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Abstract

In this article we consider Bayesian parameter inference associated to partially-observed

stochastic processes that start from a set B0 and is stopped or killed at the first hitting

time of a known set A. Such processes occur naturally within the context of population

genetics [25, 15], statistical analysis of rare events [9, 17, 23], finance [7] and engineering

[6, 18, 27]. The associated posterior distributions are highly complex and posterior parameter

inference requires the use of advanced Markov chain Monte Carlo (MCMC) techniques.

Our approach uses a recently introduced simulation methodology, particle Markov chain

Monte Carlo (PMCMC) [1], where sequential Monte Carlo (SMC) [19] approximations are

embedded within MCMC. However, when the parameter of interest is fixed, standard SMC

algorithms are not always appropriate for many stopped processes. In [11, 16] the authors

introduce SMC approximations of multi-level Feynman-Kac formulae, which can lead to

more efficient algorithms. This is achieved by devising a sequence of nested sets from B0

to A and then perform the resampling step only when the samples of the process reach

intermediate level sets in the sequence. Naturally, the choice of the intermediate level sets

is critical to the performance of such a scheme. In this paper, we demonstrate that multi-

level SMC algorithms can easily be used as a proposal in PMCMC. In addition, we propose

a flexible adaptive strategy that sets the level sets for different parameter proposals. Our

methodology is illustrated on the coalescent model with migration.
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1 Introduction

In this article we consider Markov processes that are stopped when reaching the boundary of a

given set A. These processes appear in a wide range of applications, such as population genetics

[25, 15], finance [7], neuroscience [5], physics [18, 23] and engineering [6, 27]. The vast majority

of the papers in the literature deal with a fully observed stopped processes and assume the

parameters of the model are known. In this paper we address problems when this is not the

case. In particular, Bayesian inference for the model parameters is considered, when the stopped

process is observed indirectly via observations. We will propose a generic simulation method

that can cope with many types of partial observations. To the best of our knowledge, there is

no previous work in this direction. An exception, in the context of maximum likelihood, is [5],

where inference for the model parameters in the fully observed case is investigated.

In the fully observed case, stopped processes have been studied predominantly in the area

of rare event simulation. In order to estimate the probability of rare events related to stopped

processes, one needs efficient methods. This is to sample realisations of the process given it starts

in a set B0 and terminates in a rare target set A before it returns to B0 or gets trapped in some

absorbing set. This is usually achieved using Importance Sampling (IS) or multi-level splitting;

for an overview see [20, 31] and the references therein. Recently, sequential Monte Carlo methods

based on both these techniques have been used in [6, 18, 23]. In [10] the authors also prove under

mild conditions that SMC can achieve same performance as popular competing methods based

on traditional splitting.

Sequential Monte Carlo methods can be described as a collection of techniques used to ap-

proximate a sequence of distributions whose densities are known point-wise up to a normalizing

constant and are of increasing dimension. SMC methods combine importance sampling and re-

sampling to sample from distributions. The idea is to introduce a sequence of proposal densities

and to sequentially simulate a collection of N > 1 samples, termed particles, in parallel from

these proposals. The success of SMC lies in incorporating a resampling operation to control the

variance of the importance weights, whose value would otherwise increase exponentially as the

target sequence progresses [19].

Applying SMC in the context of fully observed stopped processes requires using resampling

while taking into account how close a sample is to the target set. That is, it is possible that

particles close to A are likely to have very small weights, whereas particles closer to the starting

set B0 can have very high weights. As a result, the diversity of particles approximating longer

paths before reaching A would be depleted by successive resampling steps. For example, the
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coalescent [25] in population genetics, this has been noted as early as in the discussion of [32]

by the authors of [11]. In [11] the authors used ideas from splitting and proposed to perform

the resampling step only when each sample of the process reaches intermediate level sets, which

define a sequence of nested sets from B0 to A. This was formalised in [16, Section 12.2], where

using multiple levels for resampling is interpreted as an interacting particle approximation of a

multi-level Feynman-Kac formulae. Naturally, the choice of the intermediate level sets is critical

to the performance of such a scheme. That is, the levels should be set in a “direction” towards set

A and so that each level can be reached from the previous one with some reasonable probability

[10, 20]. This is usually achieved heuristically using trial simulation runs. Also more systematic

techniques exist: for cases where large deviations can be applied in [14] the authors use optimal

control and in [8, 9] the level sets are computed adaptively on the fly using the simulated paths

of the process.

The contribution of this paper is to address the issue of inferring the parameters used to

model the law of the stopped process, when it it is unobserved. In the context of Bayesian

inference one often needs to sample from the posterior density of these parameters, which can

be very complex. Employing standard MCMC methods is not feasible, given the difficulty one

faces to sample trajectories of the stopped process. On the contrary, the recently introduced

PMCMC seems ideal for such latent processes. Essentially, the method constructs a Markov

chain on an extended state-space in the spirit of [3], such that one may apply SMC updates for

a latent process, i.e. use SMC approximations within MCMC. This brings up the possibility of

using the multi-level SMC methodology as a proposal in MCMC. The main contributions made

in this article are as follows:

• When the sequence of level sets is fixed a priori, we can use multi-level SMC within PM-

CMC.

• It is possible to adapt the level sets by defining an appropriate target density on an extended

state-space; this adaptation can improve the mixing ability of the PMCMC algorithm.

This article is structured as follows: in Section 2 we formulate the problem and present the coa-

lescent as a motivating example. In Section 3 multi-level SMC for stopped processes is presented.

In Section 4 we detail a PMCMC algorithm which uses multi-level SMC approximations within

MCMC. In addition, specific adaptive strategies for the levels are proposed, which are motivated

by some theoretical results that link the convergence rate of the PMCMC algorithm to the prop-

erties of multi-level SMC approximations. In Section 5 some numerical experiments for the the
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coalescent are given. The paper is concluded in Section 6. The proofs of our theoretical results

can be found in the appendix.

1.1 Notations

The following notations will be used. A measurable space is written as (E, E), with the class

of probability measures on E written P(E). For Rn, n ∈ N the Borel sets are B(Rn). For

a probability measure γ ∈ P(E) we will denote the density with respect to an appropriate

σ-finite measure dx as γ(x). The total variation distance between two probability measures

γ1, γ2 ∈ P(E) is written as ‖γ1 − γ2‖ = supA∈E |γ1(A)− γ2(A)|. For a vector (xi, . . . , xj), the

compact notation xi:j is used; if i > j xi:j is a null vector. For a vector x1:j , |x1:j |1 is the

L1−norm. The convention
∏
∅ = 1 is adopted. Also, min{a, b} is denoted as a ∧ b and IA(x) is

the indicator of a set A. Let E be a countably infinite state-space, then

S(E) = {R = (rij)i,j∈E : rij ≥ 0,
∑

l∈E

ril = 1 ∩ ∃νi ≥ 0, ∀i ∈ E,
∑

l∈E

νl = 1, νR = ν}

denotes the class of stochastic matrices which possess a stationary distribution. In addition,

we will denote as ei = (0, . . . , 0, 1, 0, . . . , 0) the d-dimensional vector whose ith element is 1 and

is 0 everywhere else. Finally, for the discrete collection of integers we will use the notation

Td = {1, . . . , d}.

