliopoulos and Roberts, 2008) and slice sampling (Walker, 2007; Kalli
et al., 2011). Griffin and Walker (2011) describe slice sampling methods for non-conjugate
NRMI mixtures and these methods will be extended to sequential Monte Carlo sampling
in this article.

Sequential Monte Carlo methods build an approximation of the posterior conditional
on y1, . . . , yt from the approximation conditional on y1, . . . , yt−1. Repeated application of
this process leads to the posterior conditional on y1, . . . , yn. Their application to Dirich-
let process mixture models was initially developed by Liu (1996) and MacEachern et al.
(1999). They described sequential importance sampling methods which exploited the Pólya
urn scheme representation of the Dirichlet process and involved expensive numerical inte-
grations for non-conjugate models. In practice, these algorithms can often perform poorly
and lead to estimates with large variances. Fearnhead (2004) extends their algorithm
to Sampling-Importance-Resampling algorithm (also known as a particle filter). Chopin
(2002) describes the application of a similar algorithm to finite mixture models. There has
recently been renewed interested in sequential Monte Carlo methods for infinite mixture
models. Ulker et al. (2010) describe elaborations of the the algorithm of Fearnhead (2004)
and Carvalho et al. (2010) describe particle learning methods for these models.

Efficient MCMC sampling methods have been an important factor in the popularity
of the Dirichlet process mixture model. However, MCMC methods may become stuck in
local modes if the posterior has well-separated areas of substantial probability (which may
occur in mixture models). The development of more structured infinite mixture models
(such as models that allow the component weights to depend on covariates) can potentially
exacerbate this problem. Sequential Monte Carlo methods offer an alternative which can
potentially avoid these problems. This paper does not directly deal with these problems
but is a step in that direction. This paper describes method for both conjugate and non-
conjugate models and the estimation of unknown hyperparameters. There has been little
work on the latter two inference problem with the exception of Carvalho et al. (2010). The
Normalized Random Measures with Independent Increments priors is very large and un-
derlies recently developed time-series and spatial nonparametric priors (Griffin, 2011; Rao
and Teh, 2009). Sequential Monte Carlo also allows unbiased estimation of the marginal
likelihood which has traditionally been a challenging problem in Bayesian nonparametric
inference.
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2 Sequential Monte Carlo methods for DP mixture mod-
els

Fearnhead (2004) describes a sequential Monte Carlo algorithm for the model in (1) when
w1, w2 . . . are weights derived from the Dirichlet process. It is convenient to write the
model in terms of allocation variables s1, . . . , sn which link the observations to the compo-
nents of the mixture model so that

yt ∼ k(yt | θst , φ) (t = 1, . . . , n)

p(st = k) = wk (t = 1, . . . , n; k = 1, 2, . . . ).

The algorithm samples N values s(1)
1:t , . . . , s

(N)
1:t from p(s1:t|y1:t) sequentially in t. The no-

tation xi:j = (xi, . . . , xj) will be used as shorthand for vectors and z(i) will represent the
value of z in the i-th particle. Suppose that there are Kt distinct values of s1, . . . , st and
that these are labelled {1, . . . , Kt} and let mk,t be the number of sj = k. The details are
given in Algorithm 1 which is feasible since pr

(
yt | s1:(t−1), st = m, y1:(t−1)

)
is availabe

for conjugate models and pr
(
st = m|s1:(t−1)

)
is available from the Pólya urn scheme for

the Dirichlet process. This avoids working directly with w1, w2, . . . and θ1, θ2, . . . . The
algorithm can be very computationally efficient if pr

(
yt | s1:(t−1), st = m, y1:(t−1)

)
can be

calculated using sufficient statistics (Fearnhead, 2004).

The algorithm can be extended to non-conjugate mixture models in several ways.
Firstly, Algorithm 1 can be directly used if pr

(
yt | y1:(t−1), s1:(t−1), st = k

)
can be effi-

ciently approximated (using methods such as Monte Carlo integration). This typically
restricts us to problems where θ is low-dimensional, often one-dimensional. Secondly, a
value θ̂(i)

K
(i)
t−1+1

can be sampled in Step 1a) and pr
(
yt | y1:(t−1), s1:(t−1), st = k

)
replaced by

pr
(
yt | y1:(t−1), s1:(t−1), st = k, θ̂(i)

)
. This avoids the need to approximate but introduces

static parameters into the sequential Monte Carlo sampler which has the associated poten-
tial problem of particle degeneracy (where the number of distinct particles is far less than
N ). Chopin (2002) suggests alleviating this problem by introducing an extra Step 3) where
θ̂

(i)

1:K
(i)
t

are updated at the t-th iteration for i = 1, . . . , N using a Markov chain Monte Carlo
step such as a Metropolis-Hastings random walk step.

Although, the problem of particle degeneracy for θ is the most serious there is also a
problem of particle degeneracy in all sequential Monte Carlo methods for mixture models
since s(i)

1:t act as static parameters when moving beyond the t-th iteration. Ulker et al. (2010)
suggest sampling a block s(t−r):t conditional on s1:(t−r−1) at the t-th iteration to help reduce
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For t = 1, . . . , n, perform steps (1) and (2)

1. For i = 1, . . . , N perform steps (a) and (b)

(a) Sample s(i)
t conditional on y1:t, and s(i)

1:(t−1) from

q (k) ∝

 m
(i)
k,t−1 p

(
yt | y1:(t−1), s

(i)
1:(t−1), st = k

)
if k ≤ K

(i)
t−1

M p
(
yt | y1:(t−1), s

(i)
1:(t−1), st = k

)
if k = K

(i)
t−1 + 1

.

(b) Calculate the unnormalized weight

ψ
(i)
t =Mpr

(
yt | s(i)

1:(t−1), s
(i)
t = K

(i)
t−1 + 1, y1:(t−1)

)
+

K
(i)
t∑

k=1

m
(i)
k,t−1pr

(
yt | s(i)

1:(t−1), s
(i)
t = k, y1:(t−1)

)
.

2. Re-weight the particles according to the weights ζi =
ψ

(i)
t∑N

i=1 ψ
(i)
t

(i = 1, . . . , N).

Algorithm 1: SMC algorithm for conjugate DP mixture models

the effect. I will return to this problem in Section 6.

