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We present a change detection method for nonlinear stochastic systems based on particle filtering. We assume that the parameters
of the system before and after change are known. The statistic for this method is chosen in such a way that it can be calculated
recursively while the computational complexity of the method remains constant with respect to time. We present simulation
results that show the advantages of this method compared to linearization techniques.
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1. INTRODUCTION

Page states the change detection problem as follows [1]:
“Whenever observations are taken in order it can happen that
the whole set of observations can be divided into subsets, each
of which can be regarded as a random sample from a common
distribution, each subset corresponding to a different parameter
value of the distribution. The problems to be considered in this
paper are concerned with the identification of the subsamples
and the detection of changes in the parameter value.”

We refer to a change or an abrupt change as any change
in the parameters of the system that happens either instan-
taneously or much faster than any change that the nominal
bandwidth of the system allows.

The key difficulty of all change detection methods is that
of detecting intrinsic changes that are not necessarily directly
observed but are measured together with other types of per-
turbations [2].

The change detection could be offline or online. In on-
line change detection, we are only interested in detecting the
change as quickly as possible (e.g., to minimize the detection
delay with fixed mean time between false alarms), and the
estimate of the time when the change occurs is not of impor-
tance. In offline change detection, we assume that the whole
observation sequence is available at once and finding the es-
timate of the time of change could be one of the goals of the
detection method. In this paper, we limit our concern to on-
line detection of abrupt changes.

The change detection methods that we consider here can

be classified under the general name of likelihood ratio (LR)
methods. Cumulative sum (CUSUM) and generalized LR
(GLR) tests are among these methods. CUSUM was first pro-
posed by Page [1]. The most basic CUSUM algorithm as-
sumes that the observation signal is a sequence of stochastic
variables which are independent and identically distributed
(i.i.d.) with known common probability density function be-
fore the change time, and i.i.d. with another known probabil-
ity density after the change time. In the CUSUM algorithm,
the log-likelihood ratio for the observation from time i to
time k is calculated and its difference with its current mini-
mum is compared with a certain threshold. If this difference
exceeds the threshold, an alarm is issued.

Properties of the CUSUM algorithm have been studied
extensively. Its most important property is the asymptotic
optimality, which was first proven in [3]. More precisely,
CUSUM is optimal, with respect to the worst mean delay,
when the mean time between false alarms goes to infinity.
This asymptotic point of view is convenient in practice be-
cause a low rate of false alarms is always desirable.

In the case of unknown system parameters after change,
the GLR algorithm can be used as a generalization of the
CUSUM algorithm. Since, in this algorithm, the exact infor-
mation of the change pattern is not known, the LR is maxi-
mized over all possible change patterns.1

1If the maximum does not exist, the supremum of the LR should be cal-
culated.
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For stochastic systems with linear dynamics and linear
observations, the observation sequence is not i.i.d. Therefore,
the regular CUSUM algorithm cannot be applied for detec-
tion of changes in such systems. However, if such systems
are driven by Gaussian noise, the innovation process asso-
ciated with the system is known to be a sequence of indepen-
dent random variables. The regular CUSUM algorithm or its
more general counterpart, GLR, can be applied to this inno-
vation process [2, 4].

In this paper, we are interested in the change detection
problem for stochastic systems with nonlinear dynamics and
observations. We show that for such systems, the complexity
of the CUSUM algorithm grows with respect to time. This
growth in complexity cannot be tolerated in practical prob-
lems. Therefore, instead of the statistic used in the CUSUM
algorithm, we introduce an alternative statistic. We show that
with this statistic, the calculation of the LR can be done re-
cursively and the computational complexity of the method
stays constant with respect to time.

Unlike the linear case, change detection for nonlinear
stochastic systems has not been investigated in any depth.
In the cases where a nonlinear system experiences a sudden
change, linearization and change detection methods for lin-
ear systems are the main tools for solving the change de-
tection problem (see, e.g., [5]). The reason this subject has
not been pursued is clear; even when there is no change,
the estimation of the state of the system, given the observa-
tions, results in an infinite-dimensional nonlinear filter [6],
and the change in the system can only make the estimation
harder.

In the last decade, there has been an increasing interest
in simulation-based nonlinear filtering methods. These fil-
tering methods are based on a gridless approximation of the
conditional density of the state, given the observations. Grid-
less simulation-based filtering, now known by many differ-
ent names such as particle filtering (PAF) [7, 8], the con-
densation algorithm [9], the sequential Monte Carlo (SMC)
method [10], and Bayesian bootstrap filtering [11], was first
introduced by Gordon et al. [11] and then it was rediscovered
independently by Isard and Blake [9] and Kitagawa [12].

The theoretical results regarding the convergence of the
approximate conditional density given by PAF to the true
conditional density (in some proper sense) suggest that this
method is a strong alternative for nonlinear filtering [7]. The
advantage of this method over the nonlinear filter is that PAF
is a finite-dimensional filter. The authors believe that PAF
and its modifications are a starting point to study change de-
tection for nonlinear stochastic systems. In this paper, we use
the results in [13] and we develop a new change detection
method for nonlinear stochastic systems.

