Optimisation with SMC Samplers

Adam M. Johansen

adam.johansen@bristol.ac.uk - University of Bristol Statistics Group

Bridging the Gaps: Probabilistic Models for Optimisation, 28th November, 2007

Outline

▶ Optimisation, Rare Events and Approximate Counting.

- Sequential Monte Carlo Samplers
- ▶ SMC for Optimisation
- ▶ Some Open Problems

Optimisation, Rare Events and Counting

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへで

Problem Formulation

• Given some function $\varphi: E \to \mathbb{R}$ find

$$e^{\star} := \arg \max \varphi(e)$$

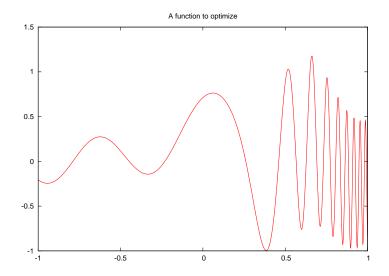
or $E^{\star} := \left\{ e \in E : \varphi(e) \ge \varphi(e') \forall e' \in E \right\}$

• If $\Phi : \mathbb{R} \to \mathbb{R}$ is any increasing monotone function, then:

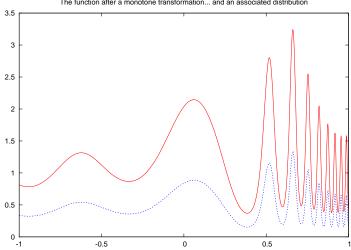
$$e^{\star} = \arg \max \Phi(\varphi(e))$$

or $E^{\star} = \left\{ e \in E : \Phi(\varphi(e)) \ge \Phi(\varphi(e')) \forall e' \in E \right\}$

- ▶ We will assume that
 - $\blacktriangleright \ \varphi \geq 0$
 - There exists a σ -finite measure, μ , such that φ has finite exponential moments under μ , which does not vanish on $B(e^*, \epsilon)$ for any $\epsilon > 0$.



▲□▶ ▲圖▶ ▲国▶ ▲国▶ 三里 - のへで



The function after a monotone transformation... and an associated distribution

The Basis of Simulated Annealing

• If we wish to obtain minimisers¹ of a function H, we can consider the density

$$\pi_1 \propto \exp\left(-H(x)\right).$$

▶ In fact, we can make use of a family of related densities

$$\pi_{\alpha}(x) \propto \exp\left(-\alpha H(x)\right).$$

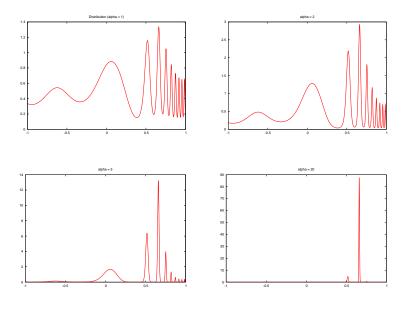
- As $\alpha \to \infty$ we obtain a distribution concentrated on the modes of π_1 .
- One can also consider the definition of these densities to be:

$$\pi_{\alpha}(x) \propto \pi_1(x)^{\alpha}.$$

¹or maximisers of -H

・ロト ・西ト ・ヨト ・ヨー うらぐ

Returning to the example



◆ロト ◆母 ト ◆ヨト ◆ヨト ・ヨー の々で

Asymptotically...

If:

► λ is absolutely continuous wrt Lebesgue measure on $(\mathbb{R}^n, \mathcal{B}(\mathbb{R}^n)),$

$$\blacktriangleright \ \pi_{\alpha}(dx) := \frac{\lambda(dx)\varphi(x)^{\alpha}}{\int \lambda(dy)\varphi(y)^{\alpha}},$$

▶ and mild regularity conditions apply to $\log \varphi$,

then

$$\lim_{\alpha \to \infty} \pi_{\alpha}(dt) \to \pi_{\infty}(dt) \propto \sum_{e \in E^{\star}} w(e) \delta_{e}(dt), \tag{1}$$
$$w(e) = \det \left[- \left. \frac{\partial^{2} \log \varphi}{\partial \theta_{m} \partial \theta_{n}} \right|_{\theta = e} \right]^{-1/2} \tag{2}$$

シック・ 単 ・ イヨ・ イヨ・ ・ 引ゃく ロ・

This follows by a straightforward adaptation of the result of (Hwang, 1980, Theorem 2.1).