3 Normalized random Measures with independent incre-
ment mixtures

Bayesian inference for the Normalized Random Measures with Independent Increment
(NRMI) mixtures were discussed by James et al. (2009). Only the class of homogeneous
NRMI will be considered which assumes that wi in (1) are defined by

wk =
Jk∑∞
l=1 Jl

where J1, J2, . . . are the jumps of a non-Gaussian Lévy process (i.e. a subordinator) with
Lévy density η(x). The process is well-defined if 0 <

∑∞
l=1 Jl < ∞ which occurs if∫∞

0
η(x) dx = ∞. The choice of η(x) controls the rate at which the jumps of the Lévy

process decay and this interpretation can be used to define a prior. Several previously pro-
posed priors fit into this class. The Dirichlet process (Ferguson, 1973) with mass parame-
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ter M is a normalized Gamma process which has Lévy measure η(x) = Mx−1 exp{−x}
(whereM > 0). The Normalized Generalized Gamma process (Lijoi et al., 2007) occurs as
the normalization of a Generalized Gamma process (Brix, 1999) which has Lévy measure
η(x) = M

Γ(1−γ)
x−1−γ exp{−λx} (where M > 0, 0 < γ < 1 and θ > 0). A special case

of this class is the Normalized Inverse Gaussian process (Lijoi et al., 2005) which occurs
when γ = 1/2 and λ = 1.

The joint distribution of the allocations s1, . . . , sn is particularly useful for the conju-
gate mixture model and can be written

pr(s1, . . . , st) = E

[
Kt∏
k=1

w
mk,t
k

]
.

This is referred to as the Exchangeable Product Partition Formula (EPPF) since it only
depends on the values of s1, . . . , st through m1,t, . . . ,mKt,t. James et al. (2009) use the
identity

∫∞
0

exp{−vx} dv = 1
x

to show that this can be conveniently written as

pr(s1, . . . , st) =

∫ ∞
0

· · ·
∫ ∞

0

E

[
Kt∏
k=1

J
mk,t
k exp

{
−

t∑
j=1

vj

∞∑
l=1

Jl

}]
dv1 · · · dvt

=

∫ ∞
0

· · ·
∫ ∞

0

E

[
Kt∏
k=1

f(t, t, k) exp {−Lt (v)}

]
dv1 · · · dvt (2)

where

f(t, s, k) =

∫ ∞
0

J
mk,t
k exp

{
−Jk

s∑
j=1

vj

}
η(Jk) dJk

and

Lt(v) =

∫ ∞
0

(
1− exp

{
−x

t∑
i=1

vi

})
η(x) dx.

Suppose that G =
∑∞

k=1 Jkδθk then James et al. (2009) prove the following important
result. Let y1, . . . , yt be independent and identically distributed according to G then the
posterior of G conditional on v1, . . . , vn and y1, . . . , yt is a combination of a finite set of
fixed points (Ĵ , θ̂) where θ̂k is equal to the k-th distinct value of y1, . . . , yt and p(Ĵk |
y) ∝ η(Ĵk)Ĵ

mk,t
k exp{−Ĵk

∑t
j=1 vj} and (J̃ , θ̃) where J̃ is a Poisson process with intensity

η(J) exp{−J
∑t

j=1 vj} and θ̃k
i.i.d.∼ H (k=1,2,. . . ).
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4 Sequential Monte Carlo methods for conjugate NRMI
mixtures

Conjugate NRMI mixture models can be fitted by extending the methods for Dirichlet
process mixtures described in Section 2. An expression for the conditional distribution of
st given s1:(t−1) for any NRMI mixture is derived by James et al. (2009). This a finite,
discrete distribution but it can be difficult to compute the probabilities of different values of
st for many choices of η(x). An alternative approach which seems to work well in practice
is to use the result in (2) and introduce v1, . . . , vn as latent variables, as in Markov chain
Monte Carlo algorithm of NRMI mixtures. In this case we need to sample from the joint
distribution

p(st, vt | s1:(t−1), v1:(t−1)) = p(st | s1:(t−1), v1:t)p(vt | s1:(t−1), v1:(t−1))

where

p(vt | s1:(t−1), v1:(t−1)) =
p(s1:(t−1), v1:t)

p(s1:(t−1), v1:(t−1))

and
p(st | s1:(t−1), v1:t) =

p(s1:t, v1:t)

p(s1:(t−1), v1:t)
(3)

The following expressions can be derived from (2)

p(s1:t, v1:t) =
Kt∏
k=1

f(t, t, k) exp {−Lt (v)}

and

p(s1:(t−1), v1:t) = − d

dvt

Kt−1∏
k=1

f(t− 1, t, k) exp {−Lt (v)} .

This implies that the density of vt given v1:(t−1), s1:(t−1) is proportional to

− d

dvt

Kt−1∏
k=1

f(t− 1, t, k) exp {−Lt (v)}

and its distribution function is∏Kt−1

k=1 f(t− 1, t, k) exp {−Lt (v)}∏Kt−1

k=1 f(t− 1, t− 1, k) exp {−Lt (v)}
.
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Values of vt can be simulated either using inversion sampling from the distribution function
or, in some cases, using standard methods for sampling from densities. The distribution of
st is

p(s1:(t−1), st = j, v1:t)

p(s1:(t−1), v1:t)

which is a finite, discrete distribution and so can be sampled easily. The full algorithm for
the conjugate mixture model is shown in Algorithm 2

For t = 1, . . . , n, perform steps (1) and (2)

1. For i = 1, . . . , N perform steps (a)–(c)

(a) Sample v(i)
t from the distribution v(i)

t | s
(i)
1:(t−1), v

(i)
1:(t−1)

(b) Sample s(i)
t from the distribution proportional to

p
(
s

(i)
t = k

)
p
(
yt | s(i)

1:(t−1), s
(i)
t = k

)
.

(c) Calculate the unnormalized weight

ψ
(i)
t =

K
(i)
t +1∑
k=1

p
(
s

(i)
t = k

)
p
(
yt | s(i)

1:(t−1), s
(i)
t = k

)
.

2. Re-weight the particles according to the weights ζi =
ψ

(i)
t∑N

i=1 ψ
(i)
t

(i = 1, . . . , N).