2 Problem Formulation

2.1 Posterior

Let θ be a parameter vector on (Θ,B(Θ)), Θ ⊆ Rdθ with an associated prior πθ ∈ P(Θ). The

stopped process {Xt}t≥0 is a (E, E)−valued discrete-time Markov process defined on a probability

space (Ω,F ,Pθ), where Pθ is a probability measure defined for every θ ∈ Θ such that for every

A ∈ F , Pθ(A) is B(Θ)−measurable. For simplicity will we will assume throughout the paper

that the process is homogeneous, but note that the methodology can be easily extended to the

non-homogeneous case. In addition, one can extend to the scenario of a strong Markov-process,

but we do not consider it here.

The process {Xt}t≥0 begins its evolution in a non empty set B0 with the initial distribution

νθ : B0 → P(B0) and the Markov transition kernel pθ : E × Θ → P(E). The process is killed

once it reaches a non-empty target set A ⊂ B0 ∈ F such that Pθ(X0 ∈ B0 \ A) = 1. We define
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the associated stopping time

T = inf{t ≥ 0 : Xt ∈ A},

where it is assumed that Pθ(T < ∞) = 1 and T ∈ I, with I being a finite collection of positive

integer values related to possible stopping times.

The evolution of process is observed through some data that consists of a random observation

vector y ∈ F . Also, there is no restriction on A, such that it can depend on the observed data y,

but to simplify exposition this will not be reflected explicitly in the notation. In the context of

Bayesian inference we are interested in the posterior:

π(dθ, dx0:t, t|y) ∝ γθ,y(dx0:t, t)πθ(dθ), (1)

with t ∈ I and

γθ,y(dx0:t, t) = ξθ,y(x0:t)I(Ac)t×A(x0:t)νθ(dx0)
t∏

j=1

pθ(dxj |xj−1)πθ(dθ),

where ξθ,y : Θ×F×
(⋃

t∈I{t}×E
t+1
)
→ R+ is the complete-data likelihood, which in the context

of Feynman-Kac models can be interpreted as a path ‘potential function’ [16]. Throughout, it is

assumed that for any θ ∈ Θ, y ∈ F we have that γθ,y admits a density γθ,y(x0:t, t) with respect to a

σ−finite measure dx0:t on E =
(⋃

t∈I{t}×E
t+1
)
and the posterior and prior distributions π, πθ

admit densities π, πθ respectively both defined with respect to appropriate σ−finite dominating

measures.

2.2 Motivating Example: The Coalescent

The framework presented so far is rather abstract. We will introduce the coalescent model as a

motivating example, see Figure 1. This example concerns genetic data y = ym1:d ∈ (Zd+)m, that

is, the counts of genes that have been observed. Denote the number of genes of type i at event

j of the process as xij , with xj = (x1
j , . . . , x

d
j ). The objective is to find the genetic parameters

θ = (µ,R), where µ ∈ R+ and R ∈ S(Td), so that the parameter space can be written as

Θ = R+ × S(Td). For the state space we define:

E =
⋃

t∈I

(

{t} × Et+1

)

E = {x1:d ∈ (Z+)d ∩ 2 ≤ |x1:d|1 ≤ m+ 1}

I = {m,m+ 1, . . . }

and for the likelihood we have

γθ,y(x0:t, t) = I{z:|z|1=m+1}(xt)

∏d
i=1 y

m
i !

m!
Iym1:d

(xt−1)

[

νθ(x0)
t∏

j=1

pθ(xj |xj−1)

]
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Here, the process is a Markov chain and is stopped when the number of individuals in the

population exceeds n. However, the density is only non-zero if at time t− 1 the data y matches

xt−1 exactly. The transition density is given by

pθ(xj |xj−1) =






xij−1

|xj−1|1
µ

|xj−1|1−1+µril if xj = xj−1 − ei + el
xij−1

|xj−1|1
|xj−1|1−1
|xj−1|1−1+µ if xj = xj−1 + ei

0 otherwise.

In the Markov density above, the first transition type, is termed mutation where individuals

change type and the second transition is a split event; see Figure 1. When we consider the

process backward in time, this latter event is a coalescence. Finally, the chain is initialised by

the density

pθ(x1) =






νi if x1 = 2ei

0 otherwise.

To facilitate Monte Carlo inference, one must reverse the time parameter and simulate backward

from the data. This is now detailed in the context of importance sampling, e.g. [22].

A

A→ G

A→ C

C A G

Figure 1: A Coalescent graph. The letters denote the types of the three observed chromosomes.

Going up the figure (backward in time), the points where the graph join are coalescent events

and the arrows denote a mutation of the type of a chromosome to another (forward in time).
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2.2.1 Likelihood Computation

To compute the likelihood, for a given θ ∈ Θ, importance sampling is adopted. First we introduce

a time reversed Markov kernel Mθ with density Mθ(xj−1|xj). This is used as an importance

sampling proposal that is initialised by the data and simulates the coalescent tree backward in

time until two individuals remain of the same type and coalesce with each other; this procedure

ensures that the data is hit when the tree is considered forward in time. In both directions in

time {Xt} is a stopped Markov process with A,B reversed.

In particular, we will consider the event sequence j = t, t− 1, . . . , 1 posed backwards in time.

The proposal density for the full path starting from the bottom of the tree and stopping at its

root can be written as

M
ym1:d
θ (x0:p) ∝ I{ym1:d}

(x0)

{ 1∏

j=t

Mθ(xj−1|xj)

}

I{x∈(Z+∪{0})d:x=ei,i∈Td}(xt).

Then the marginal likelihood is

m− 1
m− 1 + µ

∏d
i=1(ymi )!
m!

∑

t∈I

∫

Et
pθ(x1)

{ 2∏

j=t

pθ(xj |xj−1)

Mθ(xj−1|xj)

}

M
ym1:d
θ (x1:t)dx1:t.

With reference to (1) we have

γθ,y(x0:t, t) =
m− 1

m− 1 + µ

∏d
i=1(ymi )!
m!

pθ(x1)

{ 2∏

j=t

pθ(xj |xj−1)

Mθ(xj−1|xj)

}

M
ym1:d
θ (x1:t)

Although we will not present the details here, in the context of importance sampling it is pos-

sible to derive an optimal proposal Mθ with respect to the variance of the marginal likelihood

estimator; see [32] for details.