In [13], we showed that when the number of satel-
lites is below a critical number, linearization methods such
as extended Kalman filtering (EKF) result in an unaccept-
able position error for an integrated inertial navigation sys-
tem/global positioning system (INS/GPS). We also showed
that the approximate nonlinear filtering methods, the projec-
tion particle filter [13], in particular, are capable of providing
an acceptable estimate of the position in the same situation.

If the carrier phase is used for position information in an
integrated INS/GPS, one sudden change that happens rather
often is the cycle slip. A cycle slip happens when the phase
of the received signal estimated by the phase lock loop in the
receiver has a sudden jump. An integrated INS/GPS with car-
rier phase receiver is used as an application for the method
introduced in this paper for detection of a cycle slip with
known strength.

In Section 2, we state the approximate nonlinear filter-
ing method used in this paper. In Section 3, we briefly define
the change detection problem. In Section 4, we review the
CUSUM algorithm for linear systems with additive changes.
Then, in Sections 5 and 6, we present a new change detection
method for nonlinear stochastic systems. In Section 7, we lay
out the formulation for an integrated INS/GPS. In Section 8,
we present some simulation results. In Section 9, we summa-
rize the results and lay out the future work.

2. APPROXIMATE NONLINEAR FILTERING

Consider the dynamical system

xk+1 = fk
(

xk
)

+ Gk
(

xk
)

wk,

yk = hk
(

xk
)

+ vk,
(1)

where the distribution of x0 is given, xk ∈ Rn, yk ∈ Rd, and
wk ∈ Rq, and vk ∈ Rd are white noise processes with known
statistics, and the functions fk(·) and hk(·) and the matrix
Gk(·) have the proper dimensions. The noise processes wk,
vk, k = 0, 1, . . . , and the initial condition x0 are assumed in-
dependent.

We assume the initial distribution for x0 is given. The
goal is to find the conditional distribution of the state,
given the observation, that is, Pk(dxk|Yk

1), where Yk
1 =

{y1, y2, . . . , yk} is the observation up to and including time
k. The propagation of the conditional distribution, at least
conceptually, can be expressed as follows [6].

Step (1). Initialization:

P0
(
dx0

∣∣y0
) = P

(
dx0

)
. (2)

Step (2). Diffusion:

P(k+1)−
(
dxk+1

∣∣Yk
1

)
=
∫
P
(
dxk+1

∣∣xk
)
Pk
(
dxk

∣∣Yk
1

)
.

(3)

Step (3). Bayes’ rule update:

P(k+1)
(
dxk+1

∣∣Yk+1
1

)
= p

(
yk+1

∣∣xk+1
)
P(k+1)−

(
dxk+1

∣∣Yk
1

)
∫
p
(

yk+1
∣∣xk+1

)
P(k+1)−

(
dxk+1

∣∣Yk
1

) . (4)

Step (4). k ← k + 1; go to Step (2).

We have assumed that P(dyk+1|xk+1)= p(yk+1|xk+1)dyk+1

and p(yk+1|xk+1) is the conditional density of the observa-
tion, given the state at time k + 1.

The conditional distribution given by the above steps
is exact, but in general, it can be viewed as an infinite-
dimensional filter, thus not implementable. PAF, in brief,
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Step (1). Initialization.
Sample N i.i.d. random vectors x1

0, . . . , xN
0 with

the initial distribution P0(dx).

Step (2). Diffusion.
Find x̂1

k+1, . . . , x̂N
k+1 from the given x1

k , . . . , xN
k ,

using the dynamic rule:

xk+1 = fk
(

xk

)
+ Gk

(
xk

)
vk.

Step (3). Use Bayes’ rule and find the empirical
distribution

PN
k+1(dx) =

N∑
j=1

p
(

yk+1

∣∣x̂
j
k+1

)
∑N

i=1 p
(

yk+1

∣∣x̂i
k+1

)δx̂
j
k+1

(dx).

Step (4). Resampling.
Sample x1

k+1, . . . , xN
k+1 according to PN

k+1(dx).

Step (5). k ← k + 1; go to Step (2).

Algorithm 1: Particle filtering.

is an approximation method that mimics the above calcu-
lations with a finite number of operations using the Monte
Carlo method. Algorithm 1 shows one manifestation of PAF
[7, 11].

It is customary to call x1
k , . . . , xN

k particles. The key idea
in PAF is to eliminate the particles that have low importance
weights p(yk|xk) and to multiply particles having high im-
portance weights [11, 14]. The surviving particles are thus
approximately distributed according to PN

k (dx). This auto-
matically makes the approximation one of better resolution
in the areas where the probability is higher.

In the simulations in this paper, we use a modified ver-
sion of the classical PAF method called projection PAF. For
completeness sake, we repeat the algorithm that was given in
[13]. In projection PAF, we assume that the conditional den-
sity of the state of the system, given the observation, is close
to an exponential family of densities S defined as follows.2

Definition 1 (Brigo [15]). Let {c1(·), . . . , cp(·)} be affinely in-
dependent3 scalar functions defined on k dimensional Eu-
clidean space Rk. Assume that

Θ0 =
{
θ ∈ Rp : Υ(θ) = log

∫
exp

(
θTc(x)

)
dx <∞

}
(5)

is a convex set with a nonempty interior, where c(x) =
[c1(x), . . . , cp(x)]T . Then S, defined as

S = {p(·, θ), θ ∈ Θ
}

,

p(x, θ) := exp
[
θTc(x)− Υ(θ)

]
,

(6)

where Θ ⊆ Θ0 is open, is called an exponential family of
probability densities.

