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Outline

I Optimisation, Rare Events and Approximate Counting.
I Sequential Monte Carlo Samplers
I SMC for Optimisation
I Some Open Problems



Optimisation, Rare Events and Counting



Problem Formulation

I Given some function ϕ : E → R find

e? := arg maxϕ(e)
or E? :=

{
e ∈ E : ϕ(e) ≥ ϕ(e′)∀e′ ∈ E

}
I If Φ : R → R is any increasing monotone function, then:

e? =arg maxΦ(ϕ(e))
or E? =

{
e ∈ E : Φ(ϕ(e)) ≥ Φ(ϕ(e′))∀e′ ∈ E

}
I We will assume that

I ϕ ≥ 0
I There exists a σ-finite measure, µ, such that ϕ has finite

exponential moments under µ, which does not vanish on
B(e?, ε) for any ε > 0.
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A function to optimize
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The function after a monotone transformation... and an associated distribution



The Basis of Simulated Annealing

I If we wish to obtain minimisers1 of a function H, we can
consider the density

π1 ∝ exp (−H(x)) .

I In fact, we can make use of a family of related densities

πα(x) ∝ exp (−αH(x)) .

I As α →∞ we obtain a distribution concentrated on the
modes of π1.

I One can also consider the definition of these densities to be:

πα(x) ∝ π1(x)α.

1or maximisers of −H



Returning to the example
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Distribution (alpha = 1)
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Asymptotically. . .

If:
I λ is absolutely continuous wrt Lebesgue measure on

(Rn,B(Rn)),

I πα(dx) := λ(dx)ϕ(x)αR
λ(dy)ϕ(y)α ,

I and mild regularity conditions apply to log ϕ,
then

lim
α→∞

πα(dt) → π∞(dt) ∝
∑
e∈E?

w(e)δe(dt), (1)

w(e) = det
[
− ∂2 log ϕ

∂θm∂θn

∣∣∣∣
θ=e

]−1/2

(2)

This follows by a straightforward adaptation of the result of
(Hwang, 1980, Theorem 2.1).



Rare Events

Given some set R, such that P(R) � 1:
I Estimate P(R)
I Obtain a collection of samples from P conditioned upon R:

sample from µ(·) ∝ P(·)IR(·)
Simple Monte Carlo isn’t the answer.

If {Xi}i≥1 ∼ P and p̂(R) = 1
N

N∑
i=1

IR(Xi):

E [p̂(R)] =P(R)
Var [p̂(R)] =P(R)(1− P(R))/N
Var [p̂(R)]
E [p̂(R)]2

=
P(R)(1− P(R))

P(R)2N
≈ 1

NP(R)

Importance sampling is suggested. . .



Importance Sampling for Rare Event Estimation

I We wish to integrate IR(·) with respect to P.
I Ideally, sample from µ(dx) = P(dx)IR(x)/Z,

I and weight the samples according to W = P(X)
µ(X) = Z−1.

I Z is precisely the quantity which we wish to estimate.
I Sampling efficiently from µ is typically impossible.
I R is usually characterised as the level set of a potential

function.
I Could we use distributions
∝ P(·)(1 + exp(−α(n)[G(·)−G?]))−1, say?



Approximate Counting

Counting problems fit into the same framework:
I Given E = {0, 1}p, and S : E → R. . .
I what is K = |{x ∈ E : S(x) ≤ s?}|?

Which could alternatively be reformulated as
I Given P(A) = 2−p|A| ∀A ⊂ E. . .
I what is K = 2pP(B) with B = {x : S(x) ≤ s?}?



The story so far. . .

I Three common problems:
I optimization
I rare event simulation
I approximate counting

can be transformed into the problem of obtaining samples
from a complex distribution.

I These distributions can be characterised as the restriction
of a probability distribution to the level sets of a potential
function.

I But simulating from complex distributions is, itself, hard.



Sequential Monte Carlo Samplers



Sequential Monte Carlo

SMC is widely used for the approximate solution of the optimal
filtering problem.

I Given an observation sequence {yn},
I associated with a latent Markov chain {xn} termed the

state process,
I and the conditional independence structure:

x1 x2 x3 x4 x5 x6

y1 y2 y3 y4 y5 y6

I one wishes to estimate p(xn|y1:n) sequentially as
observations become available.



I By conditional independence,

p(xn|x1:n−1, y1:n−1) = p(xn|xn−1),
p(yn|x1:n, y1:n−1) = p(yn|xn).

I Thus: p(x1:n|y1:n−1) = p(xn|xn−1)p(x1:n−1|y1:n−1).
I And applying Bayes’ rule:

p(x1:n|y1:n) =
p(x1:n|y1:n−1)p(yn|xn)∫
p(x′n|y1:n−1)p(yn|x′n)dx′n

.