The above scenario is used only to provide an interesting toy example. We remark, when

there is only mutation, the stopped-process can be integrated out; see [21]. However, it is not

typically possible to remove the stopped process in more complex scenarios. An interesting

example where, to the best of our knowledge, this is the case is if we include migration events.

This more complicated problem is presented in Section 5.2.

3 Multi-Level Sequential Monte Carlo Methods

In this section we shall briefly introduce generic SMC without extensive details. We refer the

reader for a more detailed description to [16, 19]. SMC algorithms are designed to simulate from a

sequence of probability distributions π1, π2, . . . , πp defined on state space of increasing dimension,

namely (G1,G1), (G1 ×G2,G1 ⊗ G2), . . . , (G1 × · · · ×Gp,G1 ⊗ · · · ⊗ Gp). Each distribution in the
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sequence is assumed to possess densities with respect to a common dominating measure:

πn(u1:n) =
γn(u1:n)
Zn

with each un-normalised density being γn : G1 × · · · × Gn → R+ and the normalizing constant

being Zn. We will assume throughout the article that there are natural choices for {γ̄n} and that

we can evaluate each γn pointwise. In addition, we do not require knowledge of Zn.

3.1 Generic SMC Algorithm

To ease exposition, when presenting generic SMC, we shall drop the dependence upon parameter

θ. In summary, SMC algorithms approximate {πn} recursively by propagating a collection of

properly weighted samples, called particles, using a combination of importance sampling and

resampling steps. For the importance sampling part of the algorithm at each step n of the

algorithm we will use general proposal kernels Mn with densities Mn, which possess normalizing

constants that do not depend on the simulated paths. A typical SMC algorithm is given below:

• 0. Initialisation: set n = 1; for i ∈ TN sample U (i)
1 ∼M1 and compute

w
(i)
1 =

γ1(u(i)
1 )

M1(u(i)
1 )

with W (i)
1 = w

(i)
1 .

• 1. Decide whether or not to resample, and if this is performed, set all weights {W (i)
n }1≤i≤N

to 1 and proceed to step 2.

• 2. Set n = n + 1, if n = p + 1 stop, else; for i ∈ TN sample U (i)
n |u

(i)
1:n−1 ∼ Mn(·|u(i)

1:n−1),

compute

w(i)
n = wn(u(i)

1:n) =
γn(u(i)

1:n)

γn−1(u(i)
1:n−1)Mn(u(i)

n |u
(i)
1:n−1)

and set W (i)
n = w

(i)
n W

(i)
n−1 and return to the start of step 1.

3.1.1 Some details on resampling

If one chooses to implement SMC without resampling steps, i.e. to perform sequential importance

sampling, as time progresses, the variance of the weights {W (i)
n }1≤i≤N typically increases. This

has been commonly referred to as the weight degeneracy property. To counter this resampling

is used: the particles {X(i)
1:n}1≤i≤N are sampled with replacement, according to the normalised

weights {W̄ (i)
n }1≤i≤N given by

W̄ (i)
n =

W
(i)
n

∑N
j=1W

(j)
n
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and then each W (i)
n is reset to 1.

If one resamples too often, the simulated past of the path of each particle will be very similar

to each other. This has been documented as the path degeneracy problem. A common remedy

was to resample only when appropriate criteria drops beneath or go above some threshold. In

the former case, a common criterion is the effective sample size

(
∑N

j=1

(
W

(j)
n

)2
)−1

[28]. The

path degeneracy has been a long standing bottleneck when static parameters θ are estimated

online using SMC methods by augmenting them with the latent state. We refer the reader to

[2, 24] for more details. These issues have motivated the development and use of offline methods

like Particle MCMC detailed in Section 4.1. In addition, given path degeneracy is not critical

when PMCMC methods are used, for the remainder of the article we will assume one resamples

at each stage of the algorithm.

Suppose one resamples, multinomially, at every iteration, except when n = p. Denote the

resampled index of the ancestor of particle i at time n by ain ∈ TN ; this is a random variable

chosen with probability W̄
(ain−1)

n−1 . Furthermore the joint density of the sampled particles and the

resampled indices is

ψ(ū1:p, ā1:p−1) =

( N∏

i=1

M1(u(i)
1 )

) p∏

n=2

( N∏

i=1

W̄
(ain−1)

n−1 Mn(u(i)
n |u

(ain−1)

n−1 , . . . , u
(ai1)
1 )

)

, (2)

where the complete genealogy of ancestors is denoted as ān = (a1
n, . . . , a

N
n ) and the randomly

simulated values of the state as ūn = (u(1)
n , . . . , u

(N)
n ). Together they form the following SMC

approximations for πn

πNn (du1:n) =
1
N

N∑

j=1

δ
ū

(ain)
1:n

(du1:n)

and an approximation of the normalizing constant of πp as

Ẑp =
p∏

n=1

{
1
N

N∑

j=1

W (j)
n

}

. (3)

The complete ancestral genealogy at each time can always traced back by defining an ancestry

sequence bi1:n for every i ∈ TN and n ∈ Tp−1, whose elements are given by the backward

recursion bin = a
bin+1
n where bip = i. In this context one can view SMC approximations as random

probability measures induced by the imputed random genealogy ān and the state sequence ūn.

This interpretation of SMC approximations was introduced in [1] and will be later used together

with ψ(ū1:p, ā1:p−1) for establishing the complex extended target distribution of PMCMC.
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3.2 Multi-Level SMC implementation

Applying SMC in its most generic form presented earlier might not be the best possible choice

for any given problem. A multi-level implementation was proposed in [11] and the approach was

illustrated for the coalescent model of Section 2.2. We consider a modified approach along the

lines of [16, Section 12.2], which seems better suited for stopped processes and can yield estimators

of much lower variance relative to vanilla SMC.

Introduce an arbitrary sequence of F−nested sets

B0 ⊃ B1 · · · ⊃ Bp = A, p ≥ 2

with the corresponding stopping times denoted as

Tl = inf{t ≥ 0 : Xt ∈ Bl}, 1 ≤ l ≤ p,

Note that the (strong) Markov property of Xt implies 0 ≤ T1 ≤ T2 ≤ · · · ≤ Tp = T .