2For details of the assumptions and the convergence results for the pro-
jection PAF, see [13].

3{c1, . . . , cp} are affinely independent if for distinct points x1, x2, . . . ,

xp+1,
∑p+1

i=1 λic(xi) = 0 and
∑p+1

i=1 λi = 0 imply λ1 = λ2 = · · · = λp+1 = 0
[16].

Step (1). Initialization.
Sample N i.i.d. random vectors x1

0, . . . , xN
0 with

the density p0(x).

Step (2). Diffusion.
Find x̂1

k+1, . . . , x̂N
k+1 from the given x1

k , . . . , xN
k ,

using the dynamic rule:

xk+1 = fk
(

xk

)
+ Gk

(
xk

)
vk.

Step (3). Find the MLE of θ̂(k+1)− , given x̂1
k+1, . . . , x̂N

k+1:

θ̂(k+1)− = arg max
θ

N∏
i=1

exp
(
θTc

(
x̂i
k+1

)− Υ(θ)
)
.

Step (4). Use Bayes’ rule

p
(

x, θ̂(k+1)
)

= exp
(
θ̂T(k+1)−c(x)− Υ

(
θ̂(k+1)−

))
p
(

yk+1

∣∣x
)

∫
exp

(
θ̂T(k+1)−c(x)− Υ

(
θ̂(k+1)−

))
p
(

yk+1

∣∣x
)
dx

.

Step (5). Resampling.

Sample x1
k+1, . . . , xN

k+1 according to p(x, θ̂k+1).

Step (6). k ← k + 1; go to Step (2).

Algorithm 2: Projection particle filtering for an exponential family
of densities.

With this definition for the exponential family of densi-
ties, the projection PAF algorithm is stated as in Algorithm 2.

3. CHANGE DETECTION: PROBLEM DEFINITION

Online detection of a change can be formulated as follows
[2]. Let Yk

1 be a sequence of observed random variables
with conditional densities pθ(yk|yk−1, . . . , y1). Before the un-
known change time t0, the parameter of the conditional den-
sity θ is constant and equal to θ0. After the change, this pa-
rameter is equal to θ1. In online change detection, one is in-
terested in detecting the occurrence of such a change. The
exact time and the estimation of the parameters before and
after the change are not required. In the case of multiple
changes, we assume that the changes are detected fast enough
so that in each time instance, only one change can be con-
sidered. Online change detection is performed by a stopping
rule [2]

ta = inf
{
k : gk

(
Yk

1

) ≥ λ
}

, (7)

where λ is a threshold, {gk}k≥1 is a family of functions, and ta
is the alarm time, that is, the time when change is detected.

If ta < t0, then a false alarm has occurred. The crite-
rion for choosing the parameter λ and the family of functions
{gk}k≥1 is to minimize the detection delay for the fixed mean
time between false alarms.

4. ADDITIVE CHANGES IN LINEAR
DYNAMICAL SYSTEMS

Consider the system

xk+1 = Fkxk + Gkwk + ΓkΥx
(
k, t0

)
,

yk = Hkxk + vk + ΞkΥy
(
k, t0

)
,

(8)
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where xk ∈ Rn, yk ∈ Rd, and wk ∈ Rq and vk ∈ Rd are
white noise processes with known statistics. Fk , Gk, HK , Γk,
and Ξk are matrices of proper dimensions, and Υx(k, t0) and
Υy(k, t0) are the dynamic profiles of the assumed changes,
of dimensions ñ ≤ n and d̃ ≤ d, respectively. wk and vk
are white Gaussian noise processes, independent of the initial
condition x0. It is assumed that Υx(k, t0) = 0 and Υy(k, t0) =
0 for k < t0, but we do not necessarily have the exact knowl-
edge of the dynamic profile and the gain matrices Γk and Ξk.

For the case of known parameters before and after
change, the CUSUM [2] algorithm can be used, and it is well
known that the change detection method has the following
form:

ta = min
{
k ≥ 1 | gk ≥ λ

}
,

gk = max
1≤ j≤k

Skj ,

Skj = ln

∏k
i= j pρ(i, j)

(
εi
)

∏k
i= j p0

(
εi
) ,

(9)

where εi is the innovation process calculated using Kalman
filtering assuming that no change occurred, and ρ(i, j) is the
mean of the innovation process at time j conditioned on the
change occurring at the time i. p0 and pρ(·,·) are Gaussian
densities with means 0 and ρ(·, ·), respectively. The covari-
ance matrix for these two densities is the same and is calcu-
lated using Kalman filtering. SKj is the LR between two hy-
potheses: change occurrence at j and no change occurrence.

When the parameter after change is not known, GLR can
be used to calculate gk [4]:

gk = max
1≤ j≤k

sup
Υx ,Υy

Skj . (10)

The solution for (10) is well known and can be found in
many references (see [2]).