I Unfortunately, this integral is intractable.



I Making use of the recursion:

p(x1:n|y1:n) ∝ p(x1:n−1|y1:n−1)× p(xn|xn−1)p(yn|xn),

I A set of weighted samples from p(x1:n−1|y1:n−1),
{W (i)

n−1, X
(i)
1:n−1} is extended according to some proposal

qn(·|xn−1) and re-weighted,

W (i)
n ∝ W

(i)
n−1

p(X(i)
n |X(i)

n−1)

q(X(i)
n |X(i)

n−1)
p(yn|X(i)

n ).

I This process continues iteratively, with resampling applied
when the sample diversity falls too low.

I The empirical measure associated with the particle set may
be used to approximate the filtering measure at each
time-step.



SMC Samplers

Actually, these techniques can be used to sample from any
sequence of distributions (Del Moral et al., 2006):

I Given a sequence of target distributions, {ηn}, on
measurable spaces (En, En)

I Construct a synthetic sequence {η̃n} on the product spaces
n⊗

p=1
(Ep, Ep) by introducing arbitrary auxiliary Markov

kernels, Lp : Ep+1 ⊗ Ep → [0, 1]:

η̃n(dx1:n) = ηn(dxn)
n−1∏
p=1

Lp (xp+1, dxp) ,

which each admit one of the target distributions as their
final time marginal.



SMC Outline

I Given a sample {X(i)
1:n−1}N

i=1 targeting η̃n−1,

I sample X
(i)
n ∼ Kn(X(i)

n−1, ·),
I calculate

Wn(X(i)
1:n) =

η̃n(X(i)
1:n)

η̃n−1(X1:n−1)Kn(X(i)
n−1, X

(i)
n )

=
ηn(X(i)

n )
n−1∏
p=1

Lp(X
(i)
p+1, X

(i)
p )

ηn−1(X
(i)
n−1)

n−2∏
p=1

Lp(X
(i)
p+1, X

(i)
p )Kn(X(i)

n−1, X
(i)
n )

=
ηn(X(i)

n )Ln−1(X
(i)
n , X

(i)
n−1)

ηn−1(X
(i)
n−1)Kn(X(i)

n−1, X
(i)
n )

.

I Resample, yielding: {X(i)
1:n}N

i=1 targeting η̃n.



Another SMC Summary

At each iteration, given a set of weighted samples
{X(i)

n−1,W
(i)
n−1}N

i=1 targeting ηn−1:
I Sample X

(i)
n ∼ Kn(X

(i)
n−1, ·).

I
n

(X
(i)
n−1, X

(i)
n ), W

(i)
n−1

oN

i=1
∼ ηn−1(Xn−1)Kn(Xn−1, Xn).

I Set weights W
(i)
n = W

(i)
n−1

ηn(Xn)Ln−1(Xn,Xn−1)

ηn−1(Xn−1)Kn(Xn−1,Xn)
.

I
n

(Xn−1, Xn), W
(i)
n

oN

i=1
∼ ηn(Xn)Ln−1(Xn, Xn−1) and, marginally,n

X
(i)
n , W

(i)
n

o(i)

i=1
∼ ηn.

I Resample to obtain an unweighted particle set.

I Hints that we’d like Ln−1(xn, xn−1) =
ηn−1(xn−1)Kn(xn−1,xn)R
ηn−1(x′n−1)Kn(x′n−1,xn)

.



SMC for Optimisation

Answers and Questions



How can we use SMC?

Using SMC for optimisation has been proposed in a number of
places (for example (Neal, 1998; Del Moral et al., 2006)). The
idea is simple:

I Identify ηn with πα(n) where α is some monotone function.
I Use SMC to sample iteratively from each ηn.
I For large enough α(n) we obtain a solution.

As yet only one or two special cases and related areas appear to
have been considered in detail:

I Maximum likelihood / a posteriori estimation in latent
variable models (Johansen et al., 2007).

I Rare event estimation (Johansen et al., 2006).



Why use SMC?

I Extremely flexible: choice of distributions, annealing
schedule, proposal kernels. . .

I The population provides robustness.
I Faster “annealing” seems possible.
I It doesn’t require a parametric family of proposals matched

to the target.
I The iterative framework simplifies the design of proposal

distributions.



Open Problems

A number of methodological questions need to be addressed:
I How can the balance between the number of particles and

the number of distributions be dealt with?
I How should the proposal kernels be chosen?
I Adaptative methods: how can the sequence of

distributions, and the proposal distributions be varied
adaptively?

A number of interesting theoretical questions also remain to be
addressed:

I Can we obtain meaningful bounds upon the variance and
bias of the estimator?

I Are there “better” sequences of distributions?
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