Algorithm 2: SMC algorithm for conjugate NRMI mixture models

5 Sequential Monte Carlo methods for non-conjugate NRMI
mixtures

Most sequential Monte Carlo methods have concentrated on conjugate models since θ1, θ2, . . .

andw1, w2, . . . can both be integrated from the model which leaves an algorithm that works
directly on the allocation variables s1, . . . , sn. Non-conjugate models are typically harder
since the random measure cannot be analytically integrated from the model. The methods
described in this paper exploit the conjugacy of the jumps which are conditionally inde-
pendent of θ (which is non-conjugate) and avoid the problem an infinite number of jumps
using slice sampling ideas.
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A naive (but practically impossible) implementation of a Gibbs sampler for the infinite
mixture model would lead to a infinite number of possible values for st. Slice sampling
methods for infinite mixture models introduce latent variables which make all steps of a
Gibbs sampler have finite support. Griffin and Walker (2011) show how such a Gibbs
sampler can be efficiently constructed for the class of mixtures where the weights follow a
Normalized Random Measure with Independent Increments and derive two samplers. The
Slice 1 sampler writes the likelihood contribution

∏t
j=1wsjk(yj | θsj) in the following way

t∏
j=1

I(uj < Jsj)k(yj | θsj) exp

{
−vj

∞∑
k=1

Jk

}
(4)

where I(·) is the indicator function. Integrating out v1, . . . , vt and u1, . . . , ut leads to the
correct form. The Slice 2 sampler writes the likelihood contribution in the alternative from

t∏
j=1

I(u < αt)

αt
Jsjk(yj | θsj) exp

{
−vj

∞∑
k=1

Jk

}
.

where αt = min{Ĵj | j = 1, . . . , Kt} and, using the notation of section 3, Ĵ1, . . . , ĴKt are
the sizes of jumps which have been allocated observations. The introduction of the latent
variables u1, . . . , ut in Slice 1 and u in Slice 2 leads to a full conditional distribution for st
which is discrete with a finite number of possible values.

The forms of the likelihood introduced in Slice 1 and Slice 2 are also convenient for
sequential Monte Carlo methods since the number of latent parameters grows with the
number of observations. However, it is not immediately clear how to sample from the joint
distribution of vt and ut in Slice 1 or vt in Slice 2 conditional on the values generated for
each particle at previous steps of the algorithm. The following method is a simple solution
which works for both Slice 1 and Slice 2. In Slice 1, we firstly integrate all jumps (Ĵ and J̃
defined at the end of section 3) from the model then the latent variable vt is sampled using
the method for a conjugate model. The latent variable ut is sampled by first simulating
another latent variable dt according to the conditional distribution of st given in (3). If dt
is associated with a new jump then a new value is drawn from the centring distribution
H and added to θ̂. The points in Ĵ are then simulated conditional on s1:(t−1) and dt and

associated with θ̂, and finally simulating ut from U
(

0, Ĵdt

)
. This allows us to simulate the

Rt jumps with size in (ut,∞) and no observation allocated. These are denoted J̃1, . . . , J̃Rt
which follow a Poisson process with intensity exp

{
−J
∑t

j=1 vj

}
η(J). Values of θ̃ are

simulated from H and associated with each point of J̃ . The sample of ut, Ĵ and J̃ are from
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the joint distribution of ut and J (restricted to (ut,∞)) conditional on previous values. This
allows us to sample st from its conditional distribution defined by (4). Once all particles
have been sampled, they are re-weighted. Algorithm 3 describes all necessary steps. The
algorithm for Slice 1 can be easily adapted to the latent variables construction in Slice
2. Firstly, the sampling step for ut in Slice 1 can be replaced by the following sampling
step for u, simulated u ∼ U(0, βt) where βt is the minimum of Js1 , . . . , Jst−1 and Jdt
and J̃ is now from a Poisson process with intensity exp{−J

∑t
j=1 vj}η(J) restricted to

the interval (u,∞). The allocation st is then simulated from the conditional distribution
q (st = k) ∝ max {Jk, αt−1} k (yt | θk). Once all particles have been sampled, they are
re-weighted. Algorithm 4 describes the full method.

6 Extensions to the Sequential Monte Carlo methods

6.1 Resampling

Both sequential Monte Carlo methods for non-conjugate NRMI models can suffer from
low effective sample sizes. This problem is caused by several factors. Firstly, the values
of s(i)

1 , . . . , s
(i)
t and θ

(i)
1 , . . . , θ

(i)

K
(i)
t

(for the non-conjugate model) are fixed after the t-th

iteration leading to a lack of heterogeneity in values of some θ(1)
k , . . . , θ

(N)
k (the problem of

particle depletion). Secondly, new values of θ(i)
k are effectively proposed from their prior

H and this can lead to drawn values which are not consistent with yt. The first problem has
been widely considered in the literature (Gilks and Berzuini, 2001; Chopin, 2002) and can
be addressed by re-sampling previously sampled values of θ̂(i)

k from their full conditional
distribution at step 1c) in Algorithms 3 and 4. The density is proportional to

h
(
θ̂

(i)
k

)
k
(
yt|θ̂(i)

k

)I
(
d
(i)
t =k

)
t−1∏
j=1

k
(
yj|θ̂(i)

k

)I
(
s
(i)
j =k

)
.

The second problem is also standard to many particle filters and can be addressed by
proposing the values of θ̃ in step 1f) of Algorithms 3 and 4 from a density that depend
on the current observation. The Auxiliary Particle Filter (Pitt and Shephard, 1999) would
choose hadp

(
θ̃

(i)
k

)
∝ h

(
θ̃

(i)
k

)
k
(
yt|θ̃(i)

k

)
. If this choice cannot be sampled straightfor-

wardly then a choice of hadp
(
θ̃

(i)
k

)
that approximates this distribution could be used. The
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For t = 1, . . . , n, perform steps (1) and (2)

1. For i = 1, . . . , N , perform steps (a)–(g)

(a) Sample v(i)
t from the distribution v(i)

t | s
(i)
1:(t−1), v

(i)
1:(t−1)

(b) Sample dt from the distribution proportional to p
(
s

(i)
t | s

(i)
1:(t−1), v

(i)
1:t

)
, If dt =

K
(i)
t−1 + 1, simulate θ̃(i)

K
(i)
t−1+1

∼ H .

(c) Sample Ĵ (i)
1 , . . . , Ĵ

(i)

K
(i)
t

(if dt ≤ K
(i)
t−1) or Ĵ (i)

1 , . . . , Ĵ
(i)

K
(i)
t +1

(if dt = K
(i)
t−1 + 1).