Similar to nonlinear filtering, change detection for non-
linear stochastic systems results in an algorithm that is in-
finite dimensional. Linearization techniques, whenever ap-
plicable, are the main approximation tool for studying the
change detection problem for nonlinear systems. Although
linearization techniques are computationally efficient, they
are not always applicable. In the sections to come, we pro-
pose a new method based on nonlinear PAF that can be used
for change detection for nonlinear stochastic systems.

5. NONLINEAR CHANGE DETECTION:
PROBLEM SETUP

Consider the nonlinear system

xk+1 = f ikk
(

xk
)

+ Gik
k

(
xk)wk,

yk = hik
k

(
xk
)

+ vk,
(11)

where

ik =



0, k < t0,

1, k ≥ t0,
(12)

and the functions f0
k (·), f1

k (·), h0
k(·), h1

k(·) and the matrices
G0
k(·), G1

k(·) have the proper dimensions. The sudden change
occurs when ik changes from 0 to 1.

In this setup, Skj can be written as follows:

Skj = ln
p
(
Yk

j

∣∣Y j−1
1 , t0 = j

)
p
(
Yk

j

∣∣Y j−1
1 , t0 > k

) . (13)

Writing (13) in a recursive form, we get

p
(
Yk

j

∣∣Y j−1
1 , t0 = j

) = k∏
i= j

p
(

yi
∣∣Yi−1

1 , t0 = j
)
, (14)

where p(yi|Yi−1
1 , t0 = j) can be written as follows:

p
(

yi
∣∣Yi−1

1 , t0 = j
) =

∫
p
(

yi
∣∣xi
)
P
(
dxi

∣∣Yi−1
1 , t0 = j

)
. (15)

To find P(dxi|Yi−1
1 , t0 = j) or equivalently to find the density

p(xi|Yi−1
1 , t0 = j)4 in (15), one needs to find an approxima-

tion for the corresponding nonlinear filter. We assume that
this approximation is done using either PAF or projection
PAF [13].

To calculate the LR in (13), we must calculate the con-
ditional densities of the state, given the observation for two
hypotheses (change occurrence at j and change occurrence
after k). This means that two nonlinear filters should be im-
plemented just to compare these two hypotheses. Therefore,
it is clear that to use an algorithm similar to (9), k parallel
nonlinear filters should be implemented. In Figure 1, we see
that the computational complexity of the CUSUM algorithm
grows linearly with respect to time. In most applications, this
growth is not desirable. One possible way to approximate the
CUSUM algorithm is to truncate the branches that fork from
the main branch in Figure 1. We will explain this truncation
procedure and its technical difficulties in the next few lines.

Recall that the main branch (horizontal) and the branch-
es forked from it in Figure 1 are representing a series of
nonlinear filters with specific assumptions on the change
time. The dynamic and observation equations for all forked
branches are the same and the only difference is the initial
density. If the conditional density of the state, given the ob-
servation for a nonlinear system, with the wrong initial den-
sity converges (in some meaningful way) to the true condi-
tional density (initialized by the true initial density), we say
that the corresponding nonlinear filter is asymptotically sta-
ble [17].

For asymptotically stable nonlinear filters, the forked
branches in Figure 1 converge to a single branch, therefore,
there is no need to implement several parallel nonlinear fil-
ters. In other words, after each branching, the independent
nonlinear filter is used for a period of time and then this
branch converges to the branches that have forked earlier,

4If the density exists.
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P(xk|Yk−1
0 , t0 = 1)

P(xk|Yk−1
0 , t0 = 2)

P(xk|Yk−1
0 , t0 = 3)

P(xk|Yk−1
0 , t0 = k − 2)

P(xk|Yk−1
0 , t0 = k − 1)

P(xk|Yk−1
0 , t0 ≥ k)

P(xk−1|Yk−2
0 , t0 = 1)

P(xk−1|Yk−2
0 , t0 = 2)

P(xk−1|Yk−2
0 , t0 = k − 2)

P(xk−1|Yk−2
0 , t0 ≥ k − 1)

P(x4|Y3
0 , t0 = 1)

P(x4|Y3
0 , t0 = 2)

P(x4|Y3
0 , t0 = 3)

P(x4|Y3
0 , t0 ≥ 4)

P(x3|Y2
0 , t0 = 1)

P(x3|Y2
0 , t0 = 2)

P(x3|Y2
0 , t0 ≥ 3)

P(x2|Y1
0 , t0 = 1)

P(x2|Y1
0 , t0 ≥ 2)P(x1|Y0

0 , t0 ≥ 1)

Figure 1: Combination of nonlinear filters used in the CUSUM change detection algorithm.

that is, joins them. The time needed for the branch of the in-
dependent nonlinear filter to join the other forked branches
depends on the convergence rate and the target accuracy of
the approximation.

Although the procedure mentioned above can be used for
asymptotically stable nonlinear filters, there are several prob-
lems associated with this method. The known theoretical re-
sults for identifying asymptotically stable filters are limited to
either requiring ergodicity and the compactness of the state
space [18, 19, 20], or very special cases of the observation
equation [17]. The rate of convergence of the filters in differ-
ent branches is another potential shortcoming of the men-
tioned procedure. If the convergence rate is low in compar-
ison to the rate of parameter change in the system, then the
algorithm cannot take advantage of this convergence.