Rare Events

Given some set \mathcal{R} , such that $\mathbb{P}(\mathcal{R}) \ll 1$:

- Estimate $\mathbb{P}(\mathcal{R})$
- ▶ Obtain a collection of samples from \mathbb{P} conditioned upon \mathcal{R} : sample from $\mu(\cdot) \propto \mathbb{P}(\cdot) \mathbb{I}_{\mathcal{R}}(\cdot)$

Simple Monte Carlo isn't the answer.

If
$$\{X_i\}_{i\geq 1} \sim \mathbb{P}$$
 and $\hat{p}(\mathcal{R}) = \frac{1}{N} \sum_{i=1}^{N} \mathbb{I}_{\mathcal{R}}(X_i)$:

$$\begin{split} & \mathbb{E}\left[\hat{p}(\mathcal{R})\right] = \mathbb{P}(\mathcal{R}) \\ & \mathsf{Var}\left[\hat{p}(\mathcal{R})\right] = \mathbb{P}(\mathcal{R})(1 - \mathbb{P}(\mathcal{R}))/N \\ & \frac{\mathsf{Var}\left[\hat{p}(\mathcal{R})\right]}{\mathbb{E}\left[\hat{p}(\mathcal{R})\right]^2} = \frac{\mathbb{P}(\mathcal{R})(1 - \mathbb{P}(\mathcal{R}))}{\mathbb{P}(\mathcal{R})^2 N} \approx \frac{1}{N\mathbb{P}(\mathcal{R})} \end{split}$$

うつん 川川 スポットボット 大臣 くうく

Importance sampling is suggested...

Importance Sampling for Rare Event Estimation

- We wish to integrate $\mathbb{I}_{\mathcal{R}}(\cdot)$ with respect to \mathbb{P} .
- Ideally, sample from $\mu(dx) = \mathbb{P}(dx)\mathbb{I}_{\mathcal{R}}(x)/\mathcal{Z}$,
- ▶ and weight the samples according to $W = \frac{\mathbb{P}(X)}{\mu(X)} = \mathcal{Z}^{-1}$.
- ▶ \mathcal{Z} is precisely the quantity which we wish to estimate.
- ▶ Sampling efficiently from μ is typically impossible.
- $\blacktriangleright \ \mathcal{R}$ is usually characterised as the level set of a potential function.

(日) (日) (日) (日) (日) (日) (日)

► Could we use distributions $\propto \mathbb{P}(\cdot)(1 + \exp(-\alpha(n)[G(\cdot) - G^{\star}]))^{-1}$, say?

Approximate Counting

Counting problems fit into the same framework:

- Given $E = \{0, 1\}^p$, and $S : E \to \mathbb{R}$...
- what is $K = |\{x \in E : S(x) \le s^*\}|$?

Which could alternatively be reformulated as

- Given $\mathbb{P}(A) = 2^{-p}|A| \ \forall A \subset E...$
- what is $K = 2^p \mathbb{P}(B)$ with $B = \{x : S(x) \le s^*\}$?

(日) (日) (日) (日) (日) (日) (日)

The story so far...

▶ Three common problems:

- ▶ optimization
- ▶ rare event simulation
- approximate counting

can be transformed into the problem of obtaining samples from a complex distribution.

- ▶ These distributions can be characterised as the restriction of a probability distribution to the level sets of a potential function.
- ▶ But simulating from complex distributions is, itself, hard.

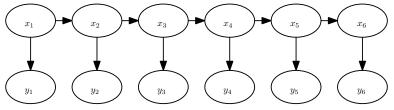
うつん 川川 スポットボット 大臣 くうく

Sequential Monte Carlo Samplers

Sequential Monte Carlo

SMC is widely used for the approximate solution of the optimal filtering problem.

- Given an observation sequence $\{y_n\}$,
- ▶ associated with a latent Markov chain $\{x_n\}$ termed the *state* process,
- ▶ and the conditional independence structure:



• one wishes to estimate $p(x_n|y_{1:n})$ sequentially as observations become available.