The density of Ĵ (i)
k is proportional to

(
Ĵ

(i)
k

)m(i)
k,t−1+I(dt=k)

exp

{
−Ĵ (i)

k

t∑
j=1

vj

}
η
(
Ĵ

(i)
k

)
.

(d) Sample u(i)
t ∼ U

(
0, Ĵ

(i)
dt

)
(e) Sample J̃

(i)
1 , . . . , J̃

(i)

R
(i)
t

from a Poisson process on
(
u

(i)
t ,∞

)
with intensity

exp
{
−J
∑t

j=1 v
(i)
j

}
η(J) . Simulate θ̃(i)

1 , . . . , θ̃
(i)

R
(i)
t

i.i.d.∼ H .

(f) Let J (i) =
{
Ĵ (i), J̃ (i)

}
and θ(i) =

{
θ̂(i), θ̃(i)

}
. Sample s(i)

t according to

p(s
(i)
t = k) ∝ I

(
Jk > u

(i)
t

)
k
(
yt | θ(i)

k

)
, (k = 1, . . . , K

(i)
t +R

(i)
t ).

(g) Calculate the unnormalized weight

ψ
(i)
t =

∑K
(i)
t +R

(i)
t

k=1 I
(
J

(i)
k > u

(i)
t

)
k
(
yt | θ(i)

k

)
∑K(i)+R

(i)
t

k=1 I
(
J

(i)
k > u

(i)
t

) .

2. Re-weight the particles according to the weights ζ(i)
t =

ψ
(i)
t∑N

i=1 ψ
(i)
t

(i = 1, . . . , N).

Algorithm 3: Slice 1 SMC algorithm for non-conjugate NRMI mixture models
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For t = 1, . . . , n, perform steps (1) and (2)

1. For i = 1, . . . , N , perform steps (a)–(g)

(a) Sample v(i)
t from the distribution v(i)

t | s
(i)
1:(t−1), v

(i)
1:(t−1)

(b) Sample dt from the distribution proportional to p
(
s

(i)
t | s

(i)
1:(t−1), v

(i)
1:t

)
. If dt =

K
(i)
t−1 + 1, simulate θ̃(i)

K
(i)
t−1+1

∼ H .

(c) Sample Ĵ (i)
1 , . . . , Ĵ

(i)

K
(i)
t

(if dt ≤ K
(i)
t−1) or Ĵ (i)

1 , . . . , Ĵ
(i)

K
(i)
t +1

(if dt = K
(i)
t−1 + 1).

The density of Ĵ (i)
k is proportional to

(
Ĵ

(i)
k

)m(i)
k,t−1+I(dt=k)

exp

{
−Ĵ (i)

k

t∑
j=1

v
(i)
j

}
η
(
Ĵ (i)
)
.

(d) Let α(i)
t−1 = min

{
Ĵ

(i)
1 , . . . , Ĵ

(i)

K
(i)
t−1

}
and β(i)

t = min

{
Ĵ

(i)
1 , . . . , Ĵ

(i)

K
(i)
t−1

, Ĵ
(i)

d
(i)
t

}
.

(e) Sample u(i) ∼ U
(

0, β
(i)
t

)
(f) Sample J̃

(i)
1 , . . . , J̃

(i)

R
(i)
t

from a Poisson process on
(
u(i),∞

)
with intensity

exp
{
−J
∑t

j=1 v
(i)
j

}
η(J) . Simulate θ̃(i)

1 , . . . , θ̃
(i)

R
(i)
t

i.i.d.∼ H .

(g) Let J (i) =
{
Ĵ (i), J̃ (i)

}
and θ(i) =

{
θ̂(i), θ̃(i)

}
. Sample s(i)

t according to

q
(
s

(i)
t = k

)
∝ max

{
J

(i)
k , α

(i)
t−1

}
k
(
yt | θ(i)

k

)
.

(h) Calculate the unnormalized weight

ψ
(i)
t =

∑K
(i)
t +R

(i)
t

k=1 max
{
J

(i)
k , α

(i)
t−1

}
k
(
yt | θ(i)

k

)
∑K(i)

k=1 max
{
J

(i)
k , α

(i)
t−1

}
2. Re-weight the particles according to the weights ζi =

ψ
(i)
t∑N

i=1 ψ
(i)
t

(i = 1, . . . , N).

Algorithm 4: Slice 2 SMC algorithm for non-conjugate NRMI mixture models
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value of ζ̃(i)
t is adjusted to

ψ
(i)
t =

∑K
(i)
t +R

(i)
t

k=1 I
(
J

(i)
k > u

(i)
t

)
k
(
yt | θ(i)

k

)
h
(
θ̃

(i)
k

)
/hadp

(
θ̃

(i)
k

)
∑K

(i)
t +R

(i)
t

k=1 I
(
J

(i)
k > u

(i)
t

) .

in Algorithm 3 and to

ψ
(i)
t =

∑K
(i)
t +R

(i)
t

k=1 max
{
J

(i)
k , α

(i)
t−1

}
k
(
yt | θ(i)

k

)
h
(
θ̃

(i)
k

)
/hadp

(
θ̃

(i)
k

)
∑K

(i)
t +R

(i)
t

k=1 max
{
J

(i)
k , α

(i)
t−1

}
in Algorithm 4

All sequential Monte Carlo algorithms for mixture models involve sampling s(i)
t at the

t-th iteration from a finite, discrete distribution. The number of elements in this discrete
distribution is the number of distinct values which is random. In the Dirichlet process with
mass parameter M , E[Kt] = M log t for large t. Therefore, the number of operations
needed to sample s1, . . . , st is approximately M

∑t
j=1 log j = M log(t!) which is, using

Stirling’s formula, approximately M (t log t− t+ log(2πt)/2) so any SMC algorithm for
Dirichlet process mixture models has computational complexity O(n log n). Similarly, the
number of distinct values will grow with any NRMI and so the computational complexity
will be greater than the usual O(n) of a particle filter. Performing updates of s1:(t−1) for
all t would lead to an algorithm with computational complexity O(n2). However, if update
only occur at pre-selected values of t which scale in a suitable way then the computational
complexity for the algorithm can be unchanged. For example, updating at dkie, (i =

1, 2, . . . ) for k > 1 leads to an algorithm that scales likeO(n log n) for the Dirichlet process
mixture model.