6. NONLINEAR CHANGE DETECTION: NONGROWING
COMPUTATIONAL COMPLEXITY

In this section, we introduce a new statistic to overcome
the problem of growing computational complexity for the
change detection method. We emphasize that the parame-
ters of the system before and after change are assumed to
be known. Therefore, the conditional density of the state of
the system, given the observation, can be calculated using a
nonlinear filter. We show that this statistic can be calculated
recursively.

Consider the following statistic:

Tk
j = ln

p
(
Yk

j

∣∣Y j−1
1 , t0 ∈ { j, . . . , k}

)
p
(
Yk

j

∣∣Y j−1
1 , t0 > k

) . (16)

The change detection algorithm based on statistic Tk
j can

be presented as

ta = min
{
k ≥ j | Tk

j ≥ λ or Tk
j ≤ −α

}
, (17)

where j is the last time when Tk
j ≥ λ or Tk

j ≤ −α, and λ > 0
and α > 0 are chosen such that the detection delay is mini-
mized for a fixed mean time between two false alarms.

For the rest of this paper, we assume that the probability
of change at time i condition on no change before i is q, that
is,

P
(
t0 = i | t0 ≥ i

) = q. (18)

Without loss of generality and for simplifying the nota-
tion, we assume that j = 1. To calculate the statistic Tk

1 , it is
sufficient to find P(dxk , t0 ≤ k|Yk

1) and P(dxk , t0 > k|Yk
1).

Then Tk
1 is given by

Tk
1 = ln

(
(1− q)k(

1− (1− q)k
)
∫
P
(
dxk , t0 ≤ k

∣∣Yk
1

)
∫
P
(
dxk , t0 > k

∣∣Yk
1

)
)

= ln

(
(1− q)k(

1− (1− q)k
)W1

k

W0
k

)
,

(19)
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where W0
k =

∫
P(dxk , t0 > k|Yk

1) and W1
k =

∫
P(dxk , t0 ≤

k|Yk
1). Therefore, to calculate Tk

1 recursively, it is sufficient to
calculate P(dxk , t0 ≤ k|Yk

1) and P(dxk, t0 > k|Yk
1) recur-

sively. P(dxk+1, t0 ≤ k + 1|Yk+1
1 ) can be written as follows:

P
(
dxk+1, t0 ≤ k + 1

∣∣Yk+1
1

)

= P
(
dxk+1, t0 ≤ k + 1, yk+1

∣∣Yk
1

)
∫
P
(
dxk+1, t0 ≤ k + 1, yk+1

∣∣Yk
1

)
+
∫
P
(
dxk+1, t0 > k + 1, yk+1

∣∣Yk
1

)

= p
(

yk+1
∣∣xk+1, t0 ≤ k + 1)P

(
dxk+1, t0 ≤ k + 1

∣∣Yk
1

)
∫
p
(

yk+1
∣∣xk+1, t0 ≤ k + 1

)
P
(
dxk+1, t0 ≤ k + 1

∣∣Yk
1

)
+
∫
p
(

yk+1
∣∣xk+1, t0 > k + 1

)
P
(
dxk+1, t0 > k + 1

∣∣Yk
1

)

= p1
(

yk+1
∣∣xk+1

)
P
(
dxk+1, t0 ≤ k + 1

∣∣Yk
1

)
∫
p1
(

yk+1
∣∣xk+1

)
P
(
dxk+1, t0 ≤ k + 1

∣∣Yk
1

)
+
∫
p0
(

yk+1
∣∣xk+1

)
P
(
dxk+1, t0 > k + 1

∣∣Yk
1

) ,

(20)

where p1(yk+1|xk+1) is the conditional density of the state
xk+1, given the observation yk+1, under the hypothesis that
change has occurred and p0(yk+1|xk+1) is the same condi-

tional density under the hypothesis that no change has oc-
curred. Similarly, for P(dxk+1, t0 > k + 1|Yk+1

1 ), we have the
following:

P
(
dxk+1, t0 > k + 1

∣∣Yk+1
1

)
= p0

(
yk+1

∣∣xk+1
)
P
(
dxk+1, t0 > k + 1

∣∣Yk
1

)
∫
p1
(

yk+1
∣∣xk+1

)
P
(
dxk+1, t0 ≤ k + 1|Yk

1

)
+
∫
p0
(

yk+1
∣∣xk+1

)
P
(
dxk+1, t0>k + 1

∣∣Yk
1

) . (21)

Also, we have

P
(
dxk+1, t0 ≤ k + 1

∣∣Yk
1

)
=
∫
P
(
dxk+1, t0≤k + 1|xk , t0≤k, Yk

1

)
P
(
dxk , t0≤k

∣∣Yk
1

)

+
∫
P
(
dxk+1, t0 ≤ k+1|xk , t0>k, Yk

1)P
(
dxk , t0>k

∣∣Yk
1

)

=W1
k

∫
P

k+1

1

(
dxk+1

∣∣xk
)
P
(
dxk

∣∣t0 ≤ k, Yk
1

)

+ qW0
k

∫
P
(
dxk+1

∣∣xk, t0 = k + 1
)
P
(
dxk

∣∣t0 > k, Yk
1

)
,

(22)

P
(
dxk+1, t0 > k + 1|Yk

1

)
= (1− q)W0

k

∫
P

k+1

0

(
dxk+1

∣∣xk
)
P
(
dxk

∣∣t0 > k, Yk
1

)
.