Similar to generic SMC we will assume there is a natural sequence of densities {γθ,n}1≤n≤p,

γθ,n : Θ × F ×
{⊗n

j=1

(⋃
i∈Ij
{i} × Ei

)}
→ R+, that obeys the restriction γθ,p ≡ γθ,y so that

that the last target density γθ,p coincides with γθ,y. Note that we define a p length sequence

of target densities, but this time each γθ,n has a random length tn − tn−1. Multi-level SMC is

a SMC algorithm which ultimately targets a sequence of distributions {πθ,n} each defined on a

space

En =

( ⋃

i∈I1

{i} × Ei
)

× · · · ×

( ⋃

i∈In

{i} × Ei
)

. (4)

where n = 1, . . . , p, p ≥ 2 and I1, . . . , Ip are finite collections of positive integer values related to

the stopping times T1, . . . , Tp respectively. Note that this presentation differs significantly from

[11], as the state-space of the target densities and explicit representation of the latter were not

detailed there.

The implementation of multi-level SMC differs from the generic algorithm of Section 3.1 in

that between successive resampling steps one proceeds by propagating in parallel trajectories of

X
(j)
0:t until each level Bn is reached and X(j)

t ∈ Bn. The path X
(j)
0:t is “frozen” until the remaining

particles reach Bn and then a resampling step is performed. More formally denote for n = 1

X1 = {x0:t1 , t1 : x0:t1−1 ∈ B0 \B1, xt1 ∈ B1}

where t1 is a realisation for the stopping time T1 and similarly for 2 ≤ n ≤ p we have

Xn = {xtn−1+1:tn , tn : xtn−1+1:tn−1 ∈ Bn−1 \Bn, xtn ∈ Bn}.
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As in the generic SMC algorithm of Section 3.1, one can introduce a collection of Markov impor-

tance sampling kernels {Mθ,n}, with Mθ,n : Θ×E →P(E) and denote their densities w.r.t. dx

as {Mθ,n}. If this is not possible and one can simulate from the transition kernel of the Markov

chain, then one may alternatively use the latter as an importance sampling kernel.

Multi-level SMC can be outlined along the lines of the generic algorithm of Section 3.1, if we

replace u1:n with X1:n. For step 1 we always resample at n = 1, 2, . . . , p, where the incremental

weight of step 2 of the algorithm is used, which for n ≥ 2 is given by

wn(X1, . . . ,Xn) =
γθ,n(X1, . . . ,Xn)

γθ,n−1(X1, . . . ,Xn−1)
∏tn
l=tn−1+1 Mθ,n(xl|xl−1)

.

For step 0 of the generic SMC algorithm we use instead

w1(X1) =
γθ,1(X1)

∏t1
l=0Mθ,1(xl|xl−1)

.

To simplify notation from herein we write

Mθ,1(X1) =
t1∏

l=0

Mθ,1(xl|xl−1)

and given p, for any 2 ≤ n ≤ p we have

Mθ,n(Xn|Xn−1) =
tn∏

l=tn−1+1

Mθ,n(xl|xl−1).

As mentioned earlier we note that at each n once xtn ∈ Bn, then a particular particle targetting

X1:n is frozen and resampling is performed when all particles reach Bn. Similar to (2), it is

clear that the joint probability density of all the random variables used to implement a particle

algorithm with multinomial resampling (excluding the resampling at step p) is given by:

ψθ(X̄1:p, ā1:p−1) =

( N∏

i=1

Mθ,1(X (i)
1 )

) p∏

n=2

( N∏

i=1

W̄
(ain−1)

n−1 Mθ,n(X (i)
n |X

(ain−1)

n−1 )

)

. (5)

In this scenario, recall that an approximation of the normalizing constant is, for fixed θ

Ẑθ,p =
p∏

n=1

{
1
N

N∑

j=1

w(j)
n

(
X (j)

1:n

)}

. (6)

3.2.1 Setting the levels

We will begin by showing how the levels can be set for the coalescent example of Section 2.2.

Recall that in the spirit of Section 2.2.1 we adopt the convention that the “time” indexing is set

to start from the bottom of the tree towards the root. We introduce a a collection of integers

m > l1 > l2 > · · · > lp = 1 and define for 1 ≤ n ≤ p

Bn = {x ∈ (Z+ ∪ {0})d : |x|1 = ln},
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with B0 = {x ∈ (Z+ ∪ {0})d : |x|1 = m}; clearly, Bn−1 ⊃ Bn, 1 ≤ n ≤ p and Bp = A. One can

also write the sequence of target densities for the multi-level setting as:

γθ,0(x0) ∝
m− 1

m− 1 + µ

∏d
i=1(ymi )!
m!

I{ym1:d}
(x0)

γθ,n(x0:tn , tn) ∝ γθ,n−1(x0:tn−1 , tn−1)
tn∏

l=tn−1+1

pθ(xl−1|xl)I{xtn∈Bn}(xtn), n = 1, . . . , p − 1

γθ,p(x0:tp , tp) ∝ γθ,p−1(x0:tp−1 , tp−1)
tp−1∏

l=tp−1+1

pθ(xl−1|xl)pθ(xtp−1)I{xtp∈Bn}(xtp).

To avoid confusion, note that the direction of l= 0, . . . , tp here is opposite than j = 0, . . . , t

in Section 2.2.1. In this sense one may interpret multi-level schemes as an explicit importance

sampling construction similar to M
ym1:d
θ (x0:p) which also take into account the direction of the

process towards A.

The major design problem that remains in general is that given any candidates for {Mn,θ},

how to set the spacing, shape of {Bn} and how many levels are needed so that good SMC

algorithms can be constructed. That is, if the {Bn} are far apart, then one can expect that

weights will degenerate very quickly and if the {Bn} are too close that the algorithm will resample

too often and hence lead to poor estimates. For instance, in the context of the coalescent example

of Section 2.2, if one uses the above construction for {Bn} the importance weight at the n-th

resampling time is

wn(x0:tn) =
tn∏

l=tn−1+1

pθ(xl−1|xl)

Mθ,n(xl|xl−1)
I{xtn∈Bn}(xtn),

Now, in general for any {ln}
p
n=1 and p there is no concrete reason to expect that the resulting

multi-level algorithm will perform well, relative to a vanilla SMC algorithm. Whilst [11] show

empirically that in most cases this can be true, one would like to guarantee this by designing the

levels sensibly. This design issue becomes also more apparent when θ is varied, as it is clear that

for very different parameters, one is likely to need different sequences for{Bn}.

When interpreting the algorithm as a particle approximation of a multi-level Feynman-Kac

formula, such difficulties have been dealt with by [8, 9] for rare-event simulation. There the

authors use adaptive techniques to determine the next set Bn. For example, for the coalescent,

one might set the next level to be the median number of individuals within the sample of the

particles when the effective sample size drops below some value. This idea is rather intuitive and

can drastically improve the empirical performance of SMC algorithms. The intention here is to

be able to use such adaptive ideas for multi-level SMC within PMCMC, which will be presented

in the next section. Clearly, the ability to use the probability density (5) as a proposal in MCMC

12



precludes the latter idea, which is also dealt with.