6.2 Parameter estimation

In many applications of Bayesian nonparametric methods, there are static parameters which
we would like to infer. For example, the parameter φ in (1) is a static parameter. Similarly,
there may be parameters that control the random probability measure (such as the mass
parameter M in the Dirichlet process) or the centring distribution H may have parameters.
The estimation of static parameters in sequential Monte Carlo samplers is difficult. The
simplest method include the parameters as extra dimensions of the particle. However,
this can lead to particle degeneracy and poor estimation of the posterior distribution of
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the parameters. Alternative, the parameters could be integrated out from the model. An
alternative method adopted in this paper is to update the parameters using Gibbs step, either
sampling directly from the full conditional or using a Metropolis-Hastings scheme such as
random walk. Updating all parameters at every step may be computational intensive so we
suggest, firstly, using sufficient statistics where possible and, secondly, if this isn’t possible
then parameters are updated for values of j equal to xk (k = 1, 2, . . . ).

6.3 Marginal likelihood estimation

Marginal likelihood of models plays a crucial role in the calculation of Bayes factor for
hypothesis testing or the combination of a small number of models using Bayesian model
averaging. The estimation of marginal likelihood for nonparametric models has been par-
ticularly challenging. Basu and Chib (2003) describe a method for approximating marginal
likelihood for MCMC output but this can be time-consuming. Del Moral (2004) shows
that sequential Monte Carlo methods lead to a simple, unbiased estimate of the marginal
likelihood which is

n∑
t=1

(
1

N

N∑
i=1

ψ
(i)
t

)
.

This allows the comparison of the same model with different nonparametric priors or dif-
ferent models which each have a nonparametric component.

7 Illustrations

7.1 Comparison of SMC samplers

The mixture of normals model is one of the most popular in Bayesian nonparametrics and
is a natural testing ground for the methods developed in this paper. We use the prior of
Griffin (2010) who writes the model for observations y1, . . . , yn as

yt ∼ N(µt, aσ
2), t = 1, . . . , n (5)

µt ∼ NGG(γ, 1,M,H), t = 1, . . . , n

where H is a normal distribution with mean µ0 and variance (1 − a)σ2. The methods are
applied to two datasets: the ever-popular galaxy data and the log acidity data. The data are
standardized to have mean 0 and variance 1 and we set µ0 = 0 and σ = 1 in the model.
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The parameter a is fixed to 0.03 for the galaxy data and 0.16 for the log acidity (these are
similar to the values estimated by Griffin, 2010). The data were randomly permuted and
the sequential Monte Carlo algorithms run with 5 000 particles. The effective sample size
is calculated using the method of Carpenter et al. (1999).

An initial comparison was made using the algorithm for conjugate Dirichlet process
(which is the standard sequential Monte Carlo algorithm for conjugate Dirichlet processes),
Slice 1 and Slice 2 for non-conjugate Dirichlet process models. The latter two algoritms
were also combined with two extensions described in section 6. Firstly, updating of the
parameters (U) and an Auxiliary Particle Filter proposal (A), which can be simply sampled
since the model is conjugate. The number of clusters was used as the parameter of interest

Table 1: The effective sample size of estimating the posterior mean number of clusters from
5000 particles with a Dirichlet process prior.

Algorithm Galaxy Log Acidity
Conjugate 959 710
Slice 1 4 74
Slice 2 12 137
Slice 1 + U 16 98
Slice 2 + U 62 480
Slice 1 + A + U 78 131
Slice 2 + A + U 233 398

for the effective sample size calculations. The results are given in Table 1. The conjugate
sampler performs well for both data sets but the non-conjugate sampler have a wide range
of effective sample sizes with Slice 2 always outperforming Slice 1. In all cases, updating
the parameters in the Dirichlet process increases the effective sample size (by a factor of 4
for the two datasets with Slice 2). The introduction of a proposal which is adapted to the
current data point in the algorithm also leads to improvement in the effective sample sizes.
Slice 1 will be removed from subsequent comparisons since it is always outperformed by
Slice 2.

Section 6 also describes a method for adding updating steps for s without changing the
computational complexity of the algorithm. Results are presented in Table 2 with the factor
k chosen to be 1.5 and 2 (k = 1.5 has more update steps) and show that the introduction of
the step leads to larger effective sample sizes. In the galaxy data, the choice of k leads to
little difference. In contrast, for the log acidity data, the extra steps introduced for k = 1.5,
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Table 2: The effective sample size of estimating the posterior mean number of clusters from
5000 particles with a Dirichlet process prior with updating of s

Galaxy Log Acidity
Algorithm k = 1.5 k = 2 k = 1.5 k = 2

Conjugate 1630 1704 1392 1062
Slice 2 35 31 515 268
Slice 2 + U 128 136 683 532
Slice 2 + A + U 424 414 760 475

compared k = 2, leads to a clearly larger effective sample size.

Table 3: The effective sample size of estimating the posterior mean number of clusters from
5000 particles with a Normalized Generalized Gamma process prior with updating of s.

Galaxy Log Acidity
Algorithm k = 1.5 k = 2 k = 1.5 k = 2

Conjugate 1630 1704 1243 1186
Slice 2 + U 118 136 670 494
Slice 2 + A + U 424 415 959 800

Results for the model with a Normalized Generalized Gamma prior for the mixing
distribution are given in Table 3 with updating of s in the algorithm. The estimates of
the effective sample sizes are roughly similar to the Dirichlet process mixture model with
the algorithm for the conjugate model showing large effective sample sizes but also the
algorithms for the non-conjugate models, particularly Slice 2 with adaptation and updating,
showing good performance.

Table 4: The effective sample size of estimating the posterior mean number of a from 5000
particles with a Dirichlet process prior.

Galaxy Log Acidity
Algorithm k = 1.5 k = 2 k = 1.5 k = 2

Conjugate 606 1100 632 1554
Slice 2 + U 82 110 343 376
Slice 2 + A + U 222 343 574 447

The previous results assumed a fixed value for the parameter a which plays a crucial
role in determining the modality and shape of the distribution. Often, we would want to
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estimate this parameter. Table 4 shows results for the Dirichlet process mixture model with
a given a uniform prior on (0, 1). The effective sample size when the parameter of interest
is the posterior mean of a. The parameter a can be updated using sufficient statistics and
so was updated at every iteration. The results indicate that the algorithm produces good
effective sample sizes in all cases. The results for a Normalized Generalized Gamma prior

Table 5: The effective sample size of estimating the posterior mean number of a from 5000
particles with a Normalized Generalized Gamma process prior.