(23)

In (22) and (23), P
k+1

0 (dxk+1|xk) and P
k+1

1 (dxk+1|xk) are the
Markov transition kernel under the hypothesis that no
change has occurred before k + 1 and change has occurred
before k, respectively. P(dxk+1|xk, t0 = k + 1) is the Markov
transition kernel under the hypothesis that the change has
occurred at k + 1. For the dynamics in (11), we have
P(dxk+1|xk, t0 = k + 1) = P

k+1

0 (dxk+1|xk).

Equations (19)–(23) show that the statistic Tk
1 can be cal-

culated recursively. They also show that in the prediction step
of the nonlinear filter at each time instance, only two con-
ditional distributions should be calculated, P(dxk+1, t0 ≤
k + 1|Yk

1) and P(dxk+1, t0 > k + 1|Yk
1). Therefore, if a

PAF method is used to approximate (22) and (23), we only
need two sets of particles to approximate these two condi-
tional distributions. In the Bayes’ rule update step and the
resampling step of the PAF, (20) and (21) are used. One pos-
sible way of implementing (19) in (23) using a PAF method
is as follows.

In Algorithm 3, the same number of particles is used to
find the conditional distribution before and after change.
This guarantees that always enough numbers of particles are
available for approximating the conditional densities before
and after change.

In the remaining sections, we use the introduced statistic
Tk
j for detecting a sudden change in the phase measurement

of an integrated INS/GPS.

7. INTEGRATED INS/GPS

GPS provides worldwide accurate positioning if four or more
satellites are in view of the receiver. Although the satellite
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Step (1). Initialization.
Sample 2N i.i.d. random vectors x1

0, . . . , xN
0 with

the weight W0
0 /N , and xN+1

0 , . . . , x2N
0 with the

weight W1
0 /N and W1

0 = 1−W0
0 = ε, with the

initial distribution P0(dx, t0 > 0). (Since we start
with the assumption that no change has
happened, ε is either 0 or a very small number.)

Step (2). Diffusion.
Find x̂1

k+1, . . . , x̂N
k+1 from the given x1

k , . . . , xN
k

using the dynamic rule:

xk+1 = f0
k

(
xk

)
+ G0

k

(
xk

)
vk ,

and find x̂N+1
k+1 , . . . , x̂2N

k+1 from the given
xN+1
k , . . . , x2N

k using the dynamic rule:

xk+1 = f1
k

(
xk

)
+ G1

k

(
xk

)
vk.

Step (3). Find an estimate for P(dxk+1|t0 > k, Yk
1) and

P(dxk+1|t0 ≤ k, Yk
1) either by using empirical

distributions

PN
(k+1)−

(
dxk+1

∣∣t0 > k, Yk
1

) = 1
N

N∑
j=1

δ
x̂
j
k+1

(
dxk+1

)
,

PN
(k+1)−

(
dxk+1

∣∣t0 ≤ k, Yk
1

) = 1
N

2N∑
j=N+1

δ
x̂
j
k+1

(
dxk+1

)
,

or by using Step (3) of Algorithm 2. Then

PN
(k+1)−

(
dxk+1, t0 > k + 1|Yk

1

)
= (1− q)W0

k P
N
(k+1)−

(
dxk+1

∣∣t0 > k, Yk
1

)
,

PN
(k+1)−

(
dxk+1, t0 ≤ k + 1|Yk

1

)
= qW0

k P
N
(k+1)−

(
dxk+1

∣∣t0 > k, Yk
1

)
+ W1

k P
N
(k+1)−

(
dxk+1

∣∣t0 ≤ k, Yk
1

)
.

Step (4). Use Bayes’ rule in (20) and (21) to calculate
PN
k+1(dxk+1, t0 > k + 1|Yk+1

1 ) and PN
k+1(dxk+1, t0 ≤ k +

1|Yk+1
1 ). Then set W0

k+1 =
∫
PN
k+1(dxk+1, t0 > k + 1|Yk+1

1 )
and W1

k+1 =
∫
PN
k+1(dxk+1, t0 ≤ k + 1|Yk+1

1 ).

Step (5). Resampling.
Sample x1

k+1, . . . , xN
k+1 according to PN

k+1(dxk+1,
t0 > k + 1|Yk+1

1 )/W0
k+1.

Sample xN+1
k+1 , . . . , x2N

k+1 according to PN
k+1(dxk+1,

t0 ≤ k + 1|Yk+1
1 )/W1

k+1.

Step (6). k ← k + 1; go to Step (2).

Algorithm 3: Change detection using particle filtering.

constellation guarantees availability of four or more satel-
lites worldwide, natural or man-made obstacles can block the
satellite signals easily. Integrating dead reckoning or INS with
GPS [21, 22, 23, 24] is a method to overcome this vulnera-
bility. Here, INS or the dead reckoning provides positioning
that is calibrated by the GPS. In this section, we consider the
case of an integrated INS/GPS. In [25], we showed that using
nonlinear filtering for positioning is essential. We compared
the proposed PAF with regular PAF and EKF.