4 Multi-Level Particle Markov Chain Monte Carlo

4.1 PMCMC Methods

Particle Markov Chain Monte Carlo methods are effectively MCMC algorithms, which use all

the random variables generated by SMC approximations to generate proposals. As in standard

MCMC the idea is to run an ergodic Markov chain to obtain samples from the distribution of

interest. The difference lies in that due to using SMC approximation the invariant distribution

of the simulated chain is defined on an extended state space, with marginal the distribution we

are interested to sample from in the first place.

We will begin by presenting the simplest generic algorithm found in [1], namely the particle

independent Metropolis-algorithm (PIMH). In this case θ and p are fixed and PIMH is designed

to sample from a pre-specified target distribution πp as the ones presented in Section 3.1. This

algorithm proceeds as follows:

• 0. Sample ū1, . . . , ūp, ā1, . . . , āp−1 from (2). Sample k ∈ TN from W̄ k
p and set this as a new

state. Store Ẑ(0), k(0), X̄1:p(0), ā1:p−1(0) (see eq. (3)). Set i = 1

• 1. Propose a new ū′1, . . . , ū
′
p, ā
′
1, . . . , ā

′
p−1 and k′ as in step 0. Accept or reject this as the

new state of the chain with probability

1 ∧
Ẑ ′

Ẑ(i− 1)
.

If we accept, store
(
Ẑ(i), k(i), X̄1:p(i), ā1:p−1(i)

)
=
(
Ẑ ′, k′, X̄ ′1:p(i), ā

′
1:p−1

)
. Set i = i+ 1.

In [1] it is shown that the invariant density of the Markov kernel above is exactly

πNp (k, ū1:p, ā1:p−1) =
πp(u

(k)
1:p)

Np

ψ(ū1:p, ā1:p−1)

M1(u
(bk1 )
1 )

∏p
n=2

{
W̄

(bkn−1)

n−1 Mn(u(bkn)
n |u

(bkn−1)

n−1 , . . . , u
(bk1 )
1 )

}

where ψ is as in (5) and as before we have bkp = k and bkn = a
bkn+1
n for every k ∈ TN and n ∈ Tp−1.

The target density of interest, πp, is the marginal, conditional on k and ā1:p−1.

When θ is a random variable, [1] also introduce particle marginal Metropolis (PMMH) and

particle Gibbs samplers; see [1] for details. In the remainder of this article we will focus on using

multi-level SMC implementation within a PMMH algorithm.

13



• 0: Set θ(0) ∈ Θ, sample a multi-level SMC algorithm (i.e. X̄1:p(0), ā1:p−1(0)) using (5) for

fixed θ = θ(0) sample k(0) according to W̄p, and compute and store the estimate of the

normalizing constant Ẑθ,p(0) (see eq. (6)). Set i = 1, x(0) = (θ(0), k(0), X̄1:p(0), ā1:p−1(0)).

• 1: Sample θ′ ∼ q(·|θ(i−1)) and then given θ′, simulate (X̄ ′1:p(0), ā′1:p−1) using (5), computing

Ẑθ′,p, sampling k′ according to W̄p and accept or reject x′ with probability

1 ∧
Ẑθ′,p

Ẑθ,p(i− 1)
×
q(θ(i− 1)|θ′)
q(θ′|θ(i− 1))

if accepted set x(i) = x′, with Ẑθ(i),p(i) = Ẑθ′,p, otherwise retain the current values. Set

i = i+ 1.

Figure 2: Multi-Level SMC within MCMC.

4.2 Multi-Level SMC within MCMC

Given the commentary in Section 3.2 and our interest in drawing inference on θ ∈ Θ, it seems

that using multi-level SMC within PMCMC should be highly beneficial. Intrinsically, one expects

that any SMC algorithm which can produce good estimates of the normalizing constants should

improve the mixing of the MCMC sampler. As a result, the questions that underly our subsequent

analysis are:

1. Is it possible to use multi-level SMC within MCMC?

2. Given that it is, how can we use this ‘optimally’ in some sense.

First we will deal with the first point for the case when p is fixed. So, in the context of our

stopped Markov process, we propose a PMMH algorithm in Figure 2.

We now establish the invariant density and convergence of this algorithm, under the following

assumption:

(A1) For any θ ∈ Θ and p ∈ I we define the following sets for n = 1, . . . , p: Sθn = {X1:n ∈

En : πθ,n(X1:n) > 0} and Qθn = {X1:n ∈ En : πθ,n−1(X1:n−1)Mθ,n(Xn|Xn−1) > 0}. For

any θ ∈ Θ we have that Sθn ⊆ Qθn. In addition the ideal Metropolis Hastings sampler with

target density given by

π̄(θ) =
∑

t∈I

∫

Et
π̄(θ, x0:t, t|y)dx0:t

and proposal density q(θ′|θ) is irreducible and aperiodic.
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This assumption contains assumptions 5 and 6 of [1] modified to our problem with a simple

change of notations.

Proposition 4.1. Assume (A1); for any N ≥ 1:

1. The invariant density of the kernel in described in Figure 2, is on the space Θ×T(p−1)N+1
N ×

E (with E as in eq. (4)) and has the representation

πN (θ, k, X̄1:p, ā1:p−1) =
π(θ,X (k)

1:p )

Np

ψθ(X̄1:p, ā1:p−1)

Mθ,1(X (bk1 )
1 )

∏p
n=2

{
W̄

(bkn−1)

n−1 Mθ,n(X (bkn)
n |X

(bkn−1)

n−1 )
} (7)

where

π(θ,X1:p) ∝ πθ(θ)γθ,p(X1:p) (8)

and ψθ is as in (5). In addition, (7) admits π(θ) (the marginal on θ of (8)) as a marginal.

2. The kernel generates a sequence {θ(i),X1:p(i)} such that the marginal law {LN} satisfies

lim
i→∞

‖LN (θ(i),X1:p(i) ∈ ·)− π(·)‖ = 0

where π is as in (1).

The proof of the result is in the appendix.

Remark 4.1. Note that, in the context of Figure 2, any enhanced strategies may be added to

this simple algorithm. For example, such as updating blocks of the latent variables or backward

simulation in the context of a particle Gibbs version ([35]) (the conditional SMC can be run in a

similar manner to Section 4.4 of [1]).

4.2.1 Some Convergence Analysis

Before continuing, we briefly investigate some convergence properties of the PIMH with multi-

level SMC. The analysis uses the basic assumption below. Recall that θ ∈ Θ and p ∈ I are fixed.