Galaxy Log Acidity
Algorithm k = 1.5 k = 2 k = 1.5 k = 2

Conjugate 2075 1354 1399 757
Slice 2 + U 226 239 286 451
Slice 2 + A + U 329 519 425 503

on the mixing distribution are shown in Table 5 indicating broadly similar pattern of results
to the Dirichlet process case with slightly larger effective sample size values. These results
indicate that these sequential Monte Carlo algorithms gives good performance for posterior
computation.

7.2 Testing a parametric model against a nonparametric alternative

The problem of testing a parametric model against a nonparametric alternative using Bayesian
methods has received some attention in the literature. Carota and Parmigiani (1996) use a
Dirichlet process based (rather than mixture of Dirichlet processes based) method whereas
Berger and Guglielmi (2001) uses a method based on Polya trees. Consistency issue are
considered by Dass and Lee (2004). More recently, McVinish et al. (2009) have proposed
a method using mixtures of triangular distributions and considered its consistency. A dif-
ferent approach to testing a normal distribution uses a mixture of normal distributions to
specify the nonparametric alternative distribution using the model in (5). The problem is
slighly simplified by subtracting the sample mean from the data before analysis and as-
suming that µ0 (the overall mean) is 0. The variance parameter σ2 is given the standard
non-informative prior, p(σ−2) ∝ σ−2, in both the parametric and nonparametric models.
Therefore, the nonparametric model is centred over the parameteric model. The models
can be compared using Bayes factor. Let p(y | H0) be the marginal likelihood under the
normal model and p(y | H1) be the marginal likelihood under the nonparametric model
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then the Bayes factor in favour of the parametric model is

p(y | H0)

p(y | H1)
.

The marginal likelihood under the parametric model can be calculated analytically and
the marginal likelihood under the nonparametric model is calculated using the method in
section 6.3. The the conjugate sampler with updating of s and k = 2 was used. Two
examples were considered: data simulated from a standard normal distribution and the
galaxy data. Clearly, the Bayes factor should favour the parametric model for the simulated
data and the nonparametric model for the galaxy data (since the data have a multi-modal
distribution). The Bayes factor in favour of the parametric model was estimated to be 1.3

for the standard normal data whereas the Bayes factor in favour of the nonparametric model
was estimated to be −32.3 for the galaxy data.

7.3 Clustering of time series

Methods for Bayesian clustering of economic time series have been proposed by several
authors including Frühwirth-Schnatter and Kaufmann (2008) and Bauwens and Rombouts
(2007). An alternative approach is a simple non-conjugate model which assumes that

yi,t = µi + ρi(yi,t−1 − µi) + εi,t, (i = 1, . . . , n; t = 1, . . . , T )

εi,t
i.i.d.∼ N(0, σ2

i ), (i = 1, . . . , n; t = 1, . . . , T )

(µi, σ
2
i , ρi) ∼ F, (i = 1, . . . , n)

where F is given a Normalized Generalized Gamma process with parameters M = 2,
a = 0.2 and γ = 1. The process is centred over the following distribution µ ∼ N(µ0, σ

2
0),

σ2 ∼ IG(aσ2 , bσ2) and ρ ∼ U(−1, 1). The model assumes that the time series follow
independent AR(1) processes with the time series clustered according to their parameters.

The model is applied to annual per capita GDP growth rates for 62 NUTS2 European
regions from 1995 to 2004. The chosen hyperparameter values were µ0 = 0, σ2

0 = 0.01,
aσ2 = 3 and bσ2 = 0.02 (implying a prior mean of 0.01). The Slice 2 algorithm was run with
20 000 particles and k = 1.5. Figure 1 shows the posterior adjacency matrix whose (i, j)-th
entry is the posterior probability that si = sj (the data has been re-arranged to more clearly
show the structure of the clustering). The graph indicates that there are two clearly defined
clusters in the bottom left-hand corner (Group 1) and upper right-hand corner (Group 2).
There are also some points which do not completely fit into either cluster (in the middle)
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Figure 1: The posterior adjacency matrix for the NUTS2 data.
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Figure 2: The time plots of the data of the four clusters found in the NUTS2 data.

(Group 3) and one observations which does not fit into either cluster (Group 4). Plots of
the time series in these groups are shown in Figure 2. The consistency of growth across the
regions grows from Group 2 to Group 3 to Group 1. Group 4 identifies an unusual the time
series.

8 Discussion

The use of sequential Monte Carlo methods for the fitting of infinite mixture models is at-
tractive since these can potentially avoid the problems of Gibb sampling from a potentially
multi-modal posterior. The algorithms developed in this paper represent a viable alternative
to Markov chain Monte Carlo methods when the mixing distribution is given a Normalized
Random Measure with Independent Increments prior. The combination of these methods
with Particle Markov chain Monte Carlo methods (Doucet et al., 2010) is a potentially
powerful method for fitting highly structured infinite mixture model where the weights are
constructed by normalization and allowed to depend on time or covariates.
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A Appendix

A.1 Dirichlet process

The Dirichlet process (Ferguson, 1973) is a normalized Gamma process. Then

f(t, s, k) = MΓ(mk,t)

(
1 +

s∑
j=1

vj

)−mk,t
, L(v) = M log

(
1 +

t∑
i=1

vi

)
,

and

− d

dvn

Kt−1∏
k=1

f(t− 1, t, k) exp {−Lt (v) } = (M + t− 1)

Kt−1∏
k=1

Γ (mk,t−1)

(
1 +

t−1∑
j=1

vj + vt

)−(M+t)

.

In the conjugate case, we have

p(s1:t, v1:t) = MKt

Kt∏
k=1

Γ (mk,t)

(
1 +

t∑
j=1

vj

)−(M+t)

and

p(s1:(t−1), v1:t) = MKt−1(M + t− 1)

Kt−1∏
k=1

Γ (mk,t−1)

(
1 +

t∑
j=1

vj

)−(M+t)

which leads to

p(st | s1:(t−1), v1:t) =
MKt

∏Kt
k=1 Γ (mk,t)

MKt−1(M + n− 1)
∏Kt−1

k=1 Γ (mk,t−1)

(
1 +

t∑
j=1

vi

)
.