Table 1: Definition of the parameters for WGS84 reference frame.

a 6378137.0 m Semimajor axis

b 6356752.3142 m Semiminor axis

ωie 7.292115× 10−5 Earth angular velocity

e (
√
b(a− b))/a Ellipsoid eccentricity

Using carrier phase measurements enables the differen-
tial GPS to reach centimeter-level accuracy. A phase lock loop
cannot measure the full-cycle part of the carrier phase. This
unmeasured part is called integer ambiguity that requires to
be resolved through other means. In this paper, we assume
that the integer ambiguity is resolved (see, e.g., [26]). How-
ever, the measured phase can experience a sudden change
undetected by the phase lock loop. This sudden change is
called the cycle slip and if it is undetected by the integrated
INS/GPS, it results in an error in the estimated position. We
will use the method introduced in this paper to detect such
changes.

We consider the observation equation provided by the ith
GPS satellite at time k to have the form

yik = ρi
(
px, py , pz

)− ρi
(
bx, by , bz

)
+ ni

(
t, t0

)
+ cδ + vik,

(24)

where [px, py , pz]T and [bx, by , bz]T are the rover and
(known) base coordinates at time k, respectively, ρi(x1, x2, x3)
is the distance from point [x1, x2, x3]T to satellite i, δ is a com-
bination of the receiver clock bias in the base and the rover, c
is the speed of light, vik is the measurement noise for the ith
satellite signal, t0 is the unknown moment of the cycle slip,
and ni(t, t0) = 0 for t < t0 and ni(t, t0) = ni for t ≥ t0, where
ni is the change in phase measurement due to the cycle slip.

The main goal in the simulations is to detect the change
in the phase measurement as soon as it happens.

Here we point out that the nonlinearity in measurement
is not solely due to the function ρ. Integrated INS/GPS re-
quires coordinate transformations between INS parameters
and GPS parameters, which contributes to the nonlinearity
of the measurement.

Parameters of an integrated INS/GPS are expressed in
different coordinate systems. The GPS measurements are
given in an earth-centered earth-fixed (ECEF) frame [27, 28].
The GPS position is given either in the rectangular coordi-
nate system (see (24)) or in the geodetic coordinate system
with the familiar latitude, longitude, and height coordinate
vector [pλ, pφ, ph]T . For the latter, the earth’s geoid is approx-
imated by an ellipsoid. Table 1 shows the defining parame-
ters for the geoid according to the WGS84 reference frame.
The parameters and measurements of INS are given in the
local geographical frame or in the body frame system, where
the velocity is given by the north-east-down velocity vec-
tor [vN , vE, vD]T . The transformation matrix from the body
frame to the local geographical frame is given by the matrix
Rb2g . In this paper, we assume the estimation problem for the
gyro measurements is solved, hence Rb2g is known.
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The GPS clock drift and the INS equations constitute key
dynamics in integrated INS/GPS. The INS dynamic equation
can be expressed as follows (see [25] for details):

d



pλ

pφ

ph


 =




1
Rλ +ph

0 0

0
1(

Rφ +ph
)

cos
(
pλ
) 0

0 0 −1






vN

vE

vD


dt,

d



vN

vE

vD


 =







− v2
E

Rφ +ph
tan

(
pλ
)− 2ωie sin

(
pλ
)
vE

+
vNvD
Rλ +ph

vEvN
Rλ +ph

tan(λ) + ωie sin(pλ)vN

+
vEvD
Rφ +ph

+ 2ωie cos
(
pλ
)
vD

− v2
N

Rλ +ph
− v2

E

Rφ +ph
− 2ωie cos

(
pλ
)
vE




+Rb2g





ãu

ãv

ãw


 +



bu

bv

bw




 +




0

0

g







dt + dwv
t ,

(25)

where g = 9.780327 m/s2 is the gravitational accelera-
tion, Rλ = a(1− e2)/(1− e2 sin2(pλ))3/2, Rφ = a/(1 −
e2 sin2(pλ))1/2, [ãu, ãv, ãw]T and [bu, bv, bw]T are the ac-
celerometer measurement and the accelerometer measure-
ment bias, respectively, both expressed in the body frame,
and wv is a vector-valued Brownian motion process with zero
mean and known covariance matrix. The measurement bias
b = [bu, bv, bw]T has the dynamics

db = −abbdt + dwb
t , (26)

where wb
t is a vector-valued Brownian motion with zero

mean and known covariance matrix, and ab is a small posi-
tive constant. The receiver clock drift δt is represented by the
integration of an exponentially correlated random process ρt
[24]:

dρt = − 1
500

ρtdt + dw
ρ
t ,

dδt = ρtdt,
(27)

where w
ρ
t is a zero-mean Brownian motion process with vari-

ance σ2
ρ = 10−24. This dynamic model is typical for a quartz

TCXO with frequency drift rate 10−9 s/s [24].