We will be using the following assumption:

(A2) For every θ ∈ Θ and p ∈ I there exist a ϕ ∈ (0, 1) such that for 2 ≤ n ≤ p and every

(x, x′) ∈ E × E:

ϕ ≤Mθ,n(x′|x) ≤ ϕ−1

and for n = 1 and every x ∈ E

ϕ ≤Mθ,n(x) ≤ ϕ−1.
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In addition, there exist a ρ ∈ (0, 1) such that for 1 ≤ n ≤ p and every X1:n ∈
(⋃

i∈I1
{i} ×

Ei
)
× · · · ×

(⋃
i∈In
{i} × Ei

)
:

ρtn ≤ γθ,n(X1:p) ≤ ρ
−tn .

We note that although these assumptions are quite strong, they can be typically satisfied on

compact state-spaces E.

The PIMH will generate samples from the density

πNθ (k, X̄1:p, ā1:p−1) =
πθ,p(X

(k)
1:p )

Np

ψθ(X̄1:p, ā1:p−1)

Mθ,1(X (bk1 )
1 )

∏p
n=2

{
W̄

(bkn−1)

n−1 Mθ,n(X (bkn)
n |X

(bkn−1)

n−1 )
}

and we write expectations w.r.t. the associated probability as EπNθ . Let π̌θ be the probability

distribution associated with the marginal density πθ(X
(k)
1:p ). We proceed by stating the following

proposition:

Proposition 4.2. Assume (A2). Then the PIMH with multi-level SMC, for N ≥ 1, generates a

sequence {X1:p(i)} such that for any i ≥ 1, x(0) ∈ T(p−1)N+1
N × E, θ ∈ Θ

‖L(X1:p(i) ∈ ·|x(0))− π̌θ(·)‖ ≤ EπNθ

[(

1− Zθ,p
{[
ρϕ
]2∑p

j=1 t̄j(0)
∧
[
ρϕ
]2∑p

j=1 t̄j
}
)i]

where t̄j(0) = max1≤l≤N t
(l)
j (0) and t̄j = max1≤l≤N t

(l)
j .

The proof of this result is in the appendix.

Remark 4.2. The result shows that, intrinsically, as the maximum SMC algorithm time (w.r.t. πNθ )

gets smaller, so the rate of convergence increases. This is linked to the variance of the esti-

mate of Ẑθ,p; shorter algorithm runs will typically yield lower variance and hence better MCMC

convergence properties. The result also indicates that longer SMC algorithm runs may reduce

convergence rates of the MCMC, but one must bear in mind that the PIMH is most basic of all

PMCMC algorithms. In effect, one must hope to control the SMC algorithm time for all the

particles to reach A, for efficient MCMC algorithms; we attempt to do this in the next Section.

4.3 Adaptive Strategies

As noted in Section 3.2.1, there are remaining design issues with multi-level SMC, that is, the

choice of p and {Bn}. Whilst, for a fixed θ ∈ Θ, one could solve the problem with a preliminary

run, once θ is a random variable, there is a key difficulty. For some θ the value of p may have

to very large to facilitate an efficient SMC algorithm and conversely, may be small for other θ.

For example, for the coalescent model of Section 2.2, if R (the mutation matrix) is fixed, one can
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• 0: Set θ(0) ∈ Θ, sample v(0) from Λθ(0) and a multi-level SMC algorithm

(i.e. X̄1:p(v(0))(0), ā1:p(v(0))−1(0)) using (5) for fixed θ = θ(0) and compute and store

the estimate of the normalizing constant Ẑθ,p(0) (see eq. (6)). Set i = 1, x̌(0) =

(θ(0), k(0), v(0), X̄1:p(v(0))(0), ā1:p(v)−1(0)).

• 1: Sample θ′ ∼ q(·|θ(i− 1)) and v′ from Λθ′ and then given θ′, simulate X̄1:p(v′), ā1:p(v′)−1

using (5), computing Ẑθ′,p, sampling k′ according to W̄p(v′) and accept or reject x̌′ with

probability

1 ∧
Ẑθ′,p

Ẑθ,p(i− 1)
×
q(θ(i− 1)|θ′)
q(θ′|θ(i− 1))

if accepted set x̌(i) = x̌′, with Ẑθ(i),p(i) = Ẑθ′,p, otherwise retain the current values. Set

i = i+ 1.

Figure 3: Adaptive Multi-Level SMC within MCMC.

envisage a ‘large’ value of µ may need many sets that are close together, whilst smaller values less

so. Hence, to obtain a low variance, accurate estimate of the marginal likelihood, and thus an

efficient MCMC algorithm, we will consider an adaptive strategy to propose randomly a different

number of levels p and levels’ sequence {Bn} for every SMC run within each MCMC iteration.

One of the main questions we wish to address is how to perform such an adaptive strategy

consistently. An important point, is the fact that since we are interested in parameter inference,

it is required that the marginal of the target density is π(θ). This can be ensured by introducing

a conditionally independent process (on θ) and defining an extended target for the MCMC

algorithm, which includes p and {Bn} in the target variables. It should be noted that this is

explicitly different from Proposition 1 of [29]; there the MCMC kernel is dependent upon an

auxiliary process.

4.3.1 Approach

Consider now that it is possible at every MCMC iteration to simulate an auxiliary process v

defined upon an abstract state-space (V,V ). Let this with associated random variable v, be

distributed according to Λθ, which is assumed to possess a density with respect to a. σ−finite

measure dv written as Λθ. As hinted by the notation Λθ should depend on θ and v is meant be

used to determine the sequence of levels levels {Bn} for each θ in the PMMH iteration. This

auxiliary variable will, for every θ ∈ Θ, Λθ−almost everywhere:

• Induce a path from B0 to A which is random in length.
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• The number of sets induced by v is written p(v) ∈ J ⊂ Z+.

The advantage of using an auxiliary variable lies that the parameters that determine {Bn} can

be easily forced to depend on v within this framework. Also, in most applications it might seem

easier to find intuition on how to construct and tune Λθ than computing the level sets directly

from θ.

We will naturally assume that for any θ ∈ Θ, (4) will hold Λθ−almost everywhere (where

with p is replaced by p(v)). This implies, for every θ ∈ Θ, that Λθ− almost everywhere

∑

(t1,...,tp(v))∈I1×···×Ip(v)

∫

E
t1+···+tp(v)

γθ,y(X1:p(v))dX1:p(v) =
∑

t∈I

∫

Et
γθ,y(x0:t)dx0:t. (9)

In Figure 3 we propose a PMMH algorithm, which at each steps uses adapts the sequence of

the levels {Bn}. For this algorithm we present also the following proposition, whose proof is

contained in the appendix.