The expression leads dirctly to the well-known Pólya urn scheme representation of the
Dirichlet process (Blackwell and MacQueen, 1973),

p(st = k | s1:(t−1), v1:t) =

{
m

(t−1)
j

M+m−1
if j ≤ Kt−1

M
M+m−1

if k = Kt−1 + 1
.

The conditional distribution of vt has the form

p(vt | s1:(t−1), v1:(t−1)) =
(M + t− 1)(

1 +
∑t−1

j=1 vi

)−(M+t−1)

(
1 +

t−1∑
j=1

vi + vt

)−(M+t)

.
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For t = 1, . . . , n, perform steps (1) and (2)

1. For i = 1, . . . , N , perform steps (a)–(g)

(a) Sample τ (i)
t ∼ Ga

(
M + t− 1,

∑t−1
j=1 v

(i)
j

)
and v(i)

t ∼ Ex
(
τ

(i)
t

)
.

(b) Sample dt according to the following probabilities

p(dt = k) ∝

{
m

(i)
j,t−1 if k ≤ K

(i)
t−1

M if k = K
(i)
t−1

If dt = K
(i)
t−1 + 1, simulate θ̃(i)

K
(i)
t−1+1

∼ H .

(c) Sample Ĵ (i)
1 , . . . , Ĵ

(i)

K
(i)
t

(if d(i)
t ≤ K

(i)
t−1) or Ĵ (i)

1 , . . . , Ĵ
(i)

K
(i)
t +1

(if d(i)
t = K

(i)
t−1 + 1)

according to Ĵ (i)
k ∼ Ga

(
m

(i)
k,t−1 + I(d(i)

t = k), 1 +
∑t

j=1 vj

)
.

(d) Let α(i)
t−1 = min

{
Ĵ

(i)
1 , . . . , Ĵ

(i)

K
(i)
t−1

}
and β(i)

t = min

{
Ĵ

(i)
1 , . . . , Ĵ

(i)

K
(i)
t−1

, Ĵ
(i)

d
(i)
t

}
.

(e) Sample u(i) ∼ U
(

0, β
(i)
t

)
(f) Sample J̃

(i)
1 , . . . , J̃

(i)

R
(i)
t

from a Poisson process on
(
u

(i)
t ,∞

)
with intensity

MJ−1 exp
{
−J
(

1 +
∑t

j=1 v
(i)
j

)}
. Simulate θ̃(i)

1 , . . . , θ̃
(i)

R
(i)
t

i.i.d.∼ H .

(g) Let J (i) =
{
Ĵ (i), J̃ (i)

}
and θ(i) =

{
θ̂(i), θ̃(i)

}
. Sample s(i)

t according to

q
(
s

(i)
t = k

)
∝ max

{
J

(i)
k , α

(i)
t−1

}
k
(
yt | θ(i)

k

)
.

(h) Calculate the unnormalized weight

ψ
(i)
t =

∑K
(i)
t +R

(i)
t

k=1 max
{
J

(i)
k , α

(i)
t−1

}
k
(
yt | θ(i)

k

)
∑K

(i)
t +R

(i)
t

k=1 max
{
J

(i)
k , α

(i)
t−1

}
2. Re-weight the particles according to the weights ζi =

ψ
(i)
t∑N

i=1 ψ
(i)
t

(i = 1, . . . , N).

Algorithm 5: Slice 2 SMC algorithm for non-conjugate DP mixture models
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However, since p(st = k | s1:(t−1), v1:t) does not depend on v1:t then it is not necessary to
sample its value. It follows that the algorithm has exactly the same form as the standard
Pólya urn scheme particle filter in Algorithm 1.

In non-conjugate Dirichlet process models, unlike the conjugate version, the value of
vt must be sampled which can done conveniently using the following scheme: simulate
τ ∼ Ga(M, 1 +

∑t−1
j=1 vj) and then vt ∼ Ex(τ). The k-th jump in Ĵ at the t-th iteration

is simulated from Ga
(
m

(i)
k,t−1 + I(dt = k), 1 +

∑t
j=1 v

(i)
j

)
. The points in J̃ are simulated

from a Poisson process on (min{u(i)
t },∞) with intensity MJ−1 exp{−(1 +

∑t
j=1 v

(i)
j )J

which can be simulated using the method described in Griffin and Walker (2011).

A.2 Normalized Generalized Gamma process

The Normalized Generalized Gamma process has

f(t, s, k) =
M

Γ(1− γ)
Γ(mk,t−γ)

(
λ+

s∑
j=1

vj

)−(mk,t−γ)

, L(v) =
M

γ

((
λ+

t∑
j=1

vj

)γ

− λγ
)
.

In the conjugate case, we have

p(s1:t, v1:t) =

(
M

Γ(1− γ)

)Kt Kt∏
k=1

Γ (mk,t − γ)

(
λ+

t∑
j=1

vj

)−(t−Ktγ)

exp

{
M

γ

[
λγ −

(
λ+

t∑
j=1

vj

)γ]}

p(s1:(t−1), v1:t) =

(
M

Γ(1− γ)

)Kt−1

exp

{
M

γ
λγ
}Kt−1∏

k=1

Γ (mk,t−1 − γ)

(
λ+

t−1∑
j=1

vj + vt

)Kt−1γ−t

× exp

{
−M
γ

(
λ+

t−1∑
j=1

vj + vt

)γ}{
M

(
λ+

t−1∑
j=1

vj + vt

)γ

+ (t− 1)−Kt−1γ

}

and so

p(st | s1:(t−1), v1:t) =

(
M

Γ(1−γ)

)Kt
(

M
Γ(1−γ)

)Kt−1

∏Kt
k=1 Γ (mk,t − γ)

(
λ+

∑t
j=1 vj

)Ktγ−t
∏Kt−1

k=1 Γ (mk,t−1 − γ)
(
λ+

∑t
j=1 vj

)Kt−1γ−t

× 1{
M
(
λ+

∑t
j=1 vj

)γ
+ (t− 1)−Kt−1γ

}
which can be expressed in terms of a Pólya urn scheme
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For t = 1, . . . , n, perform steps (1) and (2)

1. For i = 1, . . . , N perform steps (a)–(c)

(a) Sample v(i)
t by inversion sampling from the distribution function(

λ+
∑t−1

j=1 v
(i)
j + v

(i)
t

)−(t−1)+K
(i)
t−1γ

exp
{
−M

γ
(λ+

∑t−1
j=1 v

(i)
j + v

(i)
t )
}

(
λ+

∑t−1
j=1 v

(i)
j

)−(t−1)+K
(i)
t−1γ

exp
{
−M

γ
(λ+

∑t−1
j=1 v

(i)
j )
} .