▶ By conditional independence,

$$p(x_n|x_{1:n-1}, y_{1:n-1}) = p(x_n|x_{n-1}),$$

$$p(y_n|x_{1:n}, y_{1:n-1}) = p(y_n|x_n).$$

• Thus: $p(x_{1:n}|y_{1:n-1}) = p(x_n|x_{n-1})p(x_{1:n-1}|y_{1:n-1}).$

▶ And applying Bayes' rule:

$$p(x_{1:n}|y_{1:n}) = \frac{p(x_{1:n}|y_{1:n-1})p(y_n|x_n)}{\int p(x'_n|y_{1:n-1})p(y_n|x'_n)dx'_n}.$$

▶ Unfortunately, this integral is intractable.

▶ Making use of the recursion:

$$p(x_{1:n}|y_{1:n}) \propto p(x_{1:n-1}|y_{1:n-1}) \times p(x_n|x_{n-1})p(y_n|x_n),$$

• A set of weighted samples from $p(x_{1:n-1}|y_{1:n-1})$, $\{W_{n-1}^{(i)}, X_{1:n-1}^{(i)}\}$ is extended according to some proposal $q_n(\cdot|x_{n-1})$ and re-weighted,

$$W_n^{(i)} \propto W_{n-1}^{(i)} \frac{p(X_n^{(i)}|X_{n-1}^{(i)})}{q(X_n^{(i)}|X_{n-1}^{(i)})} p(y_n|X_n^{(i)}).$$

- ▶ This process continues iteratively, with resampling applied when the sample diversity falls too low.
- ▶ The empirical measure associated with the particle set may be used to approximate the filtering measure at each time-step.

SMC Samplers

Actually, these techniques can be used to sample from *any* sequence of distributions (Del Moral et al., 2006):

- ► Given a sequence of *target* distributions, $\{\eta_n\}$, on measurable spaces (E_n, \mathcal{E}_n)
- Construct a synthetic sequence $\{\tilde{\eta}_n\}$ on the product spaces $\bigotimes_{p=1}^n (E_p, \mathcal{E}_p)$ by introducing *arbitrary* auxiliary Markov kernels, $L_p: E_{p+1} \otimes \mathcal{E}_p \to [0, 1]$:

$$\tilde{\eta}_n(dx_{1:n}) = \eta_n(dx_n) \prod_{p=1}^{n-1} L_p(x_{p+1}, dx_p),$$

which each admit one of the target distributions as their final time marginal.

(日) (日) (日) (日) (日) (日) (日)

SMC Outline

- ► Given a sample $\{X_{1:n-1}^{(i)}\}_{i=1}^N$ targeting $\tilde{\eta}_{n-1}$,
- sample $X_n^{(i)} \sim K_n(X_{n-1}^{(i)}, \cdot),$

 \blacktriangleright calculate

$$W_{n}(X_{1:n}^{(i)}) = \frac{\tilde{\eta}_{n}(X_{1:n}^{(i)})}{\tilde{\eta}_{n-1}(X_{1:n-1})K_{n}(X_{n-1}^{(i)}, X_{n}^{(i)})}$$
$$= \frac{\eta_{n}(X_{n}^{(i)})\prod_{p=1}^{n-1}L_{p}(X_{p+1}^{(i)}, X_{p}^{(i)})}{\eta_{n-1}(X_{n-1}^{(i)})\prod_{p=1}^{n-2}L_{p}(X_{p+1}^{(i)}, X_{p}^{(i)})K_{n}(X_{n-1}^{(i)}, X_{n}^{(i)})}$$
$$= \frac{\eta_{n}(X_{n}^{(i)})L_{n-1}(X_{n-1}^{(i)}, X_{n-1}^{(i)})}{\eta_{n-1}(X_{n-1}^{(i)})K_{n}(X_{n-1}^{(i)}, X_{n}^{(i)})}.$$

► Resample, yielding: $\{X_{1:n}^{(i)}\}_{i=1}^N$ targeting $\tilde{\eta}_n$.