Proposition 4.3. Assume (A1). For any N ≥ 1:

1. The invariant density of the kernel in described in Figure 3, is on the space

Θ× V ×
⋃

j∈J

{j} ×

[

Tj(N−1)+1
N ×

{( ⋃

i∈I1

{i} × Ei
)

× · · · ×

( ⋃

i∈Ip(j)

{i} × Ei
)}N]

and has the representation

πNa (θ, k, v, X̄1:p(v), ā1:p(v)−1) = (10)

π(θ,X (k)
1:p(v))

Np(v)

ψθ,v(X̄1:p(v), ā1:p(v)−1))Λθ(v)

Mθ,1(X
(bk1 )
1 )

∏p(v)
n=2

{
W̄

(bkn−1)

n−1 Mθ,n(X (bkn)
n |X

(bkn−1)

n−1 )
}

where ψθ is as in (5). In addition, (10) admits π(θ) as a marginal.

2. The kernel generates a sequence {θ(i),X1:p(i)} such that the marginal law {LNa } satisfies

lim
i→∞

‖LNa (θ(i),X1:p(i) ∈ ·)− π(·)‖ = 0

where π is as in (1).

5 Numerical Examples

Our first example is a toy version of the coalescent, where we use the Wang-Landau ([33])

algorithm within our adaptive scheme. We also consider the application of our algorithm to the

coalescent with migration (see [4, 15]).
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5.1 The Coalescent

We return to the example of Section 2.2 and it is assumed that the stochastic matrix R is known

and has all entries equal to 1/d. In this scenario, and as noted in Section 4.3, it may be necessary,

for good mixing of the PMCMC, to have a large number of levels for µ large and vice-versa. We

are to compare multi-level SMC within PMCMC against a particular adaptive multi-level SMC

algorithm within PMCMC.

5.1.1 Sampling Strategy

One of the challenges of parameter inference associated to the coalescent model, is the tree

structure of the latent variable; this has lead to significant research effort to increase the state-

space to facilitate parameter estimation e.g. [34]. The tree makes it very difficult to sample blocks

(e.g. up-to the first set B1) as the tree particles may not ‘match-up’. We introduce the following,

simple, strategy that is suitable for low or finite dimensional parameter spaces.

We propose to use the Wang-Landau algorithm, which allows one to traverse the entire state-

space, via selection of a partition. The algorithm uses an adaptive MCMC kernel, where the

target density is changed on the fly. In short, we take the target density, at time i of the MCMC

algorithm as

πNw,i(θ, k, v, X̄1:p(v), ā1:p(v)−1) ∝
l̄∑

l=1

[
IΘl(θ)
ζi(l)

πNa (θ, k, v, X̄1:p(v), ā1:p(v)−1)

]

where ζ0(l) = 1. ζi(l) > 0, l ∈ Tl̄, Θ =
⋃l̄
l=1 Θl and for i 6= j, Θi ∩Θj = ∅. The sequence {ζ(l)}

is updated using the stochastic approximation at iteration i:

ζi(l) = ζi−1(l)(1 + IΘl(θ(i))$i)

where {$i} is a sequence of step-sizes (see [33] for details) and we adopt the algorithm in Figure

3 to update the rest of the states. It is possible to draw inference from πNa , using importance

sampling; see e.g. [12]. We refer the reader to [33] for the details on the Wang-Landau algorithm;

its usage here is relatively standard.

For the adaptation of the levels (see Section 2.2.1) we propose the following simple idea.

Sample the number of levels with probability proportional to µp and then, given p place each

level an (almost) equal distance apart. For example, if there are 20 individuals and a 4 is sampled,

then levels l1, . . . , lp are placed at 19, 14, 9, 4 with 1 at the end (i.e. we have 5 levels).

The SMC uses approximations of optimal proposal distribution, that are detailed in [32].
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N 50 100 150

Relative L1 1.71 (0.75) 1.89 (0.67) 2.20 (0.57)

Table 1: The Relative L1−distance jumped for the adaptive PMCMC against the ordinary. The

brackets are the variance across the runs.

5.1.2 Numerical Results

For this example, d = 4 with the data-set being (10, 5, 9, 5). The parameter-space is Θ =

[0, 1.25] (with a uniform prior) and we take 50 partitions equally spaced. For the adaptations

p ∈ {10, . . . , 27}. The standard SMC had 14 sets with equally spaced levels. The kernel q(·|µ) in

Figure 3 is a normal random walk on the scale log([1.25− µ]/µ). We included two kernels with

proposal variance 0.08 (picked with probability 0.75) and 1. The adaptive and normal versions

were run with N = 50, 100, 150 for 10000 iterations 10 times (the CPU time, around 800 seconds

for N = 50 in MATLAB, is approximately the same, but results have been standardized for any

differences). All coincidental simulation parameters are the same for both samplers.

The average L1−distance jumped is in Table 1. In this Table, it can be observed that the

adaptive algorithm moves across the space more than its standard counter-part. This is supported

by the plots in Figure 4 (every 5 steps, N = 50) . Here one can see that the variation in levels,

allows the sampler to move across the state-space. For this example, we found the adaptive

method to work better as N increased. This is attributed to the fact that the SMC algorithms

improve, but also that one has a better sequence of levels for the adaptive method, which leads

to better estimates of the marginal likelihoods and superior mixing MCMC algorithms.
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Figure 4: Some PMCMC Plots. In (a) and (b) are the sampled µ. In (c) is the variation of the

levels of the PMCMC.
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5.2 Coalescent Model with Migration

For our second example we consider the coalescent model with migration.

5.2.1 Model

The model is essentially the same as described in Section 2.2. The difference is the addition of

sub-groups and the possibility of individuals in a given group migrating to another.

More formally, we consider g groups, with each observation lying in one of the g groups and

having a type in the set {1, . . . , d} as for the coalescent model. That is,

xj = (x1
1,j , . . . , x

d
1,j , . . . , x

1
g,j , . . . , x

d
g,j)

where j is the time-index in the Markov chain and

E = {x1:d
1:g ∈ (Z+)dg ∩ 2 ≤ |x1:d

1:g|1 ≤ m+ 1}.

Forward in time, the process under-goes 3 transitions; split, mutation and migration. That

is, one can have any of the following 3 transitions:

Xj = Xj−1 + eα,i

Xj = Xj−1 − eα,i + eα,l

Xj = Xj−1 − eα,i + eβ,i

where eα,i has a zero in every position, except the (α − 1)g + i, α, β ∈ {1, . . . , g}, α 6= β. The

transition probabilities are all available, except much more complex than in the scenario with

only splits and mutation; we refer the reader to [15] for details. We remark, that the transition

probabilities are parameterized by the mutation parameter µ, mutation matrix R and migration

matrix Ξ. The latter matrix is symmetric, with zero values on the diagonal, and positive values

on the off-diagonals.

As for the model described in Section 2.2, time can be reversed and an IS method introduced.

In this article we use the approach described in [15] and refer the reader to that paper for the

details. In particular, the π̂ in [15, pp. 440] is taken as the mutation matrix, which facilitates

fast computation, with the possibility of an inefficient SMC procedure.