(b) Sample s(i)
t conditional on y1:t, and s(i)

1:(t−1) from

q (k) ∝

 (m
(i)
k,t−1 − γ) p

(
yt | y1:(t−1), s

(i)
1:(t−1), st = k

)
if k ≤ K

(i)
t−1

M
(
λ+

∑t
j=1 vj

)γ
p
(
yt | y1:(t−1), s

(i)
1:(t−1), st = k

)
if k = K

(i)
t−1 + 1

.

(c) Calculate the unnormalized weight

ψ
(i)
t =M

(
λ+

t∑
j=1

vj

)γ

pr
(
yt | s(i)

1:(t−1), s
(i)
t = K

(i)
t−1 + 1, y1:(t−1)

)

+

K
(i)
t∑

k=1

(m
(i)
k,t−1 − γ)pr

(
yt | s(i)

1:(t−1), s
(i)
t = k, y1:(t−1)

)
.

2. Re-weight the particles according to the weights ζi =
ψ

(i)
t∑N

i=1 ψ
(i)
t

(i = 1, . . . , N).

Algorithm 6: SMC algorithm for conjugate NGG process mixture

p(st = k) =


mk,t−1−γ

M(λ+
∑t
j=1 vj)

γ
+(t−1)−Kt−1γ

if k ≤ Kt−1 + 1

M(λ+
∑t
j=1 vj)

γ

M(λ+
∑t
j=1 vj)

γ
+(t−1)−Kt−1γ

if k = Kt−1 + 1
.

The distribution of vt | s1:(t−1), v1:(t−1) has the distribution function(
λ+

∑t−1
j=1 vj + vt

)−(t−1)+Ktγ

exp
{
−M

γ
(λ+

∑t−1
j=1 vj + vt)

}
(
λ+

∑t−1
j=1 vj

)−(t−1)+Ktγ

exp
{
−M

γ
(λ+

∑t−1
j=1 vj)

}
and so value of vt can be simulated using inversion sampling. Algorithm 6 shows the full
algorithm for the conjugate NGG mixture model.
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In the non-conjugate NGG model, the k-th jump in Ĵ (i) at the t-th iteration is simulated
from Ga

(
m

(i)
k,t−1 + I(dt = k)− γ, λ+

∑t
j=1 v

(i)
j

)
. The points in J̃ (i) are simulated from

a Poisson process on (min{u(i)
t },∞) with intensity M

Γ(1−γ)
J−1−γ exp{−(λ +

∑t
j=1 v

(i)
j )J

which can be simulated using the method described in Griffin and Walker (2011).
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For t = 1, . . . , n, perform steps (1) and (2)

1. For i = 1, . . . , N , perform steps (a)–(g)

(a) Sample v(i)
t by inversion sampling from the distribution function(

λ+
∑t−1

j=1 v
(i)
j + v

(i)
t

)−(t−1)+K
(i)
t−1γ

exp
{
−M

γ
(λ+

∑t−1
j=1 v

(i)
j + v

(i)
t )
}

(
λ+

∑t−1
j=1 v

(i)
j

)−(t−1)+K
(i)
t−1γ

exp
{
−M

γ
(λ+

∑t−1
j=1 v

(i)
j )
} .

(b) Sample dt according to the following probabilities

p(dt = k) ∝

{
m

(i)
j,t−1 − γ if k ≤ K

(i)
t−1

M
(
λ+

∑t
j=1 v

(i)
j

)γ
if k = K

(i)
t−1 + 1

If dt = K
(i)
t−1 + 1, simulate θ̂(i)

K
(i)
t−1+1

∼ H .

(c) Sample Ĵ (i)
1 , . . . , Ĵ

(i)

K
(i)
t

(if dt ≤ K
(i)
t−1) or Ĵ (i)

1 , . . . , Ĵ
(i)

K
(i)
t +1

(if dt = K
(i)
t−1 + 1)

according to Ĵ (i)
k ∼ Ga

(
m

(i)
k,t−1 + I(dt = k)− γ, λ+

∑t
j=1 v

(i)
j

)
.

(d) Let α(i)
t−1 = min

{
Ĵ

(i)
1 , . . . , Ĵ

(i)

K
(i)
t−1

}
and β(i)

t = min

{
Ĵ

(i)
1 , . . . , Ĵ

(i)

K
(i)
t−1

, Ĵ
(i)

d
(i)
t

}
.

(e) Sample u(i) ∼ U
(

0, β
(i)
t

)
(f) Sample J̃

(i)
1 , . . . , J̃

(i)

R
(i)
t

from a Poisson process on
(
u

(i)
t ,∞

)
with intensity

M
Γ(1−γ)

J−1−γ exp
{
−J
(
λ+

∑t
j=1 v

(i)
j

)}
. Simulate θ̃(i)

1 , . . . , θ̃
(i)

R
(i)
t

i.i.d.∼ H .

(g) Let J (i) =
{
Ĵ (i), J̃ (i)

}
and θ(i) =

{
θ̂(i), θ̃(i)

}
. Sample s(i)

t according to

q
(
s

(i)
t = k

)
∝ max

{
J

(i)
k , α

(i)
t−1

}
k
(
yt | θ(i)

k

)
(h) Calculate the unnormalized weight

ψ
(i)
t =

∑K
(i)
t +R

(i)
t

k=1 max
{
J

(i)
k , α

(i)
t−1

}
k
(
yt | θ(i)

k

)
∑K(i)+R

(i)
t

k=1 max
{
J

(i)
k , α

(i)
t−1

}
2. Re-weight the particles according to the weights ζi =

ψ
(i)
t∑N

i=1 ψ
(i)
t

(i = 1, . . . , N).

Algorithm 7: Slice 2 SMC algorithm for non-conjugate NGG process mixture model
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