8. SIMULATIONS AND RESULTS

The dimension of the dynamical system in the simulation is
eleven. The state of the dynamical system x is given as follows:

x = [pλ, pφ, ph, vN , vE, vD, bu, bv, bw, ρ, δ
]T
. (28)

The differential equation describing the dynamics of the sys-
tem is the combination of the differential equations in (25),
(26), and (27). Here we assume that ab = 0.001 and that the
covariance matrices for the Brownian motions in the INS dy-
namic equations Σb and Σv are diagonal. To be more specific,
Σb = 10−6I and Σv = 10−4I , where I is the identity matrix
of the proper size. The observation equation is given in (24),
where yi is one component of the observation vector. The di-
mension of the observation vector is the same as the number
of available satellites. In (24), the observation is given as a
function of the position in the ECEF rectangular coordinate
system that is then transformed to the geodetic coordinate
system [25].

For the simulation, we simply chose an eleven-dimen-
sional Gaussian density for the projection PAF. This choice of
density makes the random vector generation easy and com-
putationally affordable. To be able to use the projection PAF,
we used the maximum likelihood criteria to estimate the pa-
rameters of the Gaussian density before and after Bayes’ cor-
rection.

We used two Novatel GPS receivers to collect navigation
data (April 2, 2000). From this data, we extracted position in-
formation for the satellites, the pseudorange, and the carrier
phase measurement noise powers for the L1 frequency. From
the collected information we generated the pseudorange and
the carrier phase data for one static and one moving receiver
(base and rover, respectively). We assume that for the car-
rier phase measurement, the integer ambiguity problem is
already solved (see [26] for details). The movement of the
INS/GPS platform was simulation based and it was the basis
for the measurement data measured by the accelerometers,
the gyros, the GPS pseudorange, and the GPS carrier phase
data.

As a precursor, we note that in the simulation in [13]
we showed that for an integrated INS/GPS when the num-
ber of satellites is less than a critical number, projection PAF
provides a very accurate estimate of the position, while the
position solution given by EKF is unacceptable. In Figures 2
and 3, a comparison of the position estimation error in the
rectangular coordinate system for one typical run of each
method is shown. For that simulation, we assumed that the
GPS receiver starts with six satellites. At time t = 100, the
receiver loses the signal from three satellites, and it gains one
satellite signal back at t = 400. From these two figures, it
is clear that when the number of satellites in view is below
a certain number (here four satellites), the EKF is unable to
provide a reasonable estimate of the position for the inte-
grated INS/GPS. Since the error of the position estimate of
linearization methods is unacceptable even when no change
in the phase measurement occurs, using these methods in the
presence of an abrupt change is fruitless as well.
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Figure 2: Position estimation error (= Euclidean distance between
Cartesian position vector and its estimate) for three methods: EKF,
PAF, and projection PAF. The system starts with six satellites in view.
At t = 100 seconds, the signals from three satellites are lost. At t =
400 seconds, the system regains the signal from one satellite.
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Figure 3: Details of Figure 2, where the difference between the pro-
jection PAF method and the PAF method is clear.

To apply our method described in (17) for sudden
phase change detection in an integrated INS/GPS, we use
projection PAF as our nonlinear filtering method. We use the
CUSUM algorithm to evaluate the proposed changed detec-
tion scheme. We compare the statistic in (17) with that of
the CUSUM algorithm. We wish to emphasize that in the ex-
ample given in this section, we assume that the parameter of
change, before and after the change, is known and the only
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Figure 4: The plot of Tk
j with respect to time for 100 independent

runs of an INS/GSP system. At time t = 15, the receiver loses three
satellites. The cycle slip in channel one occurred at t = 20 seconds.
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Figure 5: The plot of gk with respect to time for 100 independent
runs of an INS/GSP system. gk is the statistics used in the CUSUM
algorithm. At time t = 15, the receiver loses three satellites. The
cycle slip in channel one occurred at t = 20 seconds.

unknown parameter is the change time. In the future, we will
address the more general problem of unknown change pa-
rameters.

For the simulation in this paper, we assumed that the
phase lock loop associated to satellite one experiences a cy-
cle slip at time t = 20 and the phase changes suddenly. The
size of the change is one cycle. We assumed that the GPS re-
ceiver starts with six satellites. At time t = 15, the receiver
loses three satellites (we eliminate them from the data). We
used Algorithm 2 to calculate the statistic in the CUSUM al-
gorithm gk and Algorithm 3 and projection PAF to calculate
Tk
j . In Figure 4, we have plotted Tk

j with respect to time for
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100 independent runs. In Figure 5, we have plotted the statis-
tic gk for the same 100 independent runs. The figures show
that there are sudden changes both in Tk

j and gk when a cy-
cle slip occurs, and this is true for all 100 runs. These fig-
ures also show that for this simulation, the performance of
the algorithm given in this paper is comparable to the per-
formance of the CUSUM algorithm. This simulation shows
that Tk

j can be used successfully to detect the cycle slip with
known strength.

9. CONCLUSION AND FUTURE WORK

In this paper, we developed a new method for the detec-
tion of abrupt changes for known parameters after change.
We showed that unlike the CUSUM algorithm, the statistic
in this method can be calculated recursively for nonlinear
stochastic systems. In the future, we intend to extend our re-
sults to the case where the parameters after change are un-
known. The major obstacle in this extension is the complex-
ity of the change detection method.
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