5.2.2 Results

In our example we generated data with m = 100, d = 256 and g = 3; this is quite a challenging

set-up. Throughout, we set the mutation matrix as uniform and concentrate on inferring the
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N 10 25 50

Acceptance Rate 0.22 (0.05) 0.26 (0.06) 0.35

CPU Time 18810 sec (480) 43290 sec (529) 3 days

Table 2: Results for the Coalescent with Migration. For the case N = 10, 25 the algorithms were

run 10 times. The standard errors across the runs are given in brackets.

θ = (µ,Ξ). Independent gamma priors with shape and scale parameters equal to 1/5 were

adopted for each of the parameters.

For the PMCMC, we used 50 particles and the adaptive scheme for the levels (we use the

same set-up as for the previous example) was as follows. We allow either 10, 20 or 33 levels which

are equally spaced. The choice of the number of levels is made by taking the number of levels to

the power

log{µ+
∑

i>j

Ξij + 1}.

We found this simple adaptive scheme to work well in practice. The proposals for the parameters

were random-walks on the log-scale.

The algorithm was run for 4000 iterations on a pentium 2.4 Ghz machine (coded in C), which

took around 3 days. Whilst the run-time is quite long, it can easily be made faster by more

efficient coding. Some results can be seen in Figure 5 and Table 2.

The plots in Figure 5 indicate that the sampler has performed reasonably well, w.r.t. the

auto-correlation of the sampler; the acceptance rate in Table 2 is 0.35. In addition, in Table

2, the variability of the acceptance rates and CPU time w.r.t. N is displayed (note that the

proposal variances are the same for each N). Here the algorithm seems to perform quite well

even for smaller values of N (at least in terms of exploration, if not convergence). The results

in this example are encouraging; to our knowledge full and exact Bayesian inference has not

been attempted for this class of problem. We expect, with more sophisticated moves the MCMC

algorithm can work for even more complex problems.

6 Conclusions

In this article we have presented a multi-level PMCMC algorithm which allows one to perform

parameter inference with latent stopped processes. The proposed algorithm requires considerable

amount of computation, but to the authors best knowledge for such problems there seems to be
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(a) ACF µ.
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(b) ACF Ξ12.
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(c) ACF Ξ13.

0 10 20 30 40 50

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

lag (x10)

a
c
f

 

(d) ACF Ξ23.
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(e) Density µ.
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(f) Density Ξ12.
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(g) Density Ξ13.
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(h) Density Ξ23.

Figure 5: Some PMCMC Plots for the Coalescent with Migration.

a lack of alternative approaches. Also recent developments in [26] can be adopted to speed up

computations.

There are several extensions to the work here, which may be considered. Firstly, the scheme

that is used to adapt the level sets relies mainly on intuition. In the rare events literature one

may find more systematic techniques to designed level sets, based upon optimal control [14] or

simulation [9]. Although these methods are not examined here, they can be characterised using

alternative auxiliary variables similar to the ones in Proposition 4.3, so the auxiliary variable

framework is quite generic. It is remarked that one can also use multi-level splitting within

MCMC. It may be easier for practitioners familiar with splitting to applying the afore mentioned

adaptive schemes. In addition the general structure of the auxiliary variable used to adapt the

level sets allows the use of independent SMC runs with less particles to set the levels to the ones

used for computing the acceptance ratio.

Secondly, one could seek to use the algorithm within an SMC sampler framework [17] as

in [13]. As noted in that latter article, the SMC element can improve the sampling scheme,

sometimes at a computational complexity that is the same as the original MCMC algorithm. In
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addition, this article focuses on the PMMH algorithm. Following Remark 4.1, extensions using

particle Gibbs and block updates might prove valuable for many applications.

Thirdly, from a modelling perspective, it may be of interest to apply our methodology in the

context of hidden Markov models. In this context, one has

ξθ,y0:t =
t∏

i=0

gθ(yi|xi)

with gθ(·|x) a conditional density of the observations, given the hidden chain. It would be

important to understand, given a range of real applications, the feasibility of statistical inference,

combined with the development of our methodology.
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Appendix

Proof. [Proof of Proposition 4.1] The proof of (1) and (2) is as in [1], with the exception of the

marginal. This latter property relies on proposition 12.2.3 of [16] (the R in that proposition

is ∞ in our context), coupled with eq. (7.17) of Theorem 7.4.2 of [16] (the τN in that result

is always bigger than n in our case). The first result, which uses the strong Markov property,

ensures the Feynman-Kac representation of interest. Then, Theorem 7.4.2 demonstrates that

any particle approximation of the type in this paper and of a Feynman-Kac formula admits an

unbiased estimate of the normalizing constant. In other-words, we have that

πN (θ, k, X̄1:p, ā1:p−1) =
Ẑθ,p
Zp

ψθ(X̄1:p, ā1:p−1)W̄ k
p

where Zp =
∫

Θ
Zp,θπθ(θ)dθ. Summing over k and using the unbiased property of the SMC

algorithm discussed above, the result is complete.

Proof. [Proof of Proposition 4.2] Our proof concentrates on the stochastic upper bound of the

ratio of target to proposal, which is
∏p
n=1

1
N

∑N
j=1 w

(j)
n

Zp,θ
.

Now, clearly via (A2)

wn ≤
ρtn

ρtn−1ϕtn−tn−1
≤

[
1
ρϕ

]tn+tn−1
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with the convention that t0 = 0. Thus, it follows that

p∏

n=1

1
N

N∑

j=1

w(j)
n ≤

p∏

n=1

[
1
ρϕ

]t̄n+t̄n−1

≤

[
1
ρϕ

]2
∑p
n=1 t̄n

.

The result is completed by applying Theorem 6 of [30] and using the upper-bound above.

Proof. [Proof of Proposition 4.3] The proof is much the same as that of Proposition 4.1, the only

issue is the marginal and (2). To find the marginal of πNa , re-write the target as:

πNa (θ, k, v, X̄1:p(v), ā1:p(v)−1) =
Ẑθ,p
Zp

ψθ,z(X̄1:p(v), ā1:p(v)−1)W̄ k
p(v)Λθ(v).

then summing w.r.t. k, integrating w.r.t. X̄1:p(v), ā1:p(v)−1 and using (9), we have via the unbi-

asedness of the estimate of the normalizing constant and integrating v

πNa (θ) =
∫

V

π(θ)Λθ(v)dv

from which the result follows.

Now the marginal conditional, given k and v and θ of X (k)
1:p(v) is

π(θ,X (k)
1:p(v))Λθ(v)

π(θ)Λθ(v)
= π(X (k)

1:p(v)|θ)

hence the sequence {θ(i),X (k)
1:p(v)(i)} satisfies the property required.
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