Another SMC Summary

At each iteration, given a set of weighted samples

$$\{X_{n-1}^{(i)}, W_{n-1}^{(i)}\}_{i=1}^{N} \text{ targeting } \eta_{n-1}:$$

$$\text{Sample } X_{n}^{(i)} \sim K_{n}(X_{n-1}^{(i)}, \cdot).$$

$$\left\{(X_{n-1}^{(i)}, X_{n}^{(i)}), W_{n-1}^{(i)}\right\}_{i=1}^{N} \sim \eta_{n-1}(X_{n-1})K_{n}(X_{n-1}, X_{n}).$$

$$\text{Set weights } W_{n}^{(i)} = W_{n-1}^{(i)} \frac{\eta_{n}(X_{n})L_{n-1}(X_{n}, X_{n-1})}{\eta_{n-1}(X_{n-1})K_{n}(X_{n-1}, X_{n})}.$$

$$\left\{(X_{n-1}, X_{n}), W_{n}^{(i)}\right\}_{i=1}^{N} \sim \eta_{n}(X_{n})L_{n-1}(X_{n}, X_{n-1}) \text{ and, marginally,}$$

$$\left\{X_{n}^{(i)}, W_{n}^{(i)}\right\}_{i=1}^{(i)} \sim \eta_{n}.$$

$$\text{Resample to obtain an unweighted particle set.}$$

• Hints that we'd like
$$L_{n-1}(x_n, x_{n-1}) = \frac{\eta_{n-1}(x_{n-1})K_n(x_{n-1}, x_n)}{\int \eta_{n-1}(x'_{n-1})K_n(x'_{n-1}, x_n)}$$
.

▲□▶ ▲圖▶ ▲目▶ ▲目▶ 三目 - のへで

SMC for Optimisation Answers and Questions

▲□▶ ▲圖▶ ▲国▶ ▲国▶ - 国 - のへで

How can we use SMC?

Using SMC for optimisation has been proposed in a number of places (for example (Neal, 1998; Del Moral et al., 2006)). The idea is simple:

- ▶ Identify η_n with $\pi_{\alpha(n)}$ where α is some monotone function.
- Use SMC to sample iteratively from each η_n .
- For large enough $\alpha(n)$ we obtain a solution.

As yet only one or two special cases and related areas appear to have been considered in detail:

 Maximum likelihood / a posteriori estimation in latent variable models (Johansen et al., 2007).

(日) (日) (日) (日) (日) (日) (日)

▶ Rare event estimation (Johansen et al., 2006).

Why use SMC?

- ► Extremely flexible: choice of distributions, annealing schedule, proposal kernels...
- ▶ The population provides robustness.
- ▶ Faster "annealing" seems possible.
- ▶ It doesn't require a parametric family of proposals matched to the target.

うつん 川川 スポットボット 大臣 くうく

▶ The iterative framework simplifies the design of proposal distributions.

Open Problems

A number of methodological questions need to be addressed:

- ▶ How can the balance between the number of particles and the number of distributions be dealt with?
- ▶ How should the proposal kernels be chosen?
- Adaptative methods: how can the sequence of distributions, and the proposal distributions be varied adaptively?

A number of interesting theoretical questions also remain to be addressed:

- Can we obtain meaningful bounds upon the variance and bias of the estimator?
- ▶ Are there "better" sequences of distributions?

References

- P. Del Moral, A. Doucet, and A. Jasra. Sequential Monte Carlo samplers. *Journal of the Royal Statistical Society B*, 63(3): 411–436, 2006.
- C.-R. Hwang. Laplace's method revisited: Weak convergence of probability measures. *The Annals of Probability*, 8(6): 1177–1182, December 1980.
- A. M. Johansen, P. Del Moral, and A. Doucet. Sequential Monte Carlo samplers for rare events. In *Proceedings of the* 6th International Workshop on Rare Event Simulation, Bamberg, Germany, October 2006.
- A. M. Johansen, A. Doucet, and M. Davy. Particle methods for maximum likelihood parameter estimation in latent variable models. *Statistics and Computing*, 2007. To appear.
- R. M. Neal. Annealed importance sampling. Technical Report 9805, University of Toronto, Department of Statistics, 1998. URL ftp://ftp.cs.toronto.edu/pub/radford/ais